

TOP CHALLENGES OF COST ESTIMATING TEAMS – EMPOWERING SMES WITH BEST PRACTICES AND DATA

ProjStream

ProjStream – Who We Are

- 50+ years of combined industry experience
- Experts who love to help our users achieve greater growth and efficiency
- We can't wait to help yours do the same!

NASA

Project Life Cycle (PLC) Solution

Welcome

- 45-minute talk and an interactive Q&A session to complete the hour
- Put any questions you have in chat and join in on the poll
- Stay for the Q&A session at the end

Your Speakers Today

- Chuck Kurtz—Director of Pricing, BAE Systems
- Tom Shanahan—President and CEO, ProjStream

Top Challenges to Address

Scattered Historical Records – We Don't Have Access to our Data

Lack Of Standardization in Work Products

Variations in SME Risk Assumptions Cause Uncertainty

Tracking Change is Difficult and Takes Too Long

Mystifying Estimate Rationale

Best Practices

Make Data Accessible and Reusable

Provide a Reusable, Repeatable Task Level BOE

Standardize on BOE Attributes, Establish Feedback Loops

Automate Change Tracking

Standardize and Train on Rationale Process

<u>1. Scattered Historical Records – We Don't Have</u> <u>Access to our Data</u>

•Our data storage is scattered, and important records are difficult to find, if not lost completely.

- Cost (Hours, Material Cost, Quantities)
- Technical Requirements, Physical System Characteristics
- Programmatic program parameters that can drive cost
- Schedule Time-Phased Data (when is first material support gate, etc., when is first lot purchase and lead time, etc.)
- Primary vs. Secondary Data

1. BP – Make Data Accessible and Reusable

Adopt a method to store data that SMEs can query and access at their fingertips. Make it as easy as possible to translate historical data into data that can be used on the estimate along with complexity factors and rationale.

- Confidence in the cost-realism of your project estimates because you leverage accurate historical data.
- Primary Data is most defensible, provide this first and foremost.
- Reference Blog https://www.projstream.com/blog/bridging-gap-betweenproject-cost-estimating-cost-management

