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Welcome to the third issue of the resurrected 

Journal of Cost Analysis and Parametrics (JCAP). 

We thank all who have taken time to write, 

submit, and revise pieces for publication within 

these pages. We do not seek to pursue themed 

editions; but by luck alone, this issue has a good 

taste of learning curve theory from varying 

perspectives. Additionally, this issue contains 

articles that range across the breadth of cost from 

program management to sensitivity analysis. 

The intellectual pursuits revealed by these 

authors are the results of work papers, school 

studies, and presentations to our annual 

workshop. Our first article concludes the 

summarization of Danny Polidi’s doctoral 

dissertation. In our April 2022 issue, the first 

installment described generalized block diagram 

use to create a work breakdown structures. The 

second article from his dissertation, A System 

Engineering Approach Using Sensitivity Analysis 

for Reducing System Cost, illustrates the benefits 

of cost optimization during early program design 

stages. Applying sensitivity analysis to early 

design, the highest influences on overall system 

cost is determined, thus realizing highest 

performance at minimized cost. 

The second article is the first of three dealing 

with learning curve theory. Captain Susan L. 

Moore was the recipient of the 2022 ICEAA 

Outstanding Air Force Institute of Technology 

Thesis Award for Step-down Functions in Airframe 

Learning Curves: Do They Exist? Her research 

provides an empirical examination as to the 

existence of step-down functions and whether 

they should be employed in cost estimates. In the 

fourth article, Projecting Future Costs with 

Improvement Curves: Perils and Pitfalls, Brent M. 

Johnstone examines common errors in the use of 

learning curves and the dangers of using them to 

measure production line efficiency. Finishing out 

the trio of learning curve articles, Harry T. 

Larsen presents a Theory of Complex Work 

utilizing iterative measurable tasks. He shows 

that by embedding discrete iterative tasks into a 

feedback system, the impact on the broader work 

system can be evaluated. 

Article three is our sole software focused piece. In 

Are Agile/DevOps Programs Doing Enough 

Systems Engineering? Anandi Hira analyzes the 

difference in Systems Engineering, Integration 

and Test, and Program Management costs 

between programs using Agile/DevOps versus a 

Waterfall approach. Christina N. Snyder 

provides our fifth article, (CE)^2 – 

Communication and Empowerment for Cost 

Estimators: How to Use Soft Skills to Exponentially 

Impact Your Team’s Analysis, which won the 

Trending Topics category best paper at the 2022 

ICEAA Workshop. She continues her examination 

of “soft skills” and their application to cost 

estimating. A topic she also addressed in our 

April 2022 issue. Daryl Ono provides our final 

article, A Continuance of Marginal Cost 

Methodology in Project Change Management, 

wherein he discusses change management as an 

inevitable aspect project engineering critical to 

economic value. 

Happy reading. We hope you enjoy the material 

and find productive ways to apply it in either 

your professional efforts or personal interests. 

Thank you for your continued supported and 

please keep the manuscripts coming. 

David Peeler 

JCAP Editor 

Editor’s Note  

David L. Peeler, Jr., CCEA® 
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Abstract: Modern software packages exist to estimate system cost early in the systems development and 

procurement process. The commercially available software which estimates system cost are limited in their 

ability to aid in system optimization towards multi-objective cost and performance goals, as many require a 

completed system design. To illustrate the benefits of cost optimization during early stages of design, this 

paper describes a sensitivity analysis applied to the design of an engineering system. This process seeks to 

use sensitivity analysis and a spiral design process to determine which cost drivers have the highest 

influence on overall system cost, and to realize high system performance while minimizing costs. This work 

is novel in that it describes a method and toolkit to enable simultaneous consideration of system costing 

with system engineering. This work is novel in that it demonstrates how to determine the cost sensitivities 

of components in a system, and how the sensitivity values can be used to suggest component parameter 

variations to maximize the impact to overall system cost. And finally, this work is novel in that it 

demonstrates a method using component cost sensitivity to determine the range of possible cost 

improvements to bound project return on investment.  

I. Introduction 

There are several very good commercially 

available cost estimation packages. To use these 

packages, first a system must be defined. The 

system must be defined in terms of hardware 

blocks. The hardware blocks can be arranged 

with a hierarchy such as a work breakdown 

structure (WBS). Once the system is defined the 

system can be entered into the cost estimation 

package. The package essentially converts each 

hardware component into a corresponding cost. 

In this way the cost of a system can be 

determined. 

The limitation of the commercially available cost 

estimation packages is that it is essentially a 

unidirectional process. A user defines a system 

and uses the cost estimation package to estimate 

cost. The user can then experiment with 

alternatives or modifications to the system and 

estimate the corresponding associated system 

costs. What is missing is a bidirectional 

interaction with the software package. There is 

very little guidance from the cost estimation 

package which suggests to the user system 

modifications for consideration. It lacks 

suggestions to the designer which modifications 

would have the greatest impact to the overall cost 

of the system.  

It is desirable to have a feature within a cost 

estimation package which can analyze the 

components of the system to determine which 

components have the greatest impact. In other 

words, which components have the highest 

sensitivity for modification as it pertains to the 

overall cost of the system. 
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Although sensitivity analysis is well understood 

the application of sensitivity analysis upon a cost 

model for the purposes of maximizing the impact 

to the overall system cost is novel. This paper 

explores an effort to generate a cost sensitivity 

algorithm of the various components in a system 

to analyze a system and determine which 

subsystem components in a chosen design 

solution have the highest sensitivity to cost for 

the overall system. In addition, the analysis 

highlights the areas to which a system designer 

could apply focus to reduce the overall system 

cost early in the life cycle of a Program.  

