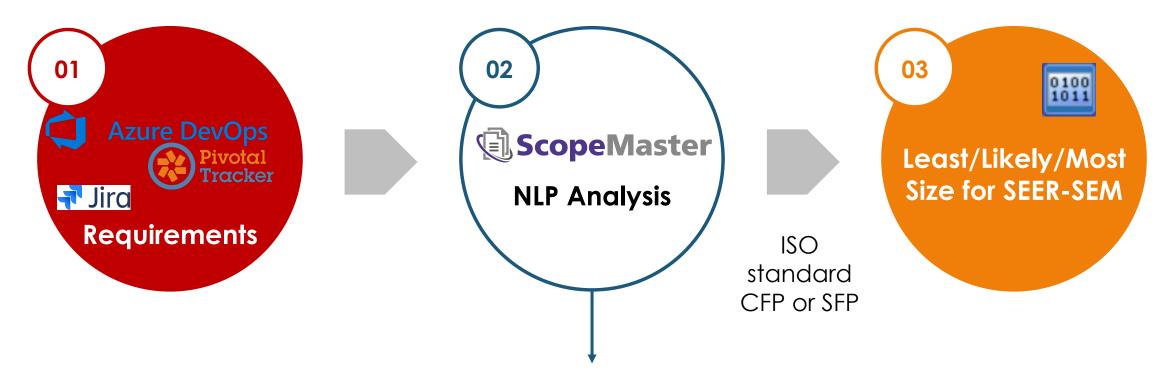
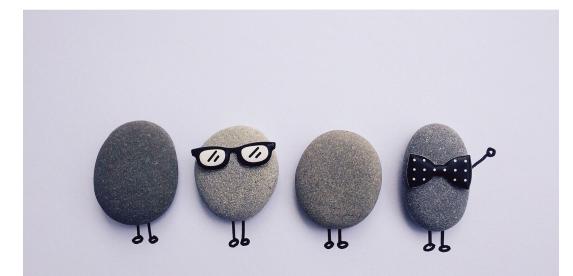
Software Estimation Using Functional Size Derived from User Stories


Presented at the ICEAA 2023 Professional Development & Training Workshop - www.ice

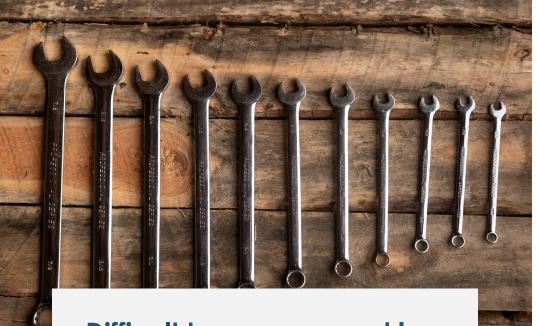
Karen McRitchie Esteban Sanchez Alton Ng Colin Hammond

© Copyright Galorath Incorporated 2023

Abstract


30,000 foot view of sizing from stories

Requirements, in the form of stories can be analyzed by ScopeMaster and offer suggestions to improve requirements for clarity, consistency and testability. It also computes functional size that can be used for estimation. SEER-SEM has leveraged this capability and offers an approach to use the generated functional size, considering the uncertainty around the results.


The Challenge

Agile sizing is associated with story points... but they have issues

Stories are team specific

Lack of Standardization occurs when each team defines what is meant by a story. It can be helpful for project implementation, but there is no practical way to compare stories from one team to the next.

Difficult to measure and learn

Loss of learning The lack of non-standard metrics leads to the lack of historical perspective. Benchmarking and measuring improvement become nearly impossible, even within an organization.

The Opportunity

Natural Language Processing of Requirements to Generate Standard Size

Evaluates Stories

Review requirements/stories to identify users, objects and their functional relationships.

Improves Quality

Feedback on requirements offers improvements in consistency, completeness, clarity, and testing.