Image: Past with a state state with a state with a state with a state with a s																													
vect vectors v																													
PSUM Indexesting Find Your Data Statement of Data! 4.3. The FSUM 1.14*142 International and the state stat	To Re To Sta	To Re.		То	CLIN	CL	0	0	1	C	a	CL	CLI	CLIN	LIN	N	1	То	То) (1	To	o Re.	e	To S	ita	To	эE
1-3 Juli 1-4 Walk 1-4 Walk 1-1-4 Walk <th></th> <th></th> <th>:</th> <th>-</th> <th>e D c</th> <th>*0</th> <th></th> <th>- 10</th> <th>1</th> <th>-</th> <th>-10</th> <th>•D</th> <th>n D c</th> <th>₩<u></u>C</th> <th>c</th> <th>£5</th> <th></th> <th>-</th> <th>-</th> <th>•</th> <th>_</th> <th></th> <th>1</th> <th>-</th> <th></th> <th>-</th> <th>-</th> <th>-</th> <th>1</th>			:	-	e D c	*0		- 10	1	-	-10	•D	n D c	₩ <u></u> C	c	£5		-	-	•	_		1	-		-	-	-	1
Instruction 1.4 Analysistem Intervention State State • P35/M • 1.1.4 reduce • Intervention Intervention																													
P35LM L14.4 /2 system Softw. L14.9 System Softw. L14.9 System Softw. L14.9 System Softw. L1.0 Matching Softw. L.0 Matching Softw. L0 Matching Softw. L.0 Matching Softw.																													
P 251M 1.1.4 - Reacton Design 105 0.1.0.4 QCIM6 0.0.0 0.1.0.0 P 751M 1.1.4 - Reacton Design 105 0.1.0.0 RAFTING 0.1.0.0 0.1.0.0 P 751M 1.1.4 - Reacton Design 105 0.1.0.0 RAFTING 0.1.0.0 0.1.0.0 P 751M 1.1.4 - Reacton Design 105 0.1.0.0 RAFTING 0.1.0.0 0.0.0 P 751M 1.1.4 - Reacton Design 105 0.1.0.0 RAFTING 0.0.0 0.0.0 P 751M 1.1.4 - Reacton Design 105 0.1.0.0 RAFTING 0.0.0 0.0.0 P 751M 1.1.4 - Reacton Design 105 0.1.0.0 RAFTING 0.0.0 72.00 P 751M 1.1.6 - Reacton Design 105 0.1.0.0 StMPA 0.0.0 144.00 P 751M 1.1.6 - Reacton Design 105 0.1.0.0 StD Peffitter 650,000.00 144.00 P 751M 1.1.6 - Reacton Design 105 0.1.0.0 StD NT7810APU 15.00 164.00 P 751M 1.1.6 - Reacton Design 105 0.1.0.0 StD NT7810APU							•	•	ŧ,																				
Image: P35LM 1.1-8eexton Design 05 01.04.QGMS 0 0.00 1.1.1 Image: P35LM 1.1.4-Reacton Design 05 01.03.05R/FING 0 1.4.80 0 0.00 Image: P35LM 1.1.4-Reacton Design 05 01.03.05R/FING 0 0.00 0.00 0.00 Image: P35LM 1.1.4-Reacton Design 05 01.03.05R/FING 0 0.00 0.00 Image: P35LM 1.1.4-Reacton Design 05 01.03.05R/FING 0 0.00 0.00 Image: P35LM 1.1.4-Reacton Design 05 01.03.05R/FING 0 0.00						_								_															
P 551.M 1.1.4 - Recton Design 05 0.1.03.CARTING 0 0.00 0.00 P 551.M 1.1.4 - Recton Design 05 0.0.3.SVRDG 0 0.00 0.00 P 551.M 1.1.4 - Recton Design 05 0.0.3.SVRDG 0 0.00 0.00 P 551.M 1.1.4 - Recton Design 05 0.0.3.SVRDG 0 0.00 0.00 P 531.M 1.1.4 - Recton Design 05 0.0.3.200 Mechanical E. 86.00 0.00 0.00 P 531.M 1.1.6 - Recton Design 05 0.0.0.3.20 Mechanical E. 86.00 0.			100									A .					1	1			1000								
P #51.M 1.14 - Reaction Design 105 0.10.3.5WPG (0 0.00<				1.1.1													1	1.1	1.1.	1.1	.1								
P351M 1.14 - Reaction Design 05 01.03.290 Med 72.00 P F351M 1.16 - Reaction Design 05 0.03.220 Medwineside 144.00 144.00 P F351M 1.16 - Reaction Design 05 01.03.220 Medwineside 660 0.03.20 Medwineside 660 P F351M 1.16 - Reaction Design 056 01.03.200 Medwineside 660 660,000.00 1.00	01.03																												
151.M 1.1.6 - Nexton Design 106 100.220 Mechanical E 144.00 100.0000 <t< td=""><td>01.03</td><td>01.03</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-4</td><td>4</td><td></td><td></td><td></td><td></td><td>ſ</td><td>01.</td><td>1.03.</td><td>3</td><td></td><td></td><td></td><td></td></t<>	01.03	01.03			-											-4	4					ſ	01.	1.03.	3				