The focus of this paper will be divided into five 

main topics: 1) an understanding of the current 

industry capabilities, 2) development of a cost 

sensitivity algorithm for application upon a 

system cost model including the development of 

sensitivity key size metrics (KSMs) for the 

component parameters for use with the cost 

sensitivity algorithm, 3) an example application 

of the full cost sensitivity algorithm with KSMs on 

a sample system cost model, 4) an example 

application of the full cost sensitivity algorithm 

with KSMs on a “real” system cost model, and 5) a 

brief discussion on return on investment (ROI) 

utilizing the results of the cost sensitivity 

algorithm.  

In the first section, the tools available in industry 

are explained. Specifically, how cost packages are 

structured and designed for use. It will be 

explained that the available tools offer a user the 

ability to take a specific system architecture and 

estimate an expected cost for that system. There 

does not currently exist a tool which can offer a 

robust examination of the system and offer 

feedback to the user on how to improve or 

optimize the system architecture. It is that lack of 

feedback in the process which is addressed 

within this paper. Specifically, the use of a cost 

sensitivity algorithm to highlight areas of focus 

which can most significantly impact overall 

system cost.  

In the second section, the development of a 

sensitivity algorithm is presented. It will be 

demonstrated that each parameter within a 

component could be considered either minor or 

impactful to overall system cost. The impactful 

parameter could then be varied (up or down) by 

some arbitrary amount to affect overall system 

cost (up or down). It is shown that the variation 

of the impactful parameter drives the estimated 

cost away from the baseline cost differently 

depending upon the component for which it 

applies. These differences constitute a cost 

sensitivity of a component parameter upon the 

overall system cost. These cost sensitivities can 

then be collected for each parameter and 

analyzed to determine the relative ranking of the 

cost sensitivity parameters. The highest-ranking 

cost sensitivity parameters are of particular 

importance to a system designer interested in 

optimizing a system architecture for cost versus 

performance trade studies. 

A limitation was identified in the development of 

the cost sensitivity algorithm related to the factor 

by which the component parameters were varied 

to calculate cost sensitivity. Included is the 

discussion devoted to resolving the limitation of 

the usage of an arbitrary and uniform variation 

factor. Instead, KSMs were determined which 

allow for unique variation factors for each type of 

parameter. 

In the third section, the fully developed cost 

sensitivity algorithm with KSMs was applied to 

an example cost model. The result of applying the 

algorithm is presented and demonstrates how the 

results can be applied to show potential cost 

improvements. 

In the fourth section, the fully developed cost 

sensitivity algorithm with KSMs was applied to a 

“real” example cost model based on a generalized 

work breakdown structure (WBS) for a RADAR 

system applied to military applications in the 

aerospace industry. The result of applying the 

algorithm is presented and demonstrates the 

significant impact achievable to overall system 
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cost when focus is applied appropriately to the 

areas for which overall system cost is most 

sensitive.  

In the fifth section, the algorithm highlights the 

areas where trade studies could be performed 

and yields a target return on investment (ROI) 

budget, or a limit of money to spend as 

investment to achieve those cost improvements. 

This work is novel in that it describes a method 

and toolkit to enable simultaneous consideration 

of system costing with system engineering. This 

study demonstrates how to determine the cost 

sensitivities of components in a system, and how 

the sensitivity values can be used to suggest 

component parameter variations to maximize the 

impact to overall system cost. And finally, this 

work is novel in that it demonstrates a method 

using component cost sensitivity to determine 

the range of possible cost improvements to 

bound project return on investment. 

 

II. Related Work 

One of the issues which complicates predicting 

the cost for any system is the concept of size. 

Systems which might have the same general 

function could vary significantly in terms of cost. 

For example, the engine in a supercar is more 

expensive than the engine in a commuter car 

even though they are both engines and have the 

same general function. It then becomes an 

exercise to understand what about those systems 

yield such significantly diverse costs. This 

concept is referred to as size. The application of 

sizing is not limited to a system. For example, it 

could be applied to a financial institution [1]. The 

referenced author recognizes a base cost and 

then on top of that are what the author calls 

“anomalies.” The author writes “The purpose of 

normalization is to eliminate such anomalies and 

provide accurate historical information that 

enables reliable comparisons and forecasting.” 

Normalization could be applied to variations in 

agricultural costs to normalize prices [2]. Again, 

this is the concept of a size with anomalies due to 

seasonal variations which must be normalized to 

determine standardized pricing. In a more 

generalized approach to normalizing cost data, 

the data could first be divided into broad 

categories. For example, the data could be 

grouped into three categories: normalizing for 

content, normalizing for quantity, and 

normalizing for inflation [3]. But again, the 

concept is the same. There is a base normalized 

size with factors which complicate the data. The 

International Cost Estimation and Analysis 

Association (ICEAA) offers instructional courses 

in cost estimation. The module “Data Collection 

and Normalization” [4] is devoted to this topic. 

Here cost can be normalized in one of three 

categories: Cost Units, Quantities, and Sizing 

Units. And for Sizing Units, the subcategories 

include weight, density or volume, and for 

software, Lines Of Code (LOC).  

The variables that comprise a system may also 

influence the cost of the system. These variables 

are referred to as cost drivers. “A cost driver is 

the direct cause of a cost and its effect is on the 

total cost incurred” [5]. Or more appropriately, 

“Cost drivers are the structural determinants of 

the cost of an activity, reflecting any linkages or 

interrelationships that affect it” [6]. Of course, 

these definitions do not make a distinction 

between cost drivers which are impactful verses 

non-impactful. While any variables can 

contribute towards cost, each will have different 

sensitivities associated with them. 

