SYSTEMS PLANNING AND ANALYSIS, INC.

Managing Schedule Risk Expectations During Program Execution

Patrick Malone pmalone@spa.com

I@EAA Professional Development & Training Workshop May 16-18, 2023 @ San Antonio, Texas www.iceaaonline.com/sat2023

SDa

Agenda

- Introduction
- GAO Schedule Emphasis
- Attaining Required Knowledge
- Traditional Risk Management
- Schedule and Risk Integration
- Examples
- Benefits
- Future Work

"You'd be surprised the headaches you can avoid by addressing these four simple questions before beginning a project."

SYSTEMS PLANNING AND ANALYSIS, INC.

Introduction

- Schedules are integral to project management
- Risk management supports successful execution
- Historical Issues
 - Success driven schedules
 - Rule-based risk management
- Schedule and risk integration
 - Adds realism
 - Supports sensitivity analysis
- Benefits
 - Effective schedules
 - Provides executable execution alternatives
 - Supports project success

- 19th Annual GAO Assessment of DoD Weapon Programs (published 2021)
 - Emphasis "Deliver solutions and capability to the end user in a timely manner"
- Findings:
 - "...programs have acquisition approaches that still result in cost and schedule challenges"
 - Cost growth 54%
 - Schedule delay 40% to 38 months

Some Causes:

- Starting Engineering and Manufacturing Development prior to attaining required knowledge
 - From Technology Development
 - Other Maturity programs

Attaining Required Knowledge Guidelines

- Knowledge point 1: <u>Resources and requirements match.</u>
- Achieving a **high level of technology maturity** by the start of system development is one of several important indicators of whether this match has been made.
- This means that the **technologies needed to meet essential product requirements have been demonstrated** to work in a relevant environment.
- The developer should complete a series of systems engineering reviews culminating in a preliminary design of the product that shows the design is feasible.
- Constraining the development phase of a program to 5 or 6 years is also recommended because it aligns with DOD's budget planning process and fosters the negotiation of trade-offs in requirements and technologies.

- Knowledge point 2: Product design is stable.
- This point occurs when a program determines that a product's design will meet customer requirements, as well as cost, schedule, and reliability targets.
- A best practice is to achieve design stability at the system-level critical design review, usually held midway through system development.
- Completion of at least **90 percent of engineering drawings** at this point provides tangible evidence that the product's design is stable, and a **prototype demonstration** shows that the design is capable of meeting performance requirements.
- Programs can also **improve the stability of their design by conducting reliability growth testing** and completing failure modes and effects analyses so fixes can be incorporated before production begins.
- At this point, programs should also **begin preparing for production** by identifying manufacturing risks, key product characteristics, and critical manufacturing processes.
- Knowledge point 3: <u>Manufacturing processes are mature</u>.
- This point is achieved when it has been **demonstrated that the developer can manufacture the product within cost, schedule, and quality targets.**
- A best practice is to ensure that all **critical manufacturing processes are in statistical control**—that is, they are repeatable, sustainable, and capable of consistently producing parts within the product's quality tolerances and standards—at the start of production.
- Demonstrating critical process on a pilot production line is an important initial step in this effort.
- In addition, production and postproduction costs are minimized when a fully integrated, capable production-representative prototype is demonstrated to show that

systems planning and analysis, inc. Presented at the ICEAA 2023 Professional Development & Training Wherks/htpm wwiW.ivear/onlineixtem/kad2023a reliable manner before committing to production.

Traditional Risk Management

Project Test_Project_Baseline (5000 simulations performed on 8/14/2022)

Histogram of Finish for project 'Test_Project_Baseline'.

Mean = 02Sep22, Standard deviation = 19.37 hours, Deterministic value = 29Aug22 (6%).

Each bar represents 12 hours. (Markers show start of interval.)

Test Facility

Risk and Uncertainty

- <u>Risk</u> is the chance of loss or injury
- <u>Uncertainty</u> is the indefiniteness of the outcome of a situation

Schedule Risk Assessment

- Actually quantitative uncertainty assessment
- Used on "success driven" schedules
- Methods
 - Average durations Duration = (OD + MLD + PD)/3
 - Pert Method Duration = (OD + 4*MLD + PD)/6
 - Monte Carlo

Test Run for Test Data, Analysis & Test Test Test Test Plan Dry Run 'est Rea. Equipment Setup Record Approval Repor Where: **Optimistic Duration** Test Uni Typical "Success Driven" Schedule OD =MLD = Most Likely Duration SYSTEMS PLANNING Presented at the ICEAA 2023 Professional Development & Training Workshop - www.iceaaonline.com/sat2023 PD =Pessimistic Duration AND ANALYSIS, INC

Traditional Risk Management

Common Risk evaluation

- Historical performance
- Expert Opinion
- Delphi (Group assessment)
- Rule-based

