Presented at the ICEAA 2023 Professional Development & Training Workshop - www.iceaaonline.com/sat2023

Developing a schedule model from a cost modeler's perspective

16-18 May 2023

Prepared for the 2023 ICEAA Workshop All data shown in this presentation is notional

> Benjamin Kwok Daniel Newkirk, PhD SSC/AC FMCR SSC/AC FMCR

DISTRIBUTION A: Approved for public release; distribution unlimited

SPACE

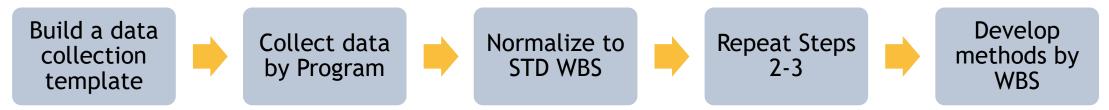
SYSTEMS COMMAND

Who we are

Space Systems Command Financial Management Cost & Earned Value Division

Cost estimators need to utilize and develop estimating methods for project components beyond cost. Schedule is one of those components. The Space Systems Command (SSC) Financial Management Cost organization, known for the development of the Unmanned Space Vehicle Cost Model (USCM), started development of a Schedule Model in 2018. This journey has yielded some exciting new methods, products, and processes. It has also brought challenges as we could not address schedule exactly as we would with cost.

Title & Theme


Developing a schedule model from a cost modeler's perspective

Presented at the ICEAA 2023 Professional Development & Training Workshop - www.iceaa.online.opm/sat2023

Common best practices from the cost community

- Use of data collection templates
- Utilizing techniques such as regressions for estimating
- Collecting and storing historical data
- Using the rigor of a WBS to organize data and methods
- Well established process (e.g. normalization, CER development, etc.)

Simplified process for developing a cost model

Presented at the ICEAA 2023 Professional Development & Training Workshop - www.iceaeonline.com/sat2023

Schedule report

Complexity

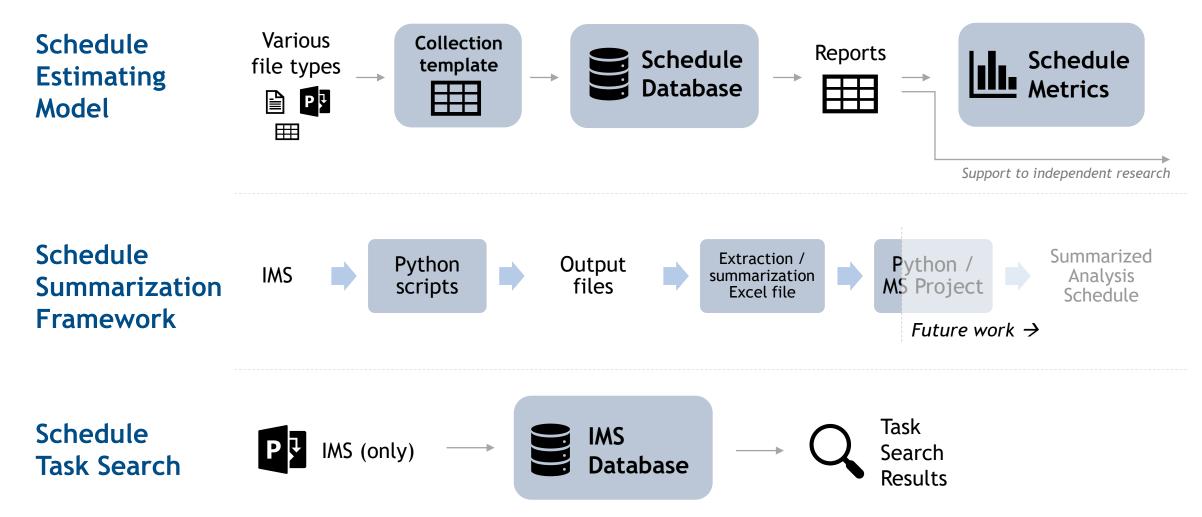
- A cost report, regardless of fidelity, always sums to a total -- schedules do not behave this way
- Schedule data has more dimensions and parameters associated with each date or duration which make each "data point" more complex than the equivalent "cost data point"

"Complete" schedules don't exist

- Schedules will often drop milestones after they have passed making collection more challenging whereas cost reports retain all elements from start to finish
- No single authoritative source exists for schedules

Section	Presentation	Paper
✓ Background	Х	X
Development Approach		Х
Model Overview	Х	Х
 Estimating Model Data Collection Data Storage Methods 	X	X
Schedule Summarization		Х
Task Search	Х	Х
Conclusion	Х	Х

• This presentation is a high level overview of the paper


Agenda

- Recommend reading the paper for a more comprehensive description
- Lessons Learned shared throughout both presentation and paper

