Presented at the ICEAA 2023 Professional Development & Training Workshop - www.iceaaonline.com/sat2023

Spread Too Thin Managing Coefficient of Variation in Monte-Carlo Based Cost Models

Stephen Koellner Augur Consulting Inc. ICEAA 2023

Presenter

- Stephen Koellner Analyst/Technical Advisor
 - 4+ years of experience in federal project cost estimation
 - PLCCEs/POEs, IGCEs, Cost-Benefit Analysis, AoAs
 - ICEAA 2022 Team Achievement of the Year Award recipient
 - GAO Cost Guidebook contributor
 - Published author: Earth & Planetary Science Letters
 - BS in Mathematics Penn State University

Augur Consulting Inc.

- Service-Disabled Veteran Owned Small Business (SDVOSB)
- Supporting our government-only customer base since 2012
- Core Competencies:
 - Cost Estimating and Analysis
 - Integrated Master Scheduling
 - Performance Management
 - Data Analytics and Visualization

Introduction

- Problem: Uncertainty easily underestimated in cost models
 - Inaccurate quantification of cost spread poses significant long-term risk
 - Characterized by a low Coefficient of Variation (CV)
 - Diagnosing issue often a difficult endeavor
- Goal: Identify modeling choices that prohibit realistic cost spread
 - Define CV as function of children elements in WBS
 - Study interactions of input level uncertainty & output level uncertainty
 - Provide modeling guidelines to cost estimators
 - Enable program managers to minimize likelihood of funding risks

Cost Uncertainty

- GAO Cost Estimating and Assessment Guide (March 2020):
 - "A credible estimate includes a risk and uncertainty analysis that quantifies the imperfectly understood risks..."
- All cost estimates should account for risk/uncertainty
 - Credible cost models produce a range (spread) of values
 - Cost modelers must primarily think of output as a distribution, not a number
 - Often brief a snapshot of distribution/spread to clients
- Analyze Results
 - Determine if cost output logically aligns with cost inputs
 - Evaluate if top-level cost uncertainty adequately matches program status
 - Identify cost drivers and quantify their impact

Application of Cost Uncertainty

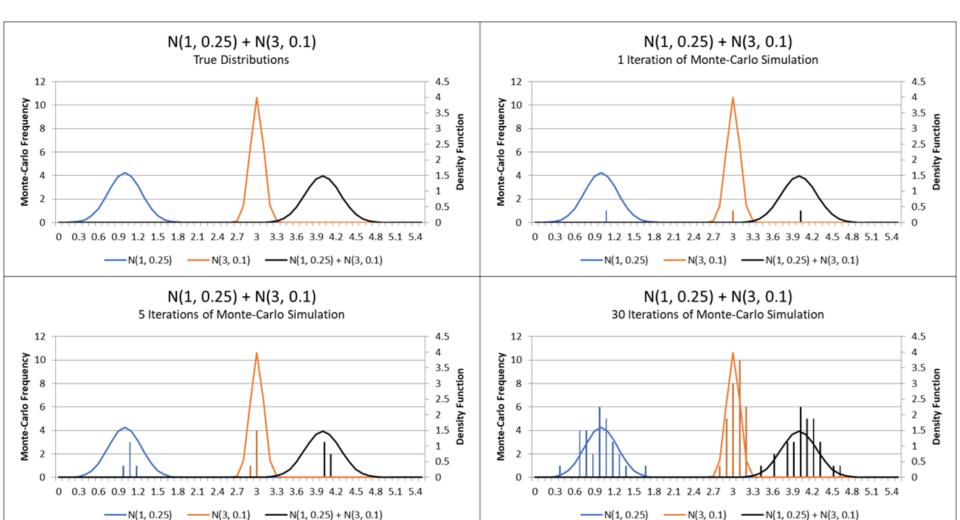
	Top - Level Application of Cost Uncertainty				
WBS Level	WBS Element	Application of Risk			
1	Total Contract Cost				
2	Management	None			
2	Development Labor	None			
2	Prototype Materials	None			
2	Equipment	None			
2	Testing Labor	None			
2	Testing Equipment	None			

	Bottom - Level Application of Cost Uncertainty				
WBS Level	WBS Element	Application of Risk			
1	Total Contract Cost	Composition of Children			
2	Management	+ + +			
2	Development Labor	×			
2	Prototype Materials	×			
2	Equipment	+ 2			
2	Testing Labor	+([
2	Testing Equipment	+			

