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Abstract 
Coefficient of Variation (CV) can be utilized to determine whether sufficient uncertainty is 
captured in Monte-Carlo based estimates. This topic explores common barriers to 
capturing program level risk using the interpretation of a WBS as a linear combination of 
distributions. A WBS CV equation is provided to model perturbations of a baseline case and 
then randomized WBSs are generated to analyze CV at scale. Estimators can apply these 
insights to improve program estimate risk calculations. 
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1. Introduction 
The Government Accountability Office (GAO) Cost Estimating and Assessment Guide states 
that: “A credible estimate includes a risk and uncertainty analysis that quantifies the 
imperfectly understood risks and identifies the effects of changing key cost driver 
assumptions and factors.”  [1, p. 33] All cost estimates need to quantify reasonable cost 
growth to minimize future funding risks, determine appropriate variances of realized costs, 
and to calculate sufficient values for management reserve and contingency. Cost estimators 
develop and present the output of a cost model as a probability distribution with a range of 
potential future costs, rather than just a single number. Program leadership and decision-
makers require a tangible snapshot of this output distribution as well as an overall level of 
future cost variances to make fully informed decisions.   

Quantifying cost uncertainty using a bottom-up application of cost uncertainty has the 
benefit of being able to represent output spread as a function of input variable 
distributions, which in-turn can be utilized to conduct risk-based cost driver analysis. A 
significant drawback of this method is that output-level cost uncertainty can be easily 
underestimated unless appropriate measures are taken to counteract the impacts of an 
overly robust WBS or insufficient accounting of correlation among input variables. These 
impacts can be shrouded from an analyst, especially when using a Monte-Carlo based 
simulation to approximate these interactions in a cost model. It is not uncommon for a cost 
estimator to review risk-adjusted cost output of a model and observe a top-level spread 
that does not easily trace to the spread of lower level cost elements and input variables.  

Understanding how modeling choices impact output spread can minimize the likelihood of 
funding risks during program execution or false funding risk actualization if actual 
expenditures exceed the value of unrealistic upper cost bounds. This paper seeks to 
illustrate the relationship between input and output distributions by defining output CV as 
a function of the children level elements in a WBS and using this equation to provide cost 
estimators with guidance to prevent overoptimistic projections within their cost models. 
Additionally, conditions for WBS size across the acquisition lifecycle are provided alongside 
a rule of thumb to identify whether an estimate is overly optimistic. 

1.1.  The Cost Estimating Process 

Presented below in Figure 1 is an iterative cost estimating process that is adapted from 
GAO best practices of cost estimation [1, p. 34].  Each step ensures that the resulting cost 
estimate fulfills its purpose, is based on consistent and repeatable methodology, and 
provides meaningful information and insight to programmatic decision-makers. 

Mathematical models, including dynamic cost estimates, are used to simulate the 
relationships and behavior between input variables and modeled outputs to better 
understand a system and predict actual outcomes. Intricate models of even relatively 
simple systems can provide a greater level of insight than simpler models, provided that 
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the proper steps are taken to create an accurate model and interpret the results. Cost 
models that do not account for risk and uncertainty are simple to develop but can be 
limited in terms of aiding programmatic decision making. Fully fledged cost models 
incorporating statistical uncertainty are more intensive to develop but can provide a 
plethora of insight which can enable cost-risk reducing decision making from program 
leadership. 

Figure 1 – The Cost Estimating Process 

A key step to identifying these insights is to analyze and interpret the results of a model 
thoroughly, including input variable sensitivity and detailed uncertainty analysis. A 
drawback of intensive modeling is that the complex nature of detailed modeling can 
obscure the behavior of certain input variables and make these insights more difficult to 
uncover. It is imperative that an analyst understands all aspects of their modeling 
techniques to identify these insights, and it a goal of this paper to explain recurring 
phenomena of detailed cost models so cost estimators can more easily identify insights 
relevant to program leaders. 

1.2. Work Breakdown Structures 

A work breakdown structure (WBS) displays and defines the product(s) to be developed 
and produced [2, p. 1]. Within the context of program management and cost estimation, the 
WBS is the organizational construct that decomposes and relates all elements of a program. 
All aspects of a program such as Systems Engineering, Training, System Test and 
Evaluation, Industrial Spares and Repair Parts, etc., can all be captured within a WBS. 
Subordinate elements are indented below their parent element in the WBS, and the 
number of indentures on an element refers to the WBS Level of that element. Parent level 
elements of a WBS in a cost model are exactly the sum of the costs of the subordinate WBS 
elements below it. 
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Figure 2 – Notional WBS 

This paper explores the translation of cost uncertainty inside of a WBS, and it is critical to 
first define what a WBS is in the context of cost estimation before defining how cost 
uncertainty is incorporated within a cost model. For cost estimates, the WBS organizes and 
displays the individual costs elements of the estimate.  For example, Table 1 is a depiction 
of a WBS for a contract cost estimate broken down to the level two elements. All the costs 
associated with the level two elements sum to the total cost at the level one element. Each 
one of the level two elements can either be the point where an independent calculation is 
made at (referred to as a lowest level element) or broken even further down into level 
three elements. For instance, management costs can be estimated as a total headcount 
multiplied by a weighted average labor rate. Conversely, management costs can include 
level three elements below for each individual labor category/rate and even include non-
labor costs. 
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Table 1 – WBS Decomposition 

The summation of costs to the level one element of the WBS is the total value of the cost 
estimate, where each element in that sum is a subordinate cost element. This approach is 
adopted for two primary reasons: 

1. The smallest, appropriate elements of the estimate can be identified and 
estimated. 

2. Intermediate calculations of cost or range of potential cost outcomes for an 
element at any WBS level can be shown. 

2. Calculating Cost Uncertainty 
All cost estimates should account for cost uncertainty in some form, to mitigate the risks of 
cost variability and future project scope changes. Variances are to be expected between 
projected costs in early-stage estimates and actual costs, due to elements such as choice of 
vendor, productivity levels, or changing market conditions. Additionally, scope changes to a 
project plan will cause variances should additional work be required, quantity of systems 
or materials changes, operational plans evolve, etc. A wide range of changes to project 
elements should be anticipated between early-stage cost estimates and execution, and cost 
estimators must account for these potential changes within their cost models. 

Cost estimators should build and interpret a cost model as a range or a distribution of 
different values rather than a single number, even though cost output is typically shown as 
a single, static number for practicality in funding requests and early-stage planning of a 
project. There are two primary methods for adding statistically uncertainty into a cost 
model: top-down application and bottom-up application. Each method has its strengths and 
weaknesses, and a cost modeler must determine which method is most appropriate based 
on the maturity of the estimate and agency/department guidance of the project. The 
central focus of this study is on the behavior of cost estimates utilizing the bottom-up 
application method. However, it is important to define and compare both application 
methods to understand the content and recommendations of this paper. 
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2.1. Top-Down Application of Cost Uncertainty 

The first method shown for applying statistical uncertainty, is the top-down application. 
With the top-down application method, a cost estimator builds a point estimate and assigns 
a probability distribution at a total or near-total level WBS element that includes multiple 
cost elements and variables. The cost model point estimate is built using the most likely 
value of variables in a bottom-up cost estimate, and the cost estimator then assumes that 
the sum of the point estimate at the top of the WBS is also the most likely value. With this 
assumption, the cost estimator can then assign a probability distribution to the total point 
estimate, where the total point estimate itself serves as the peak of that probability 
distribution. 