NLP with

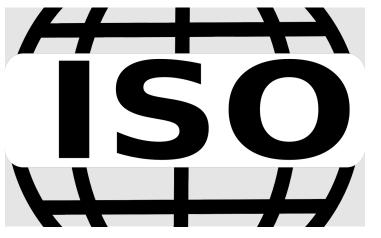
ScopeMaster

analyzes requirements, offers improvement and provides a quantitative summary of the results

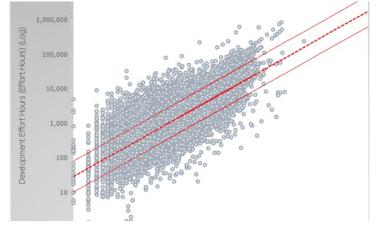
Generates Functional Size

Evaluation of objects and users and data movements enables automated sizing for Cosmic Function Points and Simple Function Points which can be the input to the software estimate.

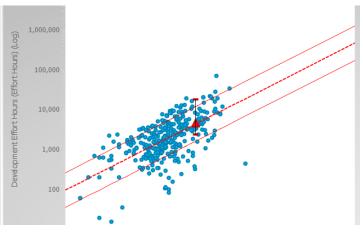
Leverages Popular Tools


Stories can be linked from Jira, Pivotal and Azure DevOps. Also offers CSV import REST

API for easy access to your data.


Using Functional Size for Estimation

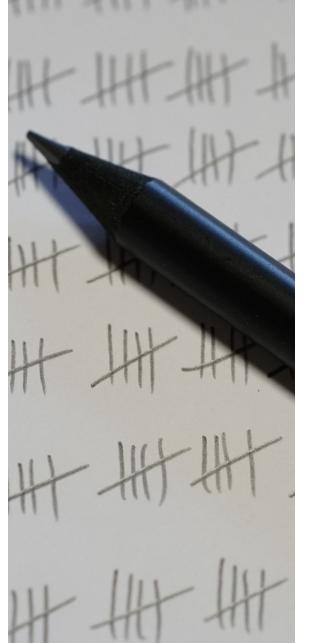
Would you like me to give you a formula for success? It's quite simple, really: Double your rate of failure. You are thinking of failure as the enemy of success. But it isn't at all. You can be discouraged by failure or you can learn from it, so go ahead and make mistakes.


Mature and ISO standard

Functional size metrics have been around for years and several are ISO standard. They have been successfully used for estimation for decades.

Correlated with Effort

Functional size metrics have been shown to be a strong predictor of effort.


Enables Benchmarking

A standard size makes it easier to compare projects and to keep a meaningful historical record. (ISBSG)

Presented at the ICEAA 2023 Professional Development & Training Workshop - www.iceaaonline.com/sat2023 Size Challenges Use of manual counting methods

Error Prone

Manual counting introduces the possibility of human error.

Time Consuming

Manual counting involves review of requirements (or as-is system) and can be time consuming

Requires Judgement

Discernment is needed to classify requirements and, in some cases, relative complexity levels.

Ambiguous **Requirements**

All of the above issues are compounded when requirements are ambiguous or incomplete.

ScopeMaster for Sizing

- Web-based tool
- Requirements analysis and refinement
- #1 goal was to automate functional sizing
- Outputs COSMIC, IFPUG/Simple Function Points
- Consistent results
- Supports a custom vocabulary
- Transparent use of AI (NLP)
- Fast. Estimate 100 user stories in less than 5 minutes, no setup
- Create stories in ScopeMaster or import CSV or via REST API.

Size and Uncertainty

Uncertainty is part of the estimating fabric

Size Ranges

Uncertainty around the size is considered a software estimation best practice. Thus, any automated sizing should consider a range of outcomes.

Embracing Imperfection

Feedback and Improvement is key to the ScopeMaster process and should be embraced. Because estimators are not the ones to be refining stories/requirements they need to consider the ambiguity in the sizing.

Sizing Metric

Functional Size Metrics using either COSMIC or Simple Function Points can be used.

