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Abstract 

Bayes’ Theorem is a mathematical method for combining prior experience with new 
data. It is extremely important in leveraging limited information, which is often the case 
in cost estimating. This paper is an extension of a previous ICEAA paper that dealt with 
the application of Bayes’ Theorem to cost estimating. In this update we show how the 
Bayesian approach for linear models can be extended for different and more realistic 
assumptions. 

Introduction 

Historically, parametric methods in cost estimating have used frequentist techniques. 
Frequentist statistics is the classical method that uses a sample of data as inputs. If you 
have taken Statistics 101 in college, most if not all the class was oriented towards this 
approach. For example, traditional linear and nonlinear regression analysis is a 
frequentist approach. The challenge with this method is that it requires a large amount 
of data. Statisticians have conducted numerous studies using random data and have 
concluded that you need 50 data points for a regression analysis with 10 additional data 
points for every independent variable you want to include. For example, if you want to 
include three independent variables in your analysis, you need 80 data points. The 
number of highly specialized systems used in the Department of Defense and NASA 
means that we typically have nowhere near that much. For example, the Missile Defense 
Agency has only developed a handful of different kill vehicles, and NASA has only 
developed a few crewed launch vehicles. When looking at truly applicable data, the 
sample size shrinks even further – when considering launch vehicles, the primary 
systems that NASA has completed have been those for the Apollo and Shuttle programs. 
The Apollo program began in the 1960s, and the Shuttle program began in the 1970s. 
Thus, there are no directly applicable historical data points within the last 40 years. 
Considering the changes that have taken place in the realm of technology since then, 
there really is no applicable historical data at all for these systems. 

For small data sets like these, Bayesian methods can help provide more accurate 
estimates. Bayesian methods leverage all your experience, making them less subject to 
being overwhelmed by noise. This prior experience can be subjective or objective. The 
objective data could involve the use of similar data that is not directly applicable. 

This approach has proven to be successful in a multitude of applications. Bayesian 
techniques were used in World War II to help crack the Enigma code used by the 
Germans, thus helping to shorten the war. John Nash’s equilibrium for games with 
incomplete or imperfect information is a form of Bayesian analysis (John Nash’s life was 
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portrayed in the film A Beautiful Mind). Actuaries have used Bayesian methods for over 
100 years to set property and casualty insurance premiums. Bayesian voice recognition 
researchers applied their skills as leaders of the portfolio and technical trading team for 
the Medallion Fund, a $5 billion hedge fund which has averaged annual returns of 35% 
after fees since 1989. 

As you can see, the Bayesian method has been used in several applications in which 
there is money on the line. I place a high degree of confidence in methods that have 
proven themselves under such circumstances. They are not mere “ivory tower” exercises 
without practical application. The practitioners who have used these methods have 
risked significant sums of money, literally billions of dollars, in using these methods. 
Thus, many of the users of Bayes’ Theorem have “skin in the game” (Taleb 2018). 

A previous paper on this subject by one of the authors of this paper dealt with the 
normal/Gaussian model (Smart 2014). This paper focused on the context of log- 
transformed ordinary least squares regression and assumed that both the log of the 
prior information and that the log of the new information is normally distributed. In 
addition, we assumed that the variance is a known, fixed quantity. The prior experience 
is typically based on a large amount of information, either objective or subjective, and 
thus the assumption of normality for the prior information is not suspect. However, we 
typically do not know the variance – indeed we estimate it with the square of the 
standard error of the prior model in the case of objective prior data. Even worse, the 
“known” variance is treated by the modeling process as the square of the standard error 
of the estimate of the regression equation based on a small sample, which is not an 
accurate estimate of the true variance. Also, the reason why we are using Bayes’ 
Theorem is that we have a small amount of data. In this case, when we don’t know the 
variance and we have a small amount of data, the new information should be assumed 
to follow a Student’s t-distribution. 

In the previous paper on Bayesian regression, we showed that the resulting estimate of a 
Bayesian approach to regression is a weighted average of the regression coefficients for 
the two data sets. The weights are determined by the uncertainty about the coefficients. 
The impact of using the normal model with known variance is that we will typically 
assign too much weight to the parameters of the smaller data set – the small data set 
will provide a better fit than the true underlying population, so the standard error of the 
estimate will be significantly lower than the overall population. 

In this paper we extend the application of Bayes’ Theorem for the normal linear model 
to the case of unknown variance, and to the case of a Student’s t-distribution for new 
information. We make use of Markov Chain Monte Carlo simulation as the ability to 
analytically model these assumptions breaks down as we generalize our assumptions. 
We also show how the models under these various assumptions can be used for 
prediction and how to incorporate uncertainty in the estimates derived from these 
methods. 
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Bayes’ Theorem 

In this section we provide a review of Bayes’ theorem. The distribution of the model 
given values for the parameters is called the model distribution. Prior probabilities are 
assigned to the model parameters. After observing data, a new distribution, called the 
posterior distribution, is developed for the parameters, using Bayes’ Theorem. 

 
The conditional probability of event A given event B is denoted by Pr (𝐴𝐴𝐴𝐴|𝐵𝐵𝐵𝐵). 

In its discrete form, Bayes’ Theorem states that 

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷(𝑨𝑨𝑨𝑨|𝑩𝑩𝑩𝑩) = 
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷(𝑨𝑨𝑨𝑨)𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷(𝑩𝑩𝑩𝑩|𝑨𝑨𝑨𝑨) 

 
 

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 (𝑩𝑩𝑩𝑩) 
 

For example, consider testing for illegal drug use. Many people have had to take such a 
test as a condition of employment with the federal government or with a government 
contractor. What is the probability that someone who fails a drug test is not a user of 
illegal drugs? Bayes’ theorem can be used to answer such questions. 

 
Suppose that 95% of the population does not use illegal drugs. Also suppose that the 
drug test is highly accurate. If someone is a drug user, it returns a positive result 99% of 
the time. If someone is not a drug user, the test returns a false positive only 2% of the 
time. 

 
In this case: A is the event that someone is not a user of illegal drugs, and B is the event 
that someone test positive for illegal drugs. The complement of A, denoted A’, is the 
event that someone is a user of illegal drugs. 

 
From the law of total probability, 

 
𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(𝐁𝐁𝐁𝐁) = 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(𝑩𝑩𝑩𝑩|𝑨𝑨𝑨𝑨) 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(𝑨𝑨𝑨𝑨) + 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(𝑩𝑩𝑩𝑩|𝑨𝑨𝑨𝑨′) 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(𝑨𝑨𝑨𝑨′) 

 
Thus Bayes’ Theorem in this case is equivalent to: 

 
𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(𝑩𝑩𝑩𝑩|𝑨𝑨𝑨𝑨) 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 (𝑨𝑨𝑨𝑨) 

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(𝑨𝑨𝑨𝑨|𝑩𝑩𝑩𝑩) = 
𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(𝑩𝑩𝑩𝑩|𝑨𝑨𝑨𝑨) 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(𝑨𝑨𝑨𝑨) + 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(𝑩𝑩𝑩𝑩|𝑨𝑨𝑨𝑨′) 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(𝑨𝑨𝑨𝑨′) 

 
Plugging in the appropriate values 
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𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(𝑨𝑨𝑨𝑨|𝑩𝑩𝑩𝑩) = 
𝟎𝟎𝟎𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎(𝟎𝟎𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗) 

 
 

𝟎𝟎𝟎𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎(𝟎𝟎𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗) + 𝟎𝟎𝟎𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗(𝟎𝟎𝟎𝟎. 𝟎𝟎𝟎𝟎𝟗𝟗𝟗𝟗) 

 
≈ 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎. 𝟎𝟎𝟎𝟎% 

 
Thus, even with accurate drug tests it is easy to obtain false positives. This is a case of 
inverse probability, a kind of statistical detective work where we try to determine 
whether someone is innocent or guilty based on revealed evidence. More typical of the 
kind of problem that we want to solve is the following: We have some prior evidence or 
opinion about a subject, and we also have some direct empirical evidence. How do we 
take our prior evidence, and combine it with the current evidence to form an accurate 
estimate of a future event? 

 
It’s simply a matter of interpreting Baye’s Rule. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐴𝐴𝐴𝐴) is the probability that we assign to 
an event before seeing the data. This is called the prior probability. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐴𝐴𝐴𝐴|𝐵𝐵𝐵𝐵) is the 
probability after we see the data. This is called the posterior probability. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐵𝐵𝐵𝐵|𝐴𝐴𝐴𝐴)/𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝐵𝐵𝐵𝐵) 
is the probability of the seeing these data given the hypothesis. This is the likelihood. 

 
Bayes’ Rule can be re-stated as 

 
Posterior ∝ Prior*Likelihood 

 
An example of this application of Bayes’ Theorem can be found in the Monty Hall 
Problem. This is based on the television show Let’s Make a Deal, whose original host 
was Monty Hall. In this version of the problem, there are three doors. Behind one door 
is a car. Behind each of the other two doors is a goat. You pick a door. Monty, who 
knows what is behind the doors, then opens one of the other doors that has a goat 
behind it. Suppose you pick door #1. He then opens door #3, showing you the goat 
behind it, and ask you if you want to pick door #2 instead. See Figure 1. Is it to your 
advantage to switch your choice? 

 
 

Figure 1. The Monty Hall Problem. 
 

To solve this problem, let A1 denote the event that the car is behind door #1, A2 the event 
that the car is behind door #2, and A3 the event that the car is behind door #3. Your 
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𝟏𝟏𝟏𝟏 𝟏𝟏𝟏𝟏 𝟎𝟎𝟎𝟎 𝟎𝟎𝟎𝟎 𝟑𝟑𝟑𝟑
  

original hypothesis is that there was an equally likely chance that the car was behind any 
one of the three doors. Thus the prior probability, before the third door is opened, that 
the car was behind door #1, which we denote 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷(𝑨𝑨𝑨𝑨𝟏𝟏𝟏𝟏), is 1/3. Also, 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷(𝑨𝑨𝑨𝑨𝟎𝟎𝟎𝟎) and 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷(𝑨𝑨𝑨𝑨𝟑𝟑𝟑𝟑) 
are also equal to 1/3. 
Once you picked door #1, you were given additional information. You were shown that a 
goat is behind door #3. Let B denote the event that you are shown that a goat is behind 
door #3. The probability that there is a goat behind door #3 is best calculated by 
considering three conditional probabilities. 
The probability that you are shown the goat is behind door #3 is an impossible event is 
the car is behind door #3. Thus Pr(B|A3) = 0. Since you picked door #1, Monty will open 
either door #2 or door #3, but not door #1. Thus if the car is actually behind door #2, it 
is a certainty that Monty will open door #3 and show you a goat. Thus Pr(B|A2) = 1. If 
you have picked correctly and have chosen the right door, then there are goats behind 
both door #2 and door #3. In this case, there is a 50% chance that Monty will open door 
#2 and a 50% chance that he will open door #3. Thus Pr(B|A1) = 1/2. 

