The Symbiotic Relationship Between **Software Sizing and Requirements Quality**

HOMEBASE

Colin Hammond

35+ years in IT, Founder of ScopeMaster Colin.Hammond@scopemaster.com

Symbiotic relationship

Symbiotic Relationship is any type of a close and long-term biological interaction between two different biological organisms that is mutually beneficial.

Buffalo and Oxpecker Infinite supply of bugs and parasites. Hisses when predators are near.

Early Estimates

Why do we estimate cost beforehand? Improve certainty, reduce risk, improve planning

\$1m 9 months

© 2023 ScopeMaster Ltd

\$10m 29 months

Mutual Benefit

Better requirements

Activity of Functional Sizing

© 2023 ScopeMaster Ltd

Better Estimates

Embrace both activities

Cost Estimator

I started by trying to automate Functional Sizing, then pivoted

© 2023 ScopeMaster Ltd

Why Functional Sizing

Functional sizing is all about: data movements, data storage and retrieval

If you know the Functional Size you can answer the questions of: Resources, Schedule, Effort, Quality and more.

FP

https://ronjeffries.com/articles/-z022/0222ff/est-cosmic=other/

What you need to know...

https://ifpug.org

We want the best estimates we can achieve

If I wanted bad estimates what would I do? I'd use poor requirements as a basis for my estimate

If I wanted to create poor requirements what would I do? I'd skip functional sizing

Poor requirements are a form of technical debt.

Poor requirements will lead to a higher cost per function point.

1 FP delivered wrongly is likely to be 2.5x more costly than doing it right first time.

© 2023 ScopeMaster Ltd

Challenges with requirements quality

Lack of formal training Confusion about what good looks like. Excessive detail and miss the big picture. Unknowns, biases and change

Granularity – for functional sizing

Software Requirements Hierarchy:

Challenges to early estimation

- We don't know all the requirements
- Inappropriate granularity (too little, too much)
- We don't want to do all the requirements work
- Unknowns (some will be knowable and some not)
- Changing requirements
- **Technical Unknowns**
- We tend to ask the technical folks not the expert BAs.
- Gameable effort estimates (Tshirt, story pts, story #)
- Politics and inexperienced leadership
- Other human & commercial factors

Unknowns – use good analysis techniques Biases – use functional sizing

Early Estimation – Scope Sizing

© 2023 ScopeMaster Ltd

Typical Perception

Knowns

Actual

Knowns

Knowable Unknowns

Unknowable Unknowns

Knowable Unknowns

Unknowable Unknowns

Improved Early Estimation Accuracy

What makes for good requirements

Clear = Functional Intent **C**oncise = Objects / ILFs **U**ser-oriented = User focused **Testable =** ie. clear functionality Measurable = ie. clear functionality **C**onsistent = Object naming **Complete** = within and across stories **U**nique = not duplicated **D**esign-free = no technical/implementation * Valuable = needed for business value *

Low impact on sizing *

Completeness - of an individual user story

Before

As a sales agent I want to be able to edit a contact's profile 3 CFP

After:

As a sales agent, first verify that I have permissions to the profile, then verify that the contact profile is not locked, then I can edit the contact's profile, 8 CFP

There seem to be 3 objects and 3 actions, but it is still clear and sizeable.

Refined requirements tend to be bigger than unrefined

Needs splitting

As a sales agent I want the contact profiles synchronised between the CRM, mailing system and customer app. **40+ CFP**

These examples highlight why the practice of counting user stories is an unsafe basis for cost estimation

Knowable Unknowns

Completeness – Buried functionality

Functional requirement*	Tips 🗗	
As a customer I want to display my quotes, o policy.	display my	
Isplay quote Image display policy		
More fields: Triggering event > Benefits > Notes ✓ Notes ⓓ		

ser story

Functionality gets buried in the acceptance criteria

With NLP this can be detected instantly

unctionality uried in the cceptance riteria

> Knowable Unknowns

Completeness of a set – Automated CRUD analysis

CRUD and consistency analysis Find and fix potential inconsistencies, missing and duplicate Stories.