Table 2 – Top-Down Application of Cost Uncertainty 

The choice of the assigned probability distribution is based on either actual cost data from 
analogous projects at the total or near-total level, or on industry guidance when data is too 
limited. This method of applying cost uncertainty to a model has the inherent advantage of 

WBS
Level

WBS
Element Equation Application of Risk

1 Total Contract Cost Sum of Children

2 Management Labor Pool 1 + Labor Pool 2 + Labor Pool 3 None

2 Development Labor Headcount x Labor Rate None

2 Prototype Materials Quantity * Unit Cost None

2 Equipment Base Cost + Complexity Factor 2 None

2 Testing Labor Historical Cost + (Factor x Test Quantity 2 ) None

2 Testing Equipment Equipment 1 + Equipment 2 None

Top - Down Application of Cost Uncertainty
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data availability for choosing distributions, as there are usually more data points available 
for high-level cost elements rather than individual lower-level cost input variables. It is also 
easier to adjust this distribution for specific risk factors at the higher levels of a WBS since 
this method reduces the number of distributions required to implement. Additionally, this 
method is computationally trivial to implement and thus reduces the time to run 
calculations and draw insights from the cost outputs. 

The top-down application method, however, does have specific weaknesses which limit its 
usefulness to cost estimators and the project leadership that they report to. There is limited 
insight to specific cost input drivers from a statistical standpoint, as all probability 
distributions are assigned at the cost output level rather than to individual inputs. A highly 
volatile cost input variable may have significant impacts to uncertainty at the total cost 
level, but it would not be observable outside of pure model sensitivity when using this 
method of uncertainty application. Since the assumption of cost spread is only made at the 
top of the WBS, there are limited ways to portion out cost uncertainty to lower level WBS 
elements to determine which elements of the project are high risk. The assumption of top-
level spread can also be interpreted as a weakness of this approach, as the distribution of 
top-level cost elements may be based on other projects which are not analogous to the 
project being estimated. 

The culmination of strengths and weaknesses of this cost uncertainty application method 
necessitates that this method should only be utilized for very early-stage cost estimates, 
rough order of magnitude cost estimates, or when specific agency guidance enforces this 
method. In all other situations, the bottom-up application method should be the preferred 
choice of the estimator. 

2.2. Bottom-Up Application of Cost Uncertainty 

The bottom-up application method can be thought of as a refinement of cost modeling 
techniques used in the top-down application method, but this refinement requires more 
information, time, and effort to correctly implement. Like the top-down method, the cost 
estimator builds a bottom-up cost model to a point estimate value, but rather than applying 
a probability distribution at the total or near-total element(s) the estimator assigns 
probability distributions to individual cost input variables. This method shifts the 
assumption of cost spread away from total or near-total cost elements in the WBS and 
towards specific input variables such as labor rates, unit costs, percentage factors, etc. By 
assigning probability distributions to input variables and accounting for sufficient 
correlation of input variables, an estimator can create a more tailor-made cost model that 
can be used to identify high risk elements that are unique to that specific program. Insights 
to specific cost drivers, such as individual labor pools, subcomponents of a systems, 
software license renewals, etc., can be derived from a model utilizing a bottom-up 
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application of uncertainty. Additionally, relationships between requirements and the 
resulting cost uncertainty can be observed with this modeling technique. 

Table 3 – Bottom-Up Application of Cost Uncertainty 

The bottom-up application method also has some drawbacks which can limit its viability 
for certain estimates. Applying cost uncertainty at the lowest level of an estimate requires 
substantially more time and data to implement correctly, and more assumptions about the 
distributions of input variables may be necessary to complete an estimate. Numerical 
calculations of this method can be computationally taxing when using deterministic 
methods, and so heuristic methods such as a Monte-Carlo simulation (see Appendix A) are 
necessary to generate output in practice. In addition to requiring more effort to develop, 
fully analyzing, and interpreting the results of this type of model is more intensive than a 
top-down application method. Lastly, the bottom-up application of uncertainty is prone to 
underestimating cost spread at higher levels unless done correctly, as will be explored in 
this paper. 

Despite requiring more effort and care to correctly implement, the bottom-up application 
of cost uncertainty provides the opportunity for unique cost and risk insights to be made 
about a program that the top-down application method cannot provide. As such, cost 
estimates which are used to support requirements documents, annual funding requests, 
major contract negotiations, or major decision points of a program should follow the 
bottom-up application method of cost uncertainty. 

WBS
Level

WBS
Element Equation Application of Risk

1 Total Contract Cost Sum of Children Composition of Children

2 Management Labor Pool 1 + Labor Pool 2 + Labor Pool 3

2 Development Labor Headcount x Labor Rate

2 Prototype Materials Quantity * Unit Cost

2 Equipment Base Cost + Complexity Factor 2

2 Testing Labor Historical Cost + (Factor x Test Quantity 2 )

2 Testing Equipment Equipment 1 + Equipment 2

Bottom - Up Application of Cost Uncertainty

+ +

×

×

+

+( ×
𝟐)

𝟐

+
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2.3. Top-Down vs Bottom-Up Application 

Table 4 – Comparing Applications of Uncertainty 

The previous sections outlined the strengths and weaknesses of each application method. 
Cost estimators must choose the method most appropriate for the estimate based on 
several different factors, including: 

1. Agency/department guidance on modeling cost uncertainty. 
2. The purpose and scope of the cost estimate. 
3. Availability of data. 
4. Maturity of the program or project being estimated. 
5. Time and resources available to the cost estimator. 

 
Cost estimators must evaluate the characteristics of each application method against the 
above criteria and determine which method is appropriate. Ideally, multiple cost models 
developed by independent estimators with varying methodology and uncertainty 
application methods can be used to compare results to develop a consensus output, but this 
is often not practical or viable in most programs. It is common to see only one method used 
in a cost model, and when only application can be implemented it is desirable to use the 
bottom-up application method for the many benefits afforded by that method. 

2.4. Coefficient of Variation (CV) 

In cost estimating, risk-adjusted models following the bottom-up application method 
produce a distribution of total cost by approximating the sum of distributions 
corresponding to cost elements that compose the total cost, via a Monte-Carlo simulation. 
The CV is a significant statistic to utilize when interpreting and analyzing the results of a 
risk-adjusted cost model, as it "normalizes" the standard deviation of distributions as a 
percentage of the mean. This "normalization" allows for comparison between different 
risk-adjusted cost elements irrespective of their magnitudes, providing a single metric 
describing the relative degree of uncertainty on a cost element. The CV can also be used to 
compare cost spread between lower-level elements within a single model, and relatively 
higher risk aspects of a program can be identified, assessed, and potentially mitigated 
through program management actions. 

Application Pros Cons

Top - Down
• Simplifies cost modeling
• Generally, more data is available to defend top level spread

• Limited ability to analyze cost drivers and quantify impact to 
model spread
• Assumptions on spread not directly traceable to inputs
Range of cost outcomes can only be viewed at top-level

Bottom - Up
• Spread of total cost directly depends on cost inputs
• Range of cost outcomes can be viewed for any WBS element

• Complicates cost modeling/behavior of cost model
• Can more easily underestimate cost uncertainty

Comparing Application Methods of Cost Uncertainty
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For a probability distribution 𝑋𝑋 with standard deviation 𝜎𝜎𝑋𝑋 and mean 𝜇𝜇𝑋𝑋 , the CV 
(sometimes referred to as the coefficient of dispersion [1, p. 94]) of 𝑋𝑋 is defined as: 

𝐶𝐶𝐶𝐶𝑋𝑋  ∶=  𝜎𝜎𝑋𝑋
𝜇𝜇𝑋𝑋

  ( 1) 

Where 𝜇𝜇𝑋𝑋 = 𝐸𝐸[𝑋𝑋] [1, p. 76] and 𝜎𝜎𝑋𝑋2 = 𝐸𝐸[(𝑋𝑋 −  𝜇𝜇𝑋𝑋)2] [1, p. 77]. This definition itself is not 
useful for analyzing the top-level results of a cost model, as calculating the CV requires that 
the standard deviation and mean are known values. In practice, a cost estimator would 
apply probability distributions to individual input variables of a model or cost elements in 
a WBS, and then run a Monte-Carlo simulation to estimate the standard deviation and the 
mean of the results. It can sometimes be difficult to interpret the top-level CV, especially in 
large cost models where the complicated interactions between input variables obfuscate 
the mechanics of the resulting probability distributions. 

