Presented at the ICEAA 2023 Professional Development & Training Workshop - www.iceaaonline.com/sat2023

Modeling Battery Manufacturing Complexity

Sara McNeal

— 1 —

Agenda

- Introduction
- Data Methodology
- Analysis & Results
- Summary of Findings
- Limitations & Future Research

Introduction

- Interest and questions from agencies
- Purpose
- Basics of Battery
- Technologies
 - Conventional
 - Advanced

Data Methodology (1 of 4)

- Data Sources: Battery characteristics and unit prices
 - Defense Logistics System
 - Over 15 million active and historical National Item Identification Numbers (NIIN) and Navy Item Control Numbers (NICN) and more than 100 million parts in the Federal Supply Catalog.
 - Defense Logistics Agency Internet Bid Board System
 - Search and view Request For Proposals (RFPs), Invitations For Bid (IFBs), Awards and other procurement information
 - Manufacturers' websites
 - Battery technical specifications
 - Product features and benefits
 - Government solicitations

Data Methodology (2 of 4)

- Input Data & Calibrate
 - Weight of batteries
 - Primary Op spec
 - Dates based on contract
 - Learning rates are based on power trend line to find the slope of quantity discount
 - Calibrate Manufacturing Complexity for Structure (MCPLXS) to unit prices (Target Value)

Cost Item:	External Integration Complexity for Electronics External Integration Complexity for Structure Hardware Software Integration Factor Labor Learning Curve Legacy Schedule Penalty Multiplier - Hardware Do Manufacturing Complexity for Electronics Manufacturing Complexity for Structure	^ ~	Current Value: 4.512067
Output Cost Selection			
Cost Object:	Saft 17677-000 (Ni-Cd)		
Cost Item:	Development Cost Development Cost per Weight Unit Development Duration Development Labor Hours Electronic Density Electronic Engineering Change Notices Estimated Cost	^	Current Value: 6,881 \$
		~	Target Value: 6,862
Constraints			
Tolerance (%): 0.500		Maximum Iterations: 30

Data Methodology (3 of 4)

- Included the following attributes to look at dependencies for MCPLXS:
 - Voltage
 - Weight
 - Capacity
 - Battery types (categorized by chemistry)
 - Rechargeable or non-rechargeable
 - Manufacturer

Data Methodology (4 of 4)

- Ran multiple simulations in RapidMiner
 - Preferred model: Decision Tree based on relative error
 - Voltage increases = MCPLXS increases
 - Weight decreases = MCPLXS increases

—7 **—**

Analysis

Dependency Finder in TrueFindings

- Find a relationship where MCPLXS is the Dependent Variable
- Filter attributes and select variables
- R-value: ranking of the linear correlation of independent to dependent variables

Analysis■ Dependency Finder: Filtered by Op Spec then Battery Type

Analysis

- Multicurve Finder in TrueFindings
 - Analyze scatter plots to find relationships and trends
 - Predictions are more complex than just the single predicted value
 - Predictions include a margin of error and calculate statistics to a 95 percent significance level
 - Regression Statistics
 - R-Squared
 - Adjusted R-Squared

Results

- Scatterplot for Lead Acid batteries for Airborne Military
 - R-Square: 0.971
 - Adjusted R-Square: 0.957
 - Produce prediction formulas

- MCPLXS = 0.126 * [Voltage] - 0.029 * [Weight] + 3.204

Summary of Findings

- Battery database
 - approximately 975 datapoints across 114 individually identifiable part numbers
- Data repository serves as a useful resource for users to reach back to calibrated manufacturing complexities
 - Multiple attributes
 - Numerous operating environments
- Types of batteries have a strong relationship to MCPLXS

Limitations and Future Research

- Insight into Manufacturers' rates
 - assumptions were made to utilize set values for overhead, general and administrative, and fee or profit
- Amount of labor and automation built into manufacturing process
- Expand this study by increasing the scope of data collection and fill-in the gaps of battery characteristics
 - * The success of validity for CERs will depend on accumulating more data from other sources

Questions?

