
The Symbiotic Nature of Requirements Quality and Software Cost 
Estimation 
 
By Colin Hammond, January 2023. 
 
Abstract  
It is widely recognised that high quality software requirements lead to reliable functional 
size estimates, what is less apparent is the potential contribution of functional sizing to help 
assess and improve the quality of requirements.  This paper looks at the observations from 
assessments of software user stories using our NLP (Natural Language Processing) 
requirements analysis tool, and how this symbiotic relationship is revealed and enhanced 
with automated analysis tooling.   
 
Introduction to Software Cost Estimates and Functional Size 
 
Executives seek answers to the questions “how much will it cost?” and “how long will it 
take?”  Valid estimates enable executives to make sound decisions about planning software 
work and software acquisitions.  Poor cost and schedule estimates can lead to poor and 
costly business decisions.  Hence the valuable role of cost estimators. 
 
In software work, the main cost component is human effort.  That effort involves many 
activities, principally: the effort to define, design, develop, test, fix, and deploy a software 
system. 
 
Obtaining effort or cost estimates by directly asking the developers or experts for their 
opinion is notoriously unreliable.  Some of the reasons for this unreliability are: 

• failing to adopt a universal sizing approach, 
• a tendency to focus on the initial development work only, 
• a tendency to overlook scope that has not been presented but is implicit, “knowable 

unknowns”, 
• human biases, a tendency to underestimate cost to “win the work” (in rare cases the 

opposite may be true). 
• a tendency to not factor in delays caused by external factors and unknowns, 
• a tendency to overlook the rework associated with changing requirements 

 
To overcome some of these problems, we use a standardised means of sizing software, 
functional sizing.  Functional sizing allows us to measure the size of a piece of software, 
irrespective of the technology used to create it.  It focuses on sizing only user-recognisable 
functionality.  There is strong, proven, correlation between the functional size of a piece of 
software and the effort to perform the activities involved in creating the software.  And so, 
functional size is a proven and excellent basis for effort estimates.   
 
There are two leading standards for functional sizing.  They are the IFPUG Function Points 
(FP) and the COSMIC Function Points (CFP).   
 

Presented at the ICEAA 2023 Professional Development & Training Workshop - www.iceaaonline.com/sat2023



Functional size can be measured from user requirements or from the code once it has been 
written.  The former is most valuable as it allows for sound decisions to be made before 
committing time and resources.  
 
The findings in this paper are based on over a hundred assessments of sets of software 
requirements for customers using our requirements analyser tool.    
 
Hereafter when I use the terms “user story” or “requirement”, I am referring to a functional 
user requirement.  When I use the term estimate I usually mean an estimate range. 
 
Early Estimating of Functional Size 
 
For a functional size measurement, we must know ALL the user requirements in detail and 
the logical data design of the solution.  It is both rare and unreasonable to expect that all 
the requirements can be known at the start of a project.   
 
The usual goal of cost estimator is to obtain a reliable cost estimate at a time when the user 
requirements and the design are not yet known.  Rather than measure, he must estimate 
functional size, using all available information.  Most of the information he uses, the clues to 
the real size, are obtained from written user requirements, data models and other 
documentation.  This is where the relationship between the quality of requirements and the 
quality of size estimates is self-evident. 
 
How requirements quality helps functional sizing and vice versa 
 
Not only do better requirements lead to better estimates, but what is not always recognised 
is that the process of functional sizing can help to improve the quality of the 
requirements.  The functional sizing exercise is an effective means of verifying the 
interpretation of requirements and thus for improving requirements quality.   
 

 

 
 

 
Where the requirements are ambiguous (unclear functionality), incomplete, inconsistent, or 
just wrong, the cost estimator must seek clarifications/corrections from the BA’s, product 
owners or other stakeholders.  The estimator is clarifying and discovering the real 
requirements, whether they are as written, or not.  They are verifying what is known and 

Better 
Functional 

Sizing

Better 
Requirements

Presented at the ICEAA 2023 Professional Development & Training Workshop - www.iceaaonline.com/sat2023



exposing what is unknown.  If these clarification challenges are used constructively by BAs, 
then requirements quality can be improved as a by-product of functional sizing. 
 