Related to the topic of cost drivers to a system is 

the concept of a trade study. A trade study is 

defined as “the activity of a multidisciplinary 

team to identify the most balanced technical 

solutions among a set of proposed viable 

solutions” [7]. This is a generalized definition but 

its applicability toward cost drivers applies. A 

trade study can be further defined where a “trade 

study is a formal tool that supports decision 

making” [8]. And in this reference, it notably 

applies to “realistic alternatives” and includes 

objects such as “performance” and “cost.” 



7 Journal of Cost Analysis and Parametrics: Volume 10, Issue 3. November 2022 

A System Engineering Approach Using Sensitivity Analysis for Reducing System Cost  Danny Polidi et al  

However, the reference fails to adequately offer a 

solution as to how a cost trade study may be 

conducted. A system trade study can be 

performed using a standardized approach [9] 

based on the more generalized ‘Standard 

Approach to Trade Studies’ [10]. This more 

focused approach offers “significant 

developments” in cost benefits resulting from the 

trade study. The referenced author offers Cost As 

an Independent Variable (CAIV) and draws a 

connection between system cost and the results 

of the system trade. 

However, in this reference the topic of “cost” and 

“risk” are deliberately removed from the 

“tradable criteria list”. Whereas for a typical trade 

study, cost and risk are two of the main criteria 

for decision making. The reference is a typical 

approach for bidding where the system 

performance is defined early, and cost is included 

towards the end of the evaluation. To “converge 

on recommendations that are robust in the 

presence of uncertainty” a framework for a 

standardized trade study may be employed [11]. 

However, although the article does devote much 

attention to the area of cost, it does not offer any 

insight into cost as a variable with which to 

optimize a solution. 

When considering many variables, or categories 

of variables, the topic of Multi Criteria Decision 

Analysis (MCDA) appears relevant. MCDA is used 

“as an umbrella term to describe a collection of 

formal approaches which seek to take explicit 

account of multiple criteria in helping individuals 

or groups explore decisions that matter” [12]. 

The author describes a structured approach to 

decision making which serves to help “decision 

makers to understand and to define their 

preferences, rather than descriptive, describing 

what they do and seeking simply to elicit their 

preferences.” However, the article does not 

include a use case where discreet variables rather 

than stakeholders are considered. 

The same observation is applicable for several 

works regarding MCDA. Considerations such as 

“economic, social, and environmental criteria are 

nowadays involved in practically all decision 

situations” [13]. The referenced author indicates 

the “decision process should naturally explore 

the conflicting nature of the criteria, the 

corresponding tradeoffs, the goals set by the 

decision makers, and of course the way that these 

can be introduced in an appropriate decision 

model that takes into account the subjectivity of 

the decision process and the preferences of the 

decision makers.” The author describes “discrete 

problems.” But by “discrete problems” the author 

refers “to decision situations involving the 

evaluation of a finite set of alternatives and 

actions over a predefined set of evaluation 

criteria.” To illustrate, the author considers “a 

company or a public institution, where a manager 

and/or a group of people are confronted with a 

decision situation or “problem” that requires 

them to make a decision.” Although the article is 

devoted to decision making it approaches 

decision making from a more global view with a 

wide variety of contributing factors and does not 

offer any specific insight into the cost variable.  

A more refined approach to decision making is 

developed in the Analytic Hierarchy Process 

(AHP) and the Analytic Network Process (ANP). 

Both processes have criteria and each criteria 

have a value and a weight. By combining value 

and weight for each criteria a net result can be 

obtained which indicates the preferable decision 

choice. In the case of AHP [14] the decision is 

structured into a hierarchy with a goal, decision 

criteria, and alternatives. The Analytic Network 

Process (ANP) [15] is a more general form of AHP 

where the decision is structured as a network. 

For multicriteria analysis including AHP & ANP 

each criteria is associated with a weight of 

importance. Importance in this context is a 

relative measure between various criteria. By 

contrast each criteria may also have a degree of 

criticality. By critical, we mean the degree to 

which a change in that criteria’s weight affects 

the final decision. It is possible that a criteria with 

a small weight in importance may be more 



8 Journal of Cost Analysis and Parametrics: Volume 10, Issue 3. November 2022 

A System Engineering Approach Using Sensitivity Analysis for Reducing System Cost  Danny Polidi et al  

critical to the final decision. This is the concept of 

sensitivity. 

Although the topic of sensitivity analysis has been 

explored, the application of sensitivity analysis 

upon a system’s cost is limited. In “An 

Introduction to Sensitivity Analysis” [16] the 

referenced author offers an introduction to 

sensitivity analysis using a series of papers on the 

subject. The article relies on the STELLA software 

which is an application for system modeling. The 

author writes that “Sensitivity analysis is used to 

determine how “sensitive” a model is to changes 

in the value of the parameters of the model and to 

changes in the structure of the model.” The article 

describes exploratory exercises where the 

function of the system is described, and the 

sensitivities of the various system elements are 

considered. However, the techniques described 

do not mention cost as a variable. An alternative 

approach where system sensitivities are reduced 

to limit the effect upon variations in process 

parameters may be employed [17]. This varies 

from the concept of normalization in that 

normalization removes variations such that 

meaningful comparisons could be made. Whereas 

in this reference the variations are removed to 

dampen the effects for enhanced performance as 

in the case of a control system. A “process of 

recalculating outcomes under alternative 

assumptions to determine the impact of a 

variable under sensitivity analysis can be useful 

for a range of purposes” [18]. The reference 

specifically mentions both an “increased 

understanding of the relationships between input 

and output variables in a system or model” as 

well as “enhancing communication from 

modelers to decision makers.” These purposes 

could be applied upon a system to determine cost 

sensitivities of the various elements to allow a 

system designer to understand the relationships 

and make informed decisions.  