 
By Baye’s theorem, 

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷(𝑨𝑨𝑨𝑨𝟏𝟏𝟏𝟏 
 𝑷𝑷𝑷𝑷𝑷𝑷 𝑷𝑷 (𝑨𝑨𝑨𝑨𝟏𝟏𝟏𝟏) 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷(𝑩𝑩𝑩𝑩|𝑨𝑨𝑨𝑨𝟏𝟏𝟏𝟏)  

|𝑩𝑩𝑩𝑩) = 
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷(𝑨𝑨𝑨𝑨 ) 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷(𝑩𝑩𝑩𝑩|𝑨𝑨𝑨𝑨 ) + 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷(𝑨𝑨𝑨𝑨 ) 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷(𝑩𝑩𝑩𝑩|𝑨𝑨𝑨𝑨 ) + 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷(𝑨𝑨𝑨𝑨 ) 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷(𝑩𝑩𝑩𝑩|𝑨𝑨𝑨𝑨 ) 

 
Plugging in the probabilities that we have derived, we find that 

(𝟏𝟏𝟏𝟏/𝟑𝟑𝟑𝟑)(𝟏𝟏𝟏𝟏/𝟎𝟎𝟎𝟎) 𝟏𝟏𝟏𝟏/𝟔𝟔𝟔𝟔 
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷(𝑨𝑨𝑨𝑨𝟏𝟏𝟏𝟏|𝑩𝑩𝑩𝑩) = (𝟏𝟏𝟏𝟏/𝟑𝟑𝟑𝟑)(𝟏𝟏𝟏𝟏/𝟎𝟎𝟎𝟎) + (𝟏𝟏𝟏𝟏/𝟑𝟑𝟑𝟑)(𝟏𝟏𝟏𝟏) + (𝟏𝟏𝟏𝟏/𝟑𝟑𝟑𝟑)(𝟎𝟎𝟎𝟎) = 

𝟏𝟏𝟏𝟏/𝟔𝟔𝟔𝟔 + 𝟏𝟏𝟏𝟏/𝟑𝟑𝟑𝟑 
= 𝟏𝟏𝟏𝟏/𝟑𝟑𝟑𝟑

 
 

Also,  
(𝟏𝟏𝟏𝟏/𝟑𝟑𝟑𝟑)(𝟏𝟏𝟏𝟏) 

 
𝟏𝟏𝟏𝟏/𝟑𝟑𝟑𝟑 

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷(𝑨𝑨𝑨𝑨𝟎𝟎𝟎𝟎|𝑩𝑩𝑩𝑩) = (𝟏𝟏𝟏𝟏/𝟑𝟑𝟑𝟑)(𝟏𝟏𝟏𝟏/𝟎𝟎𝟎𝟎) + (𝟏𝟏𝟏𝟏/𝟑𝟑𝟑𝟑)(𝟏𝟏𝟏𝟏) + (𝟏𝟏𝟏𝟏/𝟑𝟑𝟑𝟑)(𝟎𝟎𝟎𝟎) = 
𝟏𝟏𝟏𝟏/𝟔𝟔𝟔𝟔 + 𝟏𝟏𝟏𝟏/𝟑𝟑𝟑𝟑 

= 𝟎𝟎𝟎𝟎/𝟑𝟑𝟑𝟑
 

 
And since you already know that the car is not behind door #3, 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷(𝑨𝑨𝑨𝑨𝟑𝟑𝟑𝟑|𝑩𝑩𝑩𝑩) = 𝟎𝟎𝟎𝟎. 
Thus you have a 1/3 of picking the car if you stick with you initial choice of door #1, but 
a 2/3 chance of picking the car if you switch doors. It is in your interest to switch doors. 

 
Did you think that there was no advantage to switching doors? You’re not alone. Marilyn 
Vos Savant, famous as having the world’s highest IQ at 228, wrote a column for Parade 
magazine for many years. In 1990 a reader posed the Monty Hall problem to her, and 
she provided the correct answer. But many people, including people with Ph.D.s, 
including some mathematicians, derided Marilyn for being wrong. Even the famous 
mathematician Paul Erdos found the problem to be counterintuitive (Hofmann, 1998). 
But the correct answer is that once door #3 is opened and revealed to have a goat behind 
it, there is a two-thirds chance that the car is behind door #2. If you’re still not 
convinced, conduct a Monte Carlo simulation to see that this is the correct answer. 
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For our application of Bayes’ Theorem to cost estimating we will need the continuous 
form of Baye’s Theorem. If the prior distribution is continuous, Bayes’ Theorem is 
written as 

 
 

𝝅𝝅𝝅𝝅(𝜽𝜽𝜽𝜽|𝒙𝒙𝒙𝒙 
 
, … , 𝒙𝒙𝒙𝒙 

𝝅𝝅𝝅𝝅(𝜽𝜽𝜽𝜽)𝒇𝒇𝒇𝒇(𝒙𝒙𝒙𝒙𝟏𝟏𝟏𝟏, … , 𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏|𝜽𝜽𝜽𝜽)   𝝅𝝅𝝅𝝅(𝜽𝜽𝜽𝜽)𝒇𝒇𝒇𝒇(𝒙𝒙𝒙𝒙𝟏𝟏𝟏𝟏, … , 𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏|𝜽𝜽𝜽𝜽)  ) = = 
𝟏𝟏𝟏𝟏 𝒏𝒏𝒏𝒏 𝒇𝒇𝒇𝒇(𝒙𝒙𝒙𝒙𝟏𝟏𝟏𝟏, … , 𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏) ∫ 𝝅𝝅𝝅𝝅(𝜽𝜽𝜽𝜽)𝒇𝒇𝒇𝒇(𝒙𝒙𝒙𝒙𝟏𝟏𝟏𝟏, … , 𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏|𝜽𝜽𝜽𝜽)𝒅𝒅𝒅𝒅𝜽𝜽𝜽𝜽 

 
where: 

 
𝝅𝝅𝝅𝝅(𝜽𝜽𝜽𝜽) is the prior density, the initial density function for the parameters that varies in 
the model. It is possible to define an improper prior density, one which is nonnegative 
but whose integral is infinite; 

 
𝒇𝒇𝒇𝒇(𝒙𝒙𝒙𝒙|𝜽𝜽𝜽𝜽) is the conditional probability density function of the model. It defines the 
model’s probability given the parameter 𝜃𝜃𝜃𝜃; 

 
𝒇𝒇𝒇𝒇(𝒙𝒙𝒙𝒙𝟏𝟏𝟏𝟏, … , 𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏|𝜽𝜽𝜽𝜽) is the conditional joint probability density function of the data given 𝜃𝜃𝜃𝜃. 
Typically the observations are assumed to be independent given 𝜃𝜃𝜃𝜃, and in this case, 

𝒏𝒏𝒏𝒏 

𝒇𝒇𝒇𝒇(𝒙𝒙𝒙𝒙𝟏𝟏𝟏𝟏, … , 𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏|𝜽𝜽𝜽𝜽) = � 𝒇𝒇𝒇𝒇(𝒙𝒙𝒙𝒙𝒊𝒊𝒊𝒊|𝜽𝜽𝜽𝜽) 
𝒊𝒊𝒊𝒊=𝟏𝟏𝟏𝟏 

 
 

and 𝒇𝒇𝒇𝒇(𝒙𝒙𝒙𝒙𝟏𝟏𝟏𝟏, … , 𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏) is the unconditional joint density function of the data 𝒙𝒙𝒙𝒙𝟏𝟏𝟏𝟏, … , 𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏. It is 
calculated from the conditional joint density function by integrating over the prior 
density function of 𝜃𝜃𝜃𝜃: 

 

𝒇𝒇𝒇𝒇(𝒙𝒙𝒙𝒙𝟏𝟏𝟏𝟏, … , 𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏) = � 𝝅𝝅𝝅𝝅(𝜽𝜽𝜽𝜽)𝒇𝒇𝒇𝒇(𝒙𝒙𝒙𝒙𝟏𝟏𝟏𝟏, … , 𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏|𝜽𝜽𝜽𝜽)𝒅𝒅𝒅𝒅𝜽𝜽𝜽𝜽 
 

𝝅𝝅𝝅𝝅(𝜽𝜽𝜽𝜽|𝒙𝒙𝒙𝒙𝟏𝟏𝟏𝟏, … , 𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏) is the posterior density function, the revised density function for the 
parameter 𝜃𝜃𝜃𝜃 based on the observations 𝑥𝑥𝑥𝑥1, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛. 

 
𝒇𝒇𝒇𝒇(𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏+𝟏𝟏𝟏𝟏|𝒙𝒙𝒙𝒙𝟏𝟏𝟏𝟏, … , 𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏) is the predictive density function, the revised unconditional density 
based on the sample data. It is calculated by integrating the conditional probability 
density function over the posterior density of 𝜃𝜃𝜃𝜃: 

 

𝒇𝒇𝒇𝒇(𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏+𝟏𝟏𝟏𝟏|𝒙𝒙𝒙𝒙𝟏𝟏𝟏𝟏, … , 𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏) = � 𝒇𝒇𝒇𝒇(𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏+𝟏𝟏𝟏𝟏|𝜽𝜽𝜽𝜽)𝝅𝝅𝝅𝝅(𝜽𝜽𝜽𝜽|𝒙𝒙𝒙𝒙𝟏𝟏𝟏𝟏, … , 𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏)𝒅𝒅𝒅𝒅𝜽𝜽𝜽𝜽 
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Bayesian Regression 

In this section we consider ordinary least squares CERs of the form 
 

𝑌𝑌𝑌𝑌 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝜀𝜀𝜀𝜀 
 

This involves prior distributions about a and b, as well as 𝜀𝜀𝜀𝜀 . 
 

For the application of Bayesian regression, we will write this in mean deviation form: 
 

𝑌𝑌𝑌𝑌 = 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑥 + 𝛽𝛽𝛽𝛽(𝑏𝑏𝑏𝑏 − 𝑏𝑏𝑏𝑏�) + 𝜀𝜀𝜀𝜀 
 

This form makes it easier to establish prior inputs, since it is easier to think of an 
average value for prior cost than it is for the intercept of the least-squares equation. 

 
For nonlinear regression we will consider log-transformed versions of the power 
equation 𝑌𝑌𝑌𝑌 = 𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. 