There is an opportunity here to solve two problems simultaneously - improve estimates and 
improve requirements quality. 
 
Of the unknowns in the scope, some are knowable and some are unknowable. 
 
Classic examples of knowable unknowns are the CRUD complements to a single transaction 
process for an object.  E.g. suppose only one user story mentions list products, therefore 
there must be other transactions (knowable unknowns) for the create, update and delete of 
products.  
 
Other examples of knowable unknowns would be the splitting of Epics into component user 
stories. 
 
Other unknowns may not be knowable, such as a change in business model that leads to 
changes in requirements.  The cost estimator should seek to minimise the unknowables, by 
exposing the knowable unknowns as much as possible.  They can then make a cost 
allowance for the remaining unknowable unknowns. 
 
The main observed requirements quality attributes that impact sizing 
 
There is extensive literature on what is meant by requirements quality, here is our preferred 
list of 10 quality attributes for software requirements.  (Nb this list addresses the main 
quality attributes of application software user stories, or functional user requirements.  It 
should not be considered as a quality checklist for system design specifications): 

1. Clear * 
2. Concise * 
3. User-oriented * 
4. Testable * 
5. Measurable * 
6. Consistent * 
7. Complete * 
8. Unique * 
9. Valuable 
10. Design-free 

 
*Many of these requirements’ attributes are examined and challenged during the exercise 
of functional sizing.   
 
Granularity, Completeness and Sizing 
 
Requirements granularity impacts size estimation, and is a leading indicator of 
requirements’ completeness.   
 
Software requirements generally follow a hierarchy such as: 

Presented at the ICEAA 2023 Professional Development & Training Workshop - www.iceaaonline.com/sat2023



• Objectives 
• Epic / Capability  
• User Story / Feature level 
• Business rules / constraints 
• Detailed, attribute-level acceptance criteria 

 
For early functional sizing we are generally working with Objectives, Epics and User story of 
coarse granularity which are more likely to be incomplete, which leads to understated size 
estimates. 
 
Let’s look at two examples: 
 
As a sales agent want to be able to edit a contact’s profile   
(3 CFP) 

 
This is a typical early, high-level requirement.  Whilst it is sizeable, it is unlikely to be 
complete.  A more complete version might of the same requirement might be: 

 
As a sales agent, first verify that I have permissions to the 
profile, then verify that the contact profile is not locked, 
then I can edit the contact’s profile,   
(9 CFP). 
 
#1 and #2 are the same story, but #2 is just more detailed, and is 3x larger, 9 CFP vs 3 CFP. 
  When dealing with a large set of requirements, the impact of granularity on estimates can 
be dramatic.  Estimates based on course granularity will be incorrectly low.  
 
Now let us look at a more extreme example, but not an uncommon challenge, for cost 
estimators: 

 
As a sales agent I want the contact profiles synchronised 
between the CRM, mailing system and customer app.  
(40+ CFP) 

 
This is a high-level description of a capability (or an epic) that needs to be broken down 
further into constituent user stories (story slicing) for us to size accurately.  In fact functional 
sizing is a good test for the need for story slicing.  From the perspective of requirements 
quality: coarse granularity, such as this, can be considered as incomplete and untestable.  
Notwithstanding an experienced estimator can still estimate a size to this type of 
functionality (as we have done at 40CFP+).  Many user stories that we see have no  
functional size, our observed range is a non-normal distribution of 0 - 90 CFP. 
 
This example highlights why the practice of counting user stories, or counting 
requirements is an unsafe basis for cost estimation.   
 