Image: P3SIM 1.1.6 - Reaction Design 106 0.0.3.20 Mechanics 144.00 Image: P3SIM 1.1.6 - Reaction Design 106 0.10.3.20 Mechanics 144.00 Image: P3SIM 1.1.6 - Reaction Design 106 0.10.3.20 Mechanics 6600 Image: P3SIM 1.1.6 - Reaction Design 106 0.100.310 Mechanics 6600 Image: P3SIM 1.1.6 - Reaction Design 106 0.100.310 Mechanics 66000000 Image: P3SIM 1.1.6 - Reaction Design 106 0.100.310 MITBIDIANFU 15.00 Image: P3SIM 1.1.6 - Reaction Design 106 0.100.910 MITBIDIANFU 15.00 Image: P3SIM 1.1.6 - Reaction Design 106 010.09.10 MITBIDIANFU 15.00 Image: P3SIM 1.1.6 - Reaction Design 107 0.100.910 MITBIDIANFU 15.00 Image: P3.000 Image	01.03	01.03	·																	1		F	01.	1.03.	3				
F35LM 1.1.6 - Reaction Design 106 0.103.220 Mechanics 144.00 F35LM 1.1.6 - Reaction Design 106 0.103.210 Mechanics 86.00 F35LM 1.1.6 - Reaction Design 106 0.100.310 Peefitters 690,000.00 F35LM 1.1.6 - Reaction Design 106 0.100.910 NT7810AAPU 15.0 F35LM 1.1.6 - Reaction Design 106 0.100.910 NT7810AAPU 15.0 F35LM 1.1.6 - Reaction Design 106 0.100.910 NT7810AAPU 15.0 F35LM 1.1.6 - Reaction Design 106 0.100.910 NT7810AAPU 15.0 16 F35LM 1.1.8 - Reaction Design 107 0.100.910 NT7810AAPU 10.0 10.0 F35LM 1.1.8 - Reaction Design 107 0.100.910 NT7810AAPU 10.0 10.0 10.0 F35LM 1.1.8 - Reaction Design 107 0.100.910 NT7810AAPU 10.0 10.0 10.0 10.0 F35LM 1.1.8 - Reaction Design 107 0.100.910 NT7810AAPU 10.0 10.0 10.0																													
P35LM 1.16 - Reaction Design 106 01.03.210 Mechanical E 680,000.00 P35LM 1.16 - Reaction Design 106 01.00.910 Poeffiters 690,000.00 P35LM 1.16 - Reaction Design 106 01.00.910 MT7810APU 15.00 15.00 P35LM 1.16 - Reaction Design 106 01.00.910 MT7810APU 15.00 15.00 P35LM 1.16 - Reaction Design 106 01.00.910 MT7810APU 15.00 15.00 15.00 P35LM 1.16 - Reaction Design 106 01.00.910 MT810APU 10.00 16.00 10.00 16.00 10.00 16.00 10.00 16														1				4											
P35LM 1.1.6 - Reaction Design 106 01.00.910 NT810AAFU 15.0 690,000.00 P35LM 1.1.6 - Reaction Design 106 01.00.910 NT810AAFU 15.0 15.0 1.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																													
F35LM 1.1.6 - Reaction Design 106 01.00.910 NT7810AAFU 15.00 15.00 1.0										1																			
F35LM 1.16 - Reaction Design 106 0.00.910 NT882765A8E6 9.00 NT7810AAFL 1.18 -Reaction Design 107 0.100.910 NT7810AAFL 10.00 NT7810AAFL 10.00 NT7810AAFL 10.00 NT7810AAFL 10.8 NT7810AAFL 10.8 NT7810AFL 1.18 -Reaction Design 107 0.100.910 NT882765A8E6 6.00 NT882765A8E6 6.00 NT882765A8E6 6.00 NT882765A8E6 F35LM 1.18 -Reaction Design 107 0.103.220 Med Leverage Complexity NT P35LM 1.9 -Reaction Design 108 N108 NT8 NT																													
Image: 1.1.6 - Reaction Design 106 01.00.910 NT8827GSA866 9.00 Image: 1.1.8 - Reaction Design																													
Image: Fast M 1.1.8 - Fire Control Image: Control M Image: Control M <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																													
F35 LM 1.18 - Reaction Design 107 01.00.910 Pipefitters 460,000.00 F35 LM 1.18 - Reaction Design 107 01.00.910 NT7B 10AAFU 10.00 F35 LM 1.18 - Reaction Design 107 01.00.910 NT7B 10AAFU 10.00 F35 LM 1.18 - Reaction Design 107 01.00.910 NT7B 10AAFU 10.00 F35 LM 1.18 - Reaction Design 107 01.00.910 NT8B 27GSABE6 6.00 F35 LM 1.18 - Reaction Design 107 01.00.910 NT8B 27GSABE6 6.00 F35 LM 1.18 - Reaction Design 107 01.00.910 NT8B 27GSABE6 6.00 F35 LM 1.18 - Reaction Design 107 01.03.220 Med Leverage 0 F35 LM 1.9 - Industrial Facilities Complexity 0 Complexity from F35 LM 1.9 - Reaction Design 108 01.03.220 Med Eo cho row row row from																													
