

Foundational Cost Models

PAUL FRANKLIN

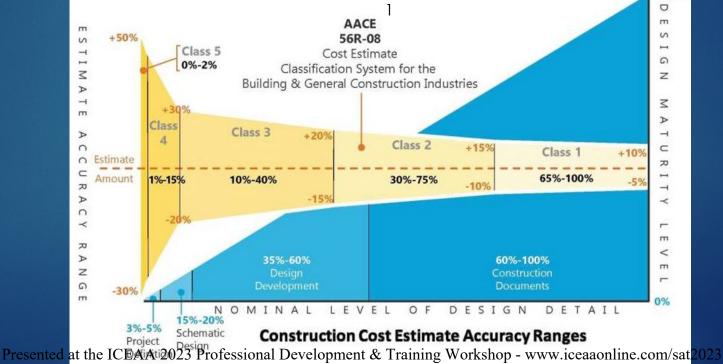
OPERATIONS RESEARCH ANALYST, NAVY ENGINEERING LOGISTICS OFFICE

2023 ICEAA WORKSHOP, SAN ANTONIO

Presented at the ICEAA 2023 Professional Development. & Training Workshop - www.iceaaonline.com/sat2023 Distribution Statement A: Approved for public release. Distribution is unlimited.

Outline

Research Objectives


Improve the accuracy of DOD construction estimates and expedite them by...

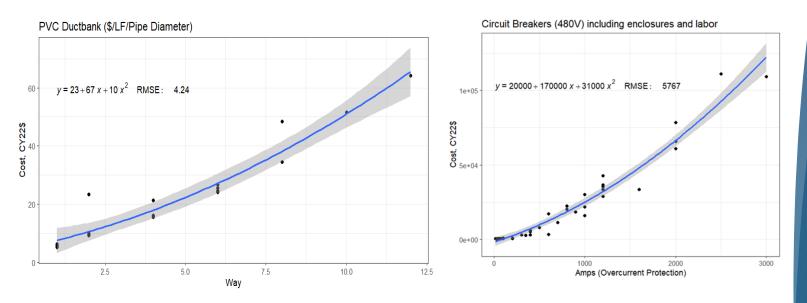
- 1. Compiling a repository of unit cost relationships
- 2. Exploring ways to extract time-dependent costs (especially labor)
- 3. Identifying uncertainty distributions to apply

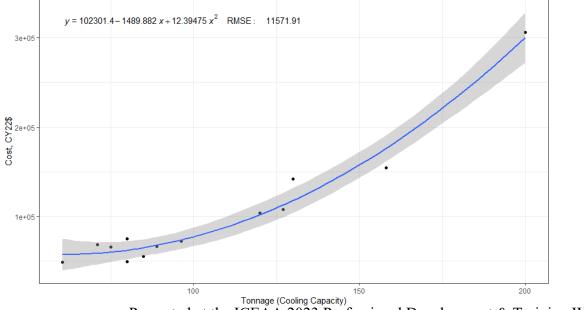
State of the Art

- 1. Low-level equipment, material, and labor cost data is difficult to find or expensive to acquire, square footage is the default
- 2. Available data is already totaled
- 3. Little uncertainty distribution guidance, so estimators rely on "Contingency Factors"

Data Sources

- Army Corps of Engineers' Programming and Execution (PAX) System Newsletter²
- 2. Army Corps of Engineers' Engineering Pamphlet (EP) 1110-1-8³
- 3. NELO PMO-Commissioned Studies
- 4. Internet Research and quotes
- 5. Craftsman National Electrical Estimator 2022⁴
- OASD(S) Military Construction Status Reports to Congress^{5*}




*Fully burdened

CER Repository Methodology

- Methods
 - 1. Explore traits (predictors) already listed in the databases.
 - 2. Consider a variety of fits, linear, non-linear, multiple regression, etc.
 - 3. Choose models on the basis of visualization and Root Mean Squared Error (RMSE) rather than R-squared. ^{6,7,8}