If a cost estimator took a cost model and wrote out an equation for the total cost of a large 
program by hand, down to the lowest appropriate input variable, the resulting equation 
could fill up multiple pages. Assigning probability distributions to input variables and then 
attempting to determine the resulting probability distribution of the total cost would be an 
extremely time-consuming, cumbersome, and mathematically challenging endeavor. 
Monte-Carlo simulations allow for these calculations to be approximated in minutes, but 
the underlying complexity of these calculations remain, and further analysis of the results 
requires an understanding of these mechanics.  

3. Interpretation of a WBS as a Convolution of Distributions 
In probability theory, a linear combination of random variables is referred to as a 
convolution of probability distributions. If random variables 𝐴𝐴 and 𝐵𝐵 are summed together 
to form 𝐶𝐶, then 𝐶𝐶 is called the convolution of random variables 𝐴𝐴 and 𝐵𝐵. [1, p. 219] The 
WBS of a risk-adjusted cost model developed under the bottom-up application of cost 
uncertainty can also be thought of as a convolution of the probability distributions of all the 
lowest-level elements in the WBS. In this interpretation, a universal relationship between 
the uncertainty of lower-level elements and the resulting uncertainty of the top-level 
element can be derived. 
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Figure 3 – WBS as a Convolution of Probability Distributions 

Let 𝑍𝑍 be a WBS element of a cost model developed using the bottom-up uncertainty 
application method, with 𝑛𝑛 lowest level WBS subordinate elements 𝑋𝑋𝑖𝑖. Each 𝑋𝑋𝑖𝑖 is a random 
variable since this is a risk-adjusted cost model, and the following convolution is the 
definition of random variable 𝑍𝑍. 

𝑍𝑍 =  �𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

 

( 2) 

The goal of this interpretation is to define the CV of 𝑍𝑍 as a function of the statistics of its 
subordinate elements 𝑋𝑋𝑖𝑖. Start with substituting the definition of 𝑍𝑍 shown in equation ( 2) 
into the definition of CV shown in equation ( 1): 

𝐶𝐶𝐶𝐶𝑍𝑍 =  
𝜎𝜎𝑍𝑍
𝜇𝜇𝑍𝑍

=  
�𝐶𝐶𝑉𝑉𝑉𝑉(𝑍𝑍)
𝐸𝐸[𝑍𝑍]

=  
�𝐶𝐶𝑉𝑉𝑉𝑉(∑ 𝑋𝑋𝑖𝑖𝑛𝑛

𝑖𝑖=1 )
𝐸𝐸[∑ 𝑋𝑋𝑖𝑖]𝑛𝑛

𝑖𝑖=1
 ( 3) 

Since linearity is preserved in the expected value function [1, p. 76], the denominator of 
equation ( 3) becomes: 

�𝐶𝐶𝑉𝑉𝑉𝑉(∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 )

𝐸𝐸[∑ 𝑋𝑋𝑖𝑖]𝑛𝑛
𝑖𝑖=1

=  
�𝐶𝐶𝑉𝑉𝑉𝑉(∑ 𝑋𝑋𝑖𝑖𝑛𝑛

𝑖𝑖=1 )
∑ 𝐸𝐸[𝑋𝑋𝑖𝑖]𝑛𝑛
𝑖𝑖=1

 ( 4) 

In the numerator of equation ( 4), the variance equation needs to be expanded using the 
definition of variance and covariance (𝐶𝐶𝐶𝐶𝐶𝐶) [1, p. 172]: 

𝐶𝐶𝑉𝑉𝑉𝑉 ��𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� = 𝐸𝐸 ���𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�
2

� − 𝐸𝐸 ���𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=1

��
2

= 𝐸𝐸 ���𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

� −��𝐸𝐸[𝑋𝑋𝑖𝑖] 𝐸𝐸�𝑋𝑋𝑗𝑗� 
𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
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��𝐸𝐸�𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗� − 𝐸𝐸[𝑋𝑋𝑖𝑖]𝐸𝐸[𝑋𝑋𝑗𝑗]
𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

=  ��𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗)
𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

= ��𝑉𝑉𝑖𝑖,𝑗𝑗�𝐶𝐶𝑉𝑉𝑉𝑉(𝑋𝑋𝑖𝑖)𝐶𝐶𝑉𝑉𝑉𝑉(𝑋𝑋𝑗𝑗)
𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 ( 5) 

For any 𝑖𝑖, 𝑗𝑗 the covariance can be expressed as 𝐶𝐶𝐶𝐶𝐶𝐶�𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗� =  𝑉𝑉𝑖𝑖,𝑗𝑗 �𝐶𝐶𝑉𝑉𝑉𝑉(𝑋𝑋𝑖𝑖) 𝐶𝐶𝑉𝑉𝑉𝑉(𝑋𝑋𝑗𝑗) where 
𝑉𝑉𝑖𝑖,𝑗𝑗 is the Pearson correlation coefficient between random variables 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑗𝑗. [1, p. 173] 
Substituting equation ( 5) into the numerator of equation ( 4) results in the following 
relationship: 

𝐶𝐶𝐶𝐶𝑍𝑍 =  
�∑ ∑ 𝑉𝑉𝑖𝑖,𝑗𝑗  �𝐶𝐶𝑉𝑉𝑉𝑉(𝑋𝑋𝑖𝑖) 𝐶𝐶𝑉𝑉𝑉𝑉(𝑋𝑋𝑗𝑗)𝑛𝑛

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1

∑ 𝐸𝐸[𝑋𝑋𝑖𝑖]𝑛𝑛
𝑖𝑖=1

=  
�∑ ∑ 𝑉𝑉𝑖𝑖,𝑗𝑗 𝜎𝜎𝑋𝑋𝑖𝑖  𝜎𝜎𝑋𝑋𝑗𝑗

𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1

∑ 𝜇𝜇𝑋𝑋𝑖𝑖
𝑛𝑛
𝑖𝑖=1

 ( 6) 

Lastly, the definition of CV in equation ( 1) for each random variable 𝑋𝑋𝑖𝑖 can be substituted 
into equation ( 6) to derive the result: 

𝐶𝐶𝐶𝐶𝑍𝑍 =  
�∑ ∑ 𝑉𝑉𝑖𝑖,𝑗𝑗 (𝐶𝐶𝐶𝐶𝑋𝑋𝑖𝑖  𝜇𝜇𝑋𝑋𝑖𝑖) (𝐶𝐶𝐶𝐶𝑋𝑋𝑗𝑗  𝜇𝜇𝑋𝑋𝑗𝑗)

𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1

∑ 𝜇𝜇𝑋𝑋𝑖𝑖
𝑛𝑛
𝑖𝑖=1

 
( 7) 

 

The result in equation ( 7) is valid for any bottom-up application method where the top-
level element 𝑍𝑍 is a convolution of subordinate WBS elements that are representative of 
random variables 𝑋𝑋𝑖𝑖. Note that this relationship is not dependent on the choice of 
distribution, shape, or skew of the random variables 𝑋𝑋𝑖𝑖. 

3.1. Correlation Discussion 

A crucial aspect of the derived equation is the inclusion of correlation between elements in 
the WBS, which was not an immediate area of consideration at the beginning of this study. 
When implementing a bottom-up approach to applying cost uncertainty, an estimator 
should be defining correlation groups between relevant cost input variables to account for. 
These correlation groups at the input level will typically have an impact at the WBS and will 
translate to non-zero correlation between the resulting probability distributions of lowest 
level WBS elements. Additionally, dynamic models will commonly re-use input variables at 
various points in the WBS. For example, a variable for system unit cost could be used to 
calculate the prime mission product as well as to calculate the replacement costs of 
additional systems. This cross-utilization of input variables across the WBS will result in 
functional correlation. Monte-Carlo simulations will account for both applied and 
functional correlation between input variables, but it is important to understand the 
presence of correlation in the aggregate to fully interpret the cost uncertainty of the 
outputs. 

