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ABSTRACT 
The National Nuclear Security Administration has demonstrated how to use Machine Learning and Natural 
Language Processing to map disparate cost data to a standard, high-level Work Breakdown Structure. 
However, mapping data to deeper WBS levels becomes increasingly complex due to the hierarchical 
relationship between levels, rendering common machine learning models inadequate. Here we 
demonstrate how to implement a Hierarchical Classification Machine Learning scheme to map multi-level, 
hierarchical cost data to a common WBS. 
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1 INTRODUCTION 
The National Nuclear Security Administration (NNSA) is a semi-autonomous agency within the U.S. 
Department of Energy (DOE) whose mission includes the following: 

• to maintain the nuclear stockpile 
• to prevent the proliferation of nuclear weapons 
• to prevent, counter, and respond to nuclear and radiological threats 
• to provide nuclear power to the U.S. Navy (Reference 5). 

1.1 MISSION 
This mission takes place within the Nuclear Security Enterprise (NSE)–a network of national laboratories, 
production and testing plants, and other national security facilities across the United States, which are 
collectively known as the NSE. These sites are run by Managing and Operating (M&O) contractors, each 
responsible for executing capital asset projects that enhance and expand NNSA’s ability to achieve its 
mission. While M&Os must adhere to DOE policy and contractual agreements, each has its own internal 
processes, so the management and tracking of capital asset projects varies between sites. This variation 
is encouraged by a gap in DOE policy that does not mandate a standard work breakdown structure 
(WBS) for cost accounting and earned value management (EVM). This environment makes it more 
difficult for NNSA to track, compare, and benchmark costs across different projects, sites, and over time. 

1.2 PURPOSE 
The purpose of this technical paper is to demonstrate how to apply hierarchical classification and 
natural language processing (NLP) methods to classify WBSs to a standard, multi-level format. A 
previous ICEAA paper (Reference 12) demonstrated how NNSA successfully used Machine Learning (ML) 
and NLP to automate the classification of disparate cost data to a common, high-level, WBS. However, 
moving deeper into the WBS becomes increasingly difficult due to the path-dependent, hierarchical 
nature of the data. This paper expands upon the previous work by demonstrating how hierarchical 
classification can benefit the cost community by standardizing inconsistent cost data to a common, 
multi-level WBS.  

1.3 BACKGROUND 

1.3.1 National Nuclear Security Administration and the Department of Energy 
Two offices within NNSA conduct cost estimates for capital asset projects. The Office of Cost Estimation 
and Program Evaluation (CEPE, NA-1.3) is responsible for independent cost estimation and analysis in 
support of the NSE (References 6 and 17). The Office of Programming, Analysis, and Evaluation, (PA&E, 
NA-MB-90), meanwhile, conducts programmatic cost estimates in support of the Planning, 
Programming, Budgeting, and Execution (PPBE) process—primarily early-stage estimates in the form of 
planning studies and Analyses of Alternatives (AoAs). These offices use similar data sources to perform 
their analyses, including the cost data employed in this paper, which is submitted to the Project 
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Assessment and Reporting System (PARS) maintained by the DOE Office of Project Management (DOE-
PM) (References 7and 8).  

NNSA does not currently have a mandated standard WBS for capital asset projects. However, two recent 
PA&E efforts have contributed to developing such a WBS, 

1. The ongoing NLP work described here and in Reference 12, which resulted in a high-level 
classification model, hereafter referred to as Model 1.  

2. The Capital Acquisition Estimating Framework (CAEF), developed in partnership with the Cost 
Estimating and Analysis Group (CEAG), which is a guidance document for cost estimating for 
NNSA capital asset projects (Reference 4).  

Each effort proposes a different standard WBS. To better align and promote consistency between the 
efforts, the NLP analysts incorporated the CAEF’s recommended scheme as the new starting point for 
Model 2, the subject of this paper. 

Although NNSA is a semi-autonomous agency within the DOE, its capital projects still fall under the 
purview of DOE-PM, which, in addition to managing PARS, develops “policy, requirements and guidance 
for the planning and management of capital asset projects” (Reference 7). Therefore, the implications of 
Model 2 extend beyond NNSA and may serve as an opportunity for further alignment with offices 
outside PA&E. 

1.3.2 Assessment OF THE STATUS QUO 
Per DOE Order 413.3b (Reference 7), every project with a Total Project Cost (TPC) greater than $10 
million must report performance, including planned costs and categories, at the approval of mission 
need (CD-0), to DOE PM’s PARS database. Projects with a TPC greater than $20 million then must 
conduct monthly earned value reporting to PARS after the approval of the performance baseline and 
preliminary design (CD-2). While it is not a policy requirement, most projects conduct some degree of 
earned value reporting to PARS prior to CD-2. With the requirement to report planned costs and 
categories often several years before actually starting earned value reporting, cost categories in PARS 
reports can become confusing, bloated, and misleading for several reasons: (1) a project’s scope can 
change between CD-0 and CD-2; (2) staff turnover can cause knowledge loss; and (3) individual M&O 
earned value (EV) systems can update and change. These issues are exacerbated by the lack of a 
standard WBS format, as it affords EV managers the flexibility to map costs to the categories they see fit, 
rather than a pre-determined structure and despite the fact that every capital project has the same 
overarching process.   

This system of developing a WBS and element names unique to every project creates interpretation 
issues for any analyst, manager, or oversight body looking to evaluate a project’s cost and schedule 
performance. PARS reporting rarely includes a WBS dictionary, so anyone without access to the EV 
manager and project team or without pre-existing knowledge of the project often will have to make 
assumptions about how to interpret WBS elements. The English language is complex, so how to 
interpret certain words can vary depending on context. The same word can have different meaning to 
different project offices, project types, and individual people, and even within the same projects and 
teams. For example, the word “instruments.” A project that is purchasing tools to conduct lab 
experiments may classify these costs as instruments. But when that same project (or another project) is 
constructing the building that houses the lab, the lab’s environmental controls and other interfaces with 
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building utilities can also be filed as instruments. And of course, someone without any context may think 
the project is outfitting a marching band. The point being, without a standard WBS format or dictionary 
to characterize the meaning and context of a word in a WBS element, that word is open to 
interpretation. On top of that, EV reporting is often very concise. For example, an EV manager could 
report costs under a category called “Labs.” With minimal outside information and context, one analyst 
could consider those lines to be the cost to build or renovate a lab. Another analyst could interpret 
“Labs” as the cost to outfit labs with scientific instruments, and another analyst could see that cost as 
the cost for one of the national laboratories to conduct management of the project. If attempting to 
determine how much a project spent on facility construction vs. project management, each analyst 
would reach a different conclusion.  

Different conclusions between analysts can and have resulted in grossly different conclusions about the 
execution of existing projects, which in turn translates to grossly different cost estimates and 
executability analysis for future projects. With an organizational structure that requires multiple offices 
to produce cost estimates at various stages of a project’s lifecycle, it is important that each office has 
the same foundation of good data with which to make independent estimates.  

Lack of a standard WBS necessarily opens the door for different cost estimating offices to interpret the 
same historic data differently. Unfortunately, this situation cannot be rectified without substantial 
reconciliation efforts that add cost, schedule, and risk to capital projects. This paper seeks to provide a 
remedy to this status quo via NLP and machine learning. 

1.4 CLASSIFICATION OVERVIEW 
The following section provides an overview of the various classification paradigms available and how 
these paradigms can be implemented to standardize cost data in the form of a WBS. The section serves 
as background informing the approach taken in Section 2. 

1.4.1 BINARY AND MULTICLASS CLASSIFICATION 
The simplest classification task is binary classification, the mapping of data into two groups or 
categories. For example, a binary classifier would be useful if NNSA only wanted to map capital cost data 
into either Total Estimated Costs (TEC) and Other Project Costs (OPCs).  

The model implemented in Reference 12, hereafter referred to as Model 1, is a multiclass classifier that 
classified project cost data into six, Level 2 classes: Site Preparation, Project Engineering and Design 
(PED), Construction, Procurement, Project Management, and Start-up (Table 1). Multiclass classifiers 
map data into more than two groups or categories, but with still only one output class or target (Table 
B2).  

Table 1: Model 1 classified WBS elements to one of six Level 2 classes 
Level WBS Code Title 

1 1 Project Name 
2   1.1   Site Preparation 
2   1.2   PED 
2   1.3   Construction 
2   1.4   Procurement 
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2   1.5   Project Management 
2   1.6   Start-up 

 

1.4.2 Single-label and Multi-label Classification  
Model 1 is also an example of single-label classification because there is only one answer for a given 
target. That is, the goal is to assign only one Level 2 label per WBS element. This differs from other 
classification tasks where more than one label within a specific category may be appropriate, meaning 
that classes are not mutually exclusive. Table B2 demonstrates how the logic behind single-label multi-
class classification (in the form of binary and multi-class classification) and multi-label classification differ 
and lead to different results even with similar inputs.  

1.4.3 Multioutput Classification  
Model 2 aims to classify WBS elements beyond Level 2, thereby creating a multi-level classification 
scheme that better reflects an actual WBS. This means that we are adding to the number of targets in 
our task, leading to what is known as multioutput classification (or multitask classification, since there 
are multiple classes possible for each output or target). Two approaches to multioutput classification are 
traditional multioutput classification and classifier chains. In the case of standardizing WBS elements to 
a common, seven-level WBS (comprising Levels 2-8), a traditional multitask classifier treats each level of 
the hierarchy as an independent model and there is no assumed correlation between the targets. For 
simplicity, these will be referred to as Multioutput (MO) classifiers. 

The classifier chain (CC) applies multiple binary classifiers to the multi-target problem. Unlike the 
tradition multitask classifiers, classifier chains assume there is a correlation between the targets. As the 
name implies, the classifiers are linked so that the prediction results from one classifier are used as 
feature inputs in the next. The default CC randomizes the order of the chain since most multioutput 
problems do not know the optimal order of the chain.  

Both MOs and CCs are “meta-estimators” that determine how to apply the actual classifiers (such as 
logistic regression or random forest), which are typically known as “base estimators” or, as described in 
1.3.6, “local classifiers.” To ensure alignment with the modeling (and computer code) nomenclature, 
“base estimator” will refer to the classifiers implemented under MO and CC classification paradigms, 
whereas “local classifier” will refer to the classifiers implemented under the hierarchical meta-estimator 
paradigms. 

Table B2 in Appendix B provides an overview of the main types of classification. For example, consider a 
simplified sample of four WBS elements: “Site Prep,” “PM Support,” “Procure GB,” “Conceptual Design.” 
A binary classifier could try to determine whether each line of text belongs to a category, like 
“Construction” or not. In that case, “Site Prep” would be considered “Construction” while the other 
three lines of text would not. However, there would be no insight into where those remaining strings 
belonged in the WBS. A multiclass classifier similar to that seen in Model 1 solves that problem. Now, 
“Site Prep” is still classified as Construction but now “PM Support,” “Procure GB,” and “Conceptual 
Design,” are classified as “Program Management,” “Equipment,” and “Pre CD-2,” respectively. 
Multilabel classification is similar to multiclass classification except that the outputs are not necessarily 
mutually exclusive, meaning that a text string may or may not be classified as more than one label. 
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1.4.4 Multi-input Multioutput Classification 
Table B2 provides an overview of classification types that take single inputs. However, many 
classification tasks involve multiple inputs. Recall that Model 1 involved a Multi-input classifier that used 
both WBS text and Actual Cost of Work Performed (ACWP) inputs to determine the Level 2 class in 
which the WBS element belonged. A Multi-input Multioutput (MIMO) classifier, by extension, uses 
multiple inputs to classify data to multiple outputs. Table B3 demonstrates the new setup, using a 
simplified version of the WBS used for Model 2, since the WBS used for Model 1 (Table 1) only includes 
one output (Level 2). A typical MIMO does not inherently understand whether the outputs are related to 
each other. There is nothing coercing the outputs to any format or hierarchy, meaning that a WBS 
element identified as belonging to one class in Level 2 may then be classified to a completely unrelated 
class in Level 3. Ideally, this would not be the case, but there is no way to ensure this without modifying 
the MIMO to account for the relationship between outputs.  