Image: P35 LM 1.1.8 - Reaction Design 107 01.00.910 Pipefitters 460,000.00 Image: P35 LM 1.1.8 - Reaction Design 107 01.00.910 NT7B 10AAFU 10.00 Image: P35 LM 1.1.8 - Reaction Design 107 01.00.910 NT7B 10AAFU 10.00 Image: P35 LM 1.1.8 - Reaction Design 107 01.00.910 NT7B 10AAFU 10.00 Image: P35 LM 1.1.8 - Reaction Design 107 01.00.910 NT7B 10AAFU 10.00 Image: P35 LM 1.1.8 - Reaction Design 107 01.00.910 NT7B 10AAFU 10.00 Image: P35 LM 1.1.8 - Reaction Design 107 01.00.910 Image: P35 LM 1.1.8 - Reaction Design 107 01.03.220 Med Leverage 0 Image: P35 LM 1.9 - Industrial Fadities Image: P35 LM 1.9 - Reaction Design 108 01.03.220 Med Leverage 0 Complexity from from Image: P35 LM 1.9 - Reaction Design 108 01.03.220 Med Image: P36 LM FUNCTION FUN										1																			
Image: F35 LM 1.1.8 - Reaction Design 107 01.00.910 NT7B 10AAFU 10.00 Image: F35 LM 1.1.8 - Reaction Design 107 01.00.910 NT8B 27 GSABE6 6.00 Image: F35 LM 1.1.8 - Reaction Design 107 01.00.910 Image: F35 LM 1.1.8 - Reaction Design 107 01.03.210 Med Image: F35 LM Image: F35 LM 1.1.8 - Reaction Design 107 01.03.220 Med Image: Leverage 0 Image: Copy Model Image: F35 LM Image: F35 LM Image: F35 LM 1.9 - Industrial Facilities Image: F35 LM <																													
Image: F35 LM 1.1.8 - Reaction Design 107 01.00.910 NT7B 10AAFU 10.00 Image: F35 LM 1.1.8 - Reaction Design 107 01.00.910 NT8B 27 GSABE6 6.00 Image: F35 LM 1.1.8 - Reaction Design 107 01.00.910 Image: F35 LM 1.1.8 - Reaction Design 107 01.03.210 Med Image: F35 LM Image: F35 LM 1.1.8 - Reaction Design 107 01.03.220 Med Image: Leverage 0 Image: Copy Model Image: F35 LM Image: F35 LM Image: F35 LM 1.9 - Industrial Facilities Image: F35 LM <																													
Image: F35 LM 1.1.8 - Reaction Design 107 01.00.910 NT8827GSABE6 6.00 F35 LM 1.1.8 - Reaction Design 107 01.00.910 Med Leverage 0 F35 LM 1.1.8 - Reaction Design 107 01.03.210 Med Leverage 0 0 Copy Model 10 F35 LM 1.9 - Industrial Facilities 0 01.03.220 Med Leverage 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																													
Image: F35 LM 1.1.8 - Reaction Design 107 01.00.910 Image: F35 LM 1.1.8 - Reaction Design 107 01.03.210 Medt Image: F35 LM 1.1.8 - Reaction Design 107 01.03.220 Medt Image: F35 LM 1.9 - Industrial Facilities Image: F35 LM 1.9 - Reaction Design 108 Image: F35 LM Image: F35 LM 1.9 - Reaction Design 108 Image: F35 LM Image:																													
 F35 LM F35 LM I.1.8 - Reaction Design I.1.8 - Reaction Design																													
Image: F35LM 1.1.8 - Reaction Design 107 01.03.220 Med Leverage 0 Copy Model Image: F35LM 1.9 - Industrial Facilities 0 Copy Model from Image: F35LM 1.9 - Reaction Design 108 Med Leverage 0 Copy Model Image: F35LM 1.9 - Reaction Design 108 01.03.220 Med Complexity from																													
F35 LM 1.9 - Industrial Facilities COPY F35 LM 1.9 - Reaction Design 108 Image: Pass LM 1.9 - Reaction Design 108								ام		51						F													
F35 LM 1.9 - Reaction Design 108 COMPIEXITY 0 from								CI		-																			
- F35 LM 1.9 - Reaction Design 108 01.03.220 Med																													
																												6	6
Factor 1.5 Workflow Roles of the BOE as	((a	1.201
Calendar 00 Basic Calendar Set 🕑 Documents 🗹 Files	Сору																								Co	opv.		C	c
Period Neccessary																1								_			50		

