

Systems Engineering Cost Estimation Aligned with MIL-STD-881F

Gurney Thompson

Agenda

- Introduction to MIL-STD-881F and Common Elements
- Objectives
- Systems Engineering Processes
- Systems Engineering Activities (per MIL-STD-881F) and Labor Resources
 - Effort Distributions
 - Validation Efforts
- Demonstration

Preve BS Example at DMI men STaD 885 lop - www.iceaaonline.com/sat2023

C.3 WORK BREAKDOWN STRUCTURE LEVELS

 \mathbf{U}

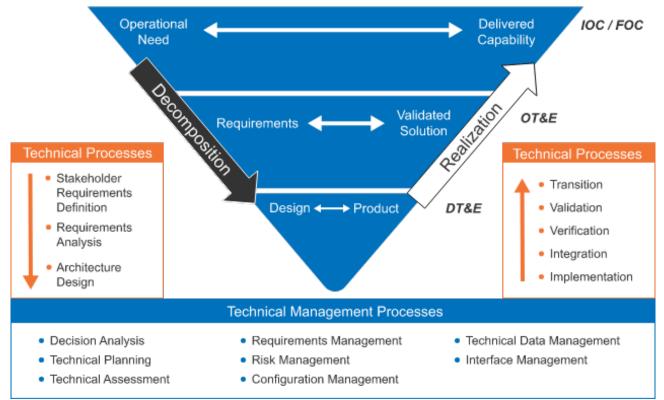
WBS #	Level 1	Level 2	Level 3	Level 4
1.0	Missile/Ord	Inance System		
1.1		Missile/Ordn	ance System Integ	gration, Assembly, Test and Checkout
1.2		Air Vehicle/M	lunition	
1.2.1			Air Vehicle	/Munition Integration, Assembly, Test and Checkout
1.2.2			Airframe	
1.2.2.1				Airframe Integration, Assembly, Test and Checkout
1.2.2.2				Primary Structure
1.6		Systems Engi	neering	
1.6.1			Software Sys	stems Engineering
1.6.2			Integrated Lo	ogistics Support (ILS) Systems Engineering
1.6.3			Cybersecurit	y Systems Engineering
1.6.4				is Engineering
1.6.5				ns Engineering 1…n (Specify)
1.7		Program Man	agement	
1.7.1				ogram Management
1.7.2			Integrated Lo	ogistics Support (ILS) Program Management
1.7.3			Cybersecurit	y Management
1.7.4			Core Program	m Management
1.7.5			Other Progra	ım Management 1…n (Specify)
1.8		System Test a	and Evaluation	
1.8.1			Developmen	tal Test and Evaluation
1.8.2			Operational	Test and Evaluation
1.8.3			Cybersecurit	y Test and Evaluation
1.8.4			Mock-ups / S	System Integration Labs (SILs)
1.8.5			Test and Eva	aluation Support
1.13		Operational/Si	te Activation	
1.13.1			System Asser	mbly, Installation and Checkout on Site 1…n (Specify)
1.13.2			Contractor Te	chnical Support
1.13.3			Site Construc	tion
1.13.4			Site/Ship/Veh	icle Conversion
1.13.5			Sustainment/I	Interim Contractor Support (ICS)
1.13.6			Contractor Lo	gistics Support (CLS)