Application of Cost Uncertainty

	Comparing Applications of Uncertainty				
Application	Pros	Cons			
Top - Level	 Simplifies cost modeling Generally, more data is available to defend top level spread 	 Limited ability to analyze cost drivers and quantify impact to model spread Assumptions on spread not directly traceable to inputs Range of cost outcomes can only be viewed at top-level 			
Bottom - Level	Idrivers	 Complicates cost modeling/behavior of cost model Can more easily underestimate cost uncertainty 			

- Both types of application have unique strengths and weaknesses
 - Choice depends on agency guidance, estimate type, estimator preference
 - E.g., ROM estimates may employ use of Top-Level application
 - Augur typically develops estimates with Bottom-Level application
- Bottom-level requires approximation methods (Monte-Carlo)


Brief evaluates behavior of Bottom-Level application of spread

Monte-Carlo Cost Modeling

- Calculate cost outputs with Monte-Carlo sampling
 - Interactions of probability distributions are incredibly complex
 - "By hand" calculations are impractical and computationally inefficient

- Monte-Carlo based cost models approximate outputs efficiently
 - Sample random values from input distributions
 - Run calculation of outputs/save results from this iteration
 - Results converge to true value as number of iterations increases

Monte-Carlo Modeling

Coefficient of Variation (CV)

CV: standard deviation divided by mean of distribution X

$$CV_X := \frac{\sigma_X}{\mu_X}$$

- Why is CV important to cost estimators?
 - CV is a ratio that "normalizes" the spread of a distribution
 - Allows for comparison of data sets with differing means/standard deviations
 - Commonly used to check if uncertainty is appropriately captured in model
 - Higher CV indicates a wider dispersion/flatter distribution

Coefficient of Variation (CV)

- Lack of universally accepted output CV ranges for all project types
 - Top-level CV changes over time/varies with technology of program
 - Difficult for estimators: "what is the appropriate CV for this model?"
 - USAF Cost Risk Handbook provides specific guidance for top-level CV:

USAF Cost Risk Handbook			
Estimate Type Typical CV Range			
Space Systems/SW	0.35 - 0.45		
Aircraft/Complex HW	0.25 - 0.35		
Large Electronic System	0.1 - 0.2		

- Common ranges of input level CVs from ACEIT*:
 - <0.15 = Optimistic level of certainty</p>
 - 0.15-0.35 = Typical/moderate uncertainty
 - >0.35 = Higher end of uncertainty
 - Qualitative interpretations of data driven inputs
 - Can also leverage above ranges in absence of data

Interpretation of a WBS as a Convolution

- Work Breakdown Structure (WBS)
 - Higher level elements (parent) are sum of lower level (children)
 - Each child element is essentially a probability distribution
 - Convolution = Linear combination of probability distributions
- Let Z be a parent-level WBS element with n children elements: X_i

WBS	WBS	WBS	WBS	
Level	Element	Level	Element	n
1	Total Contract Cost	k	Z	
2	Management	k+1	X ₁	$Z - \bigvee X$
2	Development Labor	k+1	X ₂	$Z - f \Lambda$
2	Prototype Materials	k+1		i=1
2	Equipment	k+1		i=1
2	Testing Labor	k+1		Convolution
2	Testing Equipment	k+1	X _n	

- CV of Z can be defined in terms of its children
 - Approx. computationally in using Monte-Carlo simulation SW

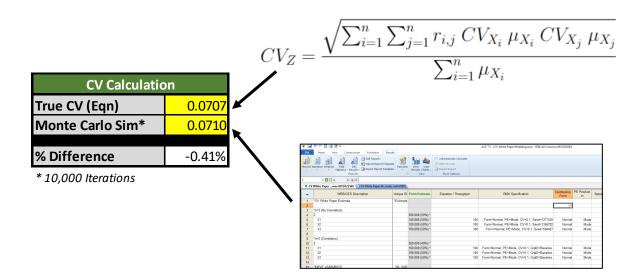
Top Level CV Equation

 $Z = \sum_{i=1}^{\text{om/sat20}} X_i$

- Each X_i is a distribution with parameters:
 - r_{i,j} are correlation coefficients between X_i and X_j
 - μ_{Xi} is the expected value (mean) of distribution X_i
- The CV of parent level Z follows the below equation*:

$$CV_Z = \frac{\sqrt{\sum_{i=1}^n \sum_{j=1}^n r_{i,j} CV_{X_i} \mu_{X_i} CV_{X_j} \mu_{X_j}}}{\sum_{i=1}^n \mu_{X_i}}$$