© 2023 ScopeMaster Ltd

Read 66 (162)	Update 75 (153)	Delete 16 (212)
sing +	Missing +	Missing +
sing +	Missing +	Missing +
5 JRACLOUD-72050	Missing +	Knowa Unknov

Completeness of a set – Use Case Modelling

© 2023 ScopeMaster Ltd

Easily Spot

Ambiguous users Inconsistencies in personas Inconsistencies in object names Complexities of requirements

> Knowable Unknowns

NLP can detect potential NFRs

NFR Detection	
by requirement by category	table
Detected NFRs	
Accessibility	None detected
Adaptability	A None detected
Availability	AWS-120 MGSA-34

NFRs Affect Cost

Spotting them early can minimise the cost impact on a project.

Knowable Unknowns

Summary of Requirements Quality impact on Estimates

Requirements Quality Attribute

Functional completeness of a requireme

CRUD Completene

Missing requirements, revealed through modellin (inc user oriented

Ambiguous functional requirement

Object Naming Inconsister

Methodology Choid IFPUG vs COSMIC vs S

Sizing Precision (automated vs manu

NFRs that are actually function

	Context	Indicative Range: actual vs initial estimate
ent	Requirement	0 to +400%
ess	Set	-20% to +400%
ng. d).	Set	0 to 70%
nts	Requirement	0 to +300%
וכץ	Set	-150% to +20%
ce: SFP	Set	-30% to +30%
ial)	Set	-15% to +15%
nal	Set	0 to 30%

Summary of Quality impact on Estimates

Requirements Quality Attribute	Context	Indicative Range: actual vs initial estimate	Explanation	Typical observation
Functional completeness of a requirement	Requirement	0 to +400%	Functionality is often omitted or buried in acceptance criteria. Actual can be 4x larger than initial size estimate.	Most requirements understate functionality a 50% - 100% bigger than initially stated/esti
CRUD Completeness	Set	-20% to +400%	We sometimes see only one function mentioned when a full set of CRUD is required. Duplicates are far less comon.	Most sets only include only 50% of required
Missing requirements, revealed through modelling. (inc user oriented).	Set	0 to 50%	Manual or automated modelling can expose "hard-to-reach knowable uknowns".	Typically, 10- 30% of missing functionality can b this way.
Ambiguous functional requirements	Requirement	0 to +300%	Functional ambiguities due to poor language use, often mask understatements of scope.	About 40% of all requirements are initially unsized a tool like ScopeMaster from the outset elimit problem very quickly.
Object Naming Inconsistency	Set	-150% to +20%	Inconsistent object names can lead to overestimate of size. (The only item in the table that leads to early overestimation.)	This is common and tends to overstate initial a size detection.
Methodology Choice: IFPUG vs COSMIC vs SFP	Set	-30% to +30%	The gross FP count discrepancy between these methodologies is less significant than other factors.	Automated IFPUG estimates are governed b complexity assessment which is very hard w COSMIC does not suffer this variabilit
Sizing Precision (automated vs manual)	Set	-15% to +15%	Whether using automation or sizing manually, rarely more than 15% variance for CFP.	A formal test has shown automation in CFP to 15% of a manual count.
NFRs that are actually functional	Set	0 to 30%	When an NFR is assumed to be not functional but actually is.	functional security requirements are often over

Results of using NLP across a set of requirements

Functionals Detected

Functional Steps

Functional Objects

Total Functional Size Estimate

Knowns

Knowable

Unknowns

Sized requirements

Ambiguous requirements (ie. no functionality detected)

All functional requirements (sized + ambiguous)

Potential missing requiremen (from CRUD analysis)

Total Potential Size (sized + ambiguous + missing)

O CFP = COSMIC Function Points

	66 found in 58 req	uirements	
	49 found in 58 red	juirements	
е			
	58	259 CFP	Function Found
	59	263 CFP Estimated	Inferred
	117	522 CFP Estimated	
nts	130	423 CFP Estimated	Inferred
	247	945 CFP Estimated	

Mutual Benefit

Requirements Quality

Functional sizing and automated analysis expose knowable unknowns

EstimationQ uality