1.4.5 Hierarchical Classification 
Hierarchical classification is a growing field of research that aims to apply advanced machine learning 
classification techniques to hierarchically-related data (Reference 22). A limited but growing number of 
analysts have successfully applied hierarchical classifiers to real-world applications, but these are largely 
limited to biology or music (e.g., animal species taxonomy, gene classification, genre classification). In 
hierarchical classification, the model can be thought of as consisting of a meta-estimator and a local 
classifier (or base estimator). The meta-estimator is the overarching paradigm determining how the 
local classifiers are implemented across the hierarchy. There are three main types of meta-estimators, 
shown in Table 2. Table B4 demonstrates how the hierarchical model can result in multiple outputs that 
are hierarchically related. The following sections will the three hierarchical meta-estimators in more 
detail using the sample WBS in Figure 11 (the full WBS used for Model 2 is attached in Appendix D). 

Table 2: Hierarchical Meta-Estimators2 
Hierarchical Meta-Estimator Description 

Local Classifier Per Level Multiclass Classifier for each Level 
Local Classifier Per Node Binary Classifier for each non-Root Node 

Local Classifier Per Parent Node Multiclass Classifier for each Parent Node 
 

 

 
1 In the WBS, the following abbreviations are used: Construction (Constr), Program Management (PM), Equipment 
(Equip), Systems Design and Engineering (SD&E), Transition to Operations (TTO), Critical Decision (CD), and 
Installation and Integration (I&I).  
2 Additional information on hierarchical estimators can be found in Reference 11. 
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Figure 1: A hierarchical structure contains classes that operate like nodes in a network. 

 

1.4.5.1 Local Classifier Per Level (LCPL) 

The simplest hierarchical model is the LCPL implementation. Figure 2 demonstrates the LCPL paradigm, 
which applies a multiclass classifier to each level of the hierarchy. In the case of our WBS example, there 
are three levels of nodes under the root node. A single-label, multiclass classifier is applied to each level, 
meaning that a WBS element can only be classified into one class per level. LCPL models require the 
fewest classifiers and are therefore considered more efficient than the other options. Yet, the model 
does not coerce results to the hierarchy, undermining its designation as a hierarchical classifier. That is, 
the classification results obtained at one level do not inform that of the next level. Therefore, a WBS 
element could be classified as Program Management (PM) at one level, but Installation and Integration 
(I&I) at the next.  

Figure 2: A Local Classifier Per Level is a multiclass classifier trained on each level of the hierarchy. 

 

1.4.5.2 Local Classifier Per Node (LCPN) 
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In contrast to the LCPL meta-estimator, the LCPN paradigm applies binary classifiers to all non-root 
nodes. For example, for the given WBS, a classifier at the Construction (Constr) node would predict 
whether a WBS element is construction. Similarly, a classifier applied at the PM node will predict 
whether the element is PM. This means that a given WBS element could be classified both a 
Construction and Program Management, even though those nodes exist at the same level. Thus, 
classification at each node is not mutually exclusive, lending the LCPN paradigm to multi-label 
classification problems, where more than one label may be correct, such as in movie genres, but not to 
single-label problems like a WBS. 

Figure 3: A Local Classifier Per Node is a binary classifier trained on each non-root node of the hierarchy. 

 

1.4.5.3 Local Classifier Per Parent Node (LCPPN) 

The final meta-estimator considered is the LCPPN, a multiclass classifier applied at each parent node to 
predict its child nodes. This is the preferred classifier for single-label multiclass classification, where 
there is only one “correct” label per level. 
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Figure 4: A Local Classifier Per Parent Node is a multiclass classifier trained on each parent node of the hierarchy. 
 

 

1.4.5.4 Evaluating Hierarchical Models 

Hierarchical classification models are evaluated using modified versions of the usual classification 
statistical metrics. In Model 1, (flat) classification model performance was evaluated using accuracy, 
which is the proportion of correctly classified WBS elements to total WBS elements. While useful as an 
aggregate metric, accuracy is problematic when there is class imbalance in the data. In this case, 
precision, recall, and f1-score are often better metrics to use.3 Precision (P) refers to the ratio of True 
Positives (TP) to the sum of TP and False Positives (FP) (Equation 1). Recall (R) is the ratio of TP to the 
sum of TP and False Negatives (FN) (Equation 2). F1-score is the harmonic mean of these two metrics 
(Equation 3) (Reference 3). 

Equation 1: Precision 
 

𝑃𝑃 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

 
 

Equation 2: Recall 
 

𝑅𝑅 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

 
 

Equation 3: F1-score 
 

𝐹𝐹1 = 2 𝑥𝑥 
𝑃𝑃 ∗ 𝑅𝑅
𝑃𝑃 + 𝑅𝑅

 

 
 

 

While useful for classifying WBS elements to a high-level (and flat) classification scheme, these metrics 
are not recommended for hierarchically organized data. Instead, Reference 10 recommended modified 
versions of these metrics, depicted in Equation 4, Equation 5, and Equation 6 respectively.   

 
3 Refer to Reference 23 for an overview of classification metrics. 
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Equation 4: Hierarchical Precision 
 

ℎ𝑃𝑃 =
∑ |𝑎𝑎𝑖𝑖 ⋂𝐵𝐵𝑖𝑖|𝑖𝑖

∑ |𝑎𝑎𝑖𝑖|𝑖𝑖
 

 
 

Equation 5: Hierarchical Recall 
 

ℎ𝑅𝑅 =  
∑ |𝑎𝑎𝑖𝑖 ⋂𝐵𝐵𝑖𝑖|𝑖𝑖

∑ |𝐵𝐵𝑖𝑖|𝑖𝑖
 

 
 

Equation 6: Hierarchical F1-score 

ℎ𝐹𝐹 =  2  𝑥𝑥  
ℎ𝑃𝑃 ∗ ℎ𝑅𝑅
ℎ𝑃𝑃 + ℎ𝑅𝑅

 

 

𝒂𝒂𝒊𝒊 = 𝑻𝑻𝑻𝑻𝑻𝑻 𝐬𝐬𝐬𝐬𝐬𝐬 𝐨𝐨𝐨𝐨 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄, 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒇𝒇𝒇𝒇𝒇𝒇 𝑾𝑾𝑾𝑾𝑾𝑾 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 𝒊𝒊 
𝐵𝐵𝑖𝑖 = 𝑇𝑇ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑊𝑊𝑊𝑊𝑊𝑊 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖 

 

To understand how these hierarchical metrics work, let us first consider what success looks like for a 
hierarchical classification model. The goal for applying a hierarchical classification model to WBS cost 
data is to correctly classify a WBS element to the exact class and level it belongs. However, the deeper 
the hierarchy, the fewer training samples per class exist, so correct classification becomes increasingly 
difficult. Consider the WBS element listed in Table 3 and the WBS in Figure 5. The information in the text 
indicates that this WBS element belongs in CD-1, which is a child node of Pre CD-2. If the model predicts 
that this text actual belongs in Pre CD-1, that means that the model correctly predicted that the class 
belonged in Pre CD-2, but then incorrectly chose the child node Pre CD-1 instead of CD-1. Here, that 
means that 𝒂𝒂𝟏𝟏 = 2 because the predicted class is two levels down (Pre CD-2  Pre CD-1) and 𝐵𝐵1 = 2 
because the true class is also two levels down (Pre CD-2  CD-1). Yet the number of predicted classes 
contained in the true classes (𝑎𝑎1 ⋂𝐵𝐵1) is only 1 because Pre CD-2 is contained in both the predicted set 
and the true set. Therefore, hP = 0.5, hR = 1.0, and hF = .67. For additional examples, see Figure 5 and 
Reference 23. 

Table 3: Sample WBS element after preprocessing and concatenation. 
i Concatenated WBS Element 
1 Project conceptual dsgn opc 

 

 
Figure 5: Modified metrics measure performance of hierarchical classifiers 

 

i Predicted True 𝒂𝒂𝒊𝒊 𝑩𝑩𝒊𝒊 𝒂𝒂𝒊𝒊 �𝑩𝑩𝒊𝒊 𝒉𝒉𝒉𝒉 𝒉𝒉𝒉𝒉 𝒉𝒉𝒉𝒉 

WBS

Pre 
CD-2

Pre 
CD-1 CD-1

Constr

Site 
Work

Site 
Prep

Facility

PM Equip

Procure
ment I&I

SD&E TTO

Start-
up
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1 

Pre CD-1 CD-1 2 2 1 1/2 = 0.5 1/1 = 1.0 .67 

Site Work CD-1 2 2 0 0/2 = 0 0/0 = NA NA 

CD-1 CD-1 2 2 2 2/2 = 1.0 2/2 = 1.0 1.0 
 TOTAL 6 6 3 3/6 = 0.5 3/3 = 1.0 .67 

 

2 APPROACH 

2.1 DATA EXPORT AND LABELING  
The results obtained from Model 1 (Reference 12) indicated considerable class imbalance. For Model 2, 
introduction of the CAEF WBS provided the team an opportunity to redo the sample selection and 
labeling process so that a more representative sample of projects would be labelled to the new scheme. 
Two analysts selected ten historical and ongoing projects and labelled them using the CAEF WBS as the 
new baseline. This was an iterative process in which the analysts adjusted the scheme to accommodate 
the data, as needed.  

Three deviations from the initial data sampling occurred after the labeling process was completed.  

The first was that the team discovered two archived capital projects that were completed before the 
establishment of DOE-PM’s data repository. The analysts labeled these projects and added them to the 
sample.  

The second was that the team, during the analysis process, discovered that several WBS elements in the 
ongoing projects included in the sample for labeling were changed by their Management and Operating 
(M&O) contractors. Some were minor changes, but one project changed most of their text and 
hierarchy, meaning that many of the WBS elements initially labelled would not end up in the true 
dataset. Therefore, the analysts updated the labeled sample set to incorporate the changes.  

The third deviation occurred when the team learned that DOE-PM was undergoing a similar task of 
benchmarking the capital project data to a common format. This provided an opportunity to cross-check 
the decision-making employed.  

The final sample dataset consisted of 12 capital projects; 10 of which were obtained from PARS and two 
from archival records that existed prior to the creation of PARS. Four of the 12 projects included two 
versions of the data files submitted by the M&Os mid-analysis. Therefore, the raw data consisted of 16 
project files that were labelled to the new, multi-level WBS (Appendix C) adapted from the CAEF 
(Reference 4). Once the files were combined and modified to include their higher-level elements, the 
combined list of WBS elements included 123,547 lines of text data. After removing duplicate lines and 
the higher-level elements (which were already added to their corresponding lower-level elements), this 
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sample file consisted of 3822 unique lines of labeled cost data. Figure 6 depicts the breakdown of these 
3822 lines of sample data to Level 2, which consists of nine classes. Note that the only Level 2 labels 
shown are those that were identified in the sample dataset. Furthermore, General also includes DOE PM 
Support - Federal Oversight Cost due to their small sample sizes.  

 

Figure 6: Level 2 classes used for Model 2 are adapted from the CAEF WBS. 

 

 

 

Figure 7: Example of how analyst labels raw WBS data based on classification scheme 

WBS element 
Model 1 Model 2 
Level 2 Level 2 Level 3 Level 4 

 
Facility 

construction 
 

Construction Construction Facility Miscellaneous Facility 
Construction 

 
Glove box 
procure 

 

Procurement Equipment Procurement Process Equipment 

 
Conceptual 

Design 
 

Project Engineering 
and Design 

Pre-CD-0, CD-0, 
CD-1 

CD-1/Conceptual 
Design Conceptual Design 

 

A limitation identified in Model 1 was the omission of the higher-level elements associated with a WBS 
element when classifying these elements to a common Level 2 WBS. This poses an issue when the 
higher-level elements provide information crucial to determining where the lower-level element 
belongs. For example, consider cost data for two projects, A and B1. The projects are to be labelled and 
included in the sample dataset for model training and tuning (Figure 8a). The data indicate that Project A 
involves installing a glovebox while Project B1 involves procuring a glovebox. The labeling procedure 
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employed in Model 1 only considers the lowest-level elements when labeling the data to a common 
scheme (Figure 8b). This means that for both projects, “Glovebox” is the only text used to inform how to 
manually label the element to the multi-level WBS scheme (Appendix D). According to this scheme, both 
instances of “Glovebox” would fall under Level 2: “Equipment.”  

Model 2, however, considers the higher-level elements when manually labeling the data (Figure 8c). This 
means that now Project A’s “Glovebox” element becomes “Equipment Install Glovebox” and Project B1’s 
“Glovebox” element becomes “Procurement Equipment Glovebox.” This provides a much clearer picture 
of what the projects are doing and allows for labeling the elements to a lower level in the WBS scheme.  

Figure 8: Model 1 ignores higher-level element text when classifying WBS elements to a common Level 2 WBS. 
Model 2 incorporates higher-level text into the text string, ignoring project names and other stop words. 