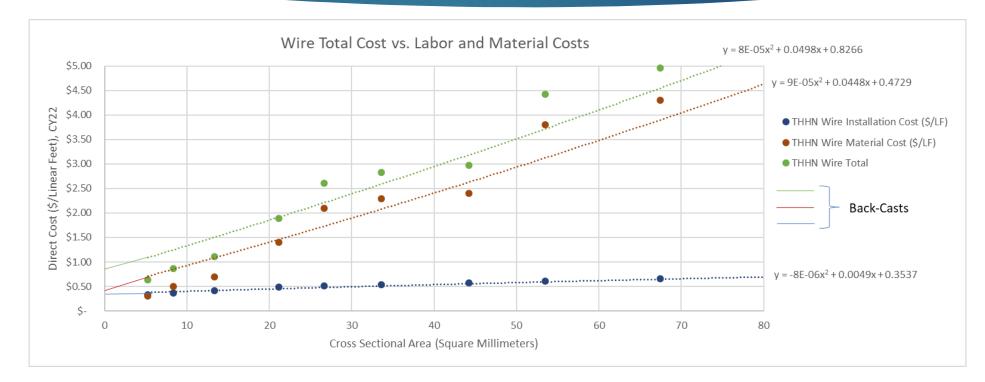
Air-Cooled Scroll Chiller, Excluding Chiller pump, Condensing Units, Expansion Tank.

CER Repository Results

MORE THAN FIFTY STRONG UNIT COST RELATIONSHIPS

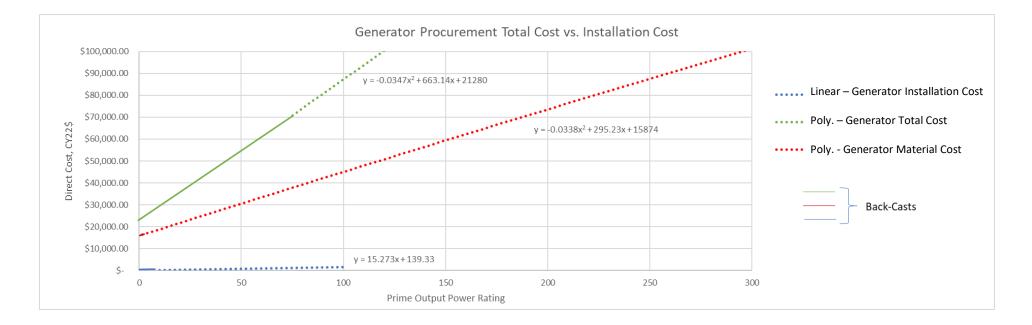
CER Repository Takeaways

- a) Estimates could provide population means
- b) Faster than soliciting quotes, cheaper than commercial databases
- c) Applicable to multi-purpose facilities or renovation
- d) Key limitation: no way to adjust duration of labor


CER Category	Count
HVAC	6
Power Distribution	19
Power Generation	6
Lighting	3
Structural	4
Liquid Storage	2
Lift Equipment and Transport	4
Plumbing	7
Other	4

Labor Approximation Methodology

- According to Elbeltagi, labor constitutes 30-50% of construction expenses.⁹
- One Navy project estimate showed 35% of direct cost would be labor.
- Hypothesis: back-casting to the intercept may isolate approximate labor cost underlying composite expense data.