Known Unknowns

Missing Functions can be detected using CRUD analysis and should be part of the sizing.

Terminology

- Requirement aka a story, usually specifies a requirement from a user perspective
 - "As a [persona], I [want to], [so that]."
- Sized Requirement a requirement for which functional intent is detected
- Ambiguous Requirement a requirement no functional intent is detected.
- Missing fills in transactional functions that might be missing (see CRUD)

Detected Objects (34)

Missing Requirements

- CRUD Create, Read, Update, Delete
 - Four basic function types
- Each object ideally would have at least one C, R,U and D function specified as par of the requirements.
- If an object does not have the full CRUD, the missing add transactions

Jump to Name click to confirm CRUD Table Search CRUD view (5) account CRUD view (1) announcement CRUD view (2) answer CRUD view (1) badge bio view (4) CRUD view (1) catalog

Interpreting the Uncertainty

Sized

Requirements where functions are identified and are counted based on transactional scope. This is usually the headline size.

Ambiguous


Uncertain Functional Intent

Requirements where functional intent is not detected. Ideally these requirements can be refined.

Missing

Extrapolated Functions based on potential missing CRUD

Establishing a Size Range

	ware ScopeMaster Integration	nge 🕨 Results		Q	Sized Requirements Minimum Size established from analyzing requirements. This s
Siz	ze Range				likely to be optimistic unless
	Simple Function Points				requirements have been refin
	Least Sized	~			
	Likely Sized + Ambigue	ous 🗸			Amphique
	Most Sized + Ambiguo	ous + Missing 🗸 🗸			Ambiguous Uncertain Size that should be
	Percent of Missing 75	5% ~			considered as part of the likely
		Requirements SFI	Р		input, if not also the least.
	Sized / Sizeable:	55 76	6 SFP		
	Unsized / Ambiguous:		9 SFP		
	Missing CRUD events:		6 SFP		
	Total:	232 19	81 SFP		Missing
	Only count data groups with m	more than one occurrence			Missing Transactions are base
					CRUD analysis. Uses the idea t
					each object should have at le

CRUD transaction. If not in the requirements, missing transactions

are added.

Project Agre Assistant Planner

Economic Factor 3 (Baseline App Mil

Find Print Import Stories Assistance ScopeMaster JIKA Configure Scopemaster Configure Jira

02 **Choose the Project**

And size approach to be estimated. Cosmic Function Points (CFP) and Simple Function Points (SFP) are offered. You can import to an existing element or create a new estimate.

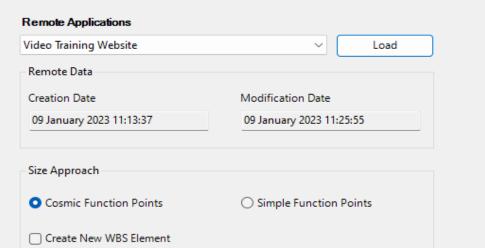
C	
for Software	
SEEP for	

ster

Choose Import Stories

Import Stories offers the option to import from

ScopeMaster or directly from JIRA. Minor configuration is


required.

are ScopeMaster Integration

Presented at the ICEAA 2023 Professional Development & Training Workshop - www.iceaaonline.com/sat2023

Classify 🕨 Size Range 🕨 Results

Project Setup

Project Data Name Video Training Website Requirements Users 72 14 Quality Score Objects 34 53.56 Guidance

×

Version 1.3.3.0

Select Remote Application

Loads selected Scopemaster application into wizard

Name Presented at the ICEAA 2023 Professional Development & Traffin Bow orkshop - www.iceaaonline.com/sat2023 Video Training Website Requirements Users Least Sized ScopeN 72 14 Likely Objects Quality Score Sized + Ambiguous \sim 34 53.56 Most Sized + Ambiguous + Missing \sim U Guidance Percent of Missing 75% \sim Size Range Page Size Range Method 224 CFP Pending Help Sized Requirements: SEER for So Ambiguous Requirements: 119 CFP Specify how Least/Likely and Most Sizes determined. All Functional Requirements: 343 CFP Sizes are cumulative to include sized, ambiguous and Potential Missing Requirements: 276 CFP Total Potential Size: 619 CFP missing. You can specify a % of missing to be included. Х Data Movements . Version 1.3.3.0 Project Setup