 (a) 
Project WBS Title 
A 1 Project A 
A 1.1 Equipment 
A 1.1.1 Install 
A 1.1.1.1 Glovebox 
B1 A Project B 
B1 A.1 Subproject 

B1 
B1 A.1.a Procurement 
B1 A.1.a.i Equipment 
B1 A.1.a.i.a Glvbox 

 

 
 

 (b) Model 1 Labeling Procedure using WBS in Appendix D 

 Labeled 
Element 

Level 2 Level 3 Level 4 Level 5 

 Glovebox Equipment ? ? ? 
 Glovebox Equipment ? ? ? 
      

(c)  
Model 2 Labeling Procedure using WBS in Appendix D 

 Labeled 
Element 

Level 2 Level 3 Level 4 Level 5 

 Equipment 
Install 

Glovebox 
Equipment 

Installation 
& 

Integration 

Process 
Equipment 

Installation 

 Procurement 
Equipment 
Glovebox 

Equipment Procurement 
Process 

Equipment 
-- 

 

  

 

  
*Preprocessing corrects 
common abbreviations 
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2.2 DATA PRE-PROCESSING AND PREPARATION 
Unlike Model 1, the first step in the data cleaning process concatenated all higher-level elements to 
their corresponding lower-level elements so that the full context of each element would be included in 
the model. The proceeding steps included similar preprocessing to that for Model 1: tokenization, 
acronym and abbreviation identification, stop word removal, and stemming (Figure 9). The following 
sections overview each of these concepts. 

Figure 9: The process for preparing the data now includes combining higher-level element text to their 
corresponding lower-level elements. 

 

2.2.1 Tokenization 
Tokenization is the process of dividing the text data into usable chunks of information, known as tokens 
(Reference 26). In Reference 12, WBS elements were tokenized at the word-level. For Model 2.0, WBS 
elements were tokenized at varying levels depending on vectorization type. See Section 2.2.5 for more 
details.   

2.2.2 Acronyms AND ABBREVIATIONS 
A total of 310 acronyms and abbreviations were used. This included those identified during the pre-
processing for Model 1, as well as additional acronyms and abbreviations discovered in labeling the 
current sample.  

2.2.3 STOP Words 
The initial stop words list included 728 unique words (References 13, 14, and 20). However, the analysts 
determined that 22 words in this generic stop list would potentially negatively influence the analysis: i, 
in, one, ones, other, others, up, general, three, threes, two, twos, turn, turned, turning, turns, well, wells, 
work, worked, working, works. For example, i, though referring to the pronoun in the stop word list, 
often appears in the sample text in the context of “Title I Design,” a text string that we are trying to 
distinguish from “Title II Design” and “Title III Engineering” in our multi-level WBS. Removing these 
words from the generic stop word list resulted in a final list consisting of 706 unique words.  

The stop word list also includes an update of to the custom stop word list used for Model 1. In addition 
to the 706 generic stop words, the analysts updated the custom stop word list to now include 719 words 
(or phrases) and 171 that were in the form of abbreviations. Many of these custom words were the 

Raw 
Data

Full 
Dataset

Sample 
Dataset

•Label data

Traditional 
Multioutput 
Classification

Hierarchical 
Classification
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project names existing in PARS (not just those in the sample dataset), as well as locations, company 
names, and variations of these words and phrases identified while consolidating the data.  

2.2.4 STEMMING 
Reference 12 introduced stemming as an optional part of preprocessing that reduces words to a 
common stem (References 1, 2, 14, and 19). In Model 1, stemming was applied to the traditional 
machine learning algorithms but not the deep learning algorithms. Initial exploratory analysis for this 
paper indicated that stemming did not improve the model performance (in fact, stemming slightly 
reduced performance across most conditions) (Table B1) and was therefore dropped from the analysis. 

2.2.5 OTHER CONSIDERATIONS 
Splitting separates the data into a “train” and “test” set so that a portion of the sample can be used for 
model tuning and training. The most common approach is to randomly split of the data to reduce the risk 
of bias. In this case, there is notable class imbalance, which worsens as the labeling progresses down the 
hierarchy. To attenuate this issue, a better option is to use iterative stratification, which takes the class 
representation into consideration when splitting the data. This ensures that the relative ratios of class 
occurrence are more proportional between the training and test set (Reference 21). 
 
Reference 12 explores the use of count vectorization and term frequency-inverse document frequency 
(tf-idf) vectorization to turn the tokens into a usable (numeric) representation that the classification 
models can understand. For a review of these methods, consult Reference 18.  
 
Model 2 also uses an alternate method, creating word2vec (w2v) word embeddings to vectorize the text 
based on a word’s similarity to other words in the corpus (References 15, 16, and 24). These embeddings 
are either trained using the current sample text data or pretrained using external data. Due to the sparse 
nature of WBS text in this analysis, the word embeddings were pretrained using a corpus of construction-
related text obtained from Reference 25. 
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3 HIERARCHICAL CLASSIFICATION OF WORK BREAKDOWN STRUCTURE 

ELEMENTS 

3.1 MODELING ASSUMPTIONS 
Model 2 defines similar assumptions to those used in Model 1: 

• The sample dataset used for training is representative of the full WBS dataset. 
• Removing project names and locations from the sample dataset’s text will mitigate bias during 

training. 
• Acronyms and abbreviations identified during pre-processing are accurate and comprehensive. 

Furthermore, the following assumptions are unique to Model 2: 
• All WBS elements in the dataset belong under one of the labels identified in Appendix D. 
• The iterative splitting methods employed occurred as intended. 

3.2 METHODOLOGY 
The classification portion of the analysis used the pre-labeled sample data described in Section 2.1 and 
can be broken down into the following steps:  

1) Removal of high-level WBS elements and duplicate low-level, WBS elements 
2) Hierarchical classification using default hyperparameters 
3) Hyperparameter tuning 
4) Hierarchical classification with tuned parameters 

 
3.2.1 Duplicate Work Breakdown Structure Elements  
Similar to Model 1, duplicate WBS elements exist due to the timeseries characteristic of EV data. 
However, the duplicates in Model 2 are now determined based on the concatenated text string rather 
than just the WBS element used in Model 1. Table 4 provides an example of this change. Two buildings 
are undergoing demolition across two months in 2019. In Model 1, it would appear that “Building 1a 
demolition” appears twice and can be reduced to one instance; similarly, “Building 2a demolition” 
appears twice and can also be reduced to one instance. Yet when the full context is considered, it 
becomes clear that although the “Building 1a demolition” elements are true duplicates, the two 
“Building 2a demolition” elements are not.  

Table 4: Duplicate WBS elements are determined by the fully combined text string. 
Higher-Level Elements Original WBS Element Date (DDMMYYYY) Concatenated WBS Element 

Site Preparation Building 1a demolition 05012019 Site Preparation Building 1a demolition 

Site Preparation Building 1a demolition 06012019 Site Preparation Building 1a demolition 

Site Preparation Building 2a demolition 05012019 Site Preparation Building 2a demolition 

D&D Building 2a demolition 06012019 D&D Building 2a demolition 
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3.2.2 Default Multitask Models – Machine Learning Base Estimators 
In the context of typical multitask classifiers (Multioutput and Classifier Chains), the underlying classifier 
is known as the “base estimator.” In hierarchical classification, the nomenclature is slightly different, 
and the underlying classifier is instead referred to as the “local classifier.”  

The default multioutput models consisted of 36 model combinations using two meta estimators (MO 
and CC) with either count, tf-idf, or w2v vectorization and one of six local classifiers (Table 5). 

 

Table 5: Default base estimators used for multioutput classifiers. 
Meta-Estimator Base Estimator Default Hyperparameters 

Multioutput 

Classifier Chain 

 

support vector classifier 

 
Gamma: Scale 
Kernel: RBF 
Class Weight: None 
Degree: 3 
C: 1 
  

stochastic gradient descent Classifier 

 
Loss: Hinge 
Penalty: L2 
Alpha: 1e4 
Tolerance: 1e3 
Learning Rate: Optimal 
Class Weight: None 
  

decision tree 

 
Criterion: Gini 
Maximum Features: None 
  

Multinomial Naïve Bayes 
 
Alpha: 1 

 

logistic regression 

 
Tolerance: 0.0001 
Class Weight: None 
Solver: lbfgs 
Penalty: L2 
C: 1 
 

random forest 

 
Number of Estimators: 100 
Class Weight: None 
Criterion: Gini 
 

 

3.2.3 Default Hierarchical Models – Machine Learning Local Classifiers 
The default hierarchical models consisted of 54 model combinations using three meta estimators (LCPL, 
LCPN, and LCPPN) with either count, tf-idf, or w2v vectorization and one of six local classifiers (Table 6). 
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Table 6: Default hyperparameter values for local classifiers. 
Meta-Estimator Local Classifier Default Hyperparameters 

Local Classifier Per Level 

Local Classifier Per Node 

Local Classifier Per Parent Node 

 

support vector classifier 

 
Gamma: Scale 
Kernel: RBF 
Class Weight: None 
Degree: 3 
C: 1 
  

stochastic gradient descent Classifier 

 
Loss: Hinge 
Penalty: L2 
Alpha: 1e4 
Tolerance: 1e3 
Learning Rate: Optimal 
Class Weight: None 
  

decision tree 

 
Criterion: Gini 
Maximum Features: None 
  

Multinomial Naïve Bayes 
 
Alpha: 1 
 

logistic regression 

 
Tolerance: 0.0001 
Class Weight: None 
Solver: lbfgs 
Penalty: L2 
C: 1 
 

random forest 

 
Number of Estimators: 100 
Class Weight: None 
Criterion: Gini 
 

 

 

3.2.4 Hyperparameter Tuning  
Hyperparameter tuning is the process of comparing combinations of hyperparameter values to improve, 
and hopefully optimize, performance. Tuning proved essential to achieving Model 1’s classification 
results and is a necessary stop when implementing machine learning models. Models require retuning 
each and every time data are updated, but this is generally a minor task assuming the nature of the data 
stays the same. Due to the inherent structural changes between Model 1 and Model 2, the 
hyperparameter values chosen for Model 1 are no longer relevant. Table 7 lists the hyperparameters 
evaluated during the tuning of the traditional machine learning models with Grid Search using three-fold 
cross-validation (cv). 
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Table 7: Hyperparameter combinations used for model tuning 

Base Estimator / Local Classifier Hyperparameters and Values 

support vector classifier 

 
Gamma: Scale, Auto 
Kernel: RBF, Poly, Linear 
Class Weight: None, Balanced 
Degree: 3, 4, 5 
C: 1e-1, 1, 10 
  

stochastic gradient descent 

 
Loss: Modified Huber, Log Loss 
Penalty: L2, L1, elastic net 
Alpha: 1e5, 1e4, 1e3 
Tolerance: 1e4, 1e3 
Learning Rate: Adaptive, Optimal 
Class Weight: None, Balanced 
  

decision tree 

 
Criterion: Gini, Entropy 
Maximum Features: Auto, Sqrt, Log2, None 
  

Multinomial Naïve Bayes 
 
Alpha: 1e-2, 1e-1, 1 
 

random forest 

 
Number of Estimators: 100, 200, 300 
Class Weight: Balanced, Balanced Subsample, None 
Criterion: Gini, Entropy, Log Loss 
 

logistic regression 

 
Tolerance: 1e4, 1e3 
Class Weight: Balanced, None 
Solver: netwon-cg, saga, lbfgs 
Penalty: L1, L2, elasticnet, None 
C: 1e-1, 10, 100 
 

 

3.2.5 Deep Learning Models 
Model 1 ultimately employed a deep learning algorithm to classify cost data to a Level 2 WBS. So far in 
this analysis, the only algorithms employed as base estimators / local classifiers have been traditional 
machine learning models (Table 5). However, deep learning algorithms can also serve as the local 
classifiers in a hierarchical classification model. Table 8 shows the hyperparameter values used for 
tuning the LCPPN models with Dense Neural Networks (DNNs) and Convolutional Neural Networks 
(CNNs) as the local classifiers. 
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Table 8: Hyperparameter combinations used for model tuning neural networks 

Base Estimator / Local Classifier Hyperparameters and Values 

DNN 

 
Embedding Dimension: 100,200 
Hidden Layers: 1, 2 
Dropout: .3, .5, .7 
Neurons per Layer: 50, 100, 200 
  

CNN 

 
Embedding Dimension: 100,200 
Hidden Layers: 1,2 
Number of Filters: 32, 64 
Number of Kernels: 5, 10, 15, 20 
Dropout: .3, .5, .7 
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3.3 RESULTS 

3.3.1 Default Multitask Models – Machine Learning Base Estimators 
Table 9 provides the initial results of the non-hierarchical MO models using default hyperparameter 
values. Across all base estimators, the best performing vectorizer was count vectorization with an 
average hF score of 0.619; across all vectorization methods, the best overall base estimator was logistic 
regression, with an average hF score of 0.657.  