For further discussion on the impact of independence between WBS elements, see 
Appendix B and Appendix C. 
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3.2. Example Calculation & Monte-Carlo Simulation Result 

To further verify the validity of the CV equation, it remains to be demonstrated the 
comparison of a CV calculated using the equation and the CV produced from a Monte-Carlo 
simulation. Since a Monte-Carlo simulation approximates a probability distribution, rather 
than calculating it exactly, a small but non-zero difference between the CV equation and the 
result of the simulation will be sufficient to demonstrate the validity of the derived CV 
equation. It should be noted that in general, this delta should decrease as the number of 
iterations in the simulation are increased. 

The demonstration will utilize a simple WBS with three identical elements being summed 
together, along with a correlation matrix to capture the correlation between WBS elements. 
A calculation of the top-level element’s CV will be done using the derived CV equation, and 
the result will be compared to the CV calculated from running a Monte-Carlo simulation 
under the same conditions. Tecolote’s Automated Cost Estimator (ACE) 7.5 application will 
be used to run the Monte-Carlo simulation as it allows for correlation matrices to be 
defined explicitly. 

Figure 4 – Simple WBS for CV Calculation Example 
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The WBS is comprised of three identical elements, each with a mean value of 100 and a CV 
of 0.1. The correlation matrix is comprised of values of 0.25 for the off-diagonal entries, and 
the diagonal values are, by definition, set to one. 

Figure 5 – Simple WBS Calculation (Created using ACE, Version 7.5) 

When using the derived CV equation, which is referred to as the True CV in the table below, 
the CV of the top-level element 𝑍𝑍 comes out to 0.0707. The same exact conditions modeled 
in ACE result in a CV of 0.0710 after 10,000 iterations of the Monte-Carlo simulation. This 
represents a -0.41% difference between the two values, further validating the derived 
equation. Increasing the number of iterations will generally cause the percent difference 
between the calculated value and the output from the Monte-Carlo simulation to converge 
to zero. 

Table 5 – Calculated CV Against Simulated CV 

4. Behavior of CV Equation 
The purpose of deriving the CV equation is to understand what elements of a cost model can impact 
the overall spread of cost outputs at the total or near total level. There are four main elements at 
the WBS which can impact the top-level CV: 

1. The CV of the lowest level WBS elements 
2. The mean of the lowest level WBS elements 
3. The total number of lowest level elements in the WBS 
4. The correlation between lowest level WBS elements 
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Cost estimators may encounter output CVs that do not align with their qualitative expectations of 
cost uncertainty in a model. This section will explore the behavior of the CV equation against these 
four main elements. 

4.1. Perturbations of a Baseline Case 

A simple WBS is established as the baseline case, and the resulting CV will serve as a benchmark 
against perturbations to the baseline case. Each perturbation will alter a single element of the 
baseline case, and the resulting CV of the perturbation will be compared to the benchmark CV to 
determine how each of the four main elements impact the level of cost variability in a WBS. The 
baseline case will again be comprised of three identical WBS elements, with means of 100, CVs of 
0.1, and off-diagonal correlation coefficients of 0.25. The table below establishes the baseline case. 

Table 6 – Baseline WBS Case 

For perturbations to this baseline case, the mean, the CV, and the correlation coefficients of the 
lowest level WBS elements will remain constant unless that aspect of the model is being examined. 
Detailed output of all perturbations are shown in Appendix C, and the summarized output of 
perturbations are shown in Section 4.2. 
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4.2. Summary of Perturbations and Extreme Case 

Table 7 – Summary of Perturbations 

Table 7 above summarizes all the examined perturbations to the baseline case, with all four 
aspects of the CV equation being adjusted across all the perturbations. The most impactful 
change to the baseline case was the increase to the standard deviation of a single element, 
and while that is an intuitive result that is not an adjustment to the cost model that an 
estimator can make without supporting data and rationale. Similarly, increasing the mean 
of a single WBS element will also increase the top-level CV, but this artificially increases the 
mean of the top-level element of the WBS as well. That leaves the grouping characteristics 
of lowest level WBS elements, the level of correlation between lowest level WBS elements, 
and the level of detail in the WBS as aspects of a model that can reasonably be altered 
without compromising the integrity of the model. 

The following scenario compares two extreme cases that aggregate the positive and 
negative model attributes which do not impact the integrity of a risk adjusted cost model. 
The High-Spread WBS has grouped together elements in the first WBS element and a high 
level of correlation has been applied to all the WBS elements. The Low-Spread WBS has a 
six lowest level WBS elements, each of which are independent of one another. It is 
important to note that both scenarios have the same mean sum at the top-level as well as 
the same average CV of each lowest level WBS element. This comparison can be interpreted 
as two different cost models of the same project and scope.  

 

 

 

 

 

 

 

 

Scenario CV % Δ to Baseline Note
Baseline 0.0707 0% n=3, μ = 100, CV = 0.1, r = 0.25
High Stan. Dev. 0.0972 37% Double one standard dev.
Large Mean 0.0729 3% Double one mean
Large Mean (Normalized) 0.0791 12% Double one mean, reduce mean of other elements
Large WBS 0.0612 -13% Double WBS/maintain top-level mean
Strong Correlation 0.0745 5% Double single correlation coefficient
No Correlation 0.0577 -18% Model independent distributions

Behavior of CV
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Table 8 – High-Spread WBS & Low-Spread WBS Comparison 

The High-Spread WBS results in a top-level CV of 0.0866 while the Low-Spread WBS has a 
top-level CV of 0.0408, which is a 53% difference from the High-Spread WBS. This scenario 
illustrates that two separate models with the same top-level mean value, can have 
drastically different levels of top-level cost uncertainty because of seemingly minor 
modeling techniques. 

The findings of this study can be generalized to real world applications of diagnosing 
underestimated or overestimated top-level cost spread of risk-adjusted cost models. When 
determining why a cost model has a counter-intuitive cost spread, the following potential 
questions should be addressed: 

• Is there an appropriate level of cost uncertainty at the input level of the model? 
• Is there a sufficient level of correlation between input variables in the model? 
• Are lowest level WBS elements grouped or consolidated appropriately? 
• Does the level of detail in the WBS align with the qualitative interpretation of 

program certainty? 
 

The above questions will either be answered in the affirmative or will require an 
adjustment to the model to ensure that cost uncertainty is not underestimated. All 
corrective actions done to a model must follow best practices and adhere to available data. 
Corrective actions could include items such as a re-evaluation of input level probability 
distributions, an increase or decrease to correlation coefficients, different groupings of 
elements in a correlation group, consolidation of elements in the WBS, or a complete 
overhaul to the level of complexity in the model. 