Classify

Size Range

Results Project Data Notes and Attachments... Least Likely Most OK Results Notes: Name Based on summary 224 343 550 Requirements Summary Video Training Website Cancel estimate from Requirements Included as part of the functional size estimate Requirements Users > Functional Ambiguous Missina 14 Scopemaster: Prev 47 25 85 Objects Quality Score 53.56 34 Requirements not included as part of the functional size estimate' 47 sized requirements: Next **Results In** Non-Functional Task Constraint Guidance 224 CFP Results Page 0 0 S missing KBase *These should be considered when setting parameters or adding direments: 276 CFP other pass-through estimates Show final estimated results from Scopemaster that are going to be 25 ambiguous **SEER-SEM** used by SEER for Software Testing More Help requirements: 119 CFP Scenarios Tests Missing requirements Use Expression Editor 422 139

Size range inputs are

entered and notes are

added documenting

the size assumptions.

allocation factor: 75%

ScopeMaster

SEER for Software

Examples

Planning Poker Webapp

Data Imported from Jira into ScopeMaster

Requirements

Total number of stories or stated requirements.

12 -----

Non-Functional

16

Non-functional requirements are not sized. They may relate to technology, security, performance or other non-user requirements

Sized

Requirements that could be counted in the functional size.

Missing Requirements

Based on CRUD analysis, fills in transactions for which an object does not have all CRUD.

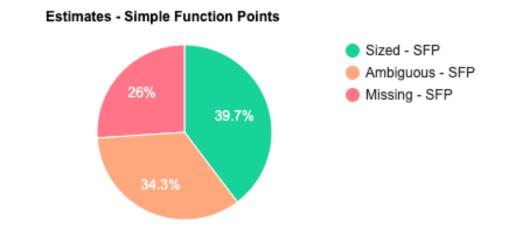
Ambiguous

Requirements where functional intent is not detected. Ideally these requirements can be refined.

Detected users and objects.

Game PPW-19 Ambiquous functional siz€ As a participant, I want to have the two-minute timer reset itself as soon as we all play an estimate so that it's ready for use on the next round. Edit Functions Quality Comments Short title* Labels 🗹 Links 🕑 🖺 Save & Analyse Game Reference (external : PPW-19) Tips 🗹 🛛 🖉 Add Functional requirement* PPW-19 As a participant, I want to have the two-minute timer reset itself as soon as we all play an estimate so that Requirement type it's ready for use on the next round. 30 words Functional Ambiguous "want...have" use recommended verbs 🖉 More fields: Triggering event > Benefits > Notes >

What the requirements look like



17

Simple Function Point Estimate

Planning Poker Webapp Example

Requirements Analysis	Count	SFP Estimate
Sized / Sizeable	22 (of 41)	231.4 SFP (40%)
Unsized / Ambiguous	19 (of 41)	200 SFP (34%)
Missing CRUD events	33	151.8 SFP (26%)
Total:		583.2 SFP

SFP Summary

Data functions and transactions are enumerated and mapped to requirements to develop a SFP count.

Allocation of Size

Quality of Requirements can result in large portions of ambiguous or missing. Not considering these as part of the size can under-estimate effort. As quality improves, ambiguous and missing will become a smaller portion of the size.

t Setup

Classify

Size Range

Results

Size Range

Simple Function	Points		
Least	Sized	~]
Likely	Sized + Ambig	guous 🗸 🗸]
Most	Sized + Ambig]	
Percent of Mis	sing	50%]
		Requirements	SFP
Sized / Sizeab	le:	22	231 SFP
Unsized / Am	biguous:	19	200 SFP
Missing CRUE	Devents:	33	152 SFF
Total:		74	583 SFF

Mapping Data

How to translate into a SEER-SEM estimate

Least/Likely/Most

Size Ranges are generated based what to include. Recommend that all aspects of size should be considered. The more refined the requirements, the tighter the range will become.