An interesting study of a production inventory 

system made a case for the application of 

sensitivity analysis to bring the “model solutions 

closer to the complexities of real systems” [19]. 

The referenced author makes the case that in the 

absence of sensitivity analysis the designer’s 

predictions rely on history and assumes the same 

trend. While this may be a good assumption, by 

using sensitivity analysis it becomes a more 

predictive method, not solely based on history 

but with some understanding of the sensitivity of 

the variables. Cost was a secondary consideration 

and limited by first understanding the inventory 

levels and then calculating the corresponding 

costs. A more impactful result might 

demonstrate, for example, that cost could be 

significantly reduced if production runs were 

modified in a quantifiable way, and therefore 

inventory would have to be modified accordingly. 

Sensitivity analysis can be applied in “many fields 

such as environmental risk assessment, behavior 

of agronomic systems, structural reliability or 

operational safety” [20]. The author explains that 

even “an environmental impact problem may be 

framed through the lenses of economics, and 

presented as a cost benefit or risk analysis, while 

the issue has little to do with costs or benefits or 

risks and a lot to do with profits, controls, and 

norms.” The referenced author mentions 

sensitivity analysis “provides users of 

mathematical and simulation models with tools 

to appreciate the dependency of the model output 

from model input, and to investigate how 

important is each model input in determining its 

output.” Although the referenced author explains 

sensitivity analysis can be used to investigate the 

dependency of output to input variables there is 

no significant example demonstrating a 

dependency with regards to cost.  

The study on the topic of ownership of an electric 

transportation system in Swedish medium sized 

cities aimed “to emphasize on sensitivity analysis 

for the total cost of ownership (TCO) to reduce 

uncertainty by identifying which factors of 

interest that most likely cause the estimated cost 

values for the electric bus” [21]. The study does 

help to illustrate how versatile is sensitivity 

analysis and that it can be used to address cost in 

a wide variety of applications. However, the study 
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focused on infrastructure as a system where the 

term “system” is very broad in its application. The 

study is diminished in that it starts with the 

assumption that electric alternatives reduce 

greenhouse gases but neglects to address the 

contributions of pollution created in the 

generation of electric power. The study upon 

marine renewable energy uses sensitivity 

analysis for cost reduction [22]. The analysis 

which largely focuses on cost “highlights the 

sensitivity of marine energy to three key 

parameters: the capital cost of first devices, the 

level of deployment before sustained cost 

reduction emerges, and the average rate of cost 

reduction with deployment (learning rate).” In 

this case the analysis focuses more on the 

different phases in the lifecycle of the system 

rather than on the elements of a system. While 

both include cost and sensitivity neither 

reference considers a system as a collection of 

components as in the case of a RADAR system. 

There are numerous available Commercial Off 

The Shelf (COTS) cost modeling tools. In addition 

to providing the cost for an existing design, the 

PRICE Cost Analytics tool offers the system 

designer an ability to translate “needs” into 

“requirements” [23]. As noted for Design-to-Cost 

Targets, “It is widely accepted that 80% to 90% of 

cost is determined at the design or development 

stage.” This highlights the need to perform trade 

studies early to optimize a solution before the 

design architecture has been defined. The 

Constructive Systems Engineering Cost Model 

(COSYSMO) developed at MIT is an industry 

standard “to estimate the Systems Engineering 

effort for large-scale systems (both software and 

hardware)” [24]. Unfortunately, the tool focuses 

on the cost associated with the system 

engineering aspects of the design rather than a 

more comprehensive estimation of all disciplines 

associated with development or production costs. 

SEER by Galorath offers a tool for a system 

engineer to estimate a system cost once the 

system has been defined [25]. And the tool offers 

some rudimentary features regarding sensitivity. 

By varying the parameter inputs to the cost 

model, the user can observe the effect on overall 

system cost. But to utilize this ability to 

determine cost sensitivities for every parameter 

is manual and labor intensive. What is missing 

from all these COTS packages is the ability to 

directly calculate a cost sensitivity of each 

component in the system design to direct a 

system designer towards a cost optimized 

solution. This is not to imply that individual 

system component costs directly translate into 

the total cost of the system. Alternative selections 

of components would likely require some wider 

consideration of components which would 

necessarily have some cost increases and 

decreases. Instead, this method is a practical 

solution for a real problem. This work is intended 

to provide a designer a “compass” on where to 

focus attention by identifying the components 

with the highest cost sensitivities. This work is 

novel in that it describes a method and toolkit to 

enable simultaneous consideration of system 

costing with system engineering. This work is 

novel in that it demonstrates how to determine 

the cost sensitivities of components in a system, 

and how the sensitivity values can be used to 

suggest component parameter variations to 

maximize the impact to overall system cost. And 

finally, this work is novel in that it demonstrates 

a method using component cost sensitivity to 

determine the range of possible cost 

improvements to bound project return on 

investment. 

 

III. Sensitivity Algorithm Development 

Contrary to other efforts where cost has been 

normalized out of the equation or removed 

altogether this paper directs the effort toward the 

beginning of the design life cycle to optimize a 

solution before the final architecture has been 

selected. 