4.3. Over Sharpening the Pencil 

In cost modeling, there is a phenomenon called “Over Sharpening the Pencil”, where an 
estimate is developed to a high level of fidelity and detail that does not align to the actual 

WBS Mean Stan. Dev. CV WBS Mean Stan. Dev. CV
Z 300 Z 300

X1 200 20 0.1 X1 50 5 0.1
X2 50 5 0.1 X2 50 5 0.1 High Spread 0.086603
X3 50 5 0.1 X3 50 5 0.1 Low Spread 0.040825

X4 50 5 0.1
X5 50 5 0.1 % Δ  CV -53%
X6 50 5 0.1

X1 X2 X3 X1 X2 … X6
X1 1 0.5 0.5 X1 1 0 0 0
X2 0.5 1 0.5 X2 0 1 0 0
X3 0.5 0.5 1 … 0 0 1 0

X6 0 0 0 1

High Spread WBS Low Spread WBS

CV Calculation

Correlation Matrix Correlation Matrix
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certainty of the scope of that estimate. An example of this would be an in-depth estimate 
for the production unit cost of an airplane while the project is still in the early 
developmental phase of its lifecycle. While having an estimate that accounts for the number 
of man-hours per component, the precise amount of raw materials required, and an 
engineering build-up that goes down to the number of screws looks accurate on paper, in 
reality that estimate injects a high-level of certainty for an item that is still being designed 
and tested. A more appropriate approach to this scenario is to rely on subsystem level 
build-up that leverages cost estimating relationships and analogies to other aircrafts. An 
overly precise estimate will lower the cost spread at the total or near-total level, as the 
number of lowest level WBS elements increases to account for the higher level of detail in 
the estimate. The perturbation for the larger WBS size indicates this behavior, and the 
following section will model this phenomenon. 

5. Randomized WBS 
The final goal of this study is to provide conditions for WBS size that will limit the 
likelihood of underestimated cost uncertainty in a model, assuming that all other best 
practices for cost modeling are followed. This goal is achieved through randomized 
simulations of typical cost estimator practices when developed a cost estimate. This will 
allow for pre-defined conditions to be simulated at scale, large-scale behavior to be 
observable, and resulting recommendations to be derived from the large-scale behavior. 

5.1. Process of Randomized WBS 

The randomized WBS script was developed in Visual Basic for Applications for Microsoft 
Excel. The process utilized in this script follows these steps: 

1. Define the parameters of the simulation including the maximum number of WBS 
elements, the number of iterations per WBS size, and the statistics of the lowest-
level WBS elements. 

2. Randomly generate WBS’s of varying size across multiple iterations. 
3. Save the results of each iteration and calculate the resulting top-level CV of each 

WBS. 
4. Examine the behavior of the top-level CV at scale. 
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Figure 6 – Randomized WBS Process 

Figure 6 above outlines the process used in the script. WBS size ranged from two to sixty lowest 
level elements, with forty WBS’s randomly generated for each WBS size. While not shown in this 
technical paper, increasing the number of iterations or maximum WBS size did not yield different 
results significant to this study. 

5.2. Sampling Statistics of Subordinate WBS Elements 

An important step in generating these randomized WBS’s, is to define parameters for sampling 
random values for the statistics of the lowest-level WBS elements. These parameters will define the 
behavior of the simulated cost estimators building a cost estimate. The first set of parameters to 
define are the mean values for each lowest level WBS elements. The mean values for the lowest 
level WBS elements are randomly sampled from a uniform distribution that enables a top-level sum 
on the scale of a Department of Defense Acquisition Category I program ($3.6B-$5.8B sum of 
Development and Procurement costs). The choice of this top-level sum is ultimately irrelevant for 
this study since preliminary simulations did not result in differing behavior and since CV is a 
statistic that scales with the mean value. For a WBS with 𝑛𝑛 elements, the mean values for each 
lowest level WBS element are sampled from a uniform distribution with a lower bound of $3.6𝐵𝐵/𝑛𝑛 
and an upper bound of $5.8𝐵𝐵/𝑛𝑛. 

The more meaningful statistics to define parameters for are the CVs for each lowest level WBS 
element and the values for the correlation matrix of each WBS. For the CV of each lowest level WBS 
element, an exponential function was used to scale down the mean CV as the number of WBS 
elements increased. This was implemented because as the WBS is broken down into smaller 
elements, the scope of each element decreases and the level of certainty for that element increases. 
The scope of a cost element decreases as the fidelity and size of the WBS increases without 
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changing the total scope of the overarching estimate, resulting in lower cost spreads for the 
subordinate cost elements of the WBS. For a WBS with 𝑛𝑛 lowest level elements, the CV for each 
lowest level element is sampled from a normal distribution with a mean of 0.75 𝑒𝑒−0.025∗(𝑛𝑛−2) and a 
standard deviation of 10% of the mean. Figure 7 depicts the sampling parameters for the CV of 
lowest level elements. 

Figure 7 – Sampling Parameters of Lowest Level WBS Element CV 

The last parameter to define is the level of correlation between lowest level WBS elements. For this 
parameter, the United States Air Force (USAF) Cost and Risk Analysis Handbook was utilized as it 
provides a rule of thumb for assigning correlation coefficients when the underlying correlation 
between elements is unknown. The USAF Cost and Risk Analysis Handbook recommends the 
following [4, p. 24]: 

• 2-4 elements: correlation coefficients range from 0.5 to 0.75 
• 5-19 elements: correlation coefficients range from 0.25-0.5 
• 20 or more elements: correlation coefficients range from 0.1-0.25 

 

This step-down range is used for defining the parameters of the sampled correlation coefficients. 
For a WBS of size 𝑛𝑛 the correlation coefficients 𝑉𝑉 are sampled from the following uniform 
distributions: 

𝑉𝑉 ~ �
𝑈𝑈𝑛𝑛𝑖𝑖𝑈𝑈𝑈𝑈𝑉𝑉𝑈𝑈(0.5, 0.75), 2 ≤ 𝑛𝑛 ≤ 4
𝑈𝑈𝑛𝑛𝑖𝑖𝑈𝑈𝑈𝑈𝑉𝑉𝑈𝑈(0.25, 0.5), 5 ≤ 𝑛𝑛 ≤ 19
𝑈𝑈𝑛𝑛𝑖𝑖𝑈𝑈𝑈𝑈𝑉𝑉𝑈𝑈(0.1, 0.25), 𝑛𝑛 ≥ 20

 ( 8) 
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The sampling pattern of the correlation coefficients in equation ( 8) are shown below in Figure 8. 

Figure 8 – Sampling Parameters of Lowest Level WBS Element Correlation Coefficients 

5.3. Large-Scale Results of Simulations 

Running large-scale simulations of randomized WBS’s under these conditions yielded results which 
aligned with the large WBS perturbation, as the average top-level CV of each WBS trended 
downwards as the size of the WBS increased. Figure 9 is a graph of the average top-level CV by WBS 
size being plotted against the size of the WBS. 

Figure 9 – Average Top-Level CV vs WBS Size 
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It is important to note that the downward trend shown in Figure 9 is partly a consequence of the 
parameters for lowest level WBS element CVs depicted in Figure 7. A less aggressive ramp down of 
lowest level element CV would result in a less aggressive downward trend of the average top-level 
CV, as indicated by the high CV perturbation, however it would be unrealistic to observe a risk-
adjusted cost model with many lowest level WBS elements each with a CV greater than 0.35.  

Additional analysis of this large-scale simulation includes an examination of the average ratio 
between top-level CV and the weighted average CV of the lowest level elements in that iteration, 
using the mean value of the lowest-level elements as the weighting factor. One method to determine 
if correlation has been underestimated is to examine the ratio between the top-level CV and the 
weighted average. The top-level CV will always be less than or equal to the weighted average CV of 
the lowest level elements, but a significant deviation represents underestimated cost uncertainty 
and is likely due to not having a sufficient level of correlation between input variables. [5] 

The plot in Figure 10 shows the average ratio of top-level CV to the weighted average CV of the 
lowest level elements by WBS size, as well as dashed lines for + −⁄  25% adders from the average 
line. Cost estimators should use this plot to determine if the resulting top-level CV is too high or too 
low based on the size of the WBS. Ratios exceeding the dashed bounds of the plot indicate under 
correlated cost input variables if the ratio is below the lower bound or indicate over correlated cost 
input variables if the ratio is above the upper bound for a given WBS size. 