Observed Sizes 
 

Presented at the ICEAA 2023 Professional Development & Training Workshop - www.iceaaonline.com/sat2023



Automated functional sizing of requirements depends entirely on the language used by the 
requirements author(s).  Poor quality requirements tend to be the norm and consequently  
the initial size estimates are less accurate.  The tooling can create a fast feedback loop 
between requirement refinement and sizing accuracy, which means that better estimates 
and better requirements can be achieved faster.   
 
For requirements where functionality has been detected, the average size is around 4 CFP.  
After refinement, we see slightly higher average story size of 5-7 CFP. 
 
Clarity / Ambiguity 
If the actor and the functional intent are not clearly evident from the language of the user 
story, then it can be considered unclear, or ambiguous.  Sometimes requirements are not 
intended to be functional, they should be categorised accordingly and be subject to a 
suitable cost estimation approach.   
 
Unclear Functional Intent 
Some requirements that are meant to be functional, cannot be sized because of unclear 
language used by the requirements author.   For example: 
 
I want to know the sales by group to decide on future budget 
allocation. 
 
The functionality intended by this requirement is highly likely to be misinterpreted by 
readers.  We don’t know from these words, who is the user, nor what data groups (objects) 
are being accessed and how.  This is an example of lazy work by requirements authors, it is a 
poor requirement that cannot be reliably sized. 
 
Resolving the problem is usually straightforward when cost estimators ask these three 
questions: 

1. Who is the user? 
2. what data groups that are being moved?  
3. what type of data movements are they? 

 
Not functional requirements 
Technical tasks and Non-functional requirements (NFRs) cannot be sized in the same way as 
functional requirements, and yet, they are commonly mixed in (a backlog) with functional 
requirements.  Both technical tasks and NFRs require cost estimation, but the approach to 
estimating the costs of these two groups is different from sizing the functional aspects of 
the software.  Detection and correct categorisation is important for the cost estimators.  
Automated detection of NFRs and functionality can help the sizer categorise these more 
rapidly. 
 
Completeness 
 
These are the main aspects of requirement completeness that impact functional sizing: 
 

Presented at the ICEAA 2023 Professional Development & Training Workshop - www.iceaaonline.com/sat2023



Completeness across a set of requirements (CRUD completeness) 
For a software system to be complete, any data stored within it should be fully maintained. 
Each data type (ILF in IFPUG or OOI in COSMIC) will usually require a full set of CRUD 
functions for persisted data.  There should be at least one requirement that creates the data 
of that type and one for each of read, update and delete.  The work of identifying and cross-
referencing CRUD functions from requirements is called CRUD analysis and involves 
maintaining a CRUD matrix.  Traditionally CRUD analysis is very labour intensive, and 
consequently tends not to happen.   
 
CRUD analysis exposes knowable unknowns. 
 
In our observations, early requirements tend to be woefully incomplete in this respect.  
Typically, we have seen that early requirements are missing 20-60% of essential CRUD 
events on detected objects (see also consistency of object naming).  This means that the 
actual functional size can be 2x the initial estimate, an underestimate like this can turn a 
viable project into a non-viable one.  With automated CRUD analysis this is revealed 
immediately.  As in the example below, missing requirements tend to outnumber duplicates 
between 5 and 10:1. 
 

 
Figure 1 Automated CRUD analysis reveals missing and duplicated functionality. 

 
Internally Completeness of a Requirement 
The second aspect of completeness is whether each requirement is complete within itself.  
To be complete, all the functional steps or transaction processes, should be described.  For 
example: 
 
An incomplete example:  

 
When I login, check that my username and password match. 
(3 CFP) 
 

A more complete version of the same requirement: 

Presented at the ICEAA 2023 Professional Development & Training Workshop - www.iceaaonline.com/sat2023



 
1. As a registered user, when I login, first search for my 

profile. (3 CFP) 
2. Compare my profile against the blacklist (3 CFP) 
3. Look up the organisation in which I am a member and verify 

that the organisation is not blacklisted. (3 CFP) 
4. Update my profile with last_login time (3 CFP) 
5. Look up my permissions to perform work then (3 CFP) 
6. Display my welcome screen (3 CFP) 

Total 18 CFP 
 
The refined example is 18 CFP, 6 times larger than the unrefined version.  A more complete 
requirement is higher quality and leads to a more reliable estimate.   
 