Equation is agnostic to types of distributions


^{*}Results can be expressed more concisely with covariance

Verification of CV Equation

- Monte Carlo simulation approx. uncertainty distributions
 - Correlation is simplified via group strength
 - Small deviations between model & equation (depends on # of iterations)
- Formula is not useful for generating cost output
 - Cost models are more complex than simple sums
 - Equation is useful for analyzing results at WBS level

Simplified WBS (n=3)					
WBS	Mean	Stan. Dev.	CV		
Z	300				
X1	100	10	0.1		
X2	100	10	0.1		
Х3	100	10	0.1		

Correlation Matrix					
X1 X2 X3					
X1	1	0.25	0.25		
X2	0.25	1	0.25		
Х3	X3 0.25 0.25 1				

Behavior of Equation

- Illustrate behavior of top-level CV
 - Use previous result as a baseline of comparison
 - Change one parameter of baseline for each scenario
 - Maintain perturbations proportionally
 - Certain results need additional normalization
 - Identify how children elements impact parent level
- Cost modeling decisions vs updates to baseline

Simplified WBS (n=3)					
WBS Mean Stan. Dev. CV					
Z	300				
X1	100	10	0.1		
X2	100	10	0.1		
Х3	100	10	0.1		

Correlation Matrix					
X1 X2 X3					
X1	1	0.25	0.25		
X2	0.25	1	0.25		
Х3	X3 0.25 0.25 1				

Perturbation – High Child CV

- Larger spread of lower elements increases parent spread
 - Double standard deviation of one child element
 - Parent CV increase from 0.071 to 0.097
 - ~37% increase in parent CV
- Intuitive result, large impact for small WBS
 - Average CV of children elements substantially higher

Baseline WBS					
WBS Mean Stan. Dev. CV					
Z	300				
X1	100	10	0.1		
X2	100	10	0.1		
Х3	100	10	0.1		

Increased CV of WBS Element					
WBS Mean Stan. Dev. CV					
Z	300				
X1	100	20	0.2		
X2	100	10	0.1		
Х3	100	10	0.1		

CV Calculation			
Baseline	0.070711		
Increased CV of WBS Element	0.097183		
% Δ CV	37%		

Correlation Matrix						
	X1 X2 X3					
X1	1	0.25	0.25			
X2	0.25	1	0.25			
Х3	0.25	0.25	1			

Correlation Matrix					
X1 X2 X3					
X1	1	0.25	0.25		
X2	0.25	1 0.25			
X3 0.25 0.25 1					

Perturbation – Large Mean (Normalized)

- Double mean of one element/scale others proportionally
 - Represents a ~12% increase to top level CV
 - "Grouping" spread to single element

Baseline WBS				
WBS Mean Stan. Dev. CV				
Z	300			
X1	100	10	0.1	
X2	100	10	0.1	
Х3	100	10	0.1	

Large Mean (Normalized)					
WBS Mean Stan. Dev. CV					
Z	300				
X1	200	20	0.1		
X2	50	5	0.1		
Х3	50	5	0.1		

CV Calculation		
Baseline 0.070711		
Large Mean (Normalized)	0.079057	
% Δ CV	12%	

Correlation Matrix				
X1 X2 X3				
X1	1	0.25	0.25	
X2	0.25	1	0.25	
Х3	0.25	0.25	1	

Correlation Matrix					
X1 X2 X3					
X1	1	0.25	0.25		
X2	X2 0.25 1 0.2				
Х3	X3 0.25 0.25 1				

Perturbation – Large WBS

- Double size of WBS, maintain same total sum
- Large WBS case reduced top level CV by ~13%
 - Commonly referred to as "over-sharpening the pencil"
 - Increased fidelity dramatically reduces spread of costs
 - In depth WBS =/= more accurate estimate
 - Significant risk of underestimating cost uncertainty without sufficient correlation

Baseline WBS				
WBS Mean Stan. Dev. CV				
Z	300			
X1	100	10	0.1	
X2	100	10	0.1	
Х3	100	10	0.1	

Large WBS					
WBS Mean Stan. Dev. CV					
Z	300				
X1	50	5	0.1		
X2	50	5	0.1		
Х3	50	5	0.1		
X4	50	5	0.1		
X5	50	5	0.1		
Х6	50	5	0.1		