 

While weight is not a true cost driver, it is an excellent proxy for program scope and for 
most systems is highly correlated with cost. We will use weight-based CERs in our 
examples. 

We begin with an example of sanitized cost and weight data for commercial-like earth- 
orbiting satellites. The claim has been made that these satellites are much cheaper than 
the average satellite purchased using traditional government acquisition practices. 
While only a handful of satellites have been built using the streamlined approach, they 
are on average much cheaper than traditional programs. The difference is remarkable - 
$4,000 per pound vs. $18,000 per pound, a reduction of more than 75%. 

What is the best way to model these more economical satellites? I have a data set of 72 
Earth-orbiting robotic satellites, but if I use that alone, I likely will significantly 
overestimate the cost. 

An alternative would be to develop a CER for just the new missions alone. We can fit a 
power equation to this data set. See Figure 2. The R2 coefficient is 63%, which is not bad. 
so why not just use that? Because the number of data points is an order of magnitude 
smaller than recommended for the minimum number of data points in a classical 
regression. 
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Figure 2. Regression of cost vs. weight for set of five data points. 

In comparison to the larger set of 72 data points that do not include the five data points 
in the smaller set, we obtain another decent fit to the historical data, with an R2 equal to 
61%. See Figure 3. 

 

Figure 3. Regression of cost vs. weight for 72 earth-orbiting robotic 
satellites. 

The Bayesian approach allows us to combine the earth-orbiting spacecraft data with the 
smaller data set. We use a specific type of hierarchical approach like the one used in 
credibility theory in insurance for setting premiums for property and casualty. We treat 
the earth-orbiting spacecraft data as our prior information. We update our prior 
information with the set of five data points. This specific type of hierarchical approach 
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involves two sets. One a general set, and the other a more specific subset or subtype. In 
this case, the commercial-like satellites are earth-orbiting satellites, and they are 
procured by government agencies. This is the general set. The commercial-like satellites 
are a proper subset of the earth-orbiting satellites. This is the specific subset. 

 

Figure 4. Conceptual illustration of the data used in a hierarchical 
approach. 

This particular hierarchical approach has been used for over a century in setting 
property and casualty insurance premiums, particularly in smaller markets and for less 
common types of insurance. 

There is a significant amount of probability theory in the derivation of Bayesian 
methods for regression. But I will avoid this here and refer the reader interested in the 
mathematical details to my earlier paper on this subject (Smart 2014). 

The bottom line is that to implement the method you only need to understand the 
concept of standard error of the coefficients. To combine the two regression equations 
using Bayes’ Theorem, we combine each coefficient, the intercept and the slope, 
separately. Bayes’ Theorem combines the coefficients using the weighted averages of 
each individual coefficient. These weights are based on the amount of uncertainty 
relative to one another. The greater the uncertainty in the coefficient relative to the 
other coefficient, the smaller its weight. The smaller the uncertainty in the coefficient 
relative to the other coefficient, the greater its weight. This makes intuitive sense – we 
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b-value 
Std err (b) 

R^2 
F Statistic 

SS Reg 

a-value 
Std err (a) 

Std Err of Est 
Degrees of Freedom 

SS Resid 

should have greater confidence in the coefficient with the less variation, and assign it a 
greater weight in taking the average of the two. 

The formula for combining the two coefficients is thus very simple. It takes the inverse 
of each of the variances, which is called the precision, and forms a weighted average of 
the precisions of each coefficient. 

Given two independent, unbiased coefficients 𝜃𝜃𝜃𝜃�1 and 𝜃𝜃𝜃𝜃�2 with precisions 𝜌𝜌𝜌𝜌1 = 1/𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑃𝑃𝑃𝑃�𝜃𝜃𝜃𝜃�1� 
and 𝜌𝜌𝜌𝜌2 = 1/𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑃𝑃𝑃𝑃�𝜃𝜃𝜃𝜃�2� respectively, the minimum variance estimate of the weighted average 
is given by 

  𝝆𝝆𝝆𝝆𝟏𝟏  𝟏𝟏  

𝜽𝜽𝜽𝜽�
 

𝝆𝝆𝝆𝝆𝟏𝟏𝟏𝟏 + 𝝆𝝆𝝆𝝆𝟎𝟎𝟎𝟎 

 
 

𝟏𝟏𝟏𝟏 + 
  𝝆𝝆𝝆𝝆𝟎𝟎  𝟎𝟎  

𝜽𝜽𝜽𝜽�
 

𝝆𝝆𝝆𝝆𝟏𝟏𝟏𝟏 + 𝝆𝝆𝝆𝝆𝟎𝟎𝟎𝟎 

 
 

𝟎𝟎𝟎𝟎 

The variance is the square of the standard error. The standard error of each coefficient is 
provided by statistical packages, including the data analysis add-in for Excel and the 
“LINEST” function in Excel. 

We will next show how the weight average is calculated in Excel using the LINEST 
function. LINEST is a matrix function. To enter it you select a range of cells for the 
output, type in “=LINEST(y values, x values, true, true).” The first “true” is to include 
the intercept, and the second is to include all the statistics. The output for a single 
independent variable appears as in Table 1. 

 

Table 1. “LINEST” Excel function output format. 

The first row are the coefficients. The “a-value” is the intercept and the “b-value” is the 
coefficient of the slope. The second row is the standard errors of each coefficient. These 
are the only two sets of values we need from each equation to apply Bayes’ Theorem. 

Recall that we are using the form 
𝑌𝑌𝑌𝑌 = 𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑥 + 𝛽𝛽𝛽𝛽(𝑏𝑏𝑏𝑏 − 𝑏𝑏𝑏𝑏�) + 𝜀𝜀𝜀𝜀 

and we are applying it to the log transformations of the data. 
When we apply the LINEST function to the larger data set we obtain the results in Table 
2. 

0.8858 4.6087 
0.0809 0.0956 
0.6311 0.8111 

119.7361 70 
78.7810 46.0569 

Table 2. LINEST results for larger data set. 
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The a-value coefficient is equal to 4.6087 and its standard error is 0.0956. The b-value 
coefficient is 0.8858 and its standard error is 0.0809. 

 
See Table 3 for the LINEST results for the smaller data set. 

 
 

0.8144 4.1359 
0.2588 0.1416 
0.7675 0.3167 
9.9033 3 
0.9930 0.3008 

Table 3. LINEST results for the small data set. 
 

The a-value coefficient for the smaller data set is equal to 4.1359 and its standard error 
is 0.1416. The b-value coefficient is 0.8144 and its standard error is 0.2588. Note that 
the standard error calculation involves division by the degrees of freedom, so there is a 
penalty applied for having less data. 

 
To combine the a-value coefficient we calculate the variances of each as the square of the 
standard error. Thus the variance of the a-value for the larger data set is equal to 
0.09562 ≈ 0.0091 and the variance of the a-value for the smaller data set is equal to 
0.14162 ≈ 0.0201. The weight for the larger data set’s a-value coefficient is calculated as 

1 
 

0.0091 
1 + 1 ≈68.7% 

0.0091  0.0201 
 

and the coefficient weight for the a-value of the smaller data set is 1-0.687 = 31.3%. 
 

For the b-values we use similar calculations to determine the coefficient weight for the 
larger data set as 

1 
 

0.0065 
1 + 1 ≈91.1% 

0.0065  0.0670 
 

and the coefficient weight for the b-value of the smaller data set is 1-0.911 = 8.9%. 
 

The Bayesian estimate of the a-value coefficient is thus 4.6087*0.687+4.1359*.313 = 
4.4607, and the b-value coefficient is 0.8858*0.911+0.8144*.089 = 0.8794. 

We have used two different data sets, each of which has its own average weight, but 
since we consider the smaller data set as our “sample” and the larger data set as “prior 
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information” we use the mean of the logs of the weights for the smaller data set, which 
yields 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) = 4.4607 + 0.8794(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝐶𝐶𝐶𝐶) − 7.5161) + 𝜀𝜀𝜀𝜀 

Rearranging terms results in 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) = −2.1491 + 0.8794𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝐶𝐶𝐶𝐶) + 𝜀𝜀𝜀𝜀 

Exponentiating yields the power equation 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 0.1166𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝐶𝐶𝐶𝐶0.8794 ∙ 𝜀𝜀𝜀𝜀 

In all equations the error term denoted by the Greek letter epsilon simply denotes the 
difference between the estimated cost and the actual. 

Note that because of the equation form we use to average the two data sets using Bayes’ 
Theorem, the a-value coefficient in this case happens to be smaller than either 
coefficient of the two regressions for the individual data sets. Comparing the estimates 
provided by these equations for another commercial-like acquisition whose actual 
weight was 3,280 lbs. and whose cost was $180 million, we find that the equation based 
on the smaller data set alone predicts cost at $100 million, while the equation based on 
the larger data set alone predicts cost at $368 million. The Bayesian regression equation 
provides an estimate that is closer than either of these to the actual, at $144 million. 

This particular approach to Bayesian estimating with a normal prior, normal likelihood, 
and known variance has also been used in software cost estimating (Boehm et al., 2018). 
In that particular application the prior is established via expert judgment. 

Assumptions 

There are two simplifying assumptions made that are dubious in this type of analysis. 

One is the assumption that the variance of the estimating equation is known. That is, 
not only is it a fixed quantity, but we know the exact value. However, the value that we 
use is estimated from the likelihood, which is the smaller data set. Thus, we have a high 
degree of uncertainty in the variance, which means this assumption is not valid. 

A second assumption is that the smaller data set has residuals that are normally 
distributed. The assumption that the residuals are normally distributed in the larger 
data set is not an issue, however when you have a small data set with an unknown 
variance, the residuals are better modeled with a Student’s t distribution. The use of the 
Student’s t distribution to model the log-space residuals of log-transformed ordinary 
least squares was first advocated several years ago at an ISPA-SCEA conference (Druker 
et al. 2009), and has since been implemented in the ACE-IT cost estimating platform. 

The distribution of the variance is easy to estimate, and we will deal with that next. 
Incorporating the change from known variance and the use of the Student’s t 
distribution to model the residuals is more challenging, and we will deal with that 
second. 
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Distribution of the unknown variance 

By Cochran’s Theorem (Cochran 1934), when we have p parameters in a linear 
regression, 

∑𝑛𝑛𝑛𝑛 �𝑌𝑌𝑌𝑌 − 𝑌𝑌𝑌𝑌� �2
 

  𝑖𝑖𝑖𝑖=1 𝑖𝑖    𝑖𝑖 𝑖𝑖  𝑖𝑖  ~𝜒𝜒𝜒𝜒2(𝑙𝑙𝑙𝑙 − 𝑝𝑝𝑝𝑝) 
𝜎𝜎𝜎𝜎2 

where 𝜒𝜒𝜒𝜒2(𝑙𝑙𝑙𝑙 − 𝑝𝑝𝑝𝑝) is a chi-square distribution with n-p degrees of freedom. 