Table 9: Average hF scores of MO using machine learning base estimators  
with default values on iteratively split data (cv = 3). 

Base Estimator 
hF 

Count vectorizer Tf-idf Vectorizer W2v vectorizer Average 

decision tree 0.491636 +/- 
0.018175 

0.476184 +/- 
0.027004 

0.517459 +/- 
0.067366 

0.495 

logistic regression 0.67936 +/- 
0.145861 

0.657558 +/- 
0.149226 

0.634407 +/- 
0.124991 

0.657 

Multinomial Naïve 
Bayes 

0.631319 +/- 
0.124602 

0.616618 +/- 
0.117396 

0.540504 +/- 
0.130607 

0.596 

random forest 
0.58508 +/- 

0.077778 
0.488256 +/- 

0.019319 
0.616216 +/- 

0.102235 
0.563 

stochastic gradient 
descent 

0.667149 +/- 
0.108162 

0.647868 +/- 
0.121252 

0.592118 +/- 
0.109405 

0.635 

support vector 
classifier 

0.657934 +/- 
0.096872 

0.617552 +/- 
0.099562 

0.656076 +/- 
0.096352 

0.644 

Average 0.619 .584 0.593 0.599 
 

Table 10 provides the same results but for the default CC models. The logistic regression base 
estimators’ hF score averaged at 0.655 across all vectorization methods and the count vectorization 
usually outperformed the other vectorizers regardless of base estimator with an average hF score of 
0.602.  

Across the untuned MO and CC classification models, the best untuned model was the MO using a 
logistic regression base estimator and count vectorization (average hF = 0.679) (Table 9). Figure 10 
illustrates how each of the CC and MO models’ hF scores compare (cv = 3).  

Table 10: Average hF scores of CC using machine learning base estimators  
with default values on iteratively split data (cv = 3). 

Base Estimator 
hF 

Count vectorizer Tf-idf Vectorizer W2v vectorizer Average 

decision tree 0.517141 +/- 
0.076969 

0.502025 +/- 
0.083037 

0.504853 +/- 
0.063473 

0.508 

logistic regression 0.670171 +/- 
0.14832 

0.664808 +/- 
0.14838 

0.630073 +/- 
0.10298 

0.655 
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multinomial naive 
Bayes 

0.623214 +/- 
0.120838 

0.62707 +/- 
0.123213 

0.481782 +/- 
0.122177 

0.577 

random forest 
0.550608 +/- 

0.062974 
0.492732 +/- 

0.024265 
0.6061 +/- 
0.096933 

0.550 

stochastic gradient 
descent 

0.638021 +/- 
0.102911 

0.578175 +/- 
0.091017 

0.596006 +/- 
0.092413 

0.604 

support vector 
classifier 

0.611307 +/- 
0.130792 

0.579974 +/- 
0.112575 

0.622433 +/- 
0.095785 

0.605 

Average 0.602 0.574 0.574 0.583 
 

Figure 10: Performance of default multioutput models using cv, tf-idf, and w2v vectorization (cv = 3). 

 

3.3.2 Default Hierarchical Models – Machine Learning Local Classifiers 
Figure 11 depicts the results of the unoptimized hierarchical models. Across all meta-estimator and 
vectorization combinations, the logistic regression resulted in the highest average hF score using three-
fold cv. The support vector classifier and stochastic gradient descent models failed under the LCPL and 
LCPN paradigms but performed relatively well with LCPPN. LCPPN was also the meta-estimator that 
most aligned with the nature of a hierarchical, multi-level WBS, so proceeding with the LCPPN meta-
estimator made sense. 
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Figure 11: Performance of default hierarchical models using count, tf-idf, and w2v vectorization (cv = 3). 
 

 
 

Table 11 shows how the untuned performance of the LCPL models. Like the CC and MO models, on 
average, the logistic regression performed better than the other local classifiers (average hF score = 
0.647) and the count vectorizer performed better than the other vectorizers (average hF score = 0.576). 
Importantly, both the stochastic gradient descent and support vector classifier classifiers failed under 
the LCPL paradigm. This failure also occurred under the LCPN paradigm (Table 12). Once again, the LCPN 
paradigm generally preferred the logistic regression and count vectorization over the other options. 
Across all vectorizers, the logistic regression showed an average hF score of 0.637 and across all local 
classifiers, the count vectorizer had the highest average hF score of 0.582.  

Table 11: Average hF scores of LCPL using machine learning base estimators  
with default values on iteratively split data (cv = 3). 

Local Classifiers 
hF 

Count vectorizer Tf-idf Vectorizer W2v vectorizer Average 

decision tree 0.480409 +/- 
0.080819 

0.448159 +/- 
0.062432 

0.509413 +/- 
0.058219 

0.479 

logistic regression 0.6644 +/- 
0.143628 

0.648978 +/- 
0.166346 

0.627026 +/- 
0.115721 

0.647 

multinomial naive 
Bayes 

0.619415 +/- 
0.11058 

0.627505 +/- 
0.118139 

0.515241 +/- 
0.12502 

0.587 

random forest 0.540946 +/- 
0.080791 

0.479609 +/- 
0.021115 

0.594641 +/- 
0.080529 

0.538 

stochastic gradient 
descent -- -- -- -- 

support vector 
classifier -- -- -- -- 
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Average 0.576 0.551 0.562 0.563 
 

Table 12: Average hF scores of LCPN using machine learning base estimators  
with default values on iteratively split data (cv=3). 

Local Classifier 
hF 

Count vectorizer Tf-idf Vectorizer W2v vectorizer Average 

decision tree 0.458833 +/- 
0.015605 

0.443174 +/- 
0.027661 

0.494198 +/- 
0.073243 

0.465 

logistic regression 0.649707 +/- 
0.137499 

0.642329 +/- 
0.164931 

0.618888 +/- 
0.104537 

0.637 

multinomial naive 
Bayes 

0.630868 +/- 
0.118383 

0.626156 +/- 
0.121258 

0.517346 +/- 
0.132089 

0.591 

random forest 0.590302 +/- 
0.106981 

0.504552 +/- 
0.033291 

0.591596 +/- 
0.098591 

0.562 

stochastic gradient 
descent -- -- -- -- 

support vector 
classifier -- -- -- -- 

Average 0.582 0.554 0.556 0.564 
 

Table 13 shows how the untuned performance of the LCPPN models. On average the logistic regression 
performed better than the other local classifiers (average hF score = 0.646) and the count vectorizer 
performed better than the other vectorizers (average hF score = 0.605).  

Across all hierarchical models using default machine learning local classifiers, the best average hF score 
occurred with the LCPPN meta-estimator using logistic regression and count vectorization (average hF 
score = 0.665).  

This time, the stochastic gradient descent and support vector classifier classifiers did not fail, and the 
stochastic gradient descent performance approached that of the logistic regression’s (average hF score = 
0.655).   

Table 13: Average hF scores of LCPPN using machine learning base estimators  
with default values on iteratively split data (cv=3). 

Base Estimator 
hF 

Count vectorizer Tf-idf Vectorizer W2v vectorizer Average 

decision tree 0.494105 +/- 
0.055132 

0.470522 +/- 
0.056631 

0.511514 +/- 
0.063155 

0.492 

logistic regression 0.665483 +/- 
0.135932 

0.647491 +/- 
0.16152 

0.623957 +/- 
0.105361 

0.646 

multinomial naive 
Bayes 

0.619415 +/- 
0.11058 

0.627505 +/- 
0.118139 

0.515241 +/- 
0.12502 

0.587 

random forest 0.57098 +/- 
0.07679 

0.475833 +/- 
0.020211 

0.58969 +/- 
0.082162 

0.546 
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stochastic gradient 
descent 

0.6554 +/- 
0.112225 

0.643723 +/- 
0.12947 

0.629257 +/- 
0.094976 

0.643 

support vector 
classifier 

0.623723 +/- 
0.10381 

0.598654 +/- 
0.094605 

0.640223 +/- 
0.088026 

0.621 

Average 0.605 0.578 0.585 0.589 
 

3.3.3 Hyperparameter Tuning 
After comparing the initial set of default models, LCPL and LCPN meta-estimators were dropped from 
the analysis to simplify the tuning process going forward, leaving the MO, CC, and LCPPN paradigms as 
the meta-estimators of interest.  

Under each condition, the tuning process identified the best base estimators / local classifiers and 
corresponding hyperparameter values using count, tf-idf, and w2v vectorization. Table 14 depicts the 
best base estimators and their corresponding parameter values identified through tuning the MO and 
CC models. Both the MO with count vectorization and tf-idf vectorization identified the stochastic 
gradient descent classifier as the best estimator while the using w2v vectorization, the support vector 
classifier became the preferred estimator. Tuning the CC models resulted in the same vectorizer – base 
estimator pairs with minor changes in the hyperparameter values. 

Table 14: Tuning the MO and CC models identified the best local classifier and parameters (cv=3). 

Meta-Estimator Vectorizer Best Base 
Estimator Best params 

MO 

cv stochastic gradient 
descent 

 
Loss = Log 
Alpha = 0.0001 
Penalty = L2 
Tol: 0.0001 
 

tf-idf stochastic gradient 
descent 

 
Loss = Log 
Alpha = 0.0001 
Penalty = elasticnet 
Tol: 0.0001 
 

w2v support vector 
classifier 

 
Gamma = 0.4 
Kernel = rbf 
Class Weight: None 
Degree = 3 
C = 1 
 

CC cv stochastic gradient 
descent 

 
Loss = Log 
Alpha = 0.0001 
Penalty = L2 
Tol: 0.001 
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tf-idf stochastic gradient 
descent 

 
Loss = Log 
Alpha = 0.0001 
Penalty = elasticnet 
Tol: 0.001 
 

w2v support vector 
classifier 

 
Gamma = 0.3 
Kernel = rbf 
Class Weight: None 
Degree = 3 
C = 1 
 

 

When tuning the LCPPN models, the stochastic gradient descent estimator appeared as the best 
estimator regardless of vectorization method though the optimal hyperparameter values varied slightly 
across models (Table 15). 

Table 15: Tuning the LCPPN models identified the best local classifier and parameters (cv=3). 

Meta-Estimator Vectorizer Best Local Classifier Best params 

LCPPN 

cv stochastic gradient descent 

 
Alpha = 0.0001 
Class weight = None 
Loss = Log_loss 
Penalty = L2 
Tol = 0.0001 
Learning Rate = Optimal 
 

tf-idf stochastic gradient descent 

 
Alpha = 0.001 
Class weight = Balanced 
Loss = Log_loss 
Penalty = elasticnet 
Tol = 0.001 
Learning Rate = Optimal 
 

w2v stochastic gradient descent 

 
Alpha = 0.001 
Class weight = None 
Loss = modified huber 
Penalty = elasticnet 
Tol = 0.0001 
Learning Rate = Optimal 
 

 

Refitting the MO and CC models on the full training set using the best estimator and parameters 
identified in Table 14 resulted in the hF results depicted in Table 16. Among both the MO models and CC 
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models, the highest hF score was the MO model using stochastic gradient descent with cv vectorization 
(hF = .875).  
 

Table 16: Tuned MO and CC model performance on test set. 

Meta Estimator Vectorizer Best Base Classifier hF 

MO 

cv 

 
stochastic gradient descent 

Loss = Log 
Alpha = 0.0001 
Penalty = L2 
Tol: 0.0001 
  

0.875 

tf-idf 

 
stochastic gradient descent 

Loss = Log 
Alpha = 0.0001 
Penalty = elasticnet 
Tol: 0.0001 
  

0.874 

w2v 

 
support vector classifier 

Gamma = 0.4 
Kernel = rbf 
Class Weight: None 
Degree = 3 
C = 1 
 

0.831 

CC 

cv 

 
stochastic gradient descent 

Loss = Log 
Alpha = 0.0001 
Penalty = L2 
Tol: 0.001 
 

0.777 

tf-idf 

 
stochastic gradient descent 

Loss = Log 
Alpha = 0.0001 
Penalty = elasticnet 
Tol: 0.001 
 

0.782 

w2v 

 
support vector classifier 

Gamma = 0.3 
Kernel = rbf 
Class Weight: None 
Degree = 3 
C = 1 
 

0.811 
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The LCPPN with stochastic gradient descent and count vectorization outperformed these results (hF = 
.889) but the three tuned MO models outperformed the remaining tuned LCPPN models. Still, all LCPPN 
models performed better than their untuned predecessors as well as all other untuned, default model 
combinations considered (Table 17). 
 