2. Lack Of Standardization in Work Products

We do repeatable work but don't capture the methodologies or templates and so have to relearn and repeat attributes of an estimate and we have no idea of time to task.

2. BP – Provide a Reusable, Repeatable Task Level BOE

Establish a shareable Estimate Component Library and methodology to provide a consistent, repeatable process for fast and accurate estimate building.

• We call this the "process library"

Process Library Base Definition of One SRC Unit

Name	Description	Documentation		Resource Role	Value	Result	Documentation
RBC	R B C	RBC	•	NY/NJ Engineer 1	31.30	HOURS	
🕀 🥁 Dev Proj X	Dev Proj X			NE Engineer 1	25.04	HOURS	
	ENGINE			NE Quality Engineer 1	6.26	HOURS	
- ENGINE UNIT	ENGINE UNIT						
- 🗌 LRC	Line Replaceable Components						
SRC	Shop Replaceable Compone						

Estimators

Library

Apply Process

Process Library

dect Task Description Start Date End Date Spread Productivity Factor Quantity WBS Process: Concrete		-)								iter text to search		Find
Process: Concrete Process: ENGINE ■ ENGINE UNIT ENGINE UNIT ■ ENGINE UNIT ENGINE Compon ■ Incc Linear ■ SRC Shop Replaceable Compon Shop Replaceable Compon Linear ■ SRC Shop Replaceable Compon Shop Replaceable Compon B/28/2014 Linear 4.00 Task Detal 1.19 Researce Resource Select Role Name Role Description M RE Engineer 1 NE Engineer 1 Proving Qty & UOM M RE Engineer 1 NE Quality Engineer Resource M NE Engineer 1 NE Quality Engineer 0.00 M NE Quality Engineer Result Quantity M N/NJ Engineer 1 N/N J Engineer 1 0.00 M N/NJ Engineer 1 N/N J Engineer 1 0.00 M N/NJ Engineer 1 N/N J Engineer 1 0.00 M N/NJ Engineer 1 N/N J Engineer 1 0.00 M N/NJ Engineer 1 N/N J Engineer 1 0.00 M N/NJ Engineer 1 N/N J Engineer 1 0.00 M N/NJ En	elect	Task	Description	St	tart Date	End Date	Spread	Productivity Factor	Quantity	WBS		
Process: EVGINE ENGINE UNIT ENGINE UNIT ENGINE UNIT Englaceable Compon Algo 2009 Algo 2014 Linear Linear	Proces	ss: Business Manag	ement									
Process: ENGINE ■ ■ ENGINE UNIT ENGINE UNIT ENGINE UNIT ENGINE UNIT ENGINE UNIT Engine Unit Engine Enginee SRC Shop Replaceable Compon 8/29/2009 6/28/2014 Linear 1.00 Select Role Description MHrs Total Driving Qty & UOM Productivity Factor Value Result Quantity Resource Value NE Engineer 1 NE Engineer 1 NE Engineer 1 NE Engineer 1 NE Quality Enginee NE Quality Enginee NE Quality Engineer 1 NYNJ Engineer 1												
■ BNGINE UNIT ENGINE UNIT Inear 1.00 [Select] ■ LRC Line Replaceable Compon 8/29/2009 8/28/2014 Linear 1.00 [Select] ■ SRC Shop Replaceable Compon 8/29/2009 8/28/2014 Linear 1.00 [Select] ■ SRC Shop Replaceable Compon 8/29/2009 8/28/2014 Linear 1.00 [Select] ■ SRC Shop Replaceable Compon 8/29/2009 8/28/2014 Linear 0 1.00 [Select] ■ SRC Shop Replaceable Compon 8/29/2009 8/28/2014 Linear 0 0.00 [1.9 ■ SRC Shop Replaceable Compon 8/29/2009 8/28/2014 Linear 0 0.00 [1.9 ■ SRC Select Role Description MHrs Total Driving Qty &UOM Productivity Factor Value Resource 0.00 0.10.3.321 ● NE Quality Engineer. NE Quality Engineer. Ne Quality Engineer. 0 0 0.01 0.00 0.03.323 Process: Efsion Efsion Select Select Select Sel		-										
Inc Line Replaceable Compon 8/29/2009 8/28/2014 Linear 1.00 [Select] Image: SRC Shop Replaceable Compon 8/29/2009 8/28/2014 Linear 4.00 1.1.9 Image: Task Detail Image: Task Detail Image: Task Detail Image: Task Detail Quantity Resource Image: Select Role Name Role Description MHrs Total Driving Qty & UOM Productivity Factor Value Result Quantity Resource Image: Select Role Name Role Description MHrs Total Driving Qty & UOM Productivity Factor Value Result Quantity Resource Image: Select NE Engineer 1 NE Engineer 1 NE Engineer 1 Driving Qty & UOM Productivity Factor Value Result Quantity 20.00 01.03.321 Image: Select NY/NJ Engineer 1 NY/NJ Engineer 1 Origonal Image: Select												