Missing

Including Missing is important. However, this can be tempered by a percent to be included. Recommend 50%-75%.

Data Group Counting

SFP includes Data Functions and we found that data objects (aka Logical Files) that were only referenced once inflates the SFP count. Refinement of the requirements will generally reduce this.

Results in SEER-SEM

Inputs

Parameters	Function Based Sizing	Economic Factors	Project Monitor 8	Control Snapshots	Maintenance	Labor Category Allocation	
PROGRAM:	Planning Poker SFP S	ized + Ambig	Least	Likely	Most	Note	
SIZ	E METRIC						
	- Size Metric Descript	tion	Sim	ple Function Po	ints	Based on summary	estimate fro
–	··· NEW						
	Elementary P	rocesses (EP)	29	54	71	Transactions Count	: 29Least usir
	Logical Files (LF)	7	13	13	Data Groups Count:	: 7Least usinç
	Software pha	se at estimate		Requirements			

Ω×

< 🕨 🗙

80% 90% 99%

I. Dro-oviete not decigned for

Inputs and Outputs Reports

inputs for EP and LF are SFP specified as a range. Risk assessment of the estimate range generated.

Size assumption details are logged in the notes.

Reports					ų×	Charts			
Person Hours by Labo	or Category Mon	te Carlo Developm	ent Risk Mon	te Carlo Sc	×	Developm	ent Activity Allocation	Develop	nent Effort Risk
CONFIDENCE L	DEV HOURS	DEV COST	SCHEDULE			0.0	🎇 🕶 🔲 3D 🗰	🖷 🔍 🏐	0
10%	2,352	282,474	8.57					Plannin	g Poker
20%	2,742	329,420	9.02				Mon	te Carlo Deve	– lopment Effort Ris
30%	3,071	368,402	9.38			9,000	_		
40%	3,377	404,749	9.69			8,000			
50%	3,671	440,238	9.97						
60%	4,070	487,279	10.35			7,000			
70%	4,561	545,871	10.77			6,000			
80%	5,201	622,970	11.29			5,000			
90%	6,194	741,106	12.03			Sino 5,000 H 4,000			
						3,000			
Mean	4,039	483,915	10.17					T	
StdDev	1,583	188,936	1.35			2,000			
Based on 1000 Size Uncorrelat	O ASSUMPTION) iteration sampled from Other 1	ing Parameters				1,000 0	1% 10% 20% 3	0% 40% 50 Effort P	0% 60% 70% 8 robability

Video Training Application

Data Imported from Jira into ScopeMaster

21

Requirements

Total number of stories or stated requirements.

Non-functional requirements are not sized. They may relate to technology, security, performance or other non-user requirements

Sized

Requirements that could be counted in the functional size.

Missing Requirements

Based on CRUD analysis, fills in transactions for which an object does not have all CRUD.

Ambiguous

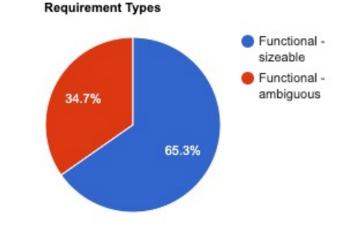
Requirements where functional intent is not detected. Ideally these requirements can be refined.

Detected users and objects.

Cosmic Function Point Estimate

Video Training Application Example

Total Functional Size Estimate


Sized requirements	47	224 CFP
Ambiguous requirements (ie. no functionality detected)	25	119 CFP Estimated
All functional requirements (sized + ambiguous)	72	343 CFP Estimated
Potential missing requirements (from CRUD analysis)	85	276 CFP Estimated
Total Potential Size (sized + ambiguous + missing)	157	619 CFP Estimated

OFP = COSMIC Function Points

CFP Summary

Each Requirement is evaluated for functions and data movements for each function are determined.