 

Table 17: Tuned LCPPN model performance on test set. 

Meta Estimator Vectorizer Best Local Classifier hF 

LCPPN 

cv 

 
stochastic gradient descent 

Alpha = 0.0001 
Class weight = None 
Loss = Log_loss 
Penalty = L2 
Tol = 0.0001 
Learning Rate = Optimal 
  

0.889 

tf-idf 

 
stochastic gradient descent 

Alpha = 0.001 
Class weight = Balanced 
Loss = Log_loss 
Penalty = elasticnet 
Tol = 0.001 
Learning Rate = Optimal 
  

0.809 

w2v 

 
stochastic gradient descent 

Alpha = 0.001 
Class weight = None 
Loss = modified huber 
Penalty = elasticnet 
Tol = 0.0001 
Learning Rate = Optimal 
  

0.792 

 
 

3.3.4 Deep Learning Models 
Model 1 ultimately employed a deep learning algorithm to classify cost data to a Level 2 WBS. So far in 
this analysis, A major question that arose when scoping the current analysis was whether deep learning 
models were compatible with the hierarchical classification model architecture, which used a different 
software package. With the addition of a few custom functions, deep learning algorithms such as Dense 
Neural Networks (DNN) and Convolutional Neural Networks (CNNs) can serve as local classifiers in a 
hierarchical model. Table 18 demonstrates the results of the MO, CC, and LCPPN model tuning. Although 
the neural networks worked under the MO and LCPPN paradigms, they failed to yield results under the 
CC. Therefore, only the MO and LCPPN models were successfully tuned.   
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Table 18: Tuning the models with Randomized Search CV (cv=3). 

Meta-Estimator Base Estimator / Local Classifier Param grid Best hF score 

MO 

DNN  

 
Embedding Dimension: 100,200 
Hidden Layers: 1, 2 
Dropout: .3, .5, .7 
Neurons per Layer: 50, 100, 200 
 

0.563 

CNN  

 
Embedding Dimension: 200 
Hidden Layers: 2 
Number of Filters: 64 
Number of Kernels: 15 
Dropout: .5 
 

0.648 

CC 

DNN 
 

 
Embedding Dimension: 100, 200 
Hidden Layers: 1, 2 
Dropout: .3, .5, .7 
Neurons per Layer: 50, 100, 200 
 

-- 

CNN 
 

 
Embedding Dimension: 200 
Hidden Layers: 2 
Number of Filters: 64 
Number of Kernels: 15 
Dropout: .5 
 

-- 

LCPPN 

DNN 
 

 
Embedding Dimension: 100,200 
Hidden Layers: 1, 2 
Dropout: .3, .5,.7 
Neurons per Layer: 50, 100, 200 
 

0.643 

CNN 
 

 
Embedding Dimension: 200 
Hidden Layers: 2 
Number of Filters: 64 
Number of Kernels: 15 
Dropout: .5 
 

0.639 

 

Table 19 depicts the results of applying the tuned neural nets on the test set. The tuned MO models 
failed to produce results, but the LCPPN models resulted in an hF of 0.854 and 0.896 with the DNN and 
CNN, respectively. Therefore, across all tuned model combinations, the LCPPN using a CNN local 
classifier performed the best. 
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Table 19: Tuned neural net model performance on test set (cv = 3). 

Meta Estimator Base Estimator / Local Classifier Best Hyperparameter Values Best hF 

MO 

DNN 

 
Embedding Dimension: 100 
Hidden Layers: 2 
Dropout: .5 
Neurons per Layer: 200 
 

-- 

CNN 

 
Embedding Dimension: 200 
Hidden Layers: 1 
Number of Filters: 32 
Number of Kernels: 10 
Dropout: .3 
 

-- 

CC 

 
DNN 

 
-- 

 
-- 

 
CNN 

 

 
-- 

 
-- 
 

LCPPN 

DNN 

 
Embedding Dimension: 200 
Hidden Layers: 1 
Dropout: .3 
Neurons per Layer: 200 
  

0.854 

CNN 

 
Embedding Dimension: 200 
Hidden Layers: 2 
Number of Filters: 64 
Number of Kernels: 15 
Dropout: .5 
  

0.896 
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4 OBSERVATIONS 

4.1 HIERARCHICAL CLASSIFICATION 
To the authors’ knowledge, this analysis is the first implementation of hierarchical classification to the 
fields of cost estimating and cost analysis and presented at the ICEAA Professional Development and 
Training Workshop. The results indicated that not only was the LCPPN meta-estimator the most relevant 
paradigm to standardize WBS cost data to a common format, but also the model that yielded the best 
results. The LCPL and LCPN models failed when using two of the ML algorithms as local classifiers and 
the CC models failed when using the neural networks as base estimators. It is likely that the LCPL, LCPN, 
and CC tuning failures were due to inherent incompatibility between the underlying base estimator / 
local classifier with the meta-estimator. In the case of the failure of applying the tuned MO model to 
make a prediction on the test set, there appeared to be a computer code issue that could be resolved 
through addition of custom additions to the software packages used to ensure interoperability between 
them. In fact, much of this analysis required integrating and customizing code from different software 
packages and so this work also serves as a proof-of-concept that hierarchical classification can be 
implemented using neural networks as the underlying local classifiers with the appropriate 
customizations.  

4.2 AREAS OF IMPROVEMENT 
There are limitations to the approach taken in this analysis to classify disparate cost data to a common, 
multi-level WBS. They fall into two main camps: (1) limitations due to underlying model assumptions 
and (2) limitations due to model design. 

4.2.1 Data and Model Assumptions 
The model assumptions listed in 3.1 are worthy of review. The first assumption was that the sample 
dataset was representative of the full WBS dataset. Ideally the projects sampled for this analysis 
represent the capital projects not included in the sample. It is possible that selection bias occurred. In 
fact, there were changes to the projects sampled for Model 2 because we later determined that those 
selected for Model 1 were not representative enough. This is a difficult task as the sample should be 
represent various M&Os, project types, complexity, status, and other factors that are sometimes to 
ensure when there is such a small dataset of projects available from which to choose. There are some 
projects that are quite distinct. It is difficult to predict whether future projects will deviate from those 
currently existing in the dataset. In fact, without a DOE requirement for standardizing WBS’s for capital 
projects, there is also no way to prevent the M&Os from changing how they collect and label their data 
for ongoing projects while in process. This is exactly what happened when we were working on Model 2, 
meaning that additional time was spent to relabel several sample projects just because their submitted 
data changed drastically.  

4.2.2 Model Design 
The model design is another consideration. For one, the hierarchical classification models employed in 
this analysis are “top-down” models, meaning that the classification always begins at the top of the 
hierarchy. This may limit the information gleaned from the text, since in some cases it may be easier to 
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start with more specific, lower-levels and work upwards. The analysts are exploring ways to address this 
limitation through the implementation of other types of multioutput models.  

Another limitation is that currently, the tuning process is applied across the meta-estimator, meaning 
that the best estimators are a result of tuning that maximizes the hF score across various 
hyperparameter combinations. Model performance may further improve if the classifiers were tuned 
uniquely at each node. This is something the analysts are also exploring, though it is not clear that such a 
modification to the packages implemented would be possible without additional customization. If such a 
customization is not possibly, an alternative option would be to build a traditional multioutput neural 
network such as that seen in Reference 9 that allows more manual manipulation of the model tuning 
process but must be designed to ensure that the hierarchy of the multi-level WBS is enforced when 
tuning and predicting the results. 

As we continue to work on this analysis, we are also exploring ways to add additional inputs to the 
model, as was done in Model 1, thereby creating a hierarchical. Model 1 incorporated both WBS text 
and cost as inputs, but the time-phased nature of the data also provides additional opportunities, as 
well. Importantly, the interpretation of text is sometimes predicated on the associated date of the WBS 
element, and therefore is an important piece that should be incorporated into the model, if possible. 

5 CONCLUSION 
The findings in this paper demonstrate how NNSA used hierarchical classification to – with a high degree 
of accuracy – standardize disparate capital asset cost data to a common, hierarchically-organized WBS. 
The analysis compared multiple non-hierarchical and hierarchical multioutput model candidates for 
Model 2. Ultimately, the selected Model 2 was a hierarchical model (LCPPN) using a tuned neural net 
(CNN) as its base estimator. This work leveraged and expanded upon the findings in Model 1 (Reference 
11), which successfully used NLP to map cost data to a standard Level 2 WBS. Model 2 goes several steps 
beyond Level 2, meaning that it can support both high-level benchmarking efforts as well as lower-level 
standardization and analysis at NNSA (for a review of potential use cases, see Appendix C).  

This approach represents one of three possible high-level approaches that can be taken towards 
mapping cost data to a common WBS. 

1) Manually labeling each and every WBS to the preferred standard (i.e., analysts by hand). 

2) Automatic labeling using a keyword search or a similarly deterministic algorithm. 

3) Automatic labeling using a prediction algorithm (e.g., the machine learning approach presented 
here). 

The first option is the status quo on how the cost estimating and analysis community operates. Analysts 
spend many hours manually re-labeling all WBS elements across all projects to a preferred standard. 
This option is fine for small datasets where there is not enough data available to train a model. It may 
also be a preferable option when the data are too variable for historical data to be able to properly 
classify the current/future data. 

However, this approach has two major drawbacks. First, even experienced, qualified analysts will map 
WBS elements differently. This leads to some degree of subjectivity, which varies from analyst to 
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analyst. Second, for any reasonably sized data set, this approach requires a phenomenal amount of 
time. In summary, manual labeling is simple and easy to understand, but may be inconsistent and highly 
time consuming.  

The second option is a deterministic approach that attempts to map WBS elements according to some 
prescribed set of rules. For example, using a list of keywords to search within the WBS elements to 
perform the mapping. This approach is best suited for (1) portfolios that contain similar enough projects 
so that the keyword search provides adequate coverage, and (2) when the goal of the standardization is 
a fairly high-level WBS. The deterministic nature of this approach allows for expediency but at the 
expense of flexibility. Even small changes in word order or other semantic nuances could cause error in 
the results and there is no way to identify when a miss occurred without further manual intervention. To 
put it simply, there are no measures of performance for missed opportunities. Mapping data to a WBS is 
a single-label problem but using a keyword search can turn it into a multi-label problem when more than 
one label is returned for the same WBS element. Therefore, this type of algorithm requires additional 
rules to address conflicting results and prioritize certain labels over others. The deterministic nature of 
these decision rules means that there is little opportunity for nuanced interpretations of text and, once 
again, suffers from the same limitations when changes in word order may lead to missing results. 

The third option is a predictive approach such as the one discussed in detail in this paper. There is a 
heavy research and development component up front, but once developed, it can be updated and 
maintained with new data at a far lesser effort. This option is able to handle large, complex datasets that 
would be cost-prohibitive to label by hand. Further, it provides a consistent approach with measurable 
performance. For example, we may not know how many errors a manually mapped dataset has – it is 
rarely possible to eliminate all human error. But we can estimate the error that our algorithm may have. 

These automated methods – regardless of the level of sophistication – do have a few drawbacks as well. 
First, the methodologies are less clear to most analysts, even in the simple settings, and especially in the 
complex ones. They may be considered “black box” to some, even though the mathematics are fairly 
well understood. Second, the methodologies will have error. Much in the same way that self-driving cars 
may ultimately prove safer than human-driven ones, the individual tends to believe that they are less 
prone to error than the general population. As such, there is a tendency for an analyst to trust their 
manual mapping (even if there is human error) but distrust the automation – especially if developed by 
someone else. In summary, automated labeling is more complex to implement and understand, but is 
highly consistent and substantially more time/cost effective than a manual approach. 

The third option is one that is very common to use during the development and refinement of 
automation. Self-driving features are not yet in consumer vehicles, but semi-automated driving features 
such as smart cruise controls that can break, accelerate, and change lanes are becoming more accepted 
by consumers. A semi-automated methodology includes an “analyst-in-the-loop” step that verifies and 
cleans up errors in the automation. There are several possibilities here. For one, the automated models 
can flag WBS records that were mapped with a low degree of confidence. As another option, 
information from the training process may be used to notify analysts of historically “tricky” data for the 
model to correctly classify. Either way, information is provided such that a manual step is layered in to 
check and clean the results before being made final. As an added bonus, this cleanup step can be cycled 
back into the model training data, further improving the performance of future iterations. This approach 
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blends the best of both worlds. Analysts have a high degree of confidence in the mappings, conducted a 
in consistent, time effective, and repeatable way. 