Figure 10 – Average Ratio of Top-Level CV to Weighted Average CV vs WBS Size 
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5.4. WBS Size Rule of Thumb 

The top-level CV behavior at-scale can be paired with typical CV ranges across acquisition lifecycle 
to provide a recommendation on the size of the WBS which aligns to acquisition phase and the 
qualitative level of certainty on project requirements. A USAF Institute of Technology paper 
reviewed cost growth factors from actual DoD Programs of Record to determine appropriate ranges 
for top-level CV across program lifecycle [4, p. 80]. Cost growth factors represent deviations from 
actual program costs against the estimated cost at each acquisition phase milestone, which is 
ultimately an aspect of project management that a cost model’s CV is intended to address. 

Table 8 – USAF Institute of Technology CV Ranges by Acquisition Lifecycle 

Using the appropriate ranges for CV across lifecycle shown in Table 8, along with the behavior of CV 
at scale, the following recommendation can be made for WBS size across acquisition lifecycle. This 
is also aligned with a qualitative level of overall project requirement certainty for use beyond the 
Department of Defense. For a bottom-up risk-adjusted cost model supporting a project with a high 
level of uncertainty, 2-14 lowest level WBS elements should comprise the WBS of the estimate. For 
cost estimates under the same conditions for a project with a medium level of uncertainty, 6-25 
lowest level WBS elements is recommended. Lastly, an estimate for a project with a moderate or 
low level of uncertainty should have at least 24 lowest level WBS elements. 

Table 9 – Recommended WBS Size by Acquisition Phase/Project Requirements Certainty 

Cost estimates are living documents that must be updated and maintained to provide continued 
meaningful insights to project managers and decision-makers. Having a WBS which reflects the 
overall level of certainty for a project is critical to ensuring that cost uncertainty is not 
underestimated. 

5.5. Implications for Project Management 

Managers should push for a level of cost variability in their delivered cost estimates that aligns with 
the maturity of a project. Early-stage projects should have a high degree of cost uncertainty which 
decays exponentially over time as the project matures and overall program certainty increases. 

Estimate Type CV Range
Milestone A 0.41 - 0.74
Milestone B 0.31 - 0.54
Milestone C 0.23 - 0.32

USAF IT Research Paper

Acquisition Phase Rec. WBS Size
Milestone A/High Uncertainty 2 - 14 Lowest Level Elements
Milestone B/Medium Uncertainty 6 - 25 Lowest Level Elements
Milestone C/Modest Uncertainty 24+ Lowest Level Elements

Recommended WBS Ranges
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Cost estimates that accurately capture cost uncertainty can be used to realistically bound cost 
growth over project lifecycle, as well as provide more meaningful insights to derived values of 
management reserve and contingency. Managers should also ensure that the fidelity of a cost 
estimate accurately reflects the level of understanding of a project’s requirements. Highly detailed 
cost estimates during the early-planning period of a project are likely to present a false sense of 
cost certainty and can trigger false flags if realistic cost growth exceeds underestimated cost growth 
bounds around an estimate. 

6. Conclusion 
Cost models should account for risk and statistical uncertainty in their outputs to appropriately 
forecast realistic cost growth or to derive realistic values for management reserve and contingency. 
The top-level CV of a cost model is used to normalize the variability of a cost model to allow for 
comparisons to other cost estimates and determine if cost uncertainty is appropriately captured in 
a model. Risk-adjusted cost models which follow the bottom-up method to applying uncertainty are 
potentially at risk of underestimating cost uncertainty. Using a derived equation for top-level CV, an 
understanding is gained for the underlying mechanisms in the model that control the top-level CV. 
Cost uncertainty of the lowest-level WBS elements, the correlation between input variables, and 
overall structure and detail of the WBS are the model attributes that an estimator can examine 
when diagnosing a cost model with lower-than-expected cost variability. Using randomly generated 
WBS’s, large scale behavior of top-level CV indicates that total or near-total cost variability 
decreases with the size of the WBS. Comparing large-scale behavior of top-level CV to the weighted 
average CV of lowest level elements provides triggers that indicate if sufficient correlation has been 
applied to a cost model. Lastly, the at-scale behavior of cost variability is used to provide 
recommendations to WBS size that aligns with observed cost growth factors in an effort to 
persuade cost estimators to develop cost models with a level of fidelity that aligns to overall project 
certainty. 
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Appendix A: Monte-Carlo Based Cost Modeling 
Monte-Carlo simulations are often used to calculate the risk and uncertainty of a cost 
model, as well as other business and financial decisions. Monte-Carlo simulations in cost 
applications rely on repeated random sampling of values from probability distributions in a 
model. Each random sampling is referred to as an iteration of the simulation. Sampled 
values within a single iteration are then run through the model to calculate outputs from 
that iteration, the results are saved, and then new values are sampled to begin another 
iteration. The saved results across a finite number of iterations are finally aggregated to 
form an approximation of the output level probability distributions. 

Figure A-1 is a graphic depicting the results of a Monte-Carlo simulation against the true 
results of the calculation. Within this scenario, two independent random variables adhering 
to normal distributions are being summed together to form a third, resulting random 
variable. The first probability distribution, shown in blue, has a mean of one and a standard 
deviation of 0.25. The second probability distribution, shown in orange, has a mean of three 
and a standard deviation of 0.1. The sum of those two random variables can be computed 
by hand without the use of any computational methods. The upper left-hand graph of 
Figure A-1 shows the probability density functions of these three distributions exactly. 

The sum of the two random variables can also be modeled using a Monte-Carlo simulation 
as well. The graph in the upper right-hand corner of Figure A-1 has an overlayed histogram 
which represent random samples from the first iteration of a Monte-Carlo simulation. A 
random value is sampled from the first normal distribution, shown in blue, and another 
random value is sampled from the second normal distribution, shown in orange. These two 
random values are then summed together, a result which is shown by the black bar. This 
result is saved, and then four more iterations are run. The results of the first five iterations 
are shown in the bottom left-hand corner of Figure A-1. By increasing the number of 
iterations to 30, shown in the bottom left-hand corner of Figure A-1, the frequency plots 
begin to converge to the true shape of the probability density functions. Increasing the 
number of iterations will result in a convergence to the distribution of the sum of the two 
random variables. This is a simple calculation of only two independent random variables 
that is relatively easy to compute exactly by-hand, but larger and more complex models are 
more difficult and computationally taxing to compute exactly. Monte-Carlo simulations for 
these larger and more complex models follow a similar process to approximate resulting 
probability distributions of the model, in a computationally efficient manner. 
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Figure A-1 – Monte-Carlo Sampling Illustrative Example 

 

For a bottom-up risk adjusted cost model, a single iteration will randomly sample a value 
for each input variable of the model, calculate the cost output using those randomly 
sampled values, and then save the result of that iteration. Compiling the results of multiple 
iterations will result in approximated probability distributions at each level of the WBS. 
Cost estimators then use these probability distributions to generate cost figures at specific 
risk-levels that are appropriate for the use-case of the estimate. These cost figures 
represent snapshots of the output-level probability distribution at a specific confidence 
level. 
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Appendix B: Special Case of Independence 
A potential issue in bottom-up risk-adjusted cost models, is that correlation between input 
variables is underrepresented or not accounted for at all. This absence of sufficient 
correlation will translate upwards to the WBS and converge to a model where WBS cost 
elements are independent of one another. To understand how under correlating variables 
in a bottom-up risk-adjusted cost model impacts the cost uncertainty at the total or near-
total level, an examination of independence at the WBS level is required. 