SRC Shop Replaceable Compon 8/29/2009 8/28/2014 Linear 4.00 1.1.9 Task Detail Task Detail International Control Contenter Contenter Control Contenter Control Control Cont												
Task Detail Task Detail Role Name Role Description MHrs Total Driving Qty & UOM Productivity Factor Value Result Quantity Resource Select Role Name Role Description MHrs Total Driving Qty & UOM Productivity Factor Value Result Quantity Resource Image: Select NE Engineer 1 NE Engineer 1 NE Engineer 1 NE Quality Enginee Result Quantity Resource Resource 01.03.321 Image: Select NV/NJ Engineer 1 NY/NJ Engineer 1 NY/NJ Engineer 1 NY/NJ Engineer 1 NY/NJ Engineer 1 Resource Resource 01.03.324 01.03.323 Process: Engineering Nrcess: Engineering Nr/NJ Engineer 1 NY/NJ Enginer 1 <	_		-	-								
Net Role Name Role Description MHrs Total Driving Qty & UOM Productivity Factor Value Result Quantity Resource Image: Select NE Engineer 1 NE Engineer 1 NE Engineer 1 NE Engineer 1 Image: Select Image: Sel			Shop Replace	able Compon 8/	/29/2009	8/28/2014	Linear			4.00 1.1.9		
Image: Mark Segineer 1 NE Engineer 1 NE Quality Enginee Description Descripion Description Description <td></td> <td>-</td> <td></td>											-	
Image: NE Quality EngineeNE Quality En	9			-	MHrs Total	Driving Qty & UOM	Productivity Factor					
Image: Wr/NJ Engineer 1 NY/NJ Engineer 1 Process: Engineering Process: ESG Process: Hydrostatic Core Assy Process: New Process Process: Operating System			-	-								
Process: Engineering Process: ESG Process: Hydrostatic Core Assy Process: New Process Process: Operating System												
Process: ESG Process: Hydrostatic Core Assy Process: New Process Process: Operating System												
Process: Hydrostatic Core Assy Process New Process Pro			NT/NJ Engineer 1									
Process: New Process Process: Operating System		ss: Engineering		,			·					
Process: Operating System	Proces	ss: Engineering					·					
	Proces	ss: Engineering ss: ESG ss: Hydrostatic Core										
· •	E Proces E Proces E Proces	ss: Engineering ss: ESG ss: Hydrostatic Cord ss: New Process	e Assy									
	Proces Proces Proces Proces	ss: Engineering ss: ESG ss: Hydrostatic Corr ss: New Process ss: Operating Syste	e Assy									
	E Proces E Proces E Proces E Proces	ss: Engineering ss: ESG ss: Hydrostatic Corr ss: New Process ss: Operating Syste	e Assy									
	 Proces Proces Proces Proces Proces 	ss: Engineering ss: ESG ss: Hydrostatic Corr ss: New Process ss: Operating Syste	e Assy									
	 Proces Proces Proces Proces Proces 	ss: Engineering ss: ESG ss: Hydrostatic Corr ss: New Process ss: Operating Syste	e Assy									
	 Proces Proces Proces Proces Proces 	ss: Engineering ss: ESG ss: Hydrostatic Corr ss: New Process ss: Operating Syste	e Assy									
	 Proces Proces Proces Proces Proces Proces Proces 	ss: Engineering ss: ESG ss: Hydrostatic Corr ss: New Process ss: Operating Syste ss: Turbine Design	e Assy m									
	Proces Proces Proces Proces Proces Proces Proces Proces	ss: Engineering ss: ESG ss: Hydrostatic Corr ss: New Process ss: Operating Syste ss: Turbine Design	e Assy m									
	 Proces Proces Proces Proces Proces 	ss: Engineering ss: ESG ss: Hydrostatic Corr ss: New Process ss: Operating Syste ss: Turbine Design	e Assy m	Specify Freq/D								