Many models are narrow in their applicability or are best applied to a specific niche. However, this 
model presents multiple avenues for implementation that could improve some of the most foundational 
aspects of cost estimating and project management. Our goal in presenting this work to the ICEAA 
community is threefold: (1) to share the know-how, lessons learned, and framework of this model so 
that it may be adapted to other data sources, (2) to break the chain of perpetual development of narrow 
use-case models, and (3) to minimize duplication of effort within the industry. This model represents a 
working demonstration that could hypothetically be applied to any hierarchically structured dataset, not 
just work breakdown structures. 

In an era where organizations are increasingly interested in more efficiently understanding their data, 
this model presents an excellent leverage opportunity. With the necessary approval, the model authors 
will consider publishing the model (e.g., on GitHub or other open-source platforms) which would allow 
other agencies to utilize it in its “as is” state. The end user would still be required to provide a labelled 
sample dataset for training and tuning purposes unique to their intended use-case.  

The cost estimating and analysis community continues to receive more and more data each year. As 
volumes of information grow, the methodologies, techniques, and toolsets must grow with it. Manual 
processing of data, including WBS’s, is becoming increasingly less viable at scale. The community must 
adapt methodologies as presented in this paper, or risk being left being as others encroach into the 
space, bringing innovation and technology into an area that is lacking. Hierarchical classification 
performed by utilizing NLP and machine learning is an emerging field, even outside of our community. 
This work is ongoing and continues to evolve with the cutting-edge research on the topic area. The 
authors look forward to continuing be on the forefront of this, sharing results with both the ICEAA 
community and the greater machine learning communities at large. 
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APPENDIX B: ADDITIONAL TABLES 
Table B1: Stemming does not significantly improve performance. 

Model Combination Average hF 
Not Stemmed Stemmed 

CC 0.5831385 0.583040611 
decision tree 0.508006333 0.492458667 
logistic regression 0.655017333 0.656744667 
multinomial naive Bayes 0.577355333 0.575243667 
random forest 0.549813333 0.549678 
stochastic gradient descent 0.604067333 0.619944333 
support vector classifier 0.604571333 0.604174333 

LCPL 0.5629785 0.561043 
decision tree 0.479327 0.469834667 
logistic regression 0.646801333 0.648961667 
multinomial naive Bayes 0.587387 0.586214 
random forest 0.538398667 0.539161667 
stochastic gradient descent -- -- 
support vector classifier -- -- 

LCPN 0.56399575 0.568464 
decision tree 0.465401667 0.467151667 
logistic regression 0.636974667 0.637989667 
multinomial naive Bayes 0.591456667 0.589690667 
random forest 0.56215 0.579024 
stochastic gradient descent #DIV/0! #DIV/0! 
support vector classifier #DIV/0! #DIV/0! 

LCPPN 0.589039778 0.589948111 
decision tree 0.492047 0.494807 
logistic regression 0.645643667 0.647830333 
multinomial naive Bayes 0.587387 0.586214 
random forest 0.545501 0.555630333 
stochastic gradient descent 0.642793333 0.63418 
support vector classifier 0.620866667 0.621027 

MO 0.598516333 0.600608611 
decision tree 0.495093 0.491640667 
logistic regression 0.657108333 0.660222667 
multinomial naive Bayes 0.596147 0.595580333 
random forest 0.563184 0.566582667 
stochastic gradient descent 0.635711667 0.644705333 
support vector classifier 0.643854 0.64492 

Grand Total 0.582002487 0.583062 
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Table B2: Classification types differ by number of targets, target cardinality, and result.4 
Classifier Targets 

Target 
Cardinality 

Labels Inputs Outputs Result 

Binary 1 2 
Construction 

1. Yes 
2. No 

Text 
Site Prep 

PM Support 
Procure GB 
Conceptual 

Design 
 

Construction 
Yes 
No 
No 
No 

  

Multiclass 1 >2 

Level 2 
1. Pre CD-2 
2. Construction 
3. PM 
4. SD&E 
5. TTO 

Equipment 

Text 
Site Prep 

PM Support 
Procure GB 
Conceptual 

Design 
 

Level 2 
Construction 

PM 
Equipment 

Pre CD-2 
 

 

Multilabel >1 2 

 
Site Work 

1. Yes 
2. No 

Equipment 
1. Yes 
2. No 

Text 
Site Prep 

PM Support 
Procure GB 
Conceptual 

Design 
 

Construction Equipment 
Yes No 
No No 
No No 
No Yes 

 

 

Multiclass-
Multioutput 

>1 >2 

Level 2 
1. Pre CD-2 
2. Construction 
3. PM 
4. SD&E 
5. TTO 
6. Equipment 

Text 
Site Prep 

PM Support 
Procure GB 
Conceptual 

Design 
 

Level 2 Equipment 
Construction -- 

PM -- 
Equipment Procurement 

Pre CD-2 -- 
ss 

 

 
4 Table B2 adapted from Scikit-learn’s API (Reference 18). 
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Site Prep
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Procure GB
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l 2

Construction Site Prep

PM PM Support
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Equipment Procure GB
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Equipment 
1. Procurement 
2. Installation 

& 
Integration 

 

 
 

  

Eq
ui

pm
en

t

Procurement Procure GB

Installation & 
Integration
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Table B3: A MIMO classifier is a classifier that uses more than one input to classify data into more than one output.5 
Classifier Targets 

Target 
Cardinality 

Labels Input Output  

MIMO >1 >1 

Level 2 
1. Pre CD-2 
2. Construction 
3. PM 
4. SD&E 
5. TTO 
6. Equipment 

Level 3 
1. Pre CD-1 
2. CD-1 
3. Site Work 
4. Facility 
5. Procurement 
6. Installation & 

Integration 
7. Project Management 
8. Conceptual Design 
9. Start-up 

Text Project Type 
Site Prep NC 
PM Support NC 
Procure GB Equip 
Conceptual Design Equip 

 

Level 2 Level 3 
Construction Site Work 

PM Project Management 
Equipment Procurement 

Pre CD-2 Conceptual Design 
 

 

 

 

  

 
5 Table B3 adapted from Scikit-learn’s API (Reference 24). 
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Table B4: Hierarchical classification classifies data when the multiple output targets are hierarchically related.6 
Classifier Targets 

Target 
Cardinality 

Labels Input Output Result 

Hierarchical 
Classifier 

>1 >1 

 
Level 2 

1. Pre CD-2 
2. Construction 
3. PM 
4. SD&E 
5. TTO 
6. Equipment 

Level 3 
1. Pre CD-1 
2. CD-1 
3. Site Work 
4. Facility 
5. Procurement 
6. Installation & 

Integration 
7. Project 

Management 
8. Conceptual 

Design 
9. Start-up 

Text 
Site Prep 

PM Support 
Procure GB 

Conceptual Design 
 

Level 2 Level 3 
Construction Site Work 

PM Project Management 
Equipment Procurement 
Pre CD-2 Conceptual Design 

 

 
 
 

 

 

 

 

 

  

 
6 Table B4 adapted from Scikit-learn’s API (Reference 24). 

W
BS

Pre CD-2
Pre CD-1

CD-1

Construction
Facility

Site Work Site Prep

Program Mgt Project Mgt PM Support

TTO Start-up

Equipment
Procurement Procure GB

Installation & 
Integration
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APPENDIX C: NNSA USE CASES 
C.1. Immediate Benefit – Cost Estimating and Project Benchmarking 
The most obvious and easiest application of this model is for cost estimating and project benchmarking. 
Cost estimates often rely on historic data from analogous projects to inform the anticipated cost of a 
new project. Analogies are typically applied as proportional factors to account for differences in total 
cost. For example, an analyst tasked to estimate the cost to design a new particle accelerator could 
calculate the ratio of the total design cost to the total construction cost for previously constructed 
particle accelerators. Analogies can also be in real dollar amounts – “the gloveboxes purchased for 
Projects X, Y, and Z are analogous to the gloveboxes needed in Project A.” This same logic applies in 
project benchmarking, where an analyst will seek to validate an existing cost estimate, especially ones 
based on subject matter expert (SME) judgment, with historic costs to determine the relative accuracy 
of the existing estimate.  

Previously, to accomplish any of this foundational estimating work, an analyst would have to research 
the database of historic projects, determine which ones were most analogous, find the relevant cost 
data, and manually categorize it to the best of their knowledge. Depending on the experience level of 
the analyst and knowledge of historic projects, this process can be extremely labor-intensive (as the 
authors of this paper know first-hand), especially when the data is ambiguous and open to 
interpretation. The results of this work greatly reduce this arduous process down to selecting the 
relevant analogous projects and verifying the model results via post-processing. This allows analysts to 
focus more time on problem solving and addressing stakeholder needs vs. cleaning and categorizing 
data. In some cases, this could also result in reducing the amount of time needed to complete a cost 
estimate, which allows for more efficient project execution and use of taxpayer funds.  

In short, these results provide cleaned and categorized historic cost data from every NNSA capital asset 
project in PARS, allowing a cost estimator to immediately use them in their work.  

C.2. Near Term – Parametric Modeling 
Analogies are often the most accessible solution for estimating when a large body of historic data is not 
readily available, but since these results provide an organized database of every PARS project’s EV data, 
parametric modeling becomes much more practical. While it was not impossible prior to this model, it 
would have been a prohibitively expensive time and effort commitment to fund a group of analysts to 
manually categorize enough of the projects to consider a parametric solution. With the scope of work 
that PA&E, CEPE, and DOE-PM are responsible for, relative to the number of analysts and funding 
available to them, this undertaking was never seriously considered. Now with the data readily available, 
analysts just have to quickly verify the model’s results and conduct any needed post-processing, which 
allows them to focus more effort developing cost estimating relationships between the various WBS 
buckets. This work allows longstanding questions, such as the correlation between project type (nuclear 
vs. non-nuclear, experimental vs. production, etc.) and project management, for example, to be 
explored and answered, which then directly feeds into providing more accurate, efficient, and 
defensible estimates.  
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C.3. Medium Term – PARS Integration 
The immediate and near-term use cases are listed as such since they are only limited by the ability of 
analysts to synthesize and interpret the results provided by the model. The remaining use cases require 
inter-organizational discussions and thus are expected to take longer to implement, be more 
aspirational, or both.  

Arguably the simplest of these use cases is to have the model directly integrate into the PARS database. 
DOE PM is already considering asking EV managers to manually reclassify data into a high level standard 
WBS, so this model represents a time-saving solution to that problem. Since the data that feeds into the 
model is PARS EV data, it makes sense to simply integrate the model with PARS. This would mean that 
every time a project EV manager uploads new data to PARS, the model automatically categorizes it, 
offering PARS users instant access to cleaned data in a standard format. Without PARS integration, the 
model would have to pull the PARS EV data and run in a separate platform, and likely be more difficult 
to automate. This would also force interested analysts to have to request access to another platform 
and increase the burden of spreading awareness of the model to the NNSA community. Integrating the 
model with the PARS database both improves the operational efficiency of the model and enhances the 
capability offerings of PARS. Considering that PARS is looking to add more monthly users, this use case is 
highly feasible if all necessary stakeholders agree on the value of the model.  

C.4. Longer Term – Standard WBS Format 
This is possibly the most impactful use case, but also the most difficult to implement. As discussed in the 
assessment of the status quo, the impetus for creating this model was lack of a standard WBS format 
and accompanying WBS dictionary. Because the various M&O sites track EV data according to their own 
WBS’s and this data is then interpreted in different ways by various NNSA offices, there was a need to 
create a complex NLP model to synthesize the huge body of incongruous data into a standard format to 
facilitate accurate cost estimates and informed project management, tracking, and benchmarking. Now 
that this model has created its own WBS format and dictionary, the challenge becomes getting 
stakeholders to agree to use it. This challenge can be addressed in several ways.  

One option, the path of least potential resistance and effort, involves the model becoming an 
intermediary for use in reconciling multiple WBS formats. For example, if M&Os want to continue to 
produce unique WBS’s for each project, the model enables a side-by-side comparison of the WBS’s. 
Then, the M&Os could be made aware that their EV data is being reformatted before being analyzed, 
and they may see the value in eliminating that step and formatting their WBS’s in the same format as 
the model’s format. In the authors’ opinion, the ideal scenario for the NNSA would be that every future 
project uses a standard WBS, thereby negating the need for the model. 