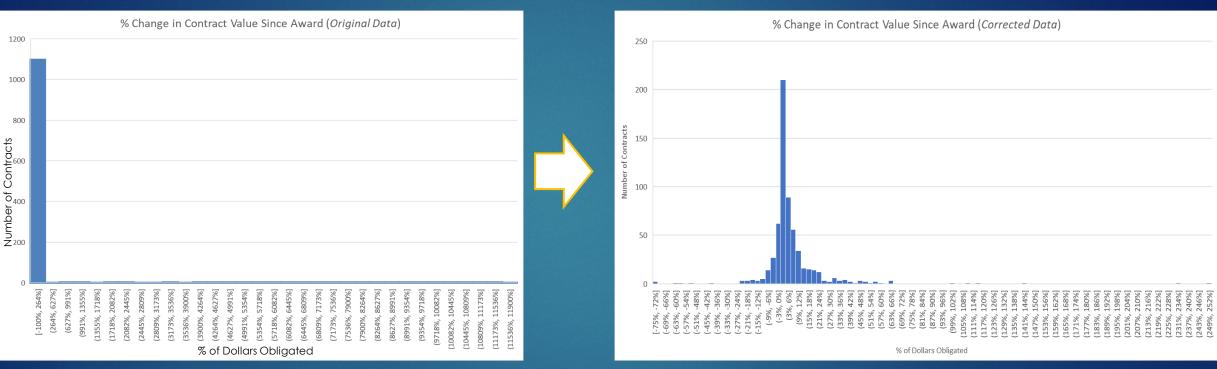
Labor Approximation Results

- Intercepts behave as expected
- Difference may be due to manufacturing labor: 0.8266-0.4729=.3537 Presented at the ICEAA 2023 Professional Development & Training Workshop - www.iceaaonline.com/sat2023

More Generator Research Needed

- Intercepts far overestimate labor necessary to build and install a generator at kW=1, likely due to different manufacturing processes and accessories.
- Stick to range of x-values Presented at the ICEAA 2023 Professional Development & Training Workshop - www.iceaaonline.com/sat2023

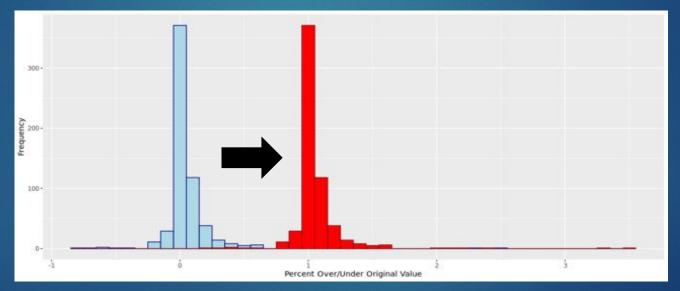
Labor Approximation Takeaways


- There's mixed evidence as to whether back-casting is a viable way to extract labor data.
- Physical attributes (size, weight) may be more appropriate for this technique than performance attributes (power output, horsepower, etc)
- When in doubt, consider trying the Elbeltagi factor (30-50%)

Uncertainty Analysis Data Introduction

Before

After


- MILCON status reports by OASD(S) form the backbone of the uncertainty analysis. Corrected with the Federal Procurement Data System (FPDS)
- Histograms can reveal whether data needs attention
- Data: https://github.com/paul-navy/Foundational-Cost-Models.git

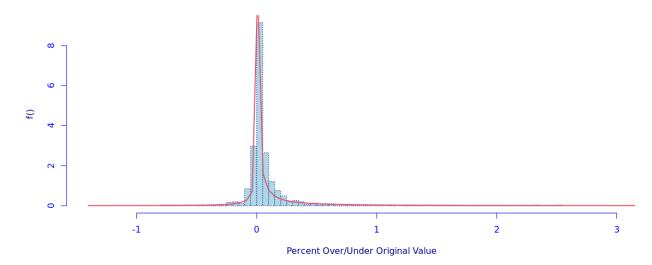
Uncertainty Analysis: Put a Name to a Face

1. Study the distribution of contracts exceeding their initial values per congressional reports such that

 $Percent Cost Overrun = \frac{(Final Value - Original Value)}{Original Value}$

2. Shift to apply distributions on positive real line {0,Inf.}

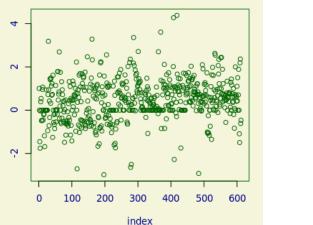
3. Consider >50 distributions, select via Akaike's Information Criterion (AIC).¹⁰ Which distribution is best?