A sensitivity algorithm was applied in several 

steps. First, a sample system cost model was 
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identified such that the algorithm could be tested 

upon that sample. Next, the uncertainty 

parameters were determined. Then, the range of 

variation was determined. And finally, the results 

were calculated.  

 

A. Selection of a System Cost Model 

The intent here is not to create a cost estimation 

tool. Instead, what is presented is a practical 

solution for a real problem used in conjunction 

with a COTS tool. It is assumed the math behind 

the analysis performed by the COTS tool forms a 

sufficient foundation upon which to develop a 

sensitivity algorithm. The outcome of this work is 

intended to provide a designer a “compass” on 

where to focus attention by identifying the 

components with the highest cost sensitivities. 

For purposes of creating a sensitivity algorithm 

for use with a cost estimation tool it is necessary 

to have a cost model upon which to apply an 

algorithm. There does exist a detailed and generic 

WBS structure which was developed for a RADAR 

system applied to military applications in the 

aerospace industry [26]. However, in the early 

stages of algorithm development it is sufficient to 

use a sample cost model. Most commercially 

available cost estimation packages come with a 

library of sample cost models. These sample cost 

models were surveyed to find an example which 

was complex enough to contain a significantly 

large WBS structure to allow for analysis while at 

the same time was not so large as to inhibit the 

process of algorithm development.  

A cost model provided by SEER Galorath was 

identified and can be seen in Table 1. The WBS is 

indented down to four levels. The WBS includes 

both analog and digital subsystem blocks (e.g., 

Receiver Module, Digital Processing) as well as 

structural components (e.g., Receiver Chassis). 

This sample cost model was determined to 

provide for a significantly large enough WBS 

structure to allow for analysis. Also, the quantity 

of components, in this case nineteen, should Table 1: Sample Cost Model WBS Structure 

WBS Number Component 

1 NewGen Listening Station 

1.1 Equipment Configuration 

1.1.1 Receiver Module 

1.1.1.1 Receiver 

1.1.1.2 RF Module 

1.1.1.3 RF Machined Housing 

1.1.1.4 Receiver Chassis 

1.1.2 Digital Processing 

1.1.2.1 Converter & Noise Reduction 

1.1.2.2 Data Processing 

1.1.2.3 Purchased Memory 

1.1.2.4 Interconnect – Data Bus 

1.1.2.5 Instrumentation Panel 

1.1.2.6 Digital Processing Chassis 

1.1.2.7 Controller Software 

1.1.3 Misc. Equipment 

1.1.3.1 Wire Interconnects 

1.1.3.2 Purchased Racks 

1.1.3.3 Purchased Power Supply 

1.2 Operational and Support Sites 

1.2.1 Northeast Auxiliary 

1.2.2 Atlantic Operations Center 

1.2.3 Western Operations Center 

1.2.4 Midwest Repairs 

1.2.5 Express Repairs 
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provide for a significant quantity of component 

parameters with which to experiment.  

 

B. Definition of Terms 

To standardize terminology some definitions are 

presented. The definitions are for the current 

paper and all efforts were made to adhere to 

conventional industry definitions. The following 

sections will elaborate considerably and provide 

context. 

1. System – The System refers to the highest 

level WBS item.  

2. Subsystem block – The Subsystem block 

refers to the highest-level hardware within the 

WBS structure below the System. As in Table 1, 

examples are 1.1.1. Receiver Module or 1.1.2. 

Digital Processing. 

3. Component – The Component refers to the 

lowest level hardware within the WBS structure. 

As in Table 1, examples are 1.1.1.1. Receiver, 

1.1.1.2. RF Module, etc. 

4. Parameter – A Parameter in this context is 

a variable associated with a Component. An 

example may be Total Printed Circuit Boards (n) 

or Circuit Board Size (in2). 

5. Impactful Parameter – In the more general 

usage a key cost driver impacts more significantly 

overall cost than other factors. In this context it 

was necessary to find Parameters which more so 

than others affect the overall System cost. 

Although a Component may have many 

Parameters, only a small subset of those could be 

considered an Impactful Parameter based on its 

effect upon cost. 

6. Variation Factor – When an Impactful 

Parameter value is changed by a fixed percentage, 

the percentage by which it is changed is the 

Variation Factor. 

 

C. Identification of Minor vs. Impactful 

Parameters 

Sensitivity analysis is used to determine the 

relationships between independent variables and 

dependent variables under certain conditions 

[27]. In this case, it is desirable to determine the 

effect of changes to parameter values (input) on 

the overall cost of a system (output).  

The sensitivity analysis method consists of three 

steps. First, the uncertainty parameters are 

determined. Second, the range of variation is 

determined. And third, the results are calculated 

[28]. In this case, the uncertainty parameters are 

the parameters included in the cost model, the 

range of the parameters will be a fixed 

percentage variation which is initially arbitrarily 

assigned, and then the effect of modifying the 

parameters will be observed as the output of the 

cost model. The development of the process is 

described in detail along with the results. 

The first step for the sensitivity analysis is to 

determine the model parameters which apply for 

this sensitivity analysis. In general, the 

parameters for a component are all the same if 

the components are similar. An analog amplifier 

and an analog filter may be similar and have the 

same parameters while a chassis would have very 

dissimilar parameters. 

It is understood that all the parameters of a 

component contribute to cost in some way. 

However, not all parameters contribute equally. 

In some cases, the impact to overall system cost 

may be quite negligible. Prior to automating the 

process, it can be quite prohibitive to utilize 

every parameter indiscriminately. However, if the 

set of parameters could be limited then achieving 

meaningful results with a manual method 

becomes practical. It therefore becomes 

necessary to determine which parameters could 

be considered Minor Parameters versus 

Impactful Parameters. 