A second option, the path of greatest potential resistance and effort, entails updating the CAEF created 
by CEAG The CEAG Council created the CAEF as an attempt create a standard WBS format with M&O 
buy-in, and the CAEF WBS format was the original WBS framework for this model. However, during 
model development the analysts applying the CAEF WBS to historical data identified areas for 
improvement. This spurred the creation of the WBS and dictionary utilized for this model. Updating the 
CAEF would involve presenting this paper and its findings to the CEAG Council to discuss and approve 
these changes. Even if there is less interest in updating the CAEF, or if the revisions do not align with the 
structure presented here, the goal is for all stakeholders to agree on a standard and exhaustive WBS, 
regardless of the structure’s similarity to the NLP model. Once a WBS is agreed upon, the model can be 
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updated to categorize that data into that WBS. Despite the potential value of this option, there sheer 
number of stakeholders whose buy-in would be required could mean this option is more aspirational 
than feasible. 

A third option that is similar in concept to and likely to have a higher probability of success than the 
second option encompasses collaborating with the three main NNSA offices that conduct cost estimates 
with the PARS data – PA&E, CEPE, and DOE-PM. To some degree, all three offices have conducted 
manual categorization of the PARS data, each with different results and assumptions. If it is not possible 
to persuade the M&Os to adopt a standard format, it would still be a huge efficiency improvement if the 
cost estimating offices agreed on how to best format and define WBS elements that underlie cost 
estimates. On top of that, it would be even more beneficial if the offices aligned their assumptions 
about the historic cost data, since having the same WBS format only goes so far if there are different 
interpretations of how existing data should be categorized into that format. For example, should 
“construction management” be an indirect Project Management cost or a direct Construction cost? Is 
“30% Design” part of Conceptual Design or Preliminary Design? As stated previously, there are a myriad 
of words and terms that can be and are defined differently between offices, projects, and contexts, 
creating differing assumptions and definitions. 

Each office is tasked with conducting cost estimates independent of the other offices, but  agreement on 
foundational data assumptions and a WBS does not infringe upon that independence. Rather, it means 
that all cost estimating organizations have access to the same historical data and there is agreement 
that the data is authoritative.  This necessarily means that discussions regarding the differences 
between organizations’ cost estimates can focus on what’s important, including but not limited to 
differences in estimating assumptions, cost estimating methodologies, consideration of uncertainty/risk, 
etc.  The benefit is all estimating organizations and stakeholders, decisionmakers included, having a 
clear understanding of differences and solid basis for determining the most realistic cost estimate and 
budget. With this path forward, it is again more important to agree on a WBS and definitions vs. 
advocating for the structure presented in this paper. Being able to run a cost estimating office agreed-
upon format through the model would strengthen the NNSA cost estimating community, present 
leadership with more accessible and consistent results, and maintain the independent strengths of each 
cost estimating office. 
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APPENDIX D: STANDARD WORK BREAKDOWN STRUCTURE 
WBS Title Level 
0 Project 1 
1 Pre CD-0, CD-0, and CD-1 2 
1.1 Pre CD-0  3 
1.1.1 Pre CD-0 Design 4 

1.1.2 Miscellaneous Pre-CD-0 4 

1.2 CD-0/Pre-Conceptual Design 3 
1.2.1 CD-0 Estimate 4 

1.2.2 Program Requirements Development 4 

1.2.3 ICE/ICR During CD-0 Design 4 

1.2.4 Pre-Conceptual Design 4 

1.2.5 Miscellaneous CD-0/Pre-Conceptual Design 4 

1.3 CD-1/Conceptual Design 3 
1.3.1 Analysis of Alternatives (AoA) 4 

1.3.2 ICE/ICR during CD-1 Design / IPR 4 

1.3.3 Conceptual Design 4 

1.3.4 Miscellaneous CD-1/Conceptual Design 4 

1.4 Miscellaneous Pre-CD-0, CD-0 - CD-1 Activities 3 
2 Construction 2 
2.1 Site Work 3 
2.1.1 Information Technology 4 

2.1.2 Site Preparation 4 
             
2.1.2.1 Site Clearing 5 

2.1.2.2 Site Demolition & Relocations 5 

2.1.2.3 Site Earthwork 5 

2.1.2.4 Temporary Construction 5 

2.1.2.5 Miscellaneous Site Preparation 5 

2.1.2.6 General Conditions 5 
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2.1.3 Site Improvement 4 

2.1.3.1 Roadways & Parking Lots 5 

2.1.3.2 Pedestrian Paving 5 

2.1.3.3 Site Development 5 

2.1.3.4 Landscaping 5 

2.1.3.5 Tunnel 5 

2.1.3.6 Warehouse/Locker Room/Storage 5 

2.1.3.7 Miscellaneous Site Improvement 5 

2.1.4 Site Utilities 4 

2.1.4.1 Site Civil/Mechanical Utilities 5 

2.1.4.1.1 Domestic Water & Fire Protection Water 6 

2.1.4.1.2 Sanitary Sewer 6 

2.1.4.1.3 Storm Sewer 6 

2.1.4.1.4 Natural Gas Supply 6 

2.1.4.1.5 Miscellaneous Site Civil / Mechanical Utilities 6 

2.1.4.2 Site Electrical Utilities 5 

2.1.4.2.1 Electrical Service/Distribution 6 

2.1.4.2.2 Site Lighting 6 

2.1.4.2.3 Site Communications & Security 6 

2.1.4.2.4 Site Information Technology   

2.1.4.2.5 Miscellaneous Site Electrical Utilities 6 

2.1.4.3 Miscellaneous Site Utilities 5 

2.1.5 Miscellaneous Site Work 4 

2.2 Facility  3 
2.2.1 Facility Structure 4 

2.2.1.1 New Construction 5 

2.2.1.1.1 Foundation & Substructure 6 

2.2.1.1.2 Shell (Superstructure) 6 

2.2.1.1.2.1 Roofing   

2.2.1.1.2.2 Miscellaneous Shell  
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2.2.1.1.3 Interiors 6 

2.2.1.1.3.1 Doors 7 

2.2.1.1.3.2 Stairwells 7 

2.2.1.1.3.3 Miscellaneous Interiors 7 

2.2.1.1.4 Miscellaneous New Construction Structure 6 

2.2.2.2 Refurbishment 5 

2.2.2.2.1 Foundation & Substructure 6 

2.2.2.2.2 Shell (Superstructure) 6 

2.2.2.2.2.1 Roofing   

2.2.2.2.2.2 Miscellaneous Shell  

2.2.2.2.3 Interiors 6 

2.2.2.2.3.1 Doors 7 

2.2.2.2.3.2 Stairwells 7 

2.2.2.2.3.3 Miscellaneous Interiors 7 

2.2.2.2.4 Miscellaneous Refurbished Structure 6 

2.2.2.3 Miscellaneous Facility Structure 5 

2.2.2 Facility Utilities 4 

2.2.2.1 New Construction 5 

2.2.2.1.1 Conveying System 6 

2.2.2.1.2 Plumbing System 6 

2.2.2.1.2.1 Plumbing Fixtures 7 

2.2.2.1.2.2 Domestic Water Distribution 7 

2.2.2.1.2.3 Sanitary Waste 7 

2.2.2.1.2.4 Rain Water Drainage 7 

2.2.2.1.2.5 Miscellaneous Plumbing System 7 

2.2.2.1.3 
Heating Ventilation and Air Conditioning (HVAC) 
System/Mechanical System 6 

2.2.2.1.3.1 Heating 7 

2.2.2.1.3.2 Ventilation 7 

2.2.2.1.3.3 Air Conditioning 7 
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2.2.2.1.3.4 Miscellaneous HVAC Systems and Mechanical System 7 

2.2.2.1.4 Fire Protection 6 

2.2.2.1.4.1 Water and gas-based systems 7 

2.2.2.1.4.2 Alarm systems 7 

2.2.2.1.4.3 Structural-based systems 7 

2.2.2.1.4.4 Miscellaneous Fire Protection Systems 7 

2.2.2.1.5 Electrical System 6 

2.2.2.1.5.1 Electrical Service and Distribution 7 

2.2.2.1.5.2 Lighting and Branch Wiring 7 

2.2.2.1.5.3 Communications and Security 7 

2.2.2.1.5.4 Information Technology 7 

2.2.2.1.5.5 Miscellaneous Electrical Systems 7 

2.2.2.1.6 Miscellaneous New Construction Utilities 6 

2.2.2.2 Refurbishment 5 

2.2.2.2.1 Conveying System 6 

2.2.2.2.2 Plumbing System 6 

2.2.2.2.2.1 Plumbing Fixtures 7 

2.2.2.2.2.2 Domestic Water Distribution 7 

2.2.2.2.2.3 Sanitary Waste 7 

2.2.2.2.2.4 Rain Water Drainage 7 

2.2.2.2.2.5 Miscellaneous Plumbing 7 

2.2.2.2.3 
Heating Ventilation and Air Conditioning (HVAC)    
System/Mechanical System 6 

2.2.2.2.3.1 Heating 7 

2.2.2.2.3.2 Ventilation 7 

2.2.2.2.3.3 Air Conditioning 7 

2.2.2.2.3.4 Miscellaneous HVAC Systems and Mechanical System 7 

2.2.2.2.4 Fire Protection 6 

2.2.2.2.4.1 Water and gas-based systems 7 

2.2.2.2.4.2 Alarm systems 7 
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2.2.2.2.4.3 Structural-based systems 7 

2.2.2.2.4.4 Miscellaneous Fire Protection Systems 7 

2.2.2.2.5 Electrical System 6 

2.2.2.2.5.1 Electrical Service and Distribution 7 

2.2.2.2.5.2 Lighting and Branch Wiring 7 

2.2.2.2.5.3 Communications and Security 7 

2.2.2.2.5.4 Information Technology 7 

2.2.2.2.5.5 Miscellaneous Electrical Systems 7 

2.2.2.2.6 Miscellaneous Refurbishment Utilities 6 

2.2.3 Support Facilities  4 

2.2.4 Special Construction 4 

2.2.5 Miscellaneous Facility Construction 4 

2.3 Construction Management 3 
2.3.1 Site Work 4 

2.3.2 Facility 4 

2.3.2.1 Facility Structure 5 

2.3.2.2 Facility Utilities 5 

2.3.3 Equipment 4 

2.3.4 Decommissioning/Deactivation, Demolition, and Disposal 4 

2.3.5 Transition to Operations 4 

2.3.6 Miscellaneous Construction Management   

3 Systems Design and Engineering 2 
3.1 System Definition and Design 3 
3.1.1 Site Work 4 

3.1.2 Facility Construction 4 

3.1.2.1 Facility Structure 5 

3.1.2.2 Facility Utilities 5 

3.1.3 Decommissioning/Deactivation, Demolition, and Disposal 4 

3.1.4 Equipment 4 

3.1.5 Transition to Operations 4 
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3.1.6 Miscellaneous System Definition and Design 4 

3.2 Requirements Management 3 
3.2.1 Site Work 4 

3.2.2 Facility Construction 4 

3.2.2.1 Facility Structure 5 

3.2.2.2 Facility Utilities 5 

3.2.3 Decommissioning/Deactivation, Demolition, and Disposal 4 

3.2.4 Equipment 4 

3.2.5 Transition to Operations 4 

3.2.6 Miscellaneous Requirements Management 4 

3.3 Risk Management 3 
3.3.1 Site Work 4 

3.3.2 Facility Construction 4 

3.3.2.1 Facility Structure 5 

3.3.2.2 Facility Utilities 5 

3.3.3 Decommissioning/Deactivation, Demolition, and Disposal 4 

3.3.4 Equipment 4 

3.3.5 Transition to Operations 4 

3.3.6 Miscellaneous Risk Management 4 

3.4 Configuration Management 3 
3.4.1 Site Work 4 

3.4.2 Facility Construction 4 

3.4.2.1 Facility Structure 5 

3.4.2.2 Facility Utilities 5 

3.4.3 Decommissioning/Deactivation, Demolition, and Disposal 4 

3.4.4 Equipment 4 

3.4.5 Transition to Operations 4 

3.4.6 Miscellaneous Configuration Management 4 

3.5 
Specialty Engineering and Analysis / Design 
Management / Engineering Management 3 
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3.5.1 Site Work 4 