CV Calculation		
Baseline 0.07071		
Large WBS	0.061237	
% Δ CV	-13%	

Correlation Matrix					
X1 X2 X3					
X1	1	0.25	0.25		
X2	0.25	1	0.25		
Х3	0.25	0.25	1		

Correlation Matrix						
	X1 X2 X6					
X1	1	0.25	0.25	0.25		
X2	0.25	1	0.25	0.25		
	0.25	0.25	1	0.25		
Х6	0.25	0.25	0.25	1		

Perturbation – Strong Correlation

- Double value for single correlation coefficient
 - $\mathbf{r}_{1.3}$ increased from 0.25 to 0.5
 - Higher dependency between X₁ and X₃
 - Top-level spread increased by ~5%
- Increasing correlation increases top-level CV

Baseline WBS				
WBS Mean Stan. Dev. CV				
Z	300			
X1	100	10	0.1	
X2	100	10	0.1	
Х3	100	10	0.1	

Strong Correlation					
WBS Mean Stan. Dev. CV					
Z	300				
X1	100	10	0.1		
X2	100	10	0.1		
Х3	100	10	0.1		

CV Calculation		
070711		
074536		
5%		

Correlation Matrix			
	X1	X2	Х3
X1	1	0.25	0.25
X2	0.25	1	0.25
Х3	0.25	0.25	1

Correlation Matrix					
X1 X2 X3					
X1	1	0.25	0.5		
X2	0.25	1	0.25		
Х3	0.5 0.25 1				

Perturbation – Independence (No Correlation)

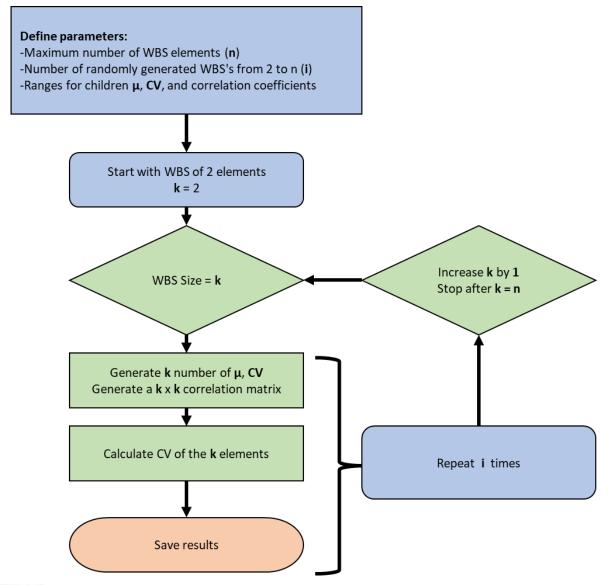
- Absence of correlation
 - Dramatic reduction in top level spread: ~18%
 - Effectively independent distributions being summed
- Zero correlation is unrealistic
 - Bottom-level application of dist. transfers correlation to WBS
 - Inter-dependence of common inputs creates functional correlation
- Note: negative correlation will also reduce top level CV

Baseline WBS			
WBS Mean Stan. Dev. CV			
Z	300		
X1	100	10	0.1
X2	100	10	0.1
Х3	100	10	0.1

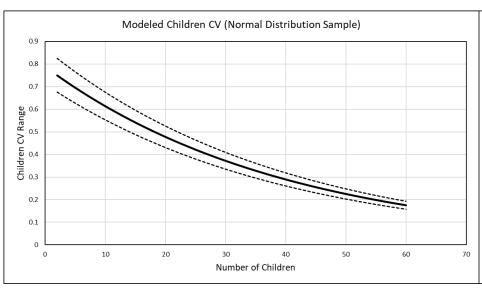
No Correlation			
WBS Mean Stan. Dev. CV			CV
Z	300		
X1	100	10	0.1
X2	100	10	0.1
Х3	100	10	0.1

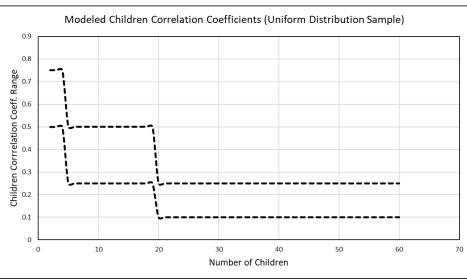
CV Calculation		
Baseline 0.070711		
No Corr	0.057735	
% Δ CV	-18%	