Also, we estimate the square of the standard error as 

∑𝑛𝑛𝑛𝑛 �𝑌𝑌𝑌𝑌 − 𝑌𝑌𝑌𝑌� �2
 

 
 

So we have that 

𝜎𝜎𝜎𝜎�2  =     𝑖𝑖𝑖𝑖=1 𝑖𝑖           𝑖𝑖 𝑖𝑖      𝑖𝑖 

𝑙𝑙𝑙𝑙 − 𝑝𝑝𝑝𝑝 

(𝑙𝑙𝑙𝑙 − 
𝑝𝑝𝑝𝑝)𝜎𝜎𝜎𝜎�2 

 
 

𝜎𝜎𝜎𝜎2 

 
~𝜒𝜒𝜒𝜒2(𝑙𝑙𝑙𝑙 − 𝑝𝑝𝑝𝑝) 

We are interested in the distribution of 𝜎𝜎𝜎𝜎2, which follows a scaled-inverse chi-square 
distribution with parameters n-p and 𝜎𝜎𝜎𝜎�2. 

The scaled-inverse chi-square distribution has probability density function given by 
 𝑙𝑙 𝑙𝑙 − 𝑝𝑝𝑝𝑝 𝑛𝑛𝑛𝑛−𝑝𝑝𝑝𝑝 

 

 
𝑛𝑛 𝑛𝑛 − 𝑝𝑝 𝑝𝑝 𝜎𝜎𝜎𝜎�2  

�𝜎𝜎𝜎𝜎�2 � 2 
𝑊𝑊𝑊𝑊− 2 𝜎𝜎𝜎𝜎2 

 2  𝑙𝑙 𝑙𝑙 − 𝑝𝑝𝑝𝑝 2(1+𝑛𝑛𝑛𝑛−𝑝𝑝𝑝𝑝) 
𝛤𝛤𝛤𝛤 � 2 � 𝜎𝜎𝜎𝜎 2 

The scaled-inverse chi-square is only defined over positive values and has positive skew. 
See Figure 1 for a graph of a scaled-inverse chi-square with parameters n-p = 70 and 
𝜎𝜎𝜎𝜎�2 =66% . 

Also the variance follows an inverse gamma with parameters 𝑛𝑛𝑛𝑛−𝑝𝑝𝑝𝑝 and 𝑛𝑛𝑛𝑛−𝑝𝑝𝑝𝑝 𝜎𝜎𝜎𝜎�2, and the 
2 2 

inverse of the variance follows a gamma distribution with the same parameters. The 
inverse gamma and gamma distributions are more commonly encountered than the 
scaled-inverse chi-square and is more commonly available in statistical software. 
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𝟎𝟎
 

 
 

Figure 5. Probability density function of a scaled-inverse chi-square with 
parameters 70 and 0.66. 

Conjugate priors 

One of the nice features of using the normal prior and normal likelihood model with 
known variance is that the posterior is also a normal distribution. That is, the prior and 
the posterior have the same distribution. When the prior and posterior have the same 
distribution using conjugate priors makes calculating the posterior relatively easy and 
analytically tractable. Once you move away from conjugate priors you lose analytical 
tractability. 

Once you remove the assumption that the variance is known, we lose the relatively 
straightforward normal conjugate prior model for regression. Recall that the essence of 
Bayes’ theorem is that the posterior is proportional to the product of the likelihood and 
the prior distribution, that is for uncertain parameters y and θ, 

𝑝𝑝𝑝𝑝(𝜃𝜃𝜃𝜃|𝑦𝑦𝑦𝑦) ∝ 𝑝𝑝𝑝𝑝(𝜃𝜃𝜃𝜃)𝑝𝑝𝑝𝑝(𝑦𝑦𝑦𝑦|𝜃𝜃𝜃𝜃) 

When the regression is centered about zero (as described in the previous section), the 
variance is known and the prior and likelihood are both normal, then the likelihood is 
(note that in the remainder of the paper we use bold font to denote matrices and 
vectors) 

 
𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚|𝑿𝑿𝑿𝑿, 𝜷𝜷𝜷𝜷, 𝝁𝝁𝝁𝝁, 𝜎𝜎𝜎𝜎2 

 
) = 𝑵𝑵𝑵𝑵(𝒚𝒚𝒚𝒚|𝑿𝑿𝑿𝑿, 𝜷𝜷𝜷𝜷, 𝜎𝜎𝜎𝜎2 

 
) ∝ 
𝑊𝑊𝑊𝑊 

− 1 
2𝜎𝜎𝜎𝜎2 

|�𝒚𝒚𝒚𝒚−𝒚𝒚𝒚𝒚�∙�𝟏𝟏𝟏𝟏�𝒏𝒏𝒏𝒏�⃗ −𝑿𝑿𝑿𝑿𝜷𝜷𝜷𝜷�|𝟎𝟎𝟎𝟎 

Where 𝑦𝑦𝑦𝑦� is the sample average of the dependent variable; the joint prior of the 
coefficients is 

𝑝𝑝𝑝𝑝(𝜷𝜷𝜷𝜷) = 𝑁𝑁𝑁𝑁(𝜷𝜷𝜷𝜷|𝜷𝜷𝜷𝜷𝟎𝟎𝟎𝟎, 𝑽𝑽𝑽𝑽𝟎𝟎𝟎𝟎) 

Presented at the ICEAA 2023 Professional Development & Training Workshop - www.iceaaonline.com/sat2023



15  

Then by Bayes’ Theorem, the posterior is 
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𝟎𝟎
 

𝟎𝟎
 

𝐷𝐷
 

 
 

where 

𝑝𝑝𝑝𝑝(𝜷𝜷𝜷𝜷|𝑿𝑿𝑿𝑿, 𝒚𝒚𝒚𝒚, 𝜎𝜎𝜎𝜎2) ∝ 𝑁𝑁𝑁𝑁(𝜷𝜷𝜷𝜷|𝜷𝜷𝜷𝜷𝟎𝟎𝟎𝟎, 𝑽𝑽𝑽𝑽𝟎𝟎𝟎𝟎) ∙ 𝑁𝑁𝑁𝑁(𝒚𝒚𝒚𝒚|𝑿𝑿𝑿𝑿𝜷𝜷𝜷𝜷, 𝜎𝜎𝜎𝜎2𝑰𝑰𝑰𝑰𝒏𝒏𝒏𝒏)~𝑁𝑁𝑁𝑁(𝜷𝜷𝜷𝜷|𝜷𝜷𝜷𝜷𝑵𝑵𝑵𝑵, 𝑽𝑽𝑽𝑽𝑵𝑵𝑵𝑵) 

 
𝜷𝜷𝜷𝜷 

 
 

𝑵𝑵𝑵𝑵 

 
= 𝑽𝑽𝑽𝑽 

 
 

𝑵𝑵𝑵𝑵 

 
𝑽𝑽𝑽𝑽−𝟏𝟏𝟏𝟏𝜷𝜷𝜷𝜷 

 
 

𝟎𝟎𝟎𝟎 
1 

+ 𝜎𝜎𝜎𝜎2 

 
𝑽𝑽𝑽𝑽 

 
 

𝑵𝑵𝑵𝑵 

 
𝑿𝑿𝑿𝑿𝑻𝑻𝑻𝑻𝒚𝒚𝒚𝒚 

𝑽𝑽𝑽𝑽−𝟏𝟏𝟏𝟏 = 𝑽𝑽𝑽𝑽−𝟏𝟏𝟏𝟏 + 
1
  𝑿𝑿𝑿𝑿𝑻𝑻𝑻𝑻𝑿𝑿𝑿𝑿 

𝑵𝑵𝑵𝑵 𝟎𝟎𝟎𝟎 
 

𝜎𝜎𝜎𝜎2 

𝑽𝑽𝑽𝑽 
 

𝑵𝑵𝑵𝑵 = 𝜎𝜎𝜎𝜎2�𝜎𝜎𝜎𝜎2𝑽𝑽𝑽𝑽−𝟏𝟏𝟏𝟏 + 𝑿𝑿𝑿𝑿𝑻𝑻𝑻𝑻𝑿𝑿𝑿𝑿�−𝟏𝟏𝟏𝟏
 

See Appendix 1 for the derivation. 

The posterior predictive distribution is also normal, since 
 

𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚|𝒙𝒙𝒙𝒙, 𝒟𝒟𝒟𝒟, 𝜎𝜎𝜎𝜎2) = � 𝑁𝑁𝑁𝑁(𝒚𝒚𝒚𝒚|𝒙𝒙𝒙𝒙𝑇𝑇𝑇𝑇𝜷𝜷𝜷𝜷, 𝜎𝜎𝜎𝜎2)𝑁𝑁𝑁𝑁(𝜷𝜷𝜷𝜷|𝜷𝜷𝜷𝜷𝑵𝑵𝑵𝑵, 𝑽𝑽𝑽𝑽𝑵𝑵𝑵𝑵)𝑑𝑑𝑑𝑑𝜷𝜷𝜷𝜷 = 𝑁𝑁𝑁𝑁(𝒚𝒚𝒚𝒚|𝒙𝒙𝒙𝒙𝑇𝑇𝑇𝑇𝜷𝜷𝜷𝜷𝑁𝑁𝑁𝑁, 𝜎𝜎𝜎𝜎2 + 𝒙𝒙𝒙𝒙𝑇𝑇𝑇𝑇𝑽𝑽𝑽𝑽𝑵𝑵𝑵𝑵𝒙𝒙𝒙𝒙) 
 

Note that we don’t have to calculate the integral to derive the predictive posterior, we 
just need to note that since 𝑦𝑦𝑦𝑦 = 𝒙𝒙𝒙𝒙𝑇𝑇𝑇𝑇𝜷𝜷𝜷𝜷 + 𝜺𝜺𝜺𝜺𝟏𝟏𝟏𝟏 where 𝜀𝜀𝜀𝜀1~𝑁𝑁𝑁𝑁(𝟎𝟎𝟎𝟎, 𝝈𝝈𝝈𝝈𝟎𝟎𝟎𝟎) and 𝜷𝜷𝜷𝜷 = 𝒙𝒙𝒙𝒙𝑇𝑇𝑇𝑇𝜷𝜷𝜷𝜷𝑁𝑁𝑁𝑁 + 𝜺𝜺𝜺𝜺𝟎𝟎𝟎𝟎 where 
𝜺𝜺𝜺𝜺𝟎𝟎𝟎𝟎~𝑁𝑁𝑁𝑁(0, 𝑽𝑽𝑽𝑽𝑁𝑁𝑁𝑁), then 𝑦𝑦𝑦𝑦 = 𝒙𝒙𝒙𝒙𝑇𝑇𝑇𝑇(𝜷𝜷𝜷𝜷𝑁𝑁𝑁𝑁 + 𝜺𝜺𝜺𝜺2) + 𝜀𝜀𝜀𝜀1 = 𝒙𝒙𝒙𝒙𝑇𝑇𝑇𝑇𝜷𝜷𝜷𝜷𝑁𝑁𝑁𝑁 + 𝒙𝒙𝒙𝒙𝑇𝑇𝑇𝑇𝜺𝜺𝜺𝜺2 + 𝜀𝜀𝜀𝜀1~𝑁𝑁𝑁𝑁(𝒙𝒙𝒙𝒙𝑇𝑇𝑇𝑇𝜷𝜷𝜷𝜷𝑁𝑁𝑁𝑁, 𝜎𝜎𝜎𝜎2 + 𝒙𝒙𝒙𝒙𝑇𝑇𝑇𝑇𝑽𝑽𝑽𝑽𝑁𝑁𝑁𝑁𝒙𝒙𝒙𝒙). 