Elements of the Model	End Users	Benefits						
Schedule Estimating Model	Cost estimators	 Data driven methods used to phase cost estimates Data driven uncertainty for schedule inputs/assumptions in cost estimates 						
	Schedulers	Data driven uncertainty bounds in SRAs						
Schedule Summarization Framework	Schedulers	• Consistent means of summarizing an IMS (for SRAs)						
Schedule Task Search	Cost estimators	 Faster data collection to develop Schedule Estimating Relationships 						
	Schedulers	 Access to historical analogous tasks similar to tasks on the critical path (for SRAs) 						

Objectives	•	Provide data driven approaches for addressing schedule analysis				
Objectives	•	Develop better processes for utilizing schedule data				

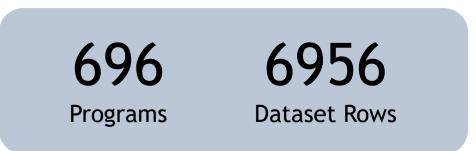
Presented at the ICEAA 2022 Professional Development & Training Workshop - www.iceaaonline.com/sat2023 Schedule Model Overview (cont.)

Presented at the ICEAA 2023 Professional Development Training Workshop- www.iceaconline.com/sat2023 **Collecting Schedule Data**

Presented at the ICEAA 2023 Professional Development & Training Workshop www.iceaaonline.com/sat2023 Headers

About

- Data collection template captures schedule and related meta data
- Status: Continually evolving


Lesson Learned: Data sourcing needs to be very rigorous Specificity in data collection is required

Field name	Example
type description	Launch
Value	1/1/2023
Original_name	Launch Date
Date Type (B = Baseline / F =	
Forecast / A = Actual)	F
Date Accuracy (P = Precise /	
E = Estimated)	Ε
	ABC IMS Schedule SV 1
Source document	Consolidated Jan 2022.pdf
Date of source	1/31/22
Notes	Day is estimated. Only month and year are known.

Data shown is notional

About

- Used to store data captured using the data collection template
- Provides reporting that corresponds with desired metrics

Data Maintenance

Data Maintenance:	
Progam <u>D</u> escription	Data entry for Program descriptions
Progam Viewer	View Meta Data
Bulk <u>I</u> mport	Import multiple records within an excel file
Data Clean <u>U</u> p	Review/validate multiple entries for milestones
Data Validation	Validate milestones that are not in correct order of occurance
Program <u>N</u> ame Maintenance	Validate Program Names
SC Programs	Designate programs as SSC programs
<u>M</u> issing Data	Generate report of missing meta data

Template:

Export <u>T</u>emplate

Allows user to export a template file for bulk impor

Screenshot

Presented at the ICEAA 2023 Professional Development & Training Workshop - www.iceaaonline.com/sat2023 Schedule Database Lessons Learned

Excel is insufficient for storage and reporting for this project

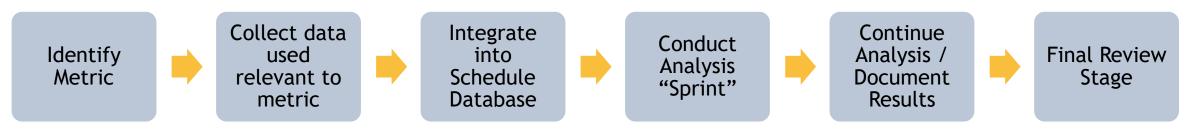
Reporting structure is hard to get right on the first try

- All prior schedule studies utilize Excel as data repository
- Data storage via Excel was not going to suffice given the functionality desired
- Don't spent too much time on the initial report structure and incorporate a feedback mechanism in the report development process

Data needs to be maintained

• The Schedule Database has built-in data validation functionality to help identify holes in the data and inconsistent entries

About


Developed 3 satellite system specific metrics with more in the queue

Motivation

Each method seeks to provide a data driven analysis where none existed

Metric	Domain	Status
Duration between Long Lead and Production award	Space	Developed
Launch growth from baseline to actual	Space	Developed
Time between sequential launches	Space	Developed
Time between software increments	Ground/SW	In progress
Time between software deliveries	Ground/SW	In progress
TVAC related metrics	Space	Idea phase
IA&T duration	Space	Idea phase
Time to ILC or time between ILC and launch	Space	Idea phase

Metric Development Process

Lessons Learned in Development & Training Workshop - www.iceaaonline.com/sat2023 Methods

Common Issues

- Milestones we needed to collect were not always included in our primary data source type (e.g. an IMS)
- Errors in source data

 Analysis sprints allowed us to go fast Enabled us to establish scope and go/no-go position early on