The available cost parameters were screened for 

their effect on overall system cost. The top six 
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contributors in the case of an electrical 

component and the top three contributors in the 

case of a mechanical component were selected. 

These selected parameters were identified as 

Impactful Parameters as opposed to Minor 

Parameters. 

The entries in Table 2 indicate the results of the 

parameter survey. The parameters fall under 

either one of two categories: Electrical Impactful 

Parameters or Mechanical Impactful Parameters. 

The second step in a sensitivity analysis is to 

determine the range by which the parameters are 

varied. In this case, instead of assigning a range of 

values, an initial fixed variation factor was 

selected to yield a sufficient spread in the results 

to demonstrate the method and begin to draw 

some conclusions. An initial fixed variation factor 

was arbitrarily assigned as 20%. A table was 

created which shows all the components with 

their respective parameters and their variation 

factors (Table 15 column F). 

 

D. Variation of a Single Parameter 

For the third step of sensitivity analysis the 

results are calculated. And in this case, the 

modification of the cost model parameters will be 

observed and recorded to understand the effect 

on the output of the overall cost of the system. 

This third step is where much of the work occurs. 

The development of the process is described in 

detail along with the results. The process 

demonstrates the method first with a single 

parameter before then demonstrating an example 

with all Impactful Parameters. 

1) ESTABLISHING BASELINE COST 

To understand the effects of modifications to the 

cost model to overall system cost it becomes 

necessary to establish a baseline, or a baseline 

cost. In this case, a sample cost model was chosen 

from the library of existing cost models from the 

commercially available package. 

The selected model had the WBS structure as it 

appears in Table 1. It can be seen there is a 

system, subsystem blocks and components. After 

the specific model was selected, the application 

was run to estimate the cost for the overall 

system. 

For purposes of illustration the following 

discussion will be applied to a specific parameter 

within a specific component. In this case, the 

number of PCBs in the Receiver will be analyzed. 

This case appears in Table 15, row 5. 

2) VARY COMPONENT PARAMETER UP 20% 

FOR “UP” COST 

The selected parameter is varied up by an 

amount of 20%. For example, the number of CCAs 

in the component is modified from 2 to 2.4 (Table 

15, row 5, column G). It is understood that 

practically it is unrealizable to have 2.4 CCAs and 

that only whole integers are possible. However, 

the values are strictly theoretical and used to 

determine the sensitivity of a particular 

parameter. After the sensitivity factors have been 

determined the paper will suggest the selection of 

practical and realizable values, e.g. 1 vs 2 CCAs. 

The new parameter value is applied to the cost 

model and the modified overall system varied 

“up” cost is estimated (Table 15, row 5, column 

K). The varied “up” cost is then compared to the 

baseline cost to estimate a delta “up” cost value 

(Table 15, row 5, column N). 

Table 2: Parameter Survey Results 

EE Impactful 
Parameters 

ME Impactful 
Parameters 

Total CCA Weight 

PCB Size Volume 

Discreet Components 
per PCB 

  

Integrated 
Components per PCB 

  

Clock Speed   
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3) VARY COMPONENT PARAMETER DOWN 20% 

FOR “DOWN” COST 

The selected parameter is then varied down by 

an amount of 20%. For example, the number of 

CCAs in the component is modified from 2 to 1.6 

(Table 15, row 5, column H). The new parameter 

value is applied to the cost model and the 

modified overall system varied “down” cost is 

estimated (Table 15, row 5, column L). The varied 

“down” cost is then compared to the baseline cost 

to estimate a delta “down” cost value (Table 15, 

row 5, column O). 

4) CALCULATE THE AVERAGE DELTA AND 

RANGE 

Referring to Figure 1A, the varied “up” and varied 

“down” costs can be seen graphically with respect 

to the baseline cost. When a parameter is varied 

from its baseline value it has the effect of driving 

the overall system cost away from the baseline. 

To put the data in a useful format the absolute 

value of the two results is graphed, see Figure 1B. 

In this figure both deviations are illustrated as 

driving the cost positively away from the baseline 

cost. And it can be observed that the degree by 

which the two deviations drive the cost away 

from the baseline is not the same. It should be 

noted that if the parameter resides upon a linear 

portion of a cost curve, then these two deltas 

would be identical. The fact that they are not the 

same indicates there is some sort of non-linearity 

for the cost curve. For purposes of this analysis, it 

is unnecessary to fully understand the cost curve. 

It is the magnitude of each delta which is of 

particular importance to the current discussion. 

The two deltas are then normalized and 

averaged. The result is the delta “mid” value and 

the “up” and “down” deltas form the range, see 

Figure 1C. This gives a quantitative value for the 

sensitivity of the one parameter for a component 

upon the overall cost of the system. For this 

specific example, the numerical equivalent of 

Figure 1 appears in context in Table 15, row 5, 

columns K – O. 

 

E. Expanded Analysis for Every Parameter  

The ability to associate cost sensitivity to the 

various components of a system was previously, 

but briefly explored in an Excel based cost model 

[29]. The current paper parallels to a small degree 

the Excel effort where the cost model, which after 

cost calculations, had the ability to evaluate the 

sensitivity of various architectures associated with 

the design. The results were color coded by impact 

such that the user could identify where to apply 

focus to have the greatest effect on cost. 