The mean of the predictive distribution is thus the mean of the posterior, and the 
variance is the sum of the observed variance and another term that depends on the 
variance of the parameters of the posterior distribution. This latter value depends on the 
degree to which the input value for the prediction is close to the training data. 

In the case of unknown variance it turns out that if we use the inverse gamma 
distribution to model the variance, as discussed in the previous section, then with 
normal prior on the coefficients conditional on the variance, and normal likelihood, we 
have that 

𝑝𝑝𝑝𝑝(𝜷𝜷𝜷𝜷, 𝜎𝜎𝜎𝜎2) = 𝑝𝑝𝑝𝑝(𝜷𝜷𝜷𝜷|𝜎𝜎𝜎𝜎2)𝑝𝑝𝑝𝑝(𝜎𝜎𝜎𝜎2) 

In this case 𝑝𝑝𝑝𝑝(𝜷𝜷𝜷𝜷|𝜎𝜎𝜎𝜎2) follows a normal distribution, and 𝑝𝑝𝑝𝑝(𝜎𝜎𝜎𝜎2) follows an inverse gamma 
distribution. This conditional product is called a normal-inverse gamma distribution, 
that is, 

𝑝𝑝𝑝𝑝(𝜷𝜷𝜷𝜷, 𝜎𝜎𝜎𝜎2) = 𝑝𝑝𝑝𝑝(𝜷𝜷𝜷𝜷|𝜎𝜎𝜎𝜎2)𝑝𝑝𝑝𝑝(𝜎𝜎𝜎𝜎2)~𝑁𝑁𝑁𝑁(𝜷𝜷𝜷𝜷|𝜷𝜷𝜷𝜷𝟎𝟎𝟎𝟎, 𝜎𝜎𝜎𝜎2𝑽𝑽𝑽𝑽𝟎𝟎𝟎𝟎)𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝜎𝜎𝜎𝜎2|𝑎𝑎𝑎𝑎0, 𝑏𝑏𝑏𝑏0) 

𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎0 
 

𝐷𝐷𝐷𝐷  1  (  )𝑇𝑇𝑇𝑇 
 

−𝟏𝟏𝟏𝟏( ) 
=  0  (𝜎𝜎𝜎𝜎2)−�𝑎𝑎𝑎𝑎0+2 +1� ∙ 𝑊𝑊𝑊𝑊−2𝜎𝜎𝜎𝜎2� 
𝜷𝜷𝜷𝜷−𝜷𝜷𝜷𝜷0 

(2𝜋𝜋𝜋𝜋)2 |𝑽𝑽𝑽𝑽𝟎𝟎𝟎𝟎|0.5Γ(𝑎𝑎𝑎𝑎0) 

𝑽𝑽𝑽𝑽𝟎𝟎𝟎𝟎 𝜷𝜷𝜷𝜷−𝜷𝜷𝜷𝜷𝟎𝟎𝟎𝟎 +2𝑏𝑏𝑏𝑏0� 

Where D is the number of variables in the regression equation. With the normal-inverse 
gamma prior and a normal likelihood, the posterior joint distribution of the coefficients 
and the variance is also a normal-inverse gamma with 

𝑝𝑝𝑝𝑝(𝜷𝜷𝜷𝜷, 𝜎𝜎𝜎𝜎2|𝑿𝑿𝑿𝑿, 𝒚𝒚𝒚𝒚) = 𝑁𝑁𝑁𝑁(𝜷𝜷𝜷𝜷|𝜷𝜷𝜷𝜷𝑁𝑁𝑁𝑁, 𝜎𝜎𝜎𝜎2𝑽𝑽𝑽𝑽𝑁𝑁𝑁𝑁)𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝜎𝜎𝜎𝜎2|𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁, 𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁) 
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0 

0 

where  

𝜷𝜷𝜷𝜷𝑁𝑁𝑁𝑁 = 𝑽𝑽𝑽𝑽𝑁𝑁𝑁𝑁(𝑽𝑽𝑽𝑽−1𝜷𝜷𝜷𝜷0 + 𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝒚𝒚𝒚𝒚) 

𝑽𝑽𝑽𝑽𝑁𝑁𝑁𝑁 = (𝑽𝑽𝑽𝑽−1 + 𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝑿𝑿𝑿𝑿)−1 

𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁 = 𝑎𝑎𝑎𝑎0 + 𝑙𝑙𝑙𝑙/2 
 

𝑏𝑏𝑏𝑏 1 = 𝑏𝑏𝑏𝑏 + (𝜷𝜷𝜷𝜷𝑇𝑇𝑇𝑇𝑽𝑽𝑽𝑽−1𝜷𝜷𝜷𝜷 
 

+ 𝒚𝒚𝒚𝒚𝑇𝑇𝑇𝑇𝒚𝒚𝒚𝒚 − 𝜷𝜷𝜷𝜷𝑇𝑇𝑇𝑇 𝑽𝑽𝑽𝑽−1𝜷𝜷𝜷𝜷 ) 
𝑁𝑁𝑁𝑁 

 

0 2 0  0 0 𝑁𝑁𝑁𝑁  𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁 

See Appendix 2 for the derivation of this last expression. 

The posterior predictive distribution in this case is not a normal distribution. Rather it is 
a Student’s t distribution, i.e., 

 
𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚|𝒙𝒙𝒙𝒙, 𝒟𝒟𝒟𝒟) = 𝒯𝒯𝒯𝒯 
�𝒚𝒚𝒚𝒚|𝒙𝒙𝒙𝒙𝜷𝜷𝜷𝜷 

𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁 (1 + 
𝒙𝒙𝒙𝒙𝑻𝑻𝑻𝑻𝑽𝑽𝑽𝑽 

𝑁𝑁𝑁𝑁, 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁
 

 
 

𝑵𝑵𝑵𝑵 

 
𝒙𝒙𝒙𝒙), 
2𝑎𝑎𝑎𝑎 

 
𝑁𝑁𝑁𝑁� 

 

With mean = 
𝑿𝑿𝑿𝑿𝜷𝜷𝜷𝜷 

 
𝑁𝑁𝑁𝑁 , variance = 𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁 (1 + 

𝑿𝑿𝑿𝑿𝑽𝑽𝑽𝑽 
𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁 

 
𝑵𝑵𝑵𝑵 𝑿𝑿𝑿𝑿𝑻𝑻𝑻𝑻), and degrees of freedom = 2𝑎𝑎𝑎𝑎 

 
𝑁𝑁𝑁𝑁 

See Appendix 3 for the derivation. 

For our particular application, the number of degrees of freedom for the t distribution is 
roughly the sum of the number of data points in the prior and the number of data points 
in the likelihood. As long as the total of these two is at least 30, the Student’s t 
distribution will be approximately normal. 

The expression for the coefficients and the variance matrix is like the case when the 
variance is known – the difference is that the variance disappears from the two 
expressions once we remove the assumption that it is known. 

Markov Chain Monte Carlo 

When we relax the assumption of known variance, the result is still analytically 
tractable, if the likelihood is normal. What happens if we relax this assumption and use 
a Student’s t distribution instead? In this case - a normal prior and a Student’s t 
likelihood – the resulting posterior is not a conjugate prior so the result cannot be 
derived analytically. In this case we must turn to a simulation method. Most cost 
analysts are familiar with Monte Carlo simulation. Markov chain Monte Carlo 
simulation is a specific type of Monte Carlo simulation that is different than what is 
typically used in cost risk analysis. To begin, Markov chain Monte Carlo simulation 
picks a random parameter value to consider. The simulation will continue to generate 
random values subject to some rule for determining what makes a good parameter 
value. Given the prior distribution, if the simulation generated parameter value is better 
than the previous at explaining the data, it is added to the chain of parameter values 
with a probability determined by how much better it is than the previous. 
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The basic idea in Markov chain Monte Carlo is that we sample each variable in turn, 
conditioned on the values of all the other variables in the distribution. Given a joint 
sample x(n), we generate a new sample x(n+1) by sampling each component in turn, 
based on the values of x(n). If we have two variables, x1 and x2, we calculate 
x1(n+1)~p(x1|x2(n)) and x2(n+1)~p(x2|x1(n+1)). 

As mentioned earlier, we start the simulation from an arbitrary state. Because of the 
conditional simulations, it takes some time for the chain to converge to its stationary 
distribution. The samples collected from the period before the chain converges are 
discarded. These discarded samples are generated during what is called the burn-in 
phase. Because we start from an arbitrary state, it is common to use multiple initial 
values, which generates multiple chains, one for each set of initial values for the 
parameters. 

We discuss two tools that can be used to do the Markov chain Monte Carlo simulations. 
One is R – we can use the built-in statistical capabilities in base R to conduct the 
simulation. Another is WinBUGS, one of several simulation tools that are designed 
specifically for doing a particular type of Markov chain Monte Carlo called Gibbs 
sampling. WinBUGS is free Windows software for doing Bayesian inference Using Gibbs 
Sampling. WinBUGS requires some simple programming. The syntax is similar to R, but 
because it is specifically design to solve this particular kind of problem, less code is 
required than in base R. WinBUGS also has numerous diagnostic tools and graphs. 
However, if you want to do analysis, you need to export the simulations results back to 
R. One option for working around this is to use the R2OpenBUGS package for R to run 
WinBugs from R, which then produces the results in R for additional analysis. We 
provide the R code for the case of the student t likelihood with unknown variance. 