Less Common Risk Evaluation

- Experimental
- Simulations

Pitfalls

- Rule-based ties probability and impact together
- If probability is less than 50%, not likely a risk

		Impact (Consequence)								
Rating	Probability Range	Performance	Schedule	Cost						
Low	5% - 20%	Minimal performance impact	Insignificant schedule slippage	Insignificant cost increase						
Low- Medium	21% - 40%	Minor performance impact, slight degradation in performance	Overall project slippage <5%	<5% cost increase						
Medium	41% - 60%	Moderate performance degradation, partial failure of one element	Overall project slippage 5 - 10%	5 - 10% cost increase						
Medium- High	61% - 80%	Significant performance degradation, partial or full failure of one element, partial failure of others	Overall project slippage 10 - 20%	10 - 20% cost increase						
High	81% - 99%	Severe performance degradation or failure of key elements	Overall project slippage >20%	>20% cost increase						

Presented at the ICEAA 2023 Professional Development & Training Workshop WWW.Iceaaohilhe.com/sar2d23 lookup" table

Risk Management

Department of Defense

- Mature processes
- Utilize Risk Cubes and Burndown plans

NASA

- Historical Continuous Risk Management
- Risk-Informed Decision Making
- Industry
 - Rule-based approach
 - Experimental

Schedule and Risk Integration

- Branching is an effective simulation method
- Adds realism
- Results show a "bi-modal" distribution if a failure occurs
 - Adds significant delay to project (4 Oct from deterministic 29 Aug) completion
 - Other factors are impact to program critical path and cost growth beyond forecast estimate

Project Test_Project (5000 simulations performed on 8/14/2022) Histogram of Finish for project 'Test_Project'. Mean = 19Sep22, Standard deviation = 2.1 weeks, Deterministic value = 26Sep22 (52%)

SUSTEMS PLANNING AND ANALYSIS, INC.

Example – The Project

- This example illustrates the test of a subsystem (test unit).
- An outside test facility that has specialized equipment and tools to evaluate the unit will be used.
- The test requirements will be finalized as part of the project.
- Test equipment set up and a dry run will be conducted.
- The unit will be shipped to the facility.
- Following arrival of the unit the test will be run for record.
- When complete, test data will be reviewed along with any analysis to support a test approval decision.
- The last task is to publish a test report.

AND ANALYSIS. INC

Tasks	1	2	3	4	5	6	7
Test Project							
Authorization to Proceed	\diamond				Miles	tone	
Test Requirements					📕 Origi	nal Tasks	(Case 1)
Test Plan							
Test Facility							
Test Equipment							
Unit to Test Received							
Test Setup							
Dry Run			<u> </u>				
Test Run for Record							
Test Data							
Test Analysis							
Test Approval			4				
Test Failure							
Test Facility2							
Root Cause Analysis							
Develop Solution							
Redesign							
Design Update/Implementation							
Functional Verification							
Retest							
Test Run for Record2							
Test Data2							
Test Analysis2							
Test Approval2				•			
Test Report							
Project Complete				-			

Typical success driven detailed task schedule

Example – Success Project

Project Test_Project_Baseline (5000 simulations performed on 8/14/2022)

Histogram of Finish for project 'Test_Project_Baseline'.

Mean = 02Sep22, Standard deviation = 19.37 hours, Deterministic value = 29Aug22 (6%).

- Baseline duration 46 Days
- Target Completion 29 Aug 2022
- Baseline Cost \$164.3K

Schedule Risk

Mean

- 02 Sept 2022
- 80% Confidence 06
- 06 Sept 2022

Cost Risk

- Mean \$173.3K
- 80% Confidence \$178.3K

Example – Adding Realism

Conducting a "what-if" includes:

- A test failure possibility
 - Without additional information it is a "coin toss" or 50% probability
- After a root cause analysis
- A possible design update
 - Nested within the first branch
 - Also a 50% probability
- Two Cases
 - One branch for test failure
 - Second Nested branch if test failure
 - Impacts of each

Tasks	1	2	3	4	5	6	7
Test Project							
Authorization to Proceed					🔷 Miles	tone	
Test Requirements					📘 Origii	hal Tasks	(Case 1)
Test Plan					📔 Brand	h 1 (Case	e 2)
Test Facility					📕 Brand	h 2 (Case	e 3)
Test Equipment							
Unit to Test Received		-					
Test Setup							
Dry Run							
Test Run for Record							
Test Data							
Test Analysis					Due	-h 1	
Test Approval				<u> </u>	Bran	спт	
Test Failure							i
Test Facility2							
Root Cause Analysis							
Develop Solution							
Redesign							
Design Update/Implementation							
Functional Verification							
Retest							
Test Run for Record2							
Test Data2							
Test Analysis2							
Test Approval2						I	
Test Report							
Project Complete							4

Adding realism with branching

Example – The Network

Case 2 – 1 Branch

- 4 Additional Steps
- Additional Test Facility TIme

- Case 3 2 Branches
 - Nested Redesign
 - 2 Additional Steps

Example - Results 1 Branch

Project Test_Project (5000 simulations performed on 8/14/2022)

Histogram of Finish for project 'Test_Project'.