With the sensitivity algorithm established for a 

single parameter the next step is to apply the 

algorithm to every Impactful Parameter in the 

cost model and calculate all cost sensitivities. The 

full table of values appears in Table 15. The set of 

Impactful Parameters was chosen and appear in 

Table 15, column D. The varied amount, as 

discussed, was a uniform value of 20% (Table 15, 

column F). The spreadsheet calculates the varied 

“up” and varied “down” parameter values (Table 

15, columns G & H). The cost tool was then run 

repeatedly and for each consecutive run only one 

parameter from the list was changed keeping all 

other values in their baseline condition. The 

overall system cost was then collected for each 

permutation of parameter value (Table 15, 

columns K & L). Using the results of each run 

from the cost tool the delta “mid” and delta 

“range” values were calculated for each 

parameter (Table 15, columns P & Q). With the 

delta “mid” values calculated the values could be 

ranked in order of greatest to least impact to 

overall system cost. The ranking appears in the 

Figure 1. Variation of Cost. 
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Parameter Component 
Sensitivity or 
Delta “mid” 

Rank Of 
Impact 

Clock Speed 

(USD/MHz) 

Converter & Noise Reduction $11.29K 14 

Data Processing $11.15K 15 

Interconnect – Data Bus $3.66K 21 

Purchased Memory $115 32 

Receiver $8.18K 16 

RF Module $7.16K 17 

Discreet Comp per PCB 

(USD/n) 

Converter & Noise Reduction $4.37K 20 

Data Processing $2.60K 22 

Interconnect – Data Bus $5.90K 19 

Purchased Memory $237 31 

Receiver $2.36K 23 

RF Module $555 27 

Integrated Comp per PCB 

(USD/n) 

Converter & Noise Reduction $147.20K 4 

Data Processing $111.79K 5 

Interconnect – Data Bus $31.83K 9 

Purchased Memory $1.53K 26 

Receiver $99.83K 6 

RF Module $17.32K 13 

Volume 

(USD/ft3) 

Digital Processing Chassis $5 36 

Instrumentation Panel $0.09 38 

RCV Chassis $4 37 

RF Machined Housing $53 34 

Weight 

(USD/lb.) 

Digital Processing Chassis $22.36K 10 

Instrumentation Panel $7.08K 18 

RCV Chassis $19.17K 11 

RF Machined Housing $18.41K 12 

Total CCAs 

(USD/n) 

Converter & Noise Reduction $283.92K 2 

Data Processing $351.13K 1 

Interconnect – Data Bus $50.92K 8 

Purchased Memory $1.68K 24 

Receiver $171.68K 3 

RF Module $82.07K 7 

PCB Size 

(USD/in2) 

Converter & Noise Reduction $441 28 

Data Processing $380 29 

Interconnect – Data Bus $61 33 

Purchased Memory $13 35 

Receiver $265 30 

RF Module $1.56K 25 

Table 3. Initial Sorted by Parameter 
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table and is color coded with the ten most 

Impactful Parameters as Red, the next ten as 

Yellow, the next ten as Green, and the remainder 

as uncolored (Table 15, column R). 

 

F. Interim Results - Uniform Variation Factor 

The results are graphically illustrated in Figure 2. 

The various parameters have a wide variety of 

impact to overall system cost. This is as expected. 

In addition, the results were sorted 

by parameter, see Table 3. It is very 

clear from Table 3 that for any 

parameter there exists a set of 

components upon which the 

parameter applies. And for each of 

the components there is clearly a 

difference in the sensitivity of that 

parameter depending upon to 

which component it is applied. In 

the case of Clock Speed, for 

example, the parameter is 

associated with six different 

components. The Converter and 

Noise Reduction component has the 

highest sensitivity for this 

parameter, and in addition, ranks as 

14th most Impactful Parameter in 

sensitivity for the entire system.  

In Table 4 the maximums for each 

parameter are collected. In other 

words, for the parameter of Total CCAs it was 

determined in Table 3 that of the six components, 

Data Processing had the highest sensitivity and is 

in fact ranked as 1st overall. Therefore, in Table 4 

for the parameter of Total CCAs, only the 

component Data Processing is listed with its 

corresponding sensitivity or delta “mid” value. 

The same logic applies for all the other 

parameters listed in Table 4. 

In addition, all cost scenarios were numbered in 

order of overall impact to system cost (Table 15, 

column R). Included are the corresponding 

components along with the parameter which 

influences the component costs. As mentioned, 

the ranking was identified grouped with red for 

the highest impact or sensitivity (1-10), yellow 

for medium (11-20) and green for low (21-30). It 

can be seen, for example, that the total number of 

CCAs in the Data Processing component has the 

highest cost sensitivity and was ranked 

correspondingly with a value of 1.  

The results of the analysis are beginning to 

demonstrate some real-world implications. As a 

Figure 2. Cost Delta vs. Parameter 

Figure 12 

Table 4. Parameter Maximums 

Parameter 
Variation
Factor 

Component 
Sensitivity or 
Delta “mid” 

Total CCA 20% 
Data 
Processing 

$351.13K 
USD/n 

Integrated 
Components per 
PCB 

20% 
Converter & 
Noise 
Reduction 

$147.20K 
USD/n 

Weight 20% 
Digital 
Processing 
Chassis 

$22.36K 
USD/lb. 

Clock Speed 20% 
Converter & 
Noise 
Reduction 

$11.29K 
USD/MHz 

Discreet 
Components per 
PCB 

20% 
Interconnect – 
Data Bus 

$5.90K 
USD/n 

PCB Size 20% RF Module 
$1.56K 
USD/in2 

Volume 20% 
RF Machined 
Housing 

$189 USD/
ft3 
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system designer this information is very useful. It 

indicates to a system designer which piece of 

hardware should receive focus to reduce cost to 

the overall system. In other words, for this 

system, the system designer should consider 

reducing the number of CCAs in the Data 

Processing component or increasing the number 

of Integrated Components per PCB in the 

Converter & Noise Reduction component, etc. 