Other Challenges

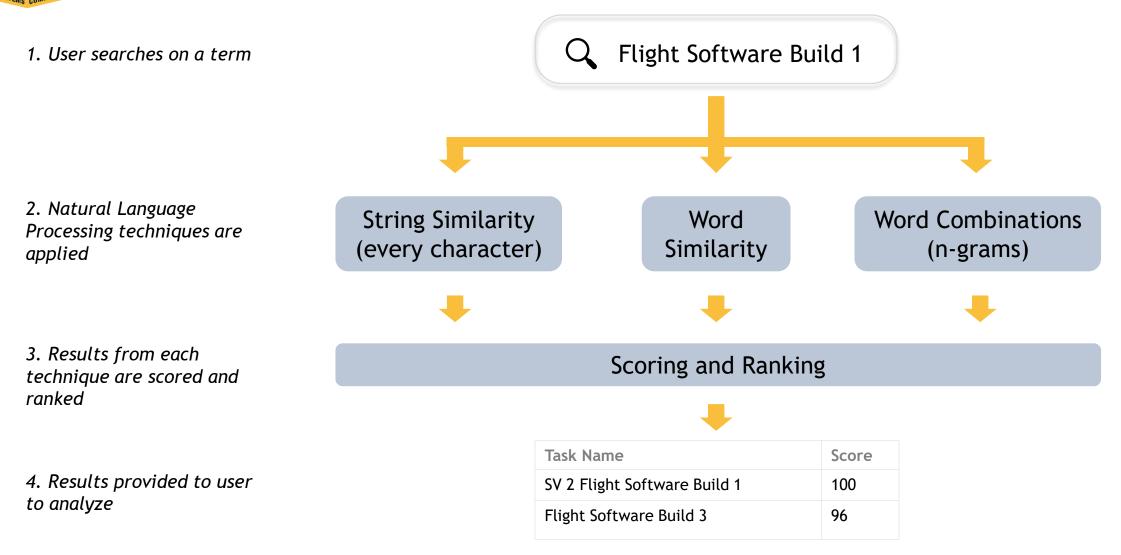
- Process necessitates modifications to templates and reporting
- Explanation of "why" (e.g. why did the schedule slip) was not part of scope but is a lingering element

A USCM IMS Database Upload Admin Logout

Oatabase Contents	Dataset Attributes Number of Programs: 9			arch ing of text, such a	is a task name de	escri	Databas iption, that you want to find a s			Paramet	ers		
Overview	Number of Schedules: 9	Flight Software Build 1										Search	
	Number of Tasks: 54315		Choose forecast/actuals/both tasks:			Choose a program:		Choose milestone or all tasks:			Score Threshold:		
	Tasks by Year:		Actual +	Forecast	~		All	~	All		~	0.7	
	20.000 15.000 - 10.000 - 5.000 - 0.000 - 2010 2015 2000 2005		sults _{gram}	Table Task Name				Start	Finish	Duration Percent Comple	Sched	lule	Score
	Tasks by Duration (Days):			1 Flight S	oftware Build 1								100
	50.000 -			Flight Software	Build 1								100
	40,000			, Flight	Software Build 1	1	Sear	ch P	esults				100
	25.000 -			Flight Software	Build 2		Jear		esuits				96
	10.000 -			Flight Software	Build 3								96
	0 5 800 1,000 1,800 2,000			Flight Software	Build 4								96
							Flight Box Build,						75

Purpose

Provide rank ordered schedule task name search results



Machine Learning

NLP Django

Presented at the ICEAA 2023 Professional Dereport & Training Workshop - www.iceaanline.com/sat2023 Engine In Search Engine

Search capabilities are necessary

- Search algorithms are not a commonplace solution in the cost estimating community
- The use of search is incredibly efficient when compared to the approach of first mapping tasks to a standard structure

Natural Language Processing can be computationally expensive • The computational complexity, memory requirements, and other considerations can require evaluating tradeoffs and alternate approaches to those originally developed

Summary

- Lots of (analytical) opportunities with schedule data and method development
- There are many best practices from the cost community that can be leveraged to perform schedule research
- Recommend reading the paper to learn more about SSC's Schedule Model

Way Forward

- Schedule Estimating Model: continued data collection and method development
- Task Search: Improve search algorithms and architecture; add more data
- Summarization: Optimize for faster results
- Socialize results with community

Acknowledgements

This work was funded by the Space Systems Command, contract GS00Q14OADS619. The authors thank Ms. Adriana Contreras and Mr. Raj Palejwala for their support of this effort.

- Space Systems Command (<u>https://www.ssc.spaceforce.mil/Connect-With-Us/Space-Systems-Command-Front-Door</u>)
 - USCM public website (<u>www.uscmonline.com</u>)
- Summarizing Schedules using Hidden Markov Models and Natural Language Processing (<u>https://www.nasa.gov/sites/default/files/atoms/files/07_machine_learning_for_schedule_summarization_nasa_final.pdf</u>)
- USCM11 ICEAA 2021 presentation (<u>https://www.iceaaonline.com/wp-content/uploads/2021/06/MLD07-ppt-Kwok-USCM11-%E2%80%93-an-Evolution-of-Techniques.pdf</u>)