Note that in R, comment lines begin with the hashtag symbol #. In the R code, we set 
the number of trials equal to 10,000, with a burn-in period equal to the first 1,000 trials. 

In the Markov chain Monte Carlo simulation, we calculate the likelihood of the posterior 
for the candidate values. If the difference between the loglikelihood of the current values 
is larger than a random value, we accept. Otherwise we reject. We reject some of the 
values with higher likelihood, and accept some with lower likelihood, in order to more 
fully explore the parameter space. Accepting too many candidate samples leads to highly 
correlated draws over time. Thus we want a relatively large rejection rate, on the order 
of 40-80%. 

The R code is simple. You don’t have to actually code the simulation, that work is done 
for you. You merely must specify the likelihood, the priors, the data, and the initial 
values. 

R code: 

install.packages("R2OpenBUGS") 

library('R2OpenBUGS') 
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#Example 

x = c(8.2938,7.750,7.2235,6.6598,7.6533,8.0956) 

y = c(4.9182,4.5276,3.5965,3.68437,3.9526,NA) 

n <- length(x) 

data <- list("x","y","n") 

inits <- function(){ 

list(beta=c(5,0.7),tau=1,gamma=c(0,0,0,0,0,0)) 

list(beta=c(4,0.9),tau=0.1,gamma=c(0,0,0,0,0,0)) 

} 

Case3 = bugs(data,inits, 

model.file="model.txt", 

parameters=c("beta","tau","gamma"), 

n.chains=1,n.iter=20000,n.burnin=5000,n.thin=1, 

codaPkg=FALSE, debug = TRUE) 

summary(Case3) 

We compare the results of the three cases in Table 4. Case 1 is the normal prior and 
normal likelihood with known variance. Case 2 is the normal prior and normal 
likelihood with unknown variance. Case 3 is the normal prior and Student’s t likelihood 
with unknown variance. 

 
 
 

 Case 1 Case 2 Case 3 
log-space intercept 4.4607 4.5800 4.5780 
linear intercept 0.8794 0.8846 0.8880 
slope 0.1166 0.1263 0.1229 
prediction ($ millions) 144 163 163 

Table 4. Comparison of the results of the three cases. 

We see that the mean results of cases 2 and 3 are virtually identical. We recognize that 
changing the assumption of the variance causes less weight to be placed on the 
likelihood, and more on the prior. Recalling that the actual cost is equal to $180, we see 
that removing the assumption of known variance results in a more accurate prediction. 

What about the variance? Before we delve into that, note that Bayesian analysis 
produces Bayesian credible intervals rather than frequentist prediction intervals. 
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Traditional frequentist prediction intervals are not very intuitive. In the long run, with 
data from numerous samples, a 95% prediction interval calculated from each sample 
will contain the true parameter 95% of the time. By contrast, a 95% Bayesian credible 
interval contains the true parameter value contains the true parameter value with 95% 
probability. 

We are interested in the variance because we need not only the mean, but the 
distribution type and the variance to model the uncertainty and risk for the estimate. 
For case 1, the predictive variance at the new estimate in log space is 0.1085, only 
slightly higher than the variance of the likelihood. For case 2, when we relax the 
assumption that the variance is known, the predictive distribution is a Student’s t 
distribution with 75 degrees of freedom and variance equal to 0.9061, much higher than 
for case 1, but also much more realistic. For case 3, there is no analytical predictive 
distribution so we have to simulate it from the results of the Markov chain Monte Carlo 
simulation. The R code for this is (considered in the context of the previous code): 

Ynew<-numeric(T) 

munew<-numeric(T) 

for(j in B+1:T){ 

munew[j]<-alph[j]+beta[j]*(8.0956-7.5161) 

Ynew[j]<-rt(1,3)*(sigma2[j])^0.5+munew[j] 

} 

In this code, 8.0956 is the new weight in log space, and 7.5161 is the average log space 
weight for the sample. 

The sample variance is 2.1508 in log space. The histogram is very wide, and ranges from 
-31 to 84. A truncated histogram from 0 to 15 is displayed in Figure 5. Fitting a normal 
distribution using the MASS (Modern Applied Statistics with S) package in R, we fit a 
normal and a Student’s t distribution. The normal distribution has variance equal to the 
sample variance, while the Student’s t has variance equal to 2.15084 and three degrees 
of freedom. 

Note that a normal distribution in log space is a lognormal distribution in unit space, by 
definition. A Student’s t distribution in log space is a log-t distribution in unit space. A 
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Figure 6. Truncated histogram for Student’s t likelihood and unknown 
variance. 

lognormal distribution has finite mean and variance, and you can parameterize a 
lognormal by these two parameters. A log-t distribution has neither a finite mean nor a 
finite variance. As a result, it has an extremely heavy right tail. See Table 5 for a 
comparison of the posterior predictive S-curves generated by the four different 
assumptions. The first assumption, normal likelihood of the estimate (in log space) with 
known variance results in the narrowest S-curve, with a 5th-95th percentile range equal 
to $164 million. Relaxing the variance assumptions leads to a wider S-curve, with a 5th- 
95th percentile range equal to $762 million. Changing the distribution of the likelihood 
to a student’s t in log space results in two different S-curves, depending on whether a 
normal distribution or a t-distribution is used to model the predictive distribution in log 
space, which is a lognormal or log-t distribution in unit space. A lognormal distribution 
has a 5th-95th percentile range equal to $1.8 billion. The log-t distribution has a narrower 
range from the 5th to the 95th, equal to $1.1 billion. However, the tail of the log-t is very 
heavy which causes the range to be narrower for the log-t since more of the weight is in 
the far right tail, which is beyond the 95th percentile. 
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Confidence level 

 
 

Normal 
likelihood with 
known variance 

 
Normal 

likelihood with 
unknown 
variance 

Student t 
likelihood, 
unknown 

variance, normal 
error 

Student t 
likelihood, 
unknown 
variance, 

Student's t error 
5% $84 $33 $15 $23 
10% $94 $48 $25 $41 
20% $109 $73 $47 $72 
30% $121 $99 $76 $100 
40% $132 $128 $112 $129 
50% $144 $163 $163 $163 
60% $156 $207 $236 $205 
70% $171 $269 $352 $266 
80% $190 $365 $560 $370 
90% $220 $558 $1,068 $642 
95% $247 $795 $1,819 $1,169 
99% $310 $1,565 $4,942 $7,295 
99.5% $336 $2,016 $7,125 $21,662 
99.9% $398 $3,434 $15,151 $842,898 

 

Table 5. S-curve comparison for the different assumptions. Costs are in 
millions of dollars. 

Although the log-t range is narrower, once you go to the 99th percentile and above, the 
log-t distribution begins to blow up, going from $7 billion at the 99th percentile to $843 
billion at the 99.9th percentile. That is, there is a 1 in 1,000 chance that the cost will at or 
above $843 billion for an estimate whose 50th percentile is $163 million. To get a more 
succinct sense of how these S-curves compare, we look at the coefficients of variation 
(CV), which is the ratio of the standard deviation of the estimate to its mean. A variety of 
cost growth studies indicate that a reasonable value for CV is 50% at the beginning of 
development (Smart 2018). The CV for the base case with normal likelihood and known 
variance is 34%, lower than the rule of thumb. The CV for normal likelihood and 
unknown variance is 94%, much higher and definitely in the reasonable range. When we 
change the likelihood to a Student’s t-distribution, the CV when we fit a normal in log 
space (lognormal in unit space) to the predictive equation is 275%; when we fit a 
Student’s t-distribution to the predictive equation, this is a log-t in unit space, which 
since it does not have a finite mean or variance, does not exist. 

Even though the assumption of a t-likelihood is more correct in the case of small 
samples, we need to use some common sense in establishing S-curves. A risk range that 
includes values orders of magnitudes above the median is not reasonable. On the other 
extreme, the assumption of known variance is unrealistic, so a compromise that 
assumes unknown variance but normal likelihood seems reasonable. Since we are 
leveraging our experience from a larger data set I believe this makes sense. 

Summary 
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In this paper we have extended the linear model by changing two key assumptions. One 
of these is the assumption of known variance, and the second is the assumption of a 
normal distribution about the likelihood of the log-transformed ordinary least squares 
equation. 

The assumption of known variance is not at all reasonable. We do not know the 
variance. What is worse is that the “known” variance is actually estimated from the 
likelihood. The likelihood in our problem set up has a small sample size, so even the 
estimate of this variance has significant uncertainty. We showed that the variance 
follows a specific distribution, namely an scaled inverse chi-squared (or equivalently an 
inverse gamma), and we can estimate the parameters for the prior from the number of 
degrees of freedom and the estimate variance of the estimating equation in the 
regression analysis used to establish the prior distribution. 

The assumption of a normal likelihood is suspect. The problem set up is designed to 
work with likelihoods for which we have a small number of data points, otherwise we 
would have applied a traditional frequentist regression method. In this case, as has been 
pointed out by others (Druker et al., 2009), in such situations a Student’s t distribution 
is more appropriate. 

We provided an analysis of the example by relaxing the assumptions. First we relaxed 
the assumption of known variance, which leads to a tractable result. The inclusion of 
uncertainty about the variance of the likelihood in the form of a prior distribution for 
the estimating variance leads to greater weight on the prior and less weight on the 
likelihood, which changes the mean. The posterior predictive equation follows a 
Student’s t distribution with high degrees of freedom as it benefits from the large sample 
used to establish the prior. For this number of degrees of freedom, the normal and 
Student’s t distribution are indistinguishable so we can model the predictive equation 
with a normal distribution. 

Second, we continue with unknown variance, but now we change the assumption that 
the likelihood is normally distribution to a Student’s t distribution. This is not 
analytically tractable since we have departed from the realm of conjugate priors. In this 
case we have to resort to a specific type of Monte Carlo simulation called Markov chain 
Monte Carlo. We showed how this can be accomplished using both a statistical 
programming platform called R, and a platform specifically designed for this type of 
Bayesian analysis called WinBUGS. 

The assumption of known variance drives the mean. Changing to unknown variance 
significantly increases the mean and noticeably increases the variance. Changing this in 
turn to a Student’s t likelihood does not change the mean but drives the variance much 
higher. 

In conclusion, using the Bayesian approach can benefit a cost estimator when they are 
faced with an all-too common situation of limited data. We have extended the simpled 
linear model to include more realistic assumptions. However, when departing from the 
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0 

0 

assumption that the likelihood is normally distributed, common sense should be applied 
when applying an extremely heavy-tailed distribution. The approaches used in this 
model also apply when the prior is specified using expert judgment. 