Mean = 19Sep22, Standard deviation = 2.1 weeks, Deterministic value = 26Sep22 (52%).

• Baseline

- Schedule
- Cost

29 Aug 2022

\$164.3K

- Case 2 1 Branch Bimodal
 - Schedule
 - Mean
 - 80% Confidence

19 Sept 2022 04 Oct 2022

\$230.8K

\$268.8K

- Cost
 - Mean
 - 80% Confidence

Example - Results 2 Branches

Project Test_Project_2nd_Branch (5000 simulations performed on 8/14/2022) Histogram of Finish for project 'Test_Project_2nd_Branch'.

% of Hits

Mean = 29Sep22, Standard deviation = 6 weeks, Deterministic value = 12Dec22 (83%).

• Baseline

– Cost

Schedule

- \$164.3K
- Case 3 2 Branches Trimodal
 - Schedule
 - Mean
 - 80% Confidence

- 29 Sept 2022
- 12 Dec 2022

- Cost
 - Mean \$257.6K
 - 80% Confidence \$281.8K

Example - Summary

Rule-Based Risk analysis

- Common method to initiate process
- May fall short of actual risks

Simulations

- Success Driven Solution
 - Mainly an uncertainty analysis
 - May not capture possible realism
- Added realism with branching
 - Provides more likely outcomes
 - Helps plan time to complete
 - Supports contingency funds planning

AND ANALYSIS, INC.

Benefits

	Schedule Delay, Percent					Remaining Pe	Percent	Percent	Sensitivity	Sensitivity Index	Optimistic Mean	Pessimistic	2022 Aug. Son		*	Early Schedule		
				Simple	1	2	l ask Name	Duration	Critical	Critical (Sensitivity)	Index		Finish of Project	Mean Finish of Project	28 0	4 11	i (istogran Bar Basis
		Cost	Table	(Baseline)	Branch	Branches	Test Facility	30 days	100%	79%	83%		Wed 8/31/22	Tue 9/13/22				Graph Estimat
Baseline w/Risk Factor	Table	8%	9%				Test Equipment	20 days	21%	21%	15%		Fri 9/2/22	Wed 9/7/22				Graph Estimat
Daseline w/Misk ractor	Table	070	570				Test Report	5 days	100%	100%	18%		Thu 9/1/22	Mon 9/5/22				Graph Estimat
Baseline Case 1	Mean	5%		9%			TestPlan	5 days	100%	100%	18%		Thu 9/1/22	Mon 9/5/22				Graph Estimat
	000/	00/		4 70/			Test Requirements	5 days	100%	100%	18%		Thu 9/1/22	Mon 9/5/22				Graph Estimat
Baseline Case 1	80%	8%		1/%			Test Setup	5 days	21%	21%	4%		Fri 9/2/22	Mon 9/5/22				Graph Estimat
Case 2, 1 Branch	Mean	40%			46%		Test Analysis	4 days	21%	21%	3%		Fri 9/2/22	Mon 9/5/22				Graph Estimat
Correct A Durant	000/	C 40/			700/		Dry Run	3 days	21%	21%	2%		Fri 9/2/22	Fri 9/2/22				Graph Estimat
Case 2, 1 Branch	80%	64%			/8%		Test Approval	1 day	100%	100%	4%		Fri 9/2/22	Fri 9/2/22				Graph Estimat
Case 3, 2 Branches	Mean	57%				67%	Test Data	2 days	21%	21%	2%		Fri 9/2/22	Fri 9/2/22				Graph Estimat
	0.001	700/				44504	Test Run for Record	2 days	21%	21%	2%		Fri 9/2/22	Fri 9/2/22				Graph Estimat
Case 3, 2 Branches	80%	72%				115%	Unit to Test Received	1 day	21%	21%	1%		Fri 9/2/22	Fri 9/2/22				Graph Estimat

- Rule-based method is a starting point to risk management
- Simulations with Success driven schedules model uncertainty
- Adding branching or existence of risk
 - Supports deadline realism

SYSTEMS PLANNING

AND ANALYSIS, INC

- Helps plan for funding contingency
- Shows drivers to focus effort for mitigation, avoidance, transfer, etc.
- Implementing a repeatable process supports consistency

Project Example

Integrate multiple risk simulations

- Demonstrates overall impact and planning
- Supports contingency planning
 - Deadlines
 - Cost