PROJ STREAM THINK FORWARD

3. Variations in SME Risk Assumptions Cause Uncertainty

We have no learning mechanism or insight into knowledge sharing so uncertainty leads to excessive padding. SMEs do not trust our estimating tools and assume too much risk or too much opportunity.

Define all the appropriate attributes of a quality BOE, for example, what specific labor and non-labor resources go into the estimate, standardize the rationalization and make it part of the process library to create time to task and rationale information. If there are no data or cost drivers to an estimate, consider a 3-point estimate approach.

<u>3. BP II – Establish Feedback Loop</u>

Reference and leverage relatively current performance data against the tasks homogeneously to normalize that data and update the process library templates.

- Eliminate subjectivity by taking personalities out of the equation vis-à-vis risk-aversion
- Include peer review capability and a process to identify correlations
- Documentation and previous work look-up for insight and history to capture the learnings

4. Tracking Change is Difficult and Takes Too Long

We cannot create high-quality estimate scenarios or capture changes. No capacity to see alternatives due to the lack of an automated process to generate scenarios.

4. BP – Automate Change Tracking

- Implement a platform with the ability to perform what-if modeling.
- Create a procedure to capture and report changes to the estimate.

	0.000.	0110012071100201101010202011	20,010.70	30,733.13
		01.03.210 PROJECT ENGINEERING	54,448.39	58,762.40
		01.03.220 DRAFTING	11,847.65	12,786.36
		01.03.230 AERONAUTICAL ENGINEER	849,665.21	868,439.30
		01.03.240 MECHANICAL ENGINEER		1,410,297.72
	COST Total	·	944,480.94	2,381,084.93
🖃 102 Test T	COST	01.03.107 PROJECT MANAGEMENT	2,639,919.71	2,661,307.83
		01.03.210 PROJECT ENGINEERING	2,175,881.94	4,607,954.53
		01.03.220 DRAFTING	473,459.22	492,638.60
		01.03.240 MECHANICAL ENGINEER	13,599.26	52,885.73
		01.03.250 SOFTWARE ENGINEER		454,267.81
	COST Total	•	5,302,860.13	8,269,054.50
🖃 103 Turbin	COST	01.00.910 DIRECT MATERIAL	57,023,662.07	62,726,028.28
🖃 171 Energy	COST	01.00.910 DIRECT MATERIAL	9,610,496.54	10,571,546.19
		01.03.107 PROJECT MANAGEMENT	2,592,496.00	2,851,745.60
		01.03.210 PROJECT ENGINEERING	4,273,588.47	4,700,947.32
		01.03.220 DRAFTING	929,907.93	1,022,898.72
		01.03.240 MECHANICAL ENGINEER		1,645,331.56
		01.03.250 SOFTWARE ENGINEER		235,047.37
	COST Total		17.406.488.93	21.027.516.75

5. Mystifying Estimate Rationale

Our SMEs have no supporting rationale or charred methodology on which to base our cost estimates, leading to uncertainty, opacity, and cost margin padding to account for risk at the expense of competitive advantage.