For lowest level WBS elements, 𝑋𝑋𝑖𝑖, in a cost model summing to the top-level, 𝑍𝑍, assume 
each 𝑋𝑋𝑖𝑖 are independent of each other. This is represented in the CV equation by the values 
of 𝑉𝑉𝑖𝑖,𝑗𝑗 in the correlation matrix. When each 𝑋𝑋𝑖𝑖 are independent, 𝑉𝑉𝑖𝑖,𝑗𝑗 is equal to zero when 
𝑖𝑖 ≠ 𝑗𝑗 and one when 𝑖𝑖 = 𝑗𝑗. Plugging in these values of the Pearson correlation coefficients 
into equation ( 7) results in: 

 

𝐶𝐶𝐶𝐶𝑍𝑍,   𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖 =  
�∑ (𝐶𝐶𝐶𝐶𝑋𝑋𝑖𝑖  𝜇𝜇𝑋𝑋𝑖𝑖)2

𝑛𝑛
𝑖𝑖=1

∑ 𝜇𝜇𝑋𝑋𝑖𝑖
𝑛𝑛
𝑖𝑖=1

 ( B-1) 

 

For most applications of cost modeling, the inclusion of independence among WBS level 
probability distributions will result in a lower CV than if correlation is applied to input 
variables of the model. To demonstrate this, the following statement will be evaluated to 
determine the specific scenario where independence of WBS elements results in a wider 
spread than the inclusion of correlation: 

 

𝐶𝐶𝐶𝐶𝑍𝑍,   𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖 >  𝐶𝐶𝐶𝐶𝑍𝑍 ( B-2) 

  

�∑ (𝐶𝐶𝐶𝐶𝑋𝑋𝑖𝑖  𝜇𝜇𝑋𝑋𝑖𝑖)2
𝑛𝑛
𝑖𝑖=1

∑ 𝜇𝜇𝑋𝑋𝑖𝑖
𝑛𝑛
𝑖𝑖=1

>   
�∑ ∑ 𝑉𝑉𝑖𝑖,𝑗𝑗 (𝐶𝐶𝐶𝐶𝑋𝑋𝑖𝑖  𝜇𝜇𝑋𝑋𝑖𝑖) (𝐶𝐶𝐶𝐶𝑋𝑋𝑗𝑗  𝜇𝜇𝑋𝑋𝑗𝑗)

𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1

∑ 𝜇𝜇𝑋𝑋𝑖𝑖
𝑛𝑛
𝑖𝑖=1

 
(B-3) 

 

� (𝐶𝐶𝐶𝐶𝑋𝑋𝑖𝑖  𝜇𝜇𝑋𝑋𝑖𝑖)
2

𝑛𝑛

𝑖𝑖=1
 >   � � 𝑉𝑉𝑖𝑖,𝑗𝑗 (𝐶𝐶𝐶𝐶𝑋𝑋𝑖𝑖  𝜇𝜇𝑋𝑋𝑖𝑖) (𝐶𝐶𝐶𝐶𝑋𝑋𝑗𝑗  𝜇𝜇𝑋𝑋𝑗𝑗)

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1
 (B-4) 

 

The sum on the right-hand side of equation (B-4)  can be expanded and divided into parts 
of the sum where 𝑖𝑖 = 𝑗𝑗 and parts where 𝑖𝑖 ≠ 𝑗𝑗. When 𝑖𝑖 = 𝑗𝑗, the sum of the equation reduces 
to the independent case plus the impact of correlated elements in the WBS. Let E be the set 
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of elements in the sum on the right-hand side where 𝑖𝑖 ≠ 𝑗𝑗, or more exactly let the set be 
defined as: 𝐸𝐸 = { (𝑖𝑖, 𝑗𝑗) | 𝑖𝑖 ≠ 𝑗𝑗; 1 ≤  𝑖𝑖, 𝑗𝑗 ≤ 𝑛𝑛 }. Equation (B-4) becomes: 

 

� (𝐶𝐶𝐶𝐶𝑋𝑋𝑖𝑖  𝜇𝜇𝑋𝑋𝑖𝑖)
2

𝑛𝑛

𝑖𝑖=1
 > � (𝐶𝐶𝐶𝐶𝑋𝑋𝑖𝑖  𝜇𝜇𝑋𝑋𝑖𝑖)

2
𝑛𝑛

𝑖𝑖=1
 +  � 𝑉𝑉𝑖𝑖,𝑗𝑗 (𝐶𝐶𝐶𝐶𝑋𝑋𝑖𝑖  𝜇𝜇𝑋𝑋𝑖𝑖) (𝐶𝐶𝐶𝐶𝑋𝑋𝑗𝑗  𝜇𝜇𝑋𝑋𝑗𝑗)(𝑖𝑖,𝑗𝑗) ∈𝐸𝐸

 

 

(B-5) 

 

0 > � 𝑉𝑉𝑖𝑖,𝑗𝑗 (𝐶𝐶𝐶𝐶𝑋𝑋𝑖𝑖  𝜇𝜇𝑋𝑋𝑖𝑖) (𝐶𝐶𝐶𝐶𝑋𝑋𝑗𝑗  𝜇𝜇𝑋𝑋𝑗𝑗)(𝑖𝑖,𝑗𝑗) ∈𝐸𝐸
 ( B-68) 

 

Since each �𝐶𝐶𝐶𝐶𝑋𝑋𝑖𝑖𝜇𝜇𝑋𝑋𝑖𝑖� in equation ( B-68) is non-negative in cost modeling applications, the 
above relationship implies a predominance of inverse/negative correlation at the WBS 
level of the cost model which is an unlikely scenario in practice. The inclusion of correlation 
in a risk-adjusted cost model will increase the variability of cost output at the total or near-
total level, unless there is a majority of inverse correlation in the cost model which is a rare 
occurrence. 
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Appendix C: Perturbations to Baseline Case 
Increased CV of WBS Element 
The first perturbation to examine is the case when one of the elements in the WBS has a 
higher level of variability. This is modeled by increasing the CV, and the standard deviation 
by proxy, of one of the lowest-level WBS elements. The CV equation indicates that since the 
CV is in the numerator, increasing the CV of a WBS element will increase the overall spread 
at the total level. This is an intuitive result, and the level of increase can be shown by 
doubling the value of the standard deviation for one WBS element. 

Table C-1 – Increased CV of WBS Element Perturbation 

By doubling the CV of 𝑋𝑋1 from 0.1 to 0.2, the CV of 𝑍𝑍 increased from 0.0707 to 0.0972, 
which is approximately a 37% increase in the CV of 𝑍𝑍 from the baseline case.  

Large Mean 
Increasing the mean of a single WBS element is the next perturbation to examine. For this 
scenario, the mean of 𝑋𝑋1 will be doubled from 100 to 200. Doubling the mean of a single 
element will have the immediate impact of increasing the standard deviation of 𝑋𝑋1 to keep 
the CV of 𝑋𝑋1 constant, as well as increasing the mean value of the top-level WBS element 𝑍𝑍. 
Unlike increasing the CV of a single WBS element, increasing the mean of a single WBS 
element does not have an obvious result when reviewing the equation. The numerator of 
the CV equation will increase in value, but this increase is bounded by an increase in the 
denominator as well. 

 

WBS Mean Stan. Dev. CV WBS Mean Stan. Dev. CV
Z 300 Z 300

X1 100 10 0.1 X1 100 20 0.2
X2 100 10 0.1 X2 100 10 0.1 Baseline 0.070711
X3 100 10 0.1 X3 100 10 0.1 Increased CV of WBS Element 0.097183

% Δ  CV 37%

X1 X2 X3 X1 X2 X3
X1 1 0.25 0.25 X1 1 0.25 0.25
X2 0.25 1 0.25 X2 0.25 1 0.25
X3 0.25 0.25 1 X3 0.25 0.25 1

Baseline WBS Increased CV of WBS Element

CV Calculation

Correlation Matrix Correlation Matrix
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Table C-2 – Large Mean Perturbation 

The result of this perturbation is an increase in the CV of 𝑍𝑍 from 0.0707 to 0.0729, which is 
an increase of approximately 3% from the baseline case. This is a minimal increase to the 
spread at the top-level of the WBS, given that the perturbation is significant to mean of the 
top-level sum. 