Correlation Matrix			
X1 X2 X3			
X1	1	0.25	0.25
X2	0.25	1	0.25
Х3	0.25	0.25	1

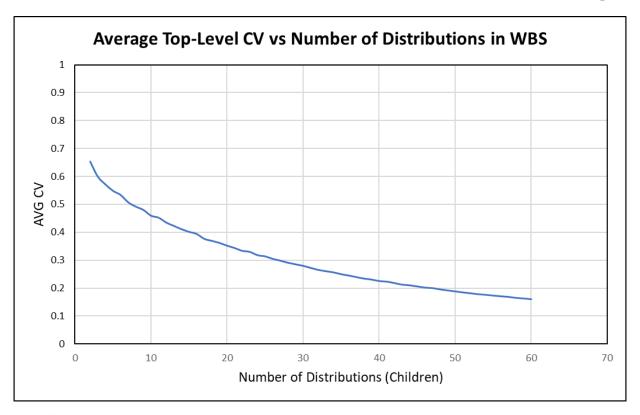

Correlation Matrix			
X1 X2 X3			
X1	1	0	0
X2	0	1	0
Х3	0	0	1

Summary of Perturbations


- Increasing spread of children elements most impactful
 - Intuitive result of CV (uncertain children -> uncertain parent)
 - Typically, this is an undesirable action for cost estimators
- WBS size second most impactful perturbation (decreases spread)
 - Higher fidelity estimates can dramatically underestimate risk
 - "Grouping" together elements will increase top-level spread
- Varying impacts of correlation to top-level CV
 - Stronger correlation off-sets impact of larger WBS's
 - Lack of correlation will drastically underestimate top-level spread


Behavior of CV				
Scenario	CV	% Δ to Baseline	Note	
Baseline	0.0707	0%	n=3, μ = 100, CV = 0.1, r = 0.25	
High Stan. Dev.	0.0972	37%	Double one standard dev.	
Large Mean	0.0729	3%	Double one mean	
Large Mean (Normalized)	0.0791	12%	Double one mean, reduce mean of other elements	
Large WBS	0.0612	-13%	Double WBS/maintain top-level mean	
Strong Correlation	0.0745	5%	Double single correlation coefficient	
No Correlation	0.0577	-18%	Model independent distributions	

- Formula can be used to model cost estimator behavior
 - Randomly generate WBS's and calculate top-level spread
 - Follow best practices to provide recommendations for analysts
 - Refined simulations of WBS parameters
 - More precisely model mean, children CV's, correlation, etc.
 - E.g., Children CV from uniform distribution between 0.15 0.6
- Randomly generate WBS
 - Common values of:
 - μ, CV, & Correlation Coefficients*
- Study CV behavior at scale
 - Simulate practices of cost estimators
 - Model impacts of correlation at the WBS level

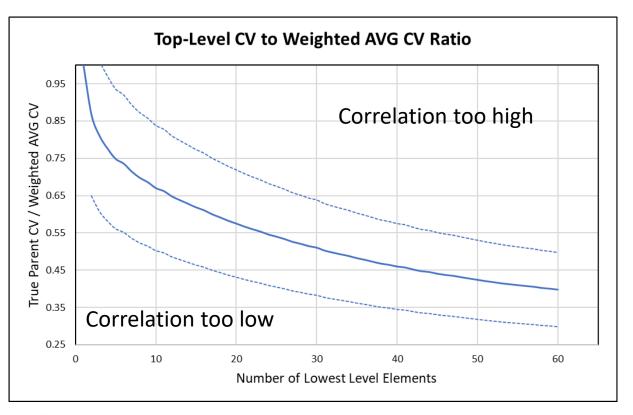


- Randomly generate statistics for children elements
 - Children CV sampled from a normal distribution
 - Mean and standard dev. decrease with more children elements
 - Higher fidelity -> less uncertainty on individual elements
 - Correlation coefficients sampled from uniform distribution
 - Step down in line with USAF guidance on correlation coefficients

- Random WBS designed to mimic ACAT I cost model
 - WBS totals between \$3.6B \$5.8B (sum of RDTE + OP costs)
 - Choice of WBS sum is irrelevant for exercise
 - Children normalized to have sum within above range