Simulations

- Existence of Risks
- Branching
- Supports margin development
 - Schedule

SYSTEMS PLANNING

AND ANALYSIS, INC

• Cost

Tasks	1	2	3	4	5	6	7
Test Project Product Development							
Project Management							
Project Support							
System Engineering							
Preliminary Design Review							
System Design/Drawings			1				
Critical Design Review							
Procurement							
Fabrication							
Assembly							
Integration and Checkout							
Test Readiness Review							
Product Verification						[
Program Margin							
Project Complete							4

Milestone Summary Tasks

Project Results

- Schedule
- Cost
- Case 1 Uncertainty
 - Schedule
 - Mean
 - 80% Confidence
 - Cost
 - Mean \$5.192M
 - 80% Confidence

4 Sep 2026 (699d) 23 Sep 2026 (737d)

10 July 2026 (619d)

\$4.908M

\$5.270M

- Case 2 Discrete Risks
 - Schedule
 - Mean

- 5 Jan 2027 (751d)
- 80% Confidence 5 Feb 2027 (774d)
- Cost
 - Mean \$5.532M
 - 80% Confidence \$5.769M
- Case 3 Discrete Risks and Branching
 - Schedule
 - Mean
 - 80% Confidence
 - Cost
 - Mean \$5
 - 80% Confidence

- 5 Feb 2027 (757d)
- 16 Mar 2027 (781d)
- \$5.626M \$5.866M

SYSTEMS PLANNING AND ANALYSIS, INC.

Project Results

SYSTEMS PLANNING

AND ANALYSIS, INC

- Generally accepted practices
 - Often under forecast impacts
- Modeling uncertainty
 - Is likely an optimistic solution
- Adding discrete risks
 - Adds realism
- Adding branching
 - Adds more realism

Project Results (cont.)

Small project shows impact to a limited scope

 Suitable for investigating focus area

Project modeling

- Uncertainty modeling is a starting point
- Adding risks and branching adds realism

	Sub-Project of short duration									Project Results					
				Schedule De	elay, Per	ercent			Schedule Delay, Percent						
				Simple	1	2						With			
		Cost	Table	(Baseline)	Branch	Branches		Cost	Table	Uncertainty	Discrete	Branching			
Baseline w/Risk Factor	Table	8%	9%				Baseline	0%	0%						
Baseline Case 1	Mean	5%		9%			Mean	6%		13%					
Baseline Case 1	80%	8%		17%			80%	7%		19%					
Case 2, 1 Branch	Mean	40%			46%		Mean	13%			21%				
Case 2, 1 Branch	80%	64%			78%		80%	18%			25%				
Case 3, 2 Branches	Mean	57%				67%	Mean	15%				22%			
Case 3, 2 Branches	80%	72%				115%	80%	20%				26%			

Project Test_Project1_Baseline (5000 simulations performed on 2/12/2023)

Histogram of Finish for task 'Product Sell Off' (UID 72).

Mean = 04Sep26, Standard deviation = 14.38 days, Deterministic value = 10Jul26 (0%).

Project Results (cont.)

- Including discrete risks enhanced realism
- Adding branching adds additional realism to modeling actual program execution
- Allows for:
 - Contingency planning
 - Assessing realistic schedule margins at various levels
 - Developing adequate management reserves.

Project Test_Project1_Baseline (5000 simulations performed on 2/12/2023)

Histogram of Finish for project 'Test Project' Baseline'.

Project Test_Project1_Baseline (5000 simulations performed on 2/12/2023) Histogram of Cost for project "Test_Project1_Baseline". Mean = \$5,532,000, Standard deviation = \$261,000, Deterministic value = \$4,908,020 (0%).

Project Test_Project1_Discrete_Risks_W_Branching (5000 simulations performed on 2/12/2023) Histogram of Cost for project 'Test_Project1_Discrete_Risks_W_Branching'. Mean = \$5,626,000, Standard deviation = \$271,000, Deterministic value = \$5,115,980 (3%).

SUSTEMS PLANNING AND ANALYSIS, INC.

Future Work

- Evaluate historical scenarios across a myriad of risk types
- Apply advanced methods
 - Machine Learning and
 - Artificial Intelligence
- Broaden trade space
- Reduces time to obtain recommendations
- Enhances contingency planning early in the process
 - Schedule Durations and Margins (GAO 5 -6 year program duration)
 - Cost reserves (avoid Nunn-McCurdy breach)
- Develop set of guidelines for simulations and modeling techniques

© United Features Syndicate, Inc.

I CAA Professional Development & Training Workshop May 16 -18, 2023 I San Antonio, Texas Patrick Malone Systems Planning and Analysis, Inc. Space and Intelligence Division pmalone@spa.com