Buried Functionality 
The third consideration of requirement completeness is that sometimes the user story itself 
is a pithy statement rather like the unrefined example above, but on closer examination of 
the acceptance criteria and other notes that accompany the story, we discover additional, 
hidden functionality.  It is important from a sizing and design perspective to expose all of 
this functionality and not to hide it in the acceptance criteria (which are principally used for 
test design).  NLP can help us discover this hidden functionality very quickly.  Making the job 
of the cost estimator much easier.   
 
Consistency of Terms  
When looking at a set of requirements we should use consistent terms for Users (personas) 
and Object types (ILFs).  Inconsistent terminology will lead to them being misinterpreted as 
distinct and consequently size estimates might be inadvertently higher than they should.   
 
In particular, inconsistent use of terms for objects can have a significant impact on size 
estimation.  For example, you might encounter several terms for the same thing across a set 
of requirements such as: categories, category name, product categories.   
 
Unless you resolve this inconsistency, your size estimate could be multiple times bigger than 
it should be.  The size sensitivity is more pronounced with IFPUG than with COSMIC because 
IFPUG requires an extra data function of 7-15 FP in addition to the transaction functions 
associated with maintain and moving the data.   
 
Larger projects tend to have more people involved in writing requirements which leads to 
even less consistency in terminology.  Automation and NLP can help us to spot this problem 
rapidly so that it can be resolved quickly and early.  This is a key area where functional sizing 
and requirements quality are interdependent. 
 
Discovering real requirements through Modelling 
Other approaches to requirements modelling can help to expose the real requirements and 
the eventual functional size.  Visually modelled requirements are particularly helpful for 
spotting outliers, mistakes, and inconsistencies across a set of requirements. The diagram 
below has been generated from the NLP analysis.  This can be used interactively to help 
improve requirements quality and size estimates simultaneously. 

Presented at the ICEAA 2023 Professional Development & Training Workshop - www.iceaaonline.com/sat2023



 

 
Figure 2 Dynamic modelling using NLP on user stories, gives insight that can help cost estimators. 

This diagram is a partial screenshot of a complete set of user stories that have been auto-
analysed.  It shows all the actors and functionality detected across the set of user stories.  
Where it says “ambiguous user”, these are user stories, where the language describes 
functionality but no actor was detected.  This diagram also helps us discover and validate 
whether we have all the correct requirements for each persona.  This can also help us to 
consider the applicability of some NFRs too. 
 
Summary of the Requirements Quality Characteristics on Sizing 
 
Overall, our observations from automated analysis have revealed the following observations 
about the relationships between functional sizing and requirements quality (in no particular 
order): 
 

Requirements 
Quality 

Attribute 
Affects  

Indicative 
Range: actual 

vs initial 
estimate 

Explanation Typical observation 

Functional 
completeness 
of a 
requirement 

Requirem
ent 

0 to 
+200% 

Functionality is often 
omitted or buried in 
acceptance criteria. 

Actual can be 4x larger 
than initial size estimate.  

Most requirements 
understate functionality 
and end up 50% - 100% 

bigger than initially 
stated/estimated. 

 

Presented at the ICEAA 2023 Professional Development & Training Workshop - www.iceaaonline.com/sat2023



CRUD 
Completeness 
across a set of 
reqs. 

Set -20%  
 to +400% 

We sometimes see only 
one function mentioned 
when a full set of CRUD 
is required.  Duplicates 

are far less comon. 

Most sets only include 
only 50% of required 

CRUDs. 
 

Missing 
requirements, 
revealed 
through 
modelling. (inc 
user oriented). 

Set 0 to 50% 

Manual or automated 
modelling can expose 

“hard-to-reach 
knowable uknowns”. 

Typically, 10- 30% of 
missing functionality 
can be detected this 

way. 