Proposed Ranges for CV/WBS-Size

- Below are proposed ranges from USAF IT research paper
 - CV ranges by acq. milestone (based on actual cost growth)
 - Ranges are preferable since they are traceable to actual data

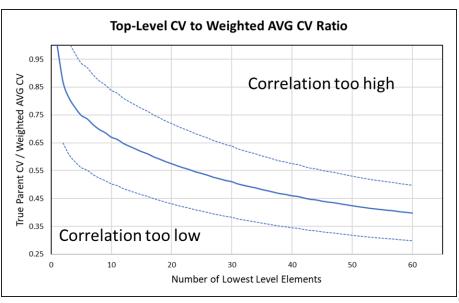

USAF IT Research Paper			
Estimate Type Typical CV Rang			
Milestone A	0.41 - 0.74		
Milestone B	0.31 - 0.54		
Milestone C	0.23 - 0.32		

- Ranges & randomized WBS results used for WBS size rec.
 - Compare at-scale CV behavior with ranges to make rec.
 - CVs should not be the only statistic analyzed for model health

Recommended WBS Ranges			
Acquisition Phase Rec. WBS Size			
Milestone A/High Uncertainty	2 - 14 Lowest Level Elements		
Milestone B/Medium Uncertainty	6 - 25 Lowest Level Elements		
Milestone C/Modest Uncertainty	24+ Lowest Level Elements		

Ratio of True CV to Weighted Avg CV

- Ratio curve based on following modeling best practices
 - Significant deviations from this curve indicate lack of correlation
 - E.g., a WBS with 20 elements w/ratio of 0.3
 - Ratio should be ~0.55 -> correlation coefficients too low


CV in Cost Estimating Applications

- Analyze output CV as a sanity check for cost model spread
 - Check ratio of top-level CV and weighted AVG CV w/WBS size
 - Check dollar value spread of outputs for reasonableness
 - CV should NOT be the only metric used for evaluation
- Observable CV behavior provides cost modeling insight
 - Early ROM estimates need small WBS/top-level risk application
 - Ensure appropriate correlation is being applied to input variables
 - WBS size should correlate with program maturity and level certainty
 - Don't over sharpen the pencil with engineering build-ups
- Leadership should push for higher spread in early estimates
 - Funding requests need accurate projections of potential cost growth
 - Underestimated spread reduces MR/contingency in risk informed models

Conclusion

- Insufficient cost spread in Monte-Carlo based cost models
 - CV equation provides insight to understanding top-level CV behavior
 - Provided rules of thumb/cross-checks for diagnosing cost models
- Top-level CV dominated by WBS size and correlation
 - Models w/out correlation are underestimating spread
 - WBS size should fall within ranges based on lifecycle/certainty level
 - Overly detailed WBS injects overoptimism unless correlated properly

Recommended WBS Ranges			
Acquisition Phase Rec. WBS Size			
Milestone A/High Uncertainty	2 - 14 Lowest Level Elements		
Milestone B/Medium Uncertainty	6 - 25 Lowest Level Elements		
Milestone C/Modest Uncertainty	24+ Lowest Level Elements		

Questions?

- Contact Presenter: <u>skoellner@augurconsulting.net</u>
- Contact Augur Consulting: info@augurconsulting.net

Whitepaper of this presentation is available

BACKUP

Extreme Case

- Combine actionable positive/negative impacts to CV
 - High spread groups elements and has strong correlation
 - Low spread is a high fidelity and un-correlated WBS
 - Both have same top-level mean/avg children CV
- Wide range in top-level CV based on these choices
 - Despite both having the same top-level mean

High Spread WBS				
WBS Mean Stan. Dev. CV				
Z	300			
X1	200	20	0.1	
X2	50	5	0.1	
Х3	50	5	0.1	

Low Spread WBS				
WBS Mean		Stan. Dev.	CV	
Z	300			
X1	50	5	0.1	
X2	50	5	0.1	
Х3	50	5	0.1	
X4	50	5	0.1	
X5	50	5	0.1	
Х6	50	5	0.1	

CV Calculation		
High Spread	0.086603	
Low Spread	0.040825	
%Δ CV	-53%	

Correlation Matrix				
X1 X2 X3				
X1	1	0.5	0.5	
X2	0.5	1	0.5	
Х3	0.5	0.5	1	

Correlation Matrix				
	X1	X2		Х6
X1	1	0	0	0
X2	0	1	0	0
	0	0	1	0
Х6	0	0	0	1