$$AIC = -2logL(\hat{\theta}) + 2k$$

Best Fit: SEP Type II

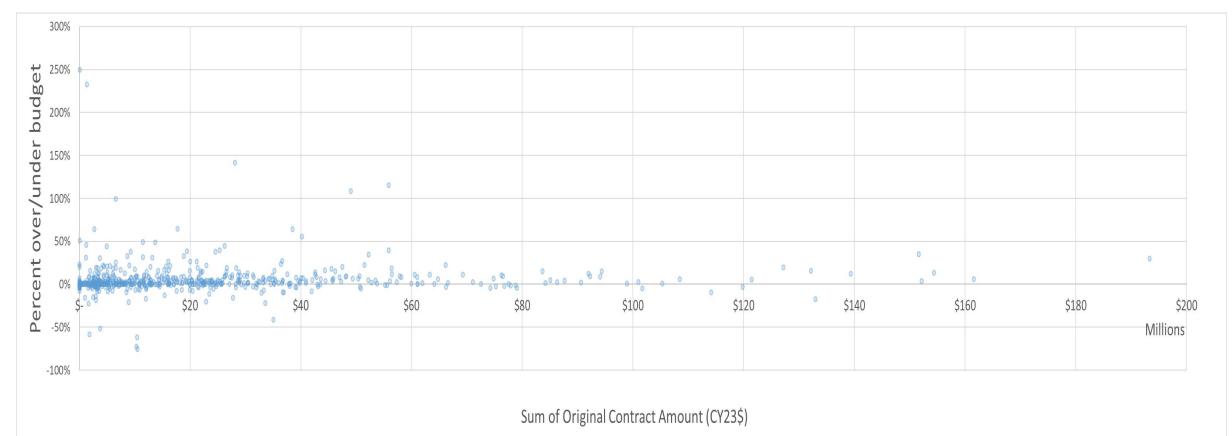
- Family: Skew Exponential Power (SEP) Type II.¹¹
- AIC: -1949 (Least amount of data information lost among attempted curves)
- n=612 completed MilCon contracts

It's the best fit, but is it a good fit? Residuals suggest yes.


Distribution of Cost Overruns and the SEP2 PD

Actual Residuals

600

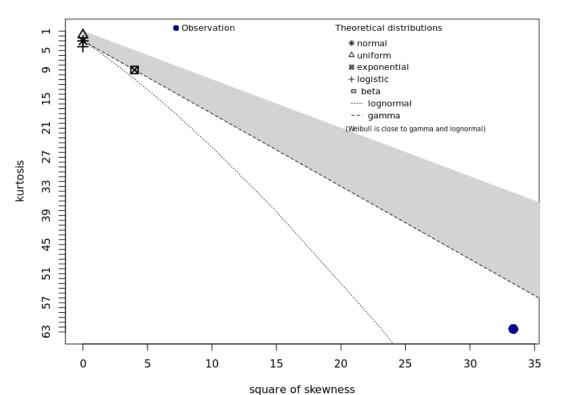

100 200 300 400 500 index

Quantile Residual

Presented at the ICEAA 2023 Professional Development & Training Workshop - www.iceaaonline.com/sat2023

Quantile Residuals

Smaller Contracts Have a Wider Range


Uncertainty Analysis Takeaways

- Parametric models suggest DOD construction errors tend toward a Skew Exponential Power (II) Distribution.
- Evidence that we should not always default to lognormal.¹²
- Combined with our CERs, we have several uncertainty parameters for our simulations.
- Small contracts have a wider uncertainty range.

What's next?

- a) More potential CERs in these databases
- b) Replicate uncertainty analysis with contract schedules
- c) Explore switch from raw to orthogonal polynomials
- d) Plot Skewness vs. Kurtosis for more families (Cullen and Frey Chart¹⁴)

With these methods, we could more definitively state whether costs are SEP distributed and gain schedule insight.