Ambiguous 
functional 
requirements 

Requirem
ent 

0 to  
+300% 

Functional ambiguities 
due to poor language 

use, often mask 
understatements of 

scope. 

About 40% of all 
requirements are 

initially unsizable. Using 
a tool like ScopeMaster 

from the outset 
eliminates this problem 

very quickly. 

Object Naming 
Inconsistency  

Set -150%  
to +20% 

Inconsistent object 
names can lead to 

overestimate of size.  
(The only item in the 

table that leads to early 
overestimation.) 

This is common and 
tends to overstate initial 

automated size 
detection. 

Methodology 
Choice: 
IFPUG vs 
COSMIC vs SFP 

Set -30% to 
+30% 

The gross FP count 
discrepancy between 

these methodologies is 
less significant than 

other factors. 

Automated IFPUG 
estimates are governed 

by the ILF complexity 
assessment which is 
very hard with NLP.  

COSMIC does not suffer 
this variability. 

Accuracy of 
measurement Set -15% to 

+15% 

Whether using 
automation or sizing 

manually, rarely more 
than 15% variance for 

CFP. 

A formal test has shown 
automation in CFP to be 
within 15% of a manual 

count. 

NFRs that are 
actually 
functional 

Set 0-30% 
When an NFR is 

assumed to be not 
functional but actually is. 

functional security 
requirements are often 

overlooked.   

 
From this we can observe that it is important for a cost estimator, when performing early 
functional sizing, to pay close attention to the following: 
 

1. Individual requirement clarity 
2. Individual requirement completeness 
3. Consistency of terms for object types 

Presented at the ICEAA 2023 Professional Development & Training Workshop - www.iceaaonline.com/sat2023



4. Requirements set completeness 
5. Hidden functionality that can be revealed using modelling. 
6. Hidden functionality that is buried in acceptance criteria (ie. no CRUD should be in 

the acceptance criteria). 
 
Non-Functional Requirements 
 
NFRs are not the primary focus of the functional sizer, but they are a concern to the cost 
estimator as some NFRs can carry a significant cost to satisfy.  It is worth considering the 
following differences that apply to NFRs: 
 

1. Some NFRs are functional.  Notably, security requirements are usually functional 
although often misclassed as NFRs.  Elaborating and refining these may be 
appropriate as part of sizing. 

2. NFRs should be quantified so that acceptance can be tested.  Some NFRs can have a 
significant impact on cost.  Early detection of system-wide NFRs can impact 
architecture and high level design, so need to be detected early.*  

3. Some NFRs that affect only parts of a system can make use of function size of those 
parts of the system to indicate potential cost. 

 
*Automation can help to expose language that infers specific types of NFR, and in so doing, 
can produce a matrix of detected and missing NFRs.  This helps us to ask the right questions 
early to anticipate and contain the risks of NFRs surprising us later.  This is another example 
of how the cost estimator can help contribute to better requirements by exposing 
knowable unknowns. 
 
About Requirements Quality and Functional Sizing in Practice  
 
Poor requirements quality and the wasteful consequences of poor requirements are 
prevalent throughout the software industry.  The specific wasted work caused by poor 
requirements is rarely quantified objectively.  It is sometimes classified by teams as 
“refactoring in response to evolving requirements”.  Nonetheless, with better initial 
requirements, it is avoidable waste.   
 
Requirements quality assurance is rarely an assigned responsibility on software projects, 
except in systems engineering work.  Accenture reports that as much as 35% of all defects 
found in larger production software solutions are caused by poor or incomplete 
requirements, and yet little is done to address the root cause of the problem.  
 
The most common estimation approaches being used are story counts, story points or T-
shirt sizing, all of which are profoundly inferior to functional sizing.  Even though we have 
shown that functional sizing is so beneficial, both for estimation and for improving 
requirements, it is not widely used, yet.  Perhaps with the automation of Simple Function 
Points and COSMIC function points, this will change in the coming years. 
 