3.5.2 Facility Construction 4 

3.5.2.1 Facility Structure 5 

3.5.2.2 Facility Utilities 5 

3.5.3 Decommissioning/Deactivation, Demolition, and Disposal 4 

3.5.4 Equipment 4 

3.5.5 Transition to Operations 4 

3.5.6 
Miscellaneous Specialty Engineering & Analysis/Design 
Management/Engineering Management 4 

3.6 
Title I/CD-2/Preliminary Design and Title II/CD-3 
Final Design 3 

3.6.1 Title I / CD-2 Preliminary Design 4 

3.6.1.1 Site Work 5 

3.6.1.2 Facility Construction 5 

3.6.1.2.1 Facility Structure 6 

3.6.1.2.2 Facility Utilities 6 

3.6.1.3 Decommissioning/Deactivation, Demolition, and Disposal 5 

3.6.1.4 Equipment 5 

3.6.1.5 Transition to Operations 5 

3.6.1.6 Miscellaneous Title I / CD-2 Preliminary Design 5 

3.6.2 Title II / CD-3 Final Design 4 

3.6.2.1 Site Work 5 

3.6.2.2 Facility Construction 5 

3.6.2.2.1 Facility Structure 6 

3.6.2.2.2 Facility Utilities 6 

3.6.2.3 Decommissioning/Deactivation, Demolition, and Disposal 5 

3.6.2.4 Equipment 5 

3.6.2.5 Transition to Operations 5 

3.6.2.6 Miscellaneous Title II / CD-3 Final Design 5 

3.6.3 
Miscellaneous Title I/CD-2/Preliminary Design and Title II/CD-3 Final 
Design 4 
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3.6.3.1 Site Work 5 

3.6.3.2 Facility Construction 5 

3.6.3.2.1 Facility Structure 6 

3.6.3.2.2 Facility Utilities 6 

3.6.3.3 Decommissioning/Deactivation, Demolition, and Disposal 5 

3.6.3.4 Equipment 5 

3.6.3.5 Transition to Operations 5 

3.6.3.6 
Other Miscellaneous Title I/CD-2/Preliminary Design and Title II/CD-3 
Final Design 5 

3.7 Title III Design / Design Closeout 3 
3.7.1 Site Work 4 

3.7.2 Facility Construction 4 

3.7.2.1 Facility Structure 5 

3.7.2.2 Facility Utilities 5 

3.7.3 Decommissioning/Deactivation, Demolition, and Disposal 4 

3.7.4 Equipment 4 

3.7.5 Transition to Operations 4 

3.7.6 Miscellaneous Title III Design 4 

3.8 Safety Basis 3 
3.8.1 Site Work 4 

3.8.2 Facility Construction 4 

3.8.2.1 Facility Structure 5 

3.8.2.2 Facility Utilities 5 

3.8.3 Decommissioning/Deactivation, Demolition, and Disposal 4 

3.8.4 Equipment 4 

3.8.5 Transition to Operations 4 

3.8.6 Miscellaneous Safety Basis 4 

3.9 Miscellaneous Systems Design and Engineering 3 
4 Program Management 2 

4.1 
Project Management, Project Controls, 

Operations 3 
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4.1.1 Site Work 4 

4.1.2 Facility Construction 4 

4.1.2.1 Facility Structure 5 

4.1.2.2 Facility Utilities 5 

4.1.3 Systems Design and Engineering 4 

4.1.4 Decommissioning/Deactivation, Demolition, and Disposal 4 

4.1.5 Equipment 4 

4.1.6 Transition to Operations 4 

4.1.7 Miscellaneous Project Management, Project Controls, Operations 4 

4.2 Information and Communication Management 3 
4.2.1 Site Work 4 

4.2.2 Facility Construction 4 

4.2.2.1 Facility Structure 5 

4.2.2.2 Facility Utilities 5 

4.2.3 Systems Design and Engineering 4 

4.2.4 Decommissioning/Deactivation, Demolition, and Disposal 4 

4.2.5 Equipment 4 

4.2.6 Transition to Operations 4 

4.2.7 Miscellaneous Information and Communication Management 4 

4.3 Training and Travel 3 
4.3.1 Site Work 4 

4.3.2 Facility Construction 4 

4.3.2.1 Facility Structure 5 

4.3.2.2 Facility Utilities 5 

4.3.3 Systems Design and Engineering 4 

4.3.4 Decommissioning/Deactivation, Demolition, and Disposal 4 

4.3.5 Equipment 4 

4.3.6 Transition to Operations 4 

4.3.7 Miscellaneous Training and Travel 4 

4.4 Office and Administrative Support (O&AS) 3 
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4.4.1 Site Work 4 

4.4.2 Facility Construction 4 

4.4.2.1 Facility Structure 5 

4.4.2.2 Facility Utilities 5 

4.4.3 Systems Design and Engineering 4 

4.4.4 Decommissioning/Deactivation, Demolition, and Disposal 4 

4.4.5 Equipment 4 

4.4.6 Transition to Operations 4 

4.4.7 Miscellaneous O&AS 4 

4.5 
Environment, Safety, and Health /  
Quality Assurance (ES&H/QA) 3 

4.5.1 Site Work 4 

4.5.2 Facility Construction 4 

4.5.2.1 Facility Structure 5 

4.5.2.2 Facility Utilities 5 

4.5.3 Systems Design and Engineering 4 

4.5.4 Decommissioning/Deactivation, Demolition, and Disposal 4 

4.5.5 Equipment 4 

4.5.6 Transition to Operations 4 

4.5.7 Miscellaneous ES&H/QA 4 

4.6 Safety Basis 3 
4.6.1 Site Work 4 

4.6.2 Facility Construction 4 

4.6.2.1 Facility Structure 5 

4.6.2.2 Facility Utilities 5 

4.6.3 Systems Design and Engineering 4 

4.6.4 Decommissioning/Deactivation, Demolition, and Disposal 4 

4.6.5 Equipment 4 

4.6.6 Transition to Operations 4 

4.6.7 Miscellaneous Safety Basis 4 
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4.7 Material and Supply 3 
4.7.1 Site Work 4 

4.7.2 Facility Construction 4 

4.7.2.1 Facility Structure 5 

4.7.2.2 Facility Utilities 5 

4.7.3 Systems Design and Engineering 4 

4.7.4 Decommissioning/Deactivation, Demolition, and Disposal 4 

4.7.5 Equipment 4 

4.7.6 Transition to Operations 4 

4.7.7 Miscellaneous Material and Supply 4 

4.8 General Requirements 3 
4.8.1 Site Work 4 

4.8.2 Facility Construction 4 

4.8.2.1 Facility Structure 5 

4.8.2.2 Facility Utilities 5 

4.8.3 Systems Design and Engineering 4 

4.8.4 Deactivation and Decommissioning 4 

4.8.5 Equipment 4 

4.8.6 Transition to Operations 4 

4.8.7 Miscellaneous General Requirements 4 

4.9 Miscellaneous Program Management 3 
4.9.1 Site Work 4 

4.9.2 Facility Construction 4 

4.9.2.1 Facility Structure 5 

4.9.2.2 Facility Utilities 5 

4.9.3 Systems Design and Engineering 4 

4.9.4 Deactivation and Decommissioning 4 

4.9.5 Equipment 4 

4.9.6 Transition to Operations 4 

4.9.7 Other Miscellaneous Program Management 4 
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5 Equipment 2 
5.1 Procurement 3 
5.1.1 Furniture, Fixtures & Office Equipment 4 

5.1.2 Process Equipment 4 

5.1.3 Support Equipment 4 

5.1.4 Miscellaneous Procurement 4 

5.2 Installation and Integration 3 
5.2.1 Furniture, Fixtures & Office Equipment 4 

5.2.1.1 Installation 5 

5.2.1.2 Commissioning 5 

5.2.1.3 Construction Materials  5 

5.2.1.4 Miscellaneous Furniture, Fixtures & Office Equipment 5 

5.2.2 Process Equipment 4 

5.2.2.1 Installation 5 

5.2.2.1.1 Equipment 6 

5.2.2.1.2 Utilities 6 

5.2.2.1.2.1 Conveying System 7 

5.2.2.1.2.2 Plumbing System 7 

5.2.2.1.2.2.1 Plumbing Fixtures 8 

5.2.2.1.2.2.2 Domestic Water Distribution 8 

5.2.2.1.2.2.3 Sanitary Waste 8 

5.2.2.1.2.2.4 Rain Water Drainage 8 

5.2.2.1.2.2.5 Miscellaneous Plumbing System 8 

5.2.2.1.2.3 
Heating Ventilation and Air Conditioning (HVAC) 
System/Mechanical System 7 

5.2.2.1.2.3.1 Heating 8 

5.2.2.1.2.3.2 Ventilation 8 

5.2.2.1.2.3.3 Air Conditioning 8 

5.2.2.1.2.3.4 Miscellaneous HVAC Systems and Mechanical System 8 

5.2.2.1.2.4 Fire Protection 7 
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5.2.2.1.2.4.1 Sprinklers 8 

5.2.2.1.2.4.2 Standpipes 8 

5.2.2.1.2.4.3 Fire Protection Specialties 8 

5.2.2.1.2.4.4 Miscellaneous Fire Protection System 8 

5.2.2.1.2.5 Electrical System 7 

5.2.2.1.2.5.1 Electrical Service and Distribution 8 

5.2.2.1.2.5.2 Lighting and Branch Wiring 8 

5.2.2.1.2.5.3 Communications and Security 8 

5.2.2.1.2.5.4 Miscellaneous Electrical System 8 

5.2.2.1.2.6 Miscellaneous Equipment Utilities 7 

5.2.2.2 Commissioning 5 

5.2.2.3 Construction Materials  5 

5.2.2.4 Miscellaneous Process Equipment 5 

5.2.3 Support Equipment 4 

5.2.3.1 Installation 5 

5.2.3.2 Commissioning 5 

5.2.3.3 Construction Materials  5 

5.2.3.4 Miscellaneous Support Equipment 5 

5.2.4 Miscellaneous Installation and Integration 4 

5.2.4.1 Installation 5 

5.2.4.2 Commissioning 5 

5.2.4.3 Construction Materials  5 

5.2.4.4 Other Miscellaneous Installation and Integration 5 

5.4 Miscellaneous Equipment 3 
5.4.1 Furniture, Fixtures & Office Equipment 4 

5.4.2 Process Equipment 4 

5.4.3 Support Equipment 4 

5.4.4 Other Miscellaneous Equipment 4 

6 Transition to Operations 2 
6.1 Management Self-Assessment (MSA) 3 
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6.1.1 Site Work 4 

6.1.1.1 MSA Planning 5 

6.1.1.2 MSA Execution 5 

6.1.1.3 Miscellaneous MSA Site Work 5 

6.1.2 Facility Construction 4 

6.1.2.1 MSA Planning 5 

6.1.2.2 MSA Execution 5 

6.1.2.3 Miscellaneous MSA Facility 5 

6.1.3 Equipment 4 

6.1.3.1 MSA Planning 5 

6.1.3.2 MSA Execution 5 

6.1.3.3 Miscellaneous MSA Equipment 5 

6.1.4 Other Miscellaneous MSA 4 

6.2 Start-up 3 
6.2.1 Facility Construction 4 

6.2.1.1 Facility Structure 5 

6.2.1.2 Facility Utilities 5 

6.2.2 Site Work 4 

6.2.3 Equipment 4 

6.2.4 Miscellaneous Start-up 4 

6.3 Miscellaneous Transition to Operations 3 
6.3.1 Facility Construction 4 

6.3.1.1 Facility Structure 5 

6.3.1.2 Facility Utilities 5 

6.3.2 Site Work 4 

6.3.3 Equipment 4 

6.3.4 Other Miscellaneous Transition to Operations 4 

7 
Decommissioning/Deactivation, Demolition, and    
Disposal 2 

7.1 Facility 3 
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7.1.1 Decommissioning/Deactivation 4 

7.1.2 Demolition 4 

7.1.3 Disposal 4 

7.1.4 
Miscellaneous Facility Decommissioning/Deactivation, Demolition, and 
Disposal 4 

7.2 Equipment 3 
7.2.1 Decommissioning/Deactivation 4 

7.2.2 Demolition 4 

7.2.3 Disposal 4 

7.2.4 
Miscellaneous Equipment Decommissioning/Deactivation, Demolition, 
and Disposal 4 

7.3 
Miscellaneous Decommissioning, Deactivation, 
Demolition, and Disposal 3 

7.3.1 Decommissioning/Deactivation 4 

7.3.2 Demolition 4 

7.3.3 Disposal 4 

7.3.4 
Other Miscellaneous Decommissioning, Deactivation, Demolition, and          
Disposal 4 

8 Management Reserve and Contingency 2 
8.1 Management Reserve and Contingency (M&O) 3 
8.2 Contingency (DOE) 3 
9 Escalation 2 
10 General 2 
10.1 Taxes, Permits, Insurance, and Bonds 3 
10.2 Fees and Contingencies 3 
10.3 Miscellaneous General 3 
11 DOE PM Support - Federal Oversight Cost 2 
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