Next Steps 

This paper deals with parametric models, ones which use specific distributions, such as 
the normal, lognormal, or Student’s t-distribution. It does not cover regression methods 
that do not use a distribution to model the residuals, such as the Minimum Unbiased 
Percentage Error (MUPE) method or the Zero-bias Minimum Percent Error (ZMPE) 
method. Markov Chain Monte Carlo simulation can be applied to histograms for both 
the prior and likelihood, and a future paper will deal with the application of MCMC 
techniques to ZMPE and MUPE regression methods. 

Appendix 1 

In both this appendix and in Appendix 2, we make use of the matrix identity 

𝒖𝒖𝒖𝒖𝑇𝑇𝑇𝑇𝑨𝑨𝑨𝑨𝒖𝒖𝒖𝒖 − 2𝜶𝜶𝜶𝜶𝑇𝑇𝑇𝑇𝒖𝒖𝒖𝒖 + 𝜶𝜶𝜶𝜶𝑇𝑇𝑇𝑇𝑨𝑨𝑨𝑨−1𝜶𝜶𝜶𝜶 = (𝒖𝒖𝒖𝒖 − 𝑨𝑨𝑨𝑨−1𝜶𝜶𝜶𝜶)𝑇𝑇𝑇𝑇𝑨𝑨𝑨𝑨(𝒖𝒖𝒖𝒖 − 𝑨𝑨𝑨𝑨−1𝜶𝜶𝜶𝜶) 

where u and α are vectors, and A is a matrix. 

We need to combine the two exponents, and have it result in something that is quadratic 
in β. Thus, we want the u term in the matrix identity to represent β. 

We set 𝜶𝜶𝜶𝜶 = 𝑽𝑽𝑽𝑽−1𝜷𝜷𝜷𝜷 + 1 𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝒚𝒚𝒚𝒚 and 𝑨𝑨𝑨𝑨 = 𝑽𝑽𝑽𝑽−1 + 1 𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝑿𝑿𝑿𝑿. 
0 0 𝜎𝜎𝜎𝜎2 0 𝜎𝜎𝜎𝜎2 

We begin with the expression (𝜷𝜷𝜷𝜷 − 𝜷𝜷𝜷𝜷0 

Expanding this we find 

)𝑇𝑇𝑇𝑇𝑽𝑽𝑽𝑽−1(𝜷𝜷𝜷𝜷 − 𝜷𝜷𝜷𝜷0 ) + 1 (𝒚𝒚𝒚𝒚 − 𝑿𝑿𝑿𝑿𝜷𝜷𝜷𝜷)𝑇𝑇𝑇𝑇(𝒚𝒚𝒚𝒚 − 𝑿𝑿𝑿𝑿𝜷𝜷𝜷𝜷). 
𝜎𝜎𝜎𝜎2 

 
𝜷𝜷𝜷𝜷𝑇𝑇𝑇𝑇𝑽𝑽𝑽𝑽−1𝜷𝜷𝜷𝜷 − 2(𝑽𝑽𝑽𝑽−1𝜷𝜷𝜷𝜷 

 
)𝑇𝑇𝑇𝑇𝜷𝜷𝜷𝜷 + 𝜷𝜷𝜷𝜷𝑇𝑇𝑇𝑇𝑽𝑽𝑽𝑽−1𝜷𝜷𝜷𝜷 

+ 
1 

𝒚𝒚𝒚𝒚𝑇𝑇𝑇𝑇𝒚𝒚𝒚𝒚 − 
2
 (𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝒚𝒚𝒚𝒚)𝑇𝑇𝑇𝑇𝜷𝜷𝜷𝜷 + 

1
  

(𝑿𝑿𝑿𝑿𝜷𝜷𝜷𝜷)𝑇𝑇𝑇𝑇𝑿𝑿𝑿𝑿𝜷𝜷𝜷𝜷 
0 0 0 0  0 0 

 

𝜎𝜎𝜎𝜎2 
 

𝜎𝜎𝜎𝜎2 
 

𝜎𝜎𝜎𝜎2 

Rearranging terms yields 

1 

 
 

1 𝑇𝑇𝑇𝑇 1 𝛃𝛃𝛃𝛃𝑇𝑇𝑇𝑇 �𝑽𝑽𝑽𝑽−1 + 𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇 𝑿𝑿𝑿𝑿� 𝜷𝜷𝜷𝜷 − 2 �𝑽𝑽𝑽𝑽−1𝜷𝜷𝜷𝜷0 + 𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝒚𝒚𝒚𝒚 � 𝜷𝜷𝜷𝜷 + 𝜷𝜷𝜷𝜷𝑇𝑇𝑇𝑇𝑽𝑽𝑽𝑽−1𝜷𝜷𝜷𝜷0 + 𝒚𝒚𝒚𝒚𝑇𝑇𝑇𝑇𝒚𝒚𝒚𝒚 
 0 𝜎𝜎𝜎𝜎2  0 𝜎𝜎𝜎𝜎2  0  0 𝜎𝜎𝜎𝜎2 

 

We ignore the last two terms as they are constants. We then only need to add and 
substract the constant term 𝜶𝜶𝜶𝜶𝑇𝑇𝑇𝑇𝑨𝑨𝑨𝑨−1𝜶𝜶𝜶𝜶 to complete the square. 

Appendix 2 

See Appendix 1 for the key matrix identity we will use. We are combining two terms and 
will end with a single term that is quadratic in β. Thus we want the u term in the matrix 
identity to represent β, as in Appendix 1. We set 𝜶𝜶𝜶𝜶 = 𝑽𝑽𝑽𝑽−1𝜷𝜷𝜷𝜷0 + 𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝒚𝒚𝒚𝒚 and 𝑨𝑨𝑨𝑨 = 𝑽𝑽𝑽𝑽−1 + 𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝑿𝑿𝑿𝑿 

0 0 

We begin with the expression (𝜷𝜷𝜷𝜷 − 𝜷𝜷𝜷𝜷0)𝑇𝑇𝑇𝑇𝑽𝑽𝑽𝑽−1(𝜷𝜷𝜷𝜷 − 𝜷𝜷𝜷𝜷0) + (𝒚𝒚𝒚𝒚 − 𝑿𝑿𝑿𝑿𝜷𝜷𝜷𝜷)𝑇𝑇𝑇𝑇(𝒚𝒚𝒚𝒚 − 𝑿𝑿𝑿𝑿𝜷𝜷𝜷𝜷) 
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Expanding the expression we find 
𝜷𝜷𝜷𝜷𝑇𝑇𝑇𝑇𝑽𝑽𝑽𝑽−1𝜷𝜷𝜷𝜷 − 2(𝑽𝑽𝑽𝑽−1𝜷𝜷𝜷𝜷0)𝑇𝑇𝑇𝑇𝜷𝜷𝜷𝜷 + 𝜷𝜷𝜷𝜷𝑇𝑇𝑇𝑇𝑽𝑽𝑽𝑽−1𝜷𝜷𝜷𝜷0 + 𝒚𝒚𝒚𝒚𝑇𝑇𝑇𝑇𝒚𝒚𝒚𝒚 − 2(𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝒚𝒚𝒚𝒚)𝑇𝑇𝑇𝑇𝜷𝜷𝜷𝜷 + (𝑿𝑿𝑿𝑿𝜷𝜷𝜷𝜷)𝑇𝑇𝑇𝑇𝑿𝑿𝑿𝑿𝜷𝜷𝜷𝜷 

0 0 0  0 
 

Rearranging terms yields 
𝜷𝜷𝜷𝜷𝑇𝑇𝑇𝑇(𝑽𝑽𝑽𝑽−1 + 𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝑿𝑿𝑿𝑿)𝜷𝜷𝜷𝜷 − 2(𝑽𝑽𝑽𝑽−1𝜷𝜷𝜷𝜷0+𝑏𝑏𝑏𝑏𝑇𝑇𝑇𝑇𝑦𝑦𝑦𝑦)𝑇𝑇𝑇𝑇𝛽𝛽𝛽𝛽 + 𝛽𝛽𝛽𝛽𝑇𝑇𝑇𝑇𝑉𝑉𝑉𝑉−1𝛽𝛽𝛽𝛽0 + 𝑦𝑦𝑦𝑦𝑇𝑇𝑇𝑇𝑦𝑦𝑦𝑦 

0 0 0  0 

The first two terms are 𝑢𝑢𝑢𝑢𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴𝑢𝑢𝑢𝑢 − 2𝛼𝛼𝛼𝛼𝑇𝑇𝑇𝑇𝑢𝑢𝑢𝑢 so we add and subtract 𝛼𝛼𝛼𝛼𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴−1𝛼𝛼𝛼𝛼 in order to 
complete the square. After applying the identity we have 

(𝛽𝛽𝛽𝛽 − 𝐴𝐴𝐴𝐴−1𝛼𝛼𝛼𝛼)𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴(𝛽𝛽𝛽𝛽 − 𝐴𝐴𝐴𝐴−1𝛼𝛼𝛼𝛼) + 𝛽𝛽𝛽𝛽𝑇𝑇𝑇𝑇𝑉𝑉𝑉𝑉−1𝛽𝛽𝛽𝛽0 + 𝑦𝑦𝑦𝑦𝑇𝑇𝑇𝑇𝑦𝑦𝑦𝑦 − 𝛼𝛼𝛼𝛼𝑇𝑇𝑇𝑇𝐴𝐴𝐴𝐴−1𝛼𝛼𝛼𝛼 
0  0 

using A and α to keep the expression simple. 

Noting that 𝑉𝑉𝑉𝑉𝑁𝑁𝑁𝑁 = 𝐴𝐴𝐴𝐴−1 and 𝛽𝛽𝛽𝛽𝑁𝑁𝑁𝑁 = 𝐴𝐴𝐴𝐴−1𝛼𝛼𝛼𝛼 we have 
(𝛽𝛽𝛽𝛽 − 𝛽𝛽𝛽𝛽𝑁𝑁𝑁𝑁)𝑇𝑇𝑇𝑇𝑉𝑉𝑉𝑉−1(𝛽𝛽𝛽𝛽 − 𝛽𝛽𝛽𝛽𝑁𝑁𝑁𝑁) + 𝛽𝛽𝛽𝛽𝑇𝑇𝑇𝑇𝑉𝑉𝑉𝑉−1𝛽𝛽𝛽𝛽0 + 𝑦𝑦𝑦𝑦𝑇𝑇𝑇𝑇𝑦𝑦𝑦𝑦 − 𝛽𝛽𝛽𝛽𝑇𝑇𝑇𝑇𝑉𝑉𝑉𝑉−1𝛽𝛽𝛽𝛽𝑁𝑁𝑁𝑁 

𝑁𝑁𝑁𝑁 0  0 𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁 

which is what we sought to prove. Note that we do not ignore the constants in this case 
as we did in the known variance case. The difference in this case is that we have an 
inverse gamma parameter in the exponent, so the additional terms are not constants as 
in the known variance case. 