What is interesting to notice in Table 4 is that for 

two separate parameters (Integrated 

Components per PCB and Clock Speed), the 

Converter & Noise Reduction component had the 

biggest impact. This implies that if a system 

designer can only focus resources on one 

component, that component should be the 

Converter & Noise Reduction component since it 

clearly has the potential, with some 

improvements or modifications, to have the 

greatest impact to overall system cost. In practice 

simply swapping out a block and estimating cost 

gives a first order indication of the cost impact. It 

is not possible to swap out cost as modular blocks 

and estimate new costs without understanding 

that there are affects to the system. As design 

choices are made, impacts are assessed, costs can 

be estimated, new choices are made, and 

eventually the design spirals into a solution. As 

mentioned previously, this technique is intended 

as a tool for a cost analyst to provide a designer a 

“compass” on where to focus attention by 

identifying the components with the highest cost 

sensitivities. 

 

G.  Key Size Metric (KSM) Development 

The data has been sorted by parameter, see Table 

3. The first grouping represents all the 

occurrences where the numerical parameter for 

the Clock Speed was adjusted or varied. Varying 

the parameter had a different impact to overall 

cost depending upon which component contained 

that parameter. As can be seen in the table the 

component which had the biggest impact to 

overall cost when varying the parameter Clock 

Speed was the Converter & Noise Reduction 

component. 

One significant issue to be addressed is that a 

uniform variation factor of 20% was used for 

every parameter. With some consideration it 

seems that using a uniform variation factor for 

every parameter is not sufficient and may yield 

misleading results. For example, consider the 

decision to vary total number of CCAs by the 

same factor as Clock Speed. In the case of the 

number of CCAs it may be reasonable, for 

example, to reduce the design from 3 to 2 CCAs 

while at the same time it may be possible to 

double the Clock Speed. Clearly it is not 

computationally sensible to consider the unit step 

size to be the same from one parameter to the 

next. 

To overcome this limitation a set of Key Size 

Metrics (KSMs) must be developed. The KSMs 

would specify a unique value (other than a 

uniform 20%) for each parameter. In this way the 

relative impact to overall cost between 

parameters could be determined. 

The first step is to establish a sorting of the 

parameters in order of impact. To do this some 

amount of engineering judgement and some 

familiarity with real systems and the associated 

cost is required. As an example, consider the 

parameter Discreet Components per PCB. With 

Expected Parameter 
Sequence 

KSM To Yield The 
Expected Sequence 

Total CCA 20% 

Weight 60% 

Integrated Components per 
PCB 

5% 

Clock Speed 20% 

PCB Size 40% 

Discreet Components per 
PCB 

10% 

Volume 75% 

Table 5. Key Size Metric (KSM) Values 
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some effort it may be possible to combine various 

discreet parts together and in so doing reduce the 

quantity. This of course would have some impact 

on overall system cost. If enough of these 

improvements could be achieved, then it may be 

possible to reduce the size of the PCB. In this way 

it can be considered that the parameters should 

be arranged in a hierarchy of impact. 

In addition, consider the possibility to reduce the 

count of CCAs. With some effort it may be 

possible to reduce the count of CCAs. But in a 

practical sense it does not ordinarily occur where 

a majority of the CCAs could be eliminated. 

Instead, it is a slight reduction in count. However, 

the impact of that reduction is typically very 

significant. By comparison, altering the Clock 

Speed may be significant in value (doubling the 

clock speed, for example) and may have an 

impact to cost as well. Typically, the impact is 

considerably less than reducing the CCA count. 

With considerations such as these in mind the 

parameters were sorted, and the results appear 

in order in Table 5. 

The set of maximum parameters 

listed in Table 4 were used. These 

entries represent the cases for the 

components with the greatest 

impact to overall system cost. The 

goal was to adjust the variation 

factor for these few cases such that 

the resulting sequence of impact 

would match that as indicated in 

Table 5. Observing the effect on the 

overall cost impact the variation 

factor was varied for each of these 

parameters. Eventually, through a 

rigorous method of trial, error, and 

extrapolation, KSM values indicated 

in Table 5 were determined.  

Using these KSM values for every 

parameter within the cost model 

the revised estimated overall 

system cost should yield results in 

this same sequence. The next step 

was to repeat the analysis of the previous 

sections, obtain another full set of data and 

analyze the results. The analysis should yield 

results in the same sequence as that indicated in 

Table 5. 

 

IV. Example Sensitivity Algorithm Applied to 

Sample Cost Model 

With the sensitivity algorithm established and 

with a suitable set of KSMs derived to vary each 

parameter with a unique value the previous effort 

was repeated.  

The same system cost model was used as in the 

previous effort. The full table of values appears in 

Table 16. Because of the same subsystem blocks, 

the same list of applicable Impactful Parameters 

was chosen (Table 16, column D). The baseline 

values for each parameter remain unchanged 

(Table 16, column E). The new KSMs are applied 

(Table 16, column F). As before the spread sheet 

calculates the varied “up” and varied “down” 

values for the parameters (Table 16, columns G & 

Table 6. Parameter Maximums 

Parameter 
Variatio
n Factor 

Component Sensitivity 

Total CCA 20% 
Data 
Processing 

$351.13K 
USD/n 

Weight 60% 
Digital 
Processing 