When reviewing requirements for Agile teams, we constantly see that user stories are of 
poor quality and incomplete.  They are known to cause waste and rework.  And yet many 

Presented at the ICEAA 2023 Professional Development & Training Workshop - www.iceaaonline.com/sat2023



agile teams resist analysis by offering the glib justification of “we are discovering the 
requirements as we go, no need for wasteful analysis”.  I also believe that resistance to 
using functional sizing is really the fact that agile teams enjoy the fact that their work is not 
measured.  
 
Automation of Sizing and Requirements QA 
 
Automated requirements analysis tools can help significantly with both sizing and 
requirements QA.  With a typical starting position of 1 defect per FP in requirements, 
automated tools can now expose 50% of these effortlessly. 
 
For large projects, say 1000 function points, the learning from the automated analysis of the 
user stories for the initial 100 function points dramatically decreases the defect potential in 
the user stories for the remaining 900 function points. 
 
Unless your organisation benefits from poor requirements and an absence of functional 
sizing, and some do(!), you can automate sizing and requirements analysis simultaneously. 
 
For example, CRUD analysis on a set of 500 requirements might typically involve 1000 CRUD 
functions overall.  Manually maintaining a CRUD matrix of this size would require one or two 
fulltime staff, and is therefore unlikely to happen.  The consequences of which are that the 
teams are left to work with inferior requirements.  Rework levels will be higher and cost 
estimates will be less reliable.  
 
Similar benefits arise from other automated capabilities such as: user consistency detection, 
object consistency detection, NFR detection, automated use case modelling and ambiguity 
detection, class modelling.  When the tooling makes these proven analysis techniques 
effortless, it unlocks the ability for teams to achieve high quality and more complete 
requirements much earlier in the project lifecycle. 
 

 
Figure 3 Automated sizing can help the cost estimator provide more dependable estimates, by factoring in requirements 
quality. 

 

Presented at the ICEAA 2023 Professional Development & Training Workshop - www.iceaaonline.com/sat2023



Conclusion 
 
Functional sizing is an excellent technique for creating reliable cost estimates for software 
work.  Early functional size estimation requires probing into the meaning of functional user 
requirements, and as by product, the requirements quality can be assessed.  Problems 
within the requirements are revealed (and potentially fixed).  Functional sizing can actually 
be an excellent technique specifically for testing and improving requirements. 
 
The impact of requirements quality on early functional size estimation is non-trivial.  Cost 
estimators must consider the various aspects of requirements quality when preparing 
estimates based on early requirements especially functional clarity, completeness, and 
consistency of object naming. 
 
In order to size a system of about 1,000 function points (as much as $5m of government 
project), it only takes about 200 user stories, about 2400 words.  This is often only 3 or 4 
weeks work, especially using automated analysis and refinement.  This provides the 
foundation for costs/fp, fp/day and defects/fp.  The product owner or BA will still have 
plenty of detailed work to support the developers, but the size of the scope can be known 
quickly and with confidence. 
 
The activity of determining functional size can lead to improved requirements quality and 
vice versa, hence the symbiotic relationship. 
 
Poor estimates lead to poor and costly management decisions.  Poor software requirements 
lead to high levels of rework and waste within the team(s).  Functional sizing can 
simultaneously help to solve both of these problems.  It is therefore a profoundly valuable 
activity.  NLP and automated analysis tooling makes both sizing and requirements analysis 
faster and more thorough than ever. 
 
Often, the commercial model for software development contracts benefits the vendors 
when the requirements are poor quality and the adoption of proper functional sizing 
throughout a project further harms their commercials. 
 
To achieve the combined benefits of better estimates and better user stories, it is up to cost 
estimators and buyers of software development contracts to encourage the adoption of 
functional sizing and the simultaneous improvement in requirements quality.  This will lead 
to more transparency, better estimates and less waste, and the final goal of delivering 
software faster, better and cheaper. 

Presented at the ICEAA 2023 Professional Development & Training Workshop - www.iceaaonline.com/sat2023