Appendix 3 
 

To see that 𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚|𝒙𝒙𝒙𝒙, 𝒟𝒟𝒟𝒟) = 𝒯𝒯𝒯𝒯 
�𝒚𝒚𝒚𝒚|𝑿𝑿𝑿𝑿𝜷𝜷𝜷𝜷 

𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁 (1 + 
𝑿𝑿𝑿𝑿𝑽𝑽𝑽𝑽 
𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁 

 
𝑵𝑵𝑵𝑵 𝑿𝑿𝑿𝑿𝑻𝑻𝑻𝑻), 

2𝑎𝑎𝑎𝑎 

 
𝑁𝑁𝑁𝑁 �, note that 

∞ ∞ 
𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚|𝒙𝒙𝒙𝒙, 𝒟𝒟𝒟𝒟) = �  �  𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚|𝜷𝜷𝜷𝜷, 𝜎𝜎𝜎𝜎2)𝑝𝑝𝑝𝑝(𝜷𝜷𝜷𝜷, 𝜎𝜎𝜎𝜎2|𝒚𝒚𝒚𝒚)𝑑𝑑𝑑𝑑𝜷𝜷𝜷𝜷𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎2 

0 −∞ 

∞ ∞ 
= �  �  𝑁𝑁𝑁𝑁(𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝜷𝜷𝜷𝜷, 𝜎𝜎𝜎𝜎2)𝑁𝑁𝑁𝑁�𝜷𝜷𝜷𝜷|𝜷𝜷𝜷𝜷𝑁𝑁𝑁𝑁,𝜎𝜎𝜎𝜎2𝑽𝑽𝑽𝑽𝑁𝑁𝑁𝑁�𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝜎𝜎𝜎𝜎2|𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁, 𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁)𝑑𝑑𝑑𝑑𝜷𝜷𝜷𝜷𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎2 

0 −∞ 

∞ ∞ 
�  ��  𝑁𝑁𝑁𝑁(𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝜷𝜷𝜷𝜷, 𝜎𝜎𝜎𝜎2)𝑁𝑁𝑁𝑁�𝜷𝜷𝜷𝜷|𝜷𝜷𝜷𝜷𝑁𝑁𝑁𝑁,𝜎𝜎𝜎𝜎2𝑽𝑽𝑽𝑽𝑁𝑁𝑁𝑁�𝑑𝑑𝑑𝑑𝜷𝜷𝜷𝜷� 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝜎𝜎𝜎𝜎2|𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁, 𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁)𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎2 

0 −∞ 

We have already shown that for the known variance case that 
∞ 

�   𝑁𝑁𝑁𝑁(𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝜷𝜷𝜷𝜷, 𝜎𝜎𝜎𝜎2)𝑁𝑁𝑁𝑁�𝜷𝜷𝜷𝜷|𝜷𝜷𝜷𝜷𝑁𝑁𝑁𝑁,𝜎𝜎𝜎𝜎2𝑽𝑽𝑽𝑽𝑁𝑁𝑁𝑁�𝑑𝑑𝑑𝑑𝜷𝜷𝜷𝜷 = 𝑁𝑁𝑁𝑁�𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝜷𝜷𝜷𝜷𝑁𝑁𝑁𝑁, 𝜎𝜎𝜎𝜎2(1 + 𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝑽𝑽𝑽𝑽𝑁𝑁𝑁𝑁𝑿𝑿𝑿𝑿)� 
−∞ 

 

Substituting we have 
∞ 

� 𝑁𝑁𝑁𝑁�𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝜷𝜷𝜷𝜷𝑁𝑁𝑁𝑁, 𝜎𝜎𝜎𝜎2(1 + 𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝑽𝑽𝑽𝑽𝑁𝑁𝑁𝑁𝑿𝑿𝑿𝑿)�𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝜎𝜎𝜎𝜎2|𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁, 𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁)𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎2 
0 

 

To keep the notation simples, let 𝑽𝑽𝑽𝑽∗ = 1 + 𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝑽𝑽𝑽𝑽𝑁𝑁𝑁𝑁𝑿𝑿𝑿𝑿 and 𝜙𝜙𝜙𝜙 = (𝒚𝒚𝒚𝒚 − 𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝜷𝜷𝜷𝜷𝑁𝑁𝑁𝑁)𝑇𝑇𝑇𝑇𝑽𝑽𝑽𝑽∗−1(𝒚𝒚𝒚𝒚 − 𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝜷𝜷𝜷𝜷𝑁𝑁𝑁𝑁) 
Then the above expression is 

𝑁𝑁𝑁𝑁, 
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� 

𝑏𝑏𝑏𝑏 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁 
𝐷𝐷𝐷𝐷 

∞ 1 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁+2 +1 − 1 � 𝜙𝜙𝜙𝜙� 
 

𝐷𝐷𝐷𝐷 
𝑁𝑁𝑁𝑁 

1 ∗ 
� 
�𝜎𝜎𝜎𝜎2� 𝑊𝑊𝑊𝑊 𝜎𝜎𝜎𝜎2 𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁+ 2 𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎2 

(2𝜋𝜋𝜋𝜋)2 |𝑽𝑽𝑽𝑽 |2Γ(𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁) 

Let 𝜏𝜏𝜏𝜏 =  1 . Then 𝜏𝜏𝜏𝜏 has the same range and 𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏 = − 2 𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎2. Substituting, the above 
𝜎𝜎𝜎𝜎2 

expression becomes  
 

𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁 
𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁 

𝜎𝜎𝜎𝜎4 

 
 

∞ 𝐷𝐷𝐷𝐷 

 
 
 
 −𝜏𝜏𝜏𝜏�𝑏𝑏𝑏𝑏 

 
 

+𝜙𝜙𝜙𝜙� 1 
 

𝐷𝐷𝐷𝐷 1 ∗ � (𝜏𝜏𝜏𝜏)𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁+2+1𝑊𝑊 0 
𝑁𝑁𝑁𝑁 2   𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏 2𝜏𝜏𝜏𝜏2 

(2𝜋𝜋𝜋𝜋)2 |𝑽𝑽𝑽𝑽 |2Γ(𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁) 
𝑏𝑏𝑏𝑏 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁 ∞

 𝐷𝐷
𝐷𝐷 

� 𝜙𝜙𝜙𝜙� 

= 𝐷𝐷𝐷𝐷 
𝑁𝑁𝑁𝑁 

1 �   (𝜏𝜏𝜏𝜏)𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁+2−1𝑊𝑊𝑊𝑊−𝜏𝜏𝜏𝜏  𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁+ 2 𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏 
(2𝜋𝜋𝜋𝜋)2 |𝑽𝑽𝑽𝑽∗|2Γ(𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁)  0 

The integrand has the form of a gamma distribution, the probability density function for 
which is defined as 

1 
𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥) = Γ(𝑘𝑘𝑘𝑘)𝜃𝜃𝜃𝜃𝑘𝑘𝑘𝑘 𝑥𝑥𝑥𝑥 

 

𝑘𝑘𝑘𝑘−1 
 

𝑊𝑊𝑊𝑊 −
𝑥𝑥𝑥𝑥 
𝜃𝜃𝜃𝜃 

 Letting 𝑘𝑘𝑘𝑘 = 𝑎𝑎𝑎𝑎 + 𝐷𝐷𝐷𝐷 and  
𝜙𝜙𝜙𝜙 

 
−1 , we can write 

𝑁𝑁𝑁𝑁 2 𝜃𝜃𝜃𝜃 = �𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁 + 2 � 
𝐷𝐷𝐷𝐷 

𝑎𝑎𝑎𝑎 𝐷𝐷𝐷𝐷 𝜙𝜙𝜙𝜙 −�𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁+2 � 
𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁 Γ(𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁 + 2) �𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁 + 2� ∞ 1 𝐷𝐷𝐷𝐷 

(𝜏𝜏𝜏𝜏)𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁+2−1𝑊𝑊𝑊𝑊 −𝜏𝜏𝜏𝜏�𝑏𝑏𝑏𝑏 
 

𝑁𝑁𝑁𝑁 +
𝜙𝜙𝜙𝜙� 2 𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏 

𝐷𝐷𝐷𝐷 1 𝐷𝐷𝐷𝐷 
(2𝜋𝜋𝜋𝜋)2 |𝑽𝑽𝑽𝑽∗|2Γ(𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁) 0 𝐷𝐷𝐷𝐷 𝜙𝜙𝜙𝜙 −�𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁+2 � 

Γ(𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁 + 2) �𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁 + 2� 

The range of a gamma distribution is the nonnegative real numbers, so the integrand 
evaluates to 1, leaving 

 
 𝑎𝑎𝑎𝑎 

 
𝐷𝐷𝐷𝐷 

 
𝜙𝜙𝜙𝜙 

𝐷𝐷𝐷𝐷 
−�𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁+2 � 

𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁 Γ(𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁 + 2) �𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁 + 2� 
𝐷𝐷𝐷𝐷 1 

(2𝜋𝜋𝜋𝜋)2 |𝑽𝑽𝑽𝑽∗|2Γ(𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁) 

This expression is proportional to 
 
 2𝑎𝑎  𝑎𝑎 + 𝐷𝐷𝐷𝐷 

 
(𝑦𝑦𝑦𝑦 − 𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝜷𝜷𝜷𝜷𝑁𝑁𝑁𝑁)𝑇𝑇𝑇𝑇( 

𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁 (1 + 𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝑽𝑽𝑽𝑽 𝑿𝑿𝑿𝑿))−1(𝑦𝑦𝑦𝑦 − 𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝜷𝜷𝜷𝜷 ) 

 
𝐷𝐷𝐷𝐷 

−�𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁+2� 

Γ( 𝑁𝑁𝑁𝑁 
2 

) �1 +  𝑎𝑎𝑎𝑎𝑁𝑁                     𝑁𝑁 � 
2𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁 

 
 

𝐷𝐷𝐷𝐷 
1 

𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁 ∗ 2 
𝜋𝜋𝜋𝜋 2 �2𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁 ∙ 𝑎𝑎𝑎𝑎  

𝑁𝑁𝑁𝑁 
𝑽𝑽𝑽𝑽 � Γ(𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁) 

which is a multivariate Student’s t distribution with mean 𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝜷𝜷𝜷𝜷 , variance 𝑏𝑏𝑏𝑏𝑁𝑁𝑁𝑁 (1 + 
𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁 

0 
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𝑿𝑿𝑿𝑿𝑇𝑇𝑇𝑇𝑽𝑽𝑽𝑽𝑁𝑁𝑁𝑁𝑿𝑿𝑿𝑿), and 2𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁 degrees of freedom. 
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