Preve BS Example at DMI men STaD 8851 op - www.iceaaonline.com/sat2023

C.3 WORK BREAKDOWN STRUCTURE LEVELS

 \mathbf{U}

WBS #	Level 1 Leve	l 2 Level 3	Level 4	
1.0	Missile/Ordnance Sys	tem		
1.1	Miss	ile/Ordnance System Inte	egration, Assembly, Test and Checkout	
1.2	Air V	/ehicle/Munition		
1.2.1		Air Vehicl	e/Munition Integration, Assembly, Test and Checkout	PMP
1.2.2		Airframe		
1.2.2.1			Airframe Integration, Assembly, Test and Checkout	
1.2.2.2			Primary Structure	
			· · · · · · · · · · · · · · · · · · ·	
1.6	Syste	ems Engineering		
1.6.1		Software Sy	ystems Engineering	
1.6.2		Integrated L	ogistics Support (ILS) Systems Engineering	
1.6.3		Cybersecur	ity Systems Engineering	
1.6.4			ms Engineering	
1.6.5			ems Engineering 1…n (Specify)	
1.7	Progr	ram Management		
1.7.1			rogram Management	
1.7.2		-	ogistics Support (ILS) Program Management	
1.7.3			ity Management	
1.7.4		•	am Management	
1.7.5		Other Progr	ram Management 1…n (Specify)	Common
1.8	Syste	em Test and Evaluation		Elements
1.8.1			ntal Test and Evaluation	LIEITIETIUS
1.8.2			Test and Evaluation	
1.8.3		•	ity Test and Evaluation	
1.8.4			System Integration Labs (SILs)	
1.8.5		Test and Ev	valuation Support	
1.13	Opera	ational/Site Activation	· · · · · ·	
1.13.1		System Asse	embly, Installation and Checkout on Site 1…n (Specify)	
1.13.2		Contractor T	echnical Support	
1.13.3		Site Constru	ction	
1.13.4		Site/Ship/Ve	hicle Conversion	
1.13.5		Sustainment	t/Interim Contractor Support (ICS)	
1.13.6		Contractor L	ogistics Support (CLS)	


Objectives

- Improve alignment of System Engineering model's activities with MIL-STD-881F
 - Prior version aligned with EIA-632, but cost estimates often must align with MIL-STD-881F
- Improve detail of model's labor resource categories
 - Prior version had only "Systems Engineer" resource, but SE activities are performed by many labor roles.
 - More detailed labor category accounting, such as logistics engineer, RAMS engineer, human factors engineer, etc. provides useful insights.
 - Easier to understand scope of the estimate with more detailed breakdown
 - Improved flexibility. For example, can remove HFE altogether if those studies are unnecessary, or can replace HFE model estimate with bottoms-up estimate when scope is well defined.

Presented at the ICEAA 2023 Professional Development & Training Workshop www.iceaaonline.com/sat2023

throughout the acquisition life cycle. The PM and Systems Engineer should apply appropriate resources with the requisite skill sets to ensure successful execution of each process.

Figure 30: Notional Emphasis of Systems Engineering Processes throughout the Defense Weapon System Acquisition Life Cycle

Major Use Moderate Use Minor Use	EMD	P&D	08.5
Decision Analysis	•	•	•
Technical Planning	•	•	•
Technical Assessment	•	•	•
Requirements Management	•	•	•
Risk & Opportunity Management	•	•	•
Configuration Management	•	•	•
Technical Data Management	•	•	•
Interface Management	•	•	•
Stakeholder Requirements Definition	۲	0	0
Requirements Analysis	•	0	0
Architecture Design	•	0	0
Implementation	•	۲	0
Integration	•	•	0
Verification	•	•	۲
Validation	•	•	•
Transition	•	•	•

Source: DAU Systems Engineering Guidebook

MIL-STD-881F Systems Engineering (SE) Categories

- Software SE
 - All Systems Engineering efforts driven by software development
- Cybersecurity SE
 - All SE efforts to identify and minimize risks associated with security vulnerabilities
- Integrated Logistics Support (ILS) SE
 - Includes SE efforts to ensure that the system is designed, built, and maintained to meet its availability and supportability requirements
- Core SE
 - Includes all 16 Technical Processes and Technical Management processes
 - Includes system-level Specialty Engineering activities
 - Examples: Producibility, Safety, Human Factors, Environmental, Radiation, Thermal, Acoustics, etc.
 - Does not include specialties already included in ILS, such as Logistics Engineering, and most RAMS engineering efforts)

Labor Resources

ILS SE

- Systems Engineer
- RAMS Engineer
- Logistics Engineer
- Test Engineer
- Training Engineer
- Core SE Technical Management Processes
 - Systems Engineer
 - Quality Assurance Analyst
 - Configuration Manager
 - Design Engineer
 - Test Engineer
 - 5 Specialty Engineers (RAMS, Industrial, Safety, Human Factors, Other Specialty)

Core SE – Requirements Definition & Analysis

- Systems Engineer
- Project Stakeholder
- Business Analyst
- 5 Specialty Engineers
- Core SE System Design
 - Systems Engineer
 - Design Engineer
 - 5 Specialty Engineers
- Core SE IIVVT
 - Systems Engineer
 - Design Engineer
 - Test Engineer
 - 5 Specialty Engineers