Large Mean (Normalized) 
An issue with the previous perturbation is that the mean value of the top-level element 𝑍𝑍 
increased significantly, which may not be a logical alteration to a cost model when 
remedying underrepresented cost variability in a model. To combat this potentially 
confounding aspect of the previous perturbation, another scenario is established which 
normalizes the mean values of the other two elements of the WBS so that the mean value of 
Z is retained. The mean of 𝑋𝑋1 is again doubled to 200, and the means of 𝑋𝑋2 and 𝑋𝑋3 are 
equally decreased to 50 so that the mean value of 𝑍𝑍 remains at 300. Note that the values of 
the standard deviation for each lowest level WBS element is adjusted to preserve the 
baseline CV of each element. 

Table C-3 – Large Mean (Normalized) Perturbation 

 

WBS Mean Stan. Dev. CV WBS Mean Stan. Dev. CV
Z 300 Z 400

X1 100 10 0.1 X1 200 20 0.1
X2 100 10 0.1 X2 100 10 0.1 Baseline 0.070711
X3 100 10 0.1 X3 100 10 0.1 Large Mean 0.072887

% Δ  CV 3%

X1 X2 X3 X1 X2 X3
X1 1 0.25 0.25 X1 1 0.25 0.25
X2 0.25 1 0.25 X2 0.25 1 0.25
X3 0.25 0.25 1 X3 0.25 0.25 1

Baseline WBS Large Mean

CV Calculation

Correlation Matrix Correlation Matrix

WBS Mean Stan. Dev. CV WBS Mean Stan. Dev. CV
Z 300 Z 300

X1 100 10 0.1 X1 200 20 0.1
X2 100 10 0.1 X2 50 5 0.1 Baseline 0.070711
X3 100 10 0.1 X3 50 5 0.1 Large Mean (Normalized) 0.079057

% Δ  CV 12%

X1 X2 X3 X1 X2 X3
X1 1 0.25 0.25 X1 1 0.25 0.25
X2 0.25 1 0.25 X2 0.25 1 0.25
X3 0.25 0.25 1 X3 0.25 0.25 1

Baseline WBS Large Mean (Normalized)

CV Calculation

Correlation Matrix Correlation Matrix
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By increasing the mean of 𝑋𝑋1 and decreasing the means of 𝑋𝑋2 and 𝑋𝑋3 to preserve the mean 
of 𝑍𝑍 increases the CV of 𝑍𝑍 to 0.0791, which is approximately a 12% increase from the 
baseline. The resulting CV of this perturbation is substantially higher than the CV of the 
previous perturbation, but still less impactful than changing the CV of a single WBS 
element. An interpretation of this scenario is that elements in a WBS are grouped in a 
matter that preserves their sum but increases the level of overall variability in the WBS.  

Large WBS 
This perturbation demonstrates the impact of increasing the number of elements in a WBS, 
while preserving the sum at the top-level element and maintaining the CV of each lowest 
level WBS element. This can be thought of as increasing the fidelity of the estimate by 
furthering decomposing the existing WBS elements into smaller components. For this 
perturbation, the WBS is altered to the sum of six lowest level elements, all with mean 
values of 50 so that their sum matches the sum in the baseline case. The equation for CV 
does not immediately provide any insight to the expected results of this perturbation. 

Table C-4 –Large WBS Perturbation 

Increasing the size of the WBS while maintaining the top-level sum results in a lower top-
level CV, as the CV dropped approximately 13% down to 0.0612 from the baseline case. 
This result indicates that a larger WBS with a high volume of small lowest level elements 
results in a lower level of dispersion at the total or near-total level compared to a model 
with a WBS with the same mean value but less numerous lowest level WBS elements. 
Another interpretation of this result is that increasing the level of fidelity in a WBS is an 
opposite mechanism to the previous perturbation where stronger grouping of lowest level 
elements in a WBS increases the overall spread of the model. 

WBS Mean Stan. Dev. CV WBS Mean Stan. Dev. CV
Z 300 Z 300

X1 100 10 0.1 X1 50 5 0.1
X2 100 10 0.1 X2 50 5 0.1 Baseline 0.070711
X3 100 10 0.1 X3 50 5 0.1 Large WBS 0.061237

X4 50 5 0.1
X5 50 5 0.1 % Δ  CV -13%
X6 50 5 0.1

X1 X2 X3 X1 X2 … X6
X1 1 0.25 0.25 X1 1 0.25 0.25 0.25
X2 0.25 1 0.25 X2 0.25 1 0.25 0.25
X3 0.25 0.25 1 … 0.25 0.25 1 0.25

X6 0.25 0.25 0.25 1

Baseline WBS Large WBS

CV Calculation

Correlation Matrix Correlation Matrix

Presented at the ICEAA 2023 Professional Development & Training Workshop - www.iceaaonline.com/sat2023



 

34 

Strong Correlation 
The last aspect of the CV equation to examine, is the impact of correlation on the modeled 
cost spread at the total or near-total level. For this perturbation, the only change is that the 
correlation coefficient between a single pair of lowest level WBS elements will be doubled. 
Since the correlation coefficients only appear in the numerator of the CV equation, the top-
level CV will increase because of this perturbation. 

 

Table C-5 –Strong Correlation Perturbation 

As expected, the top-level CV increased to 0.0745 which represents a 5% increase from the 
CV of the baseline case. While this is a minor overall impact to the top-level spread, it is 
more important to note that increasing a single correlation coefficient is a relatively 
insignificant perturbation that causes a disproportionate change to the top-level spread of 
the cost model. 

Independence (No Correlation) 
The derived equation for top-level CV and extrapolating the results of the prior 
perturbation both indicate that decreasing the correlation between lowest level WBS 
elements in a cost model will result in a lower overall CV at the total or near-total level. 
This perturbation is designed to illustrate the impact of no correlation in a risk-adjusted 
cost model. Independent lowest level WBS elements will have off-diagonal entries in the 
correlation matrix of zero, while the diagonal entries are one by default. 

WBS Mean Stan. Dev. CV WBS Mean Stan. Dev. CV
Z 300 Z 300

X1 100 10 0.1 X1 100 10 0.1
X2 100 10 0.1 X2 100 10 0.1 Baseline 0.070711
X3 100 10 0.1 X3 100 10 0.1 Strong Corr 0.074536

% Δ  CV 5%

X1 X2 X3 X1 X2 X3
X1 1 0.25 0.25 X1 1 0.25 0.5
X2 0.25 1 0.25 X2 0.25 1 0.25
X3 0.25 0.25 1 X3 0.5 0.25 1

Baseline WBS Strong Correlation

CV Calculation

Correlation Matrix Correlation Matrix
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Table C-6 –Independence (No Correlation) Perturbation 

Independence of lowest level elements in a WBS results in a resulting top-level CV of 
0.0577, or a 18% decrease in the top-level CV from the baseline case. Failure to apply 
correlation to a cost model can have a dramatic effect on the spread at the top-level of the 
WBS. This impact can be compounded when the cost model has many lowest level WBS 
elements. 

 

WBS Mean Stan. Dev. CV WBS Mean Stan. Dev. CV
Z 300 Z 300

X1 100 10 0.1 X1 100 10 0.1
X2 100 10 0.1 X2 100 10 0.1 Baseline 0.070711
X3 100 10 0.1 X3 100 10 0.1 No Corr 0.057735

% Δ  CV -18%

X1 X2 X3 X1 X2 X3
X1 1 0.25 0.25 X1 1 0 0
X2 0.25 1 0.25 X2 0 1 0
X3 0.25 0.25 1 X3 0 0 1

Baseline WBS No Correlation

CV Calculation

Correlation Matrix Correlation Matrix
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