Requirements

Allocation of Size

Quality of Requirements can result in large portions of ambiguous or missing. Not considering these as part of the size can under-estimate effort. As quality improves, ambiguous and missing will become a smaller portion of the size.

Setup

Classify

Size Range

Results

Size Range

- Cosmic Functio	n Points					
Least	Sized + Amb		~			
Likely	Sized + Amb	Sized + Ambiguous				
Most	Sized + Amb	+ Missing	~			
Percent of Mis	ssing	50%		~		
Sized Require	ements:		224 CFP			
Ambiguous Requirements:			119 CFP			
All Functional Requirements:			343 CFP			
Potential Missing Requirements:			276 CFP			
Total Potent	ial Size:		619 CFP			

Mapping Data

How to translate into a SEER-SEM estimate

Least/Likely/Most

Size Ranges are generated based what to include. Recommend that all aspects of size should be considered. The more refined the requirements, the tighter the range will become.

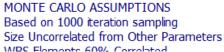
Missing

Including Missing is important. However, this can be tempered by a percent to be included. Recommend 50%-75%

CFP range is display

CFP range is displayed but does not include % missing adjustment.

Results in SEER-SEM


Inputs				
Parameters Function Based Sizing Economic Factors	Project Monitor	& Control Snapshots	Maintenance	Labor Category Allocation
ROGRAM: Video Training	Least	Likely	Most	Note
SIZE METRIC				
Size Metric Description	Cosm	ic FP Data Move	ements	
I NEW				
Data Movements	343	343	481	Based on summary estimate from
Software phase at estimate		Requirements		Based on summary estimate from Scopemaste
Pre-exists, not designed for				47 sized servicements 224 CED
Pre-exists, designed for reuse				47 sized requirements: 224 CFP 85 missing requirements: 276 CFP
PERSONNEL CAPABILITIES & EX				25 ambiguous requirements: 119 CFP
Analyst Capabilities	Low	Nom	Hi	Missing requirements allocation factor: 50%

Inputs and Outputs

for CFP Input range Data Movements are assigned. Risk assessment of the estimate range generated.

Size assumption details are logged in the notes.

Reports				ť
Person Hours by Labo	r Category Mon	te Carlo Developn	nent Risk Mont	e Carlo Sc
CONFIDENCE L	DEV HOURS	DEV COST	SCHEDULE	
10%	2,593	311,352	9.04	
20%	2,901	347,987	9.39	
30%	3,169	380,047	9.68	
40%	3,482	417,584	10.00	
50%	3,807	456,289	10.31	
60%	4,244	508,265	10.74	
70%	4,905	587,859	11.27	
80%	5,513	659,597	11.75	
90%	6,814	815,852	12.68	
Mean	4,336	519,427	10.62	
StdDev	1,838	219,378	1.46	

Benefits of automated sizing

In addition to quality improvements

	Rapid sizing and estimation	
▲× ×	Size mapped to requirements	
	Opportunity improve requirements and sizing	
	Standard size metrics used	

Rapid

Quickly generate size and estimates. Evaluate risk and uncertainty embodied by requirements.

Traceability

Understand how requirements drive cost.

Iterate

More time for in depth evaluation of the estimate for different team sizes/sprint length.

Standard Size

ISO standard size metrics means project data can be used for historical reference, benchmarking and learning

How ScopeMaster Sizes

- Foreach User Story
 - Detects functional phrases
 - Detects users
 - Detects objects
 - Detects multiple functional steps within each user story
 - Encourages refinement until the functional interpretation matches your intent
- Sets of user Stories
 - Cross references them all (up to 3000 user stories)
 - Many reports and visualizations to accelerate improvement of story quality and size precision.