Effort Distribution Among Activities

- Software based on existing CERs
- Cybersecurity based on <u>Cybersecurity Cost Factors Study</u> (2023 update in the works)
- The effort distribution between ILS and Core activities can vary. Key drivers include:
 - System Readiness Level (SRL) at program start
 - Lower SRL programs have larger scope of engineering activities to mature the technology and component/subsystem interfaces and more risks to manage (higher Core SE)
 - Logistics Support Requirements
 - High part counts, high complexity, global operations, all contribute to complex logistics and supply chain requirements, and increased ILS scope.
 - No/Low Maintenance Equipment (e.g. space systems, "discard at failure" equipment) has reduced ILS scope.
 - Fixed location equipment, infrequently used equipment (e.g. missiles) has reduced ILS scope.
 - Equipment subjected to high wear-and-tear/damage (e.g. harsh operating environments, constant usage, combat equipment) have increased ILS scope.

Effort Distribution Among Resources

- Within each activity, the effort distribution across the labor resources can vary due to:
 - Safety Risk Level
 - Criticality Level
 - Highly critical systems have higher RAMS Engineer efforts
 - Human Factors Considerations
 - Systems needing highly skilled operators/maintainers have higher HFE. Simple user interface or autonomous systems require less HFE.
 - Other Specialty Engineering (OSE) Scope
 - Harsh operating environments typically have higher OSE scope
 - Specialty engineering needs can vary greatly from system to system:
 - Radiation, Acoustics, Thermal, Electromagnetic Interference/Compatibility, Aerodynamics, Environmental, Chemical Engineering(e.g., for hazardous material handling and disposal), etc.

Model Validation with Data

- Detailed Datasets, with Systems Engineering cost broken down into specific activities, specialty engineering categories, etc.
 - 2 Satellite Payload Programs
 - Aircraft Command and Control System Program
 - Space Launch Program
- Employment Data
 - Gather employment numbers for various specialty engineering disciplines within aerospace and defense industry.

Demonstration

Wrap-up

Work in progress

- Will continue iterating on design
- Current focus on improving model structure and effort distribution
- Future iterations will address overlap of cost drivers and effort distribution drivers, and refining estimation of these more detailed categories.
- Feedback and data welcome
- Questions?
- Contact: gurney.thompson@unisonglobal.com

Backup

Other Systems Engineering Model Updates

- COSYSMO 3.0 Implementation
 - Design For Reuse
 - Design With Reuse
- Number of Requirements/Interfaces/Op Scenarios Adjustment Factors
- Revisit CER mappings from System/Assembly models
 - Contractor Operational Test Support -> System Test and Evaluation
 - System Quality Assurance/Configuration Manager Resources -> Systems Engineering
 - Option to map QA to Program Management?

PreVNBS I Examplenat DMI men STraDig 885 lop - www.iceaaonline.com/sat2023

C.3 WORK BREAKDOWN STRUCTURE LEVELS

WBS #	Level 1	Level 2	Level 3	Level 4	
1.0	Missile/Ordn	ance System			
1.1		Missile/Ordr	nance System Inte	gration, Assembly, Test and Checkout	
1.2		Air Vehicle/I	Munition		D1 4D
1.2.1			Air Vehicle	/Munition Integration, Assembly, Test and Checkout	PMP
1.2.2			Airframe		
1.2.2.1				Airframe Integration, Assembly, Test and Checkout	
1.2.2.2				Primary Structure	
				•••	_
1.6		Systems Eng	ineering		
1.6.1			Software Sys	stems Engineering	
1.6.2			Integrated Lo	ogistics Support (ILS) Systems Engineering	
1.6.3				ty Systems Engineering	
1.6.4				ns Engineering	
1.6.5			•	ms Engineering 1…n (Specify)	
1.7		Program Mar	•		
1.7.1				ogram Management	
1.7.2			-	ogistics Support (ILS) Program Management	
1.7.3				ty Management	
1.7.4			•	m Management	Common
1.7.5			Other Progra	am Management 1…n (Specify)	Common
1.8		System Test	and Evaluation		Elements
1.8.1				tal Test and Evaluation	Liements
1.8.2			Operational	Test and Evaluation	
1.8.3			Cybersecurit	y Test and Evaluation	
1.8.4			Mock-ups / S	System Integration Labs (SILs)	
1.8.5			Test and Eva	aluation Support	
1.13		Operational/S	ite Activation		
1.13.1			System Asse	mbly, Installation and Checkout on Site 1…n (Specify)	
1.13.2			Contractor Te	echnical Support	
1.13.3			Site Construc	tion	
1.13.4			Site/Ship/Veh	nicle Conversion	
1.13.5			Sustainment/	Interim Contractor Support (ICS)	
1.13.6			Contractor Lo	ogistics Support (CLS)	