5. BP – Standardize and Train on Rationale Process

- Identify, capture, and store the source of the estimated data and the underlying rationale for consistent and repeatable methods to express and format rationale shared by all.
- Establish single source of truth reliability. For example, update the estimate, ensure rationale gets updated accordingly.

Standardize the BOE

Propulsion										
WBS Number	1.1.2	Status	In Progress - Functional Mgr							
WBS Title	Propulsion	SOW Ref	3.1.1, 3.1.2							
POP Start	12/3/2014	CLIN	DELIVERY I							
POP End	8/30/2015	IPT	NEWGEN							
Preparer	barterbury	Assumptions	1							
Functional Manager	cparkhilll	TPM	1							
Proposal Manager	jspeer	Contact Phase	DESIGN							

	26DEC2014	27MAR2015	26JUN2015	Total
AERONAUTICAL ENGINEER	200.00	480.00	200.00	880.00
MECHANICAL ENGINEER	265.45	737.71	208.18	1,211.35
TEST ENG			440.00	440.00
Total	465.45	1,217.71	848.18	2,531.35

Work Package or Estimate Level Data WBS Ref 1.1.2 Start Date 12/3/2014 WP Number 101 End Date 3/31/2015 WP Description Design Thrust Vectoring System Estimating Methodology Bottoms Up

		26DEC2014	27MAR2015	26JUN2015	Total
01.03.230	AERONAUTICAL ENGINEER	200.00	480.00	200.00	880.00
01.03.240	MECHANICAL ENGINEER	200.00	480.00	200.00	880.00
Total		400.00	960.00	400.00	1,760.00

BOE ELEMENT DESCRIPTION Design Thrust Vector

METHODOLOGY

Subject matter expert judgement is being used here. We are estimating 2 FTE's over a period of 5 months for this design. This is based on level of effort needed against similar design efforts described as......

Assumptions

All thrust vector tests are automated **SOW**

3000

3.1.1. Produce System Drawings of Turbine Design

3.1.2. Design a fluidic thrust vectoring system that diverts thrust via secondary fluidic injections. Minimum thrust deflection should be 13 degrees.

ТРМ

Minimum thrust angle of 13 degrees

WBS Ref 1.1.2 Start Date 4/1/2015 WP Number 103 End Date 8/30/2015 WP Description Turbine Procurement Estimating Methodology Material

Work Package or Estimate Level Data

Resource: 01.00.910

Part Number	Description	Manufacturer	Туре	Qty	Unit	Unit Price	Total
N0102077	COMBUSTION CHAMBER	PRATT & WHITNEY	ltem	2.00	EACH	650,000.00	1,300,000.00
NT5B04AAADE5	EXHAUST	PRATT & WHITNEY	Item	2.00	EACH	555,555.00	1,111,110.00

ProjStream Facilitates Best Practices

- ProjStream is an end-to-end software solution for all your project management needs, from bidding and cost estimating to project control and reporting.
- ProjStream handles searches within seconds with accountability
- The ProjStream Estimate Component Library facilitates a consistent, repeatable, and shareable methodology
- ProjStream builds estimates faster with higher profitability
- ProjStream stores a query-able set of data for rapid answers, performance, and profitability

ICEAA Workshop May 16-18 in San Antonio, TX

Stop by the ProjStream booth and receive Top 10 challenges and best practices of cost estimation teams

How to engage in a meaningful way:

Process assessment or 60 day QuickStart Program

tshanahan@projstream.com