Cullen and Frey graph

Recommendation Summary

PLOTTING CERS CAN LOCATE CENTRAL TENDENCIES AND SAVE TIME VIA INTERPOLATION USE CAUTION WHEN APPROXIMATING LABOR VIA BACK-CASTING APPLY EMPIRICAL OR SEP II DISTRIBUTIONS TO OUR CONSTRUCTION SIMULATIONS

References

- Association for the Advancement of Cost Engineering International. Cost Estimate Classification System As Applied in Engineering, Procurement, and Construction for The Building and General Construction Industries 56. 56R-8th ed. Vol. 56. 124 vols. Recommended Practices. Fairmont, WV: AACE International, 2020. August 7, 2020.
- 2. Army Corps of Engineers, Programming Administration and Execution (PAX) System Newsletter 3.2.2 Army Facility Unit Costs §. Army Facilities Pricing Guide (2021). https://www.usace.army.mil/Cost-Engineering/PAX-Newsletter-322-Army-Facility-Unit-Costs/.
- 3. Army Corps of Engineers, EP1110-1-8 Construction Equipment Ownership and Operating Expense Schedule §. EP 1110-1-8 (2020), EP 1110-1-8 Equipment Rates (army.mil).
- 4. Tyler, Mark C. 2022 National Electrical Estimator. Carlsbad, CA: Craftsman Book Company, 2021.
- 5. Office of the Assistant Secretary of Defense for Sustainment, Military Construction Status Report § (2022). https://www.acq.osd.mil/eie/FIM/FIM_Library.html.
- 6. Ford, Clay. "Is R-Squared Useless?" University of Virginia Library Research Data Services + Sciences. University of Virginia Library, October 17, 2015. https://data.library.virginia.edu/is-r-squared-useless/.
- 7. Book, Stephen A., and Philip H. Young. "The Trouble With R^{2.}" Journal of Parametrics 25, no. 1 (July 2006): 87–114. https://doi.org/10.1080/10157891.2006.10462273.
- Spiess, Andrej-Nikolai, Natalie Neumeyer. "An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach". BMC Pharmacology. 2010; 10: 6.
- 9. Elbeltagi, Emad. "Chapter 4: Cost of Construction Labor and Equipment." Essay. In Cost Estimation In Construction Projects, 67–67. mepwork.com, 2021.
 - Accessible here: https://www.mepwork.com/2021/04/project-cost-estimation-pdf.html
- 10. Stasinopoulos, D. Mikis, and Robert A. Rigby. 2007. "Generalized Additive Models for Location Scale and Shape (GAMLSS) in R". Journal of Statistical Software 23 (7):1-46. <u>https://doi.org/10.18637/jss.v023.i07.</u> This is the R package used to perform the analysis. Also see https://www.gamlss.com/wp-content/uploads/2018/01/DistributionsForModellingl ocationScaleandShape.pdf for a full definition of the SEP Type II distribution.
- 11. Azzalini, Adelchi. 2020. "Further Results on a Class of Distributions Which Includes the Normal Ones Looking Back". Statistica 80 (2):161-75. https://doi.org/10.6092/issn.1973-2201/10421.
- 12. Kunc, Wendy, Kathy Watern, Stephen Barth, Douglas Comstock, Christian Smart, Duncan Thomas, John Fitch, Alfred Smith, and Jeff McDowell, Joint Agency Cost Schedule Risk and Uncertainty Handbook § (2014).
- Rossi, Riccardo, Andrea Murari, Pasquale Gaudio, and Michela Gelfusa. "Upgrading Model Selection Criteria with Goodness of Fit Tests for Practical Applications." Entropy 22, no. 4 (2020): 447. https://doi.org/10.3390/e22040447.
- 14. Cullen Alison C and H. Christopher Frey. 1999. Probabilistic Techniques in Exposure Assessment : A Handbook for Dealing with Variability and Uncertainty in Models and Inputs. New York: Plenum Press.

Data from this talk is available upon request: paul.b.franklin11.civ@us.navy.mil

Acknowledgments

Special thanks to my wife Kathryn and colleagues Erika Vaughan, Raj Raman, Colin Shores, John Georges, and Babak Damadi