Presented at the JGEAA 2022 Professional Development & Training Workshop Severe a constrained and the Presented at the JGEAA 2023 Professional Development & Training Workshop Severe constrained and the Presented at the JGEAA 2023 Professional Development & Training Workshop Severe constrained at the JGEAA 2023 Professional Development & Training Workshop Severe constrained at the JGEAA 2023 Professional Development & Training Workshop Severe constrained at the JGEAA 2023 Professional Development & Training Development & Tr

throughout the acquisition life cycle. The PM and Systems Engineer should apply appropriate resources with the requisite skill sets to ensure successful execution of each process.

Figure 30: Notional Emphasis of Systems Engineering Processes throughout the Defense Weapon System Acquisition Life Cycle

Legend						
 = Major Use = Moderate Use = Minor Use 	Pre-MDD	MSA	TMRR	EMD	P&D	0&\$
Decision Analysis	•	•	•	•	•	•
Technical Planning	•	•	•	•	•	•
Technical Assessment	۲	•	•	•	•	•
Requirements Management	۲	•	•	•	•	•
Risk & Opportunity Management	۲	•	•	•	•	•
Configuration Management	0	۲	•	•	•	•
Technical Data Management	0	•	•	•	•	٠
Interface Management	۲	•	•	•	•	•
Stakeholder Requirements Definition	۲	•	•	۲	0	0
Requirements Analysis	۲	•	•	•	0	0
Architecture Design	۲	•	•	•	0	0
Implementation	0	۲	۲	•	۲	0
Integration	0	۲	۲	•	•	0
Verification	0	۲	۲	•	•	۲
Validation	0	۲	۲		•	•
Transition	0	0	۲	•	•	•

Source: DAU Systems Engineering Guidebook

Presented at the ICEAA 2023ePriofessioneal Development & Training Workshoputwiew.iceaaonline.com/sat2023

Type of System	Custom 🔽
System Readiness Level (SRL)	6
System Criticality Level	0.0
Safety Risk Level	0.0
Logistics Support Requirements	0.0
Human Factors Considerations	0.0
Other Specialty Engineering Considerations	0.0

Section Name	Input Field	Units
Type of System	Custom	1
System Readiness Level (SRL)		^
System Criticality Level	Military Ground Vehicle	
Safety Risk Level	Maritime System Subsonic Missile	
Logistics Support Requirements	Supersonic Missile	
Human Factors Considerations	Intercontinental Ballistic Missile (ICBM)	
Other Specialty Engineering Considerations	Unmanned Aerial Vehicle (UAV) Aircraft (Piloted)	
	Unmanned Space System	
	Manned Space System	~

WBS is the Foundation Development & Training Workshop - www.iceaaonline.com/sat2023

Per Cost Estimating Body of Knowledge (CEBoK) Module 1 Cost Est. Basics:

- A Work Breakdown Structure (WBS) establishes a common frame of reference for relating job tasks to each other and relating project costs at the summary level of detail
 - It provides a consistent and visible framework for specifying the objectives, labor, materials, and contracts of the system/program.
 - The structure is used to define the total program/system by providing detailed definitions of individual elements required (via a WBS Dictionary)
- A WBS should be tailored for each system or program for the purpose of capturing all the idiosyncrasies endemic to each system/program
- Estimate uses a WBS that is at a level of detail appropriate to ensure that cost elements are neither omitted nor double-counted
- Estimate is presented in a WBS fully traceable to the system specification
- WBS structure is aligned to organizational structure performing the work; WBS element tasks are traceable to data, which is traceable back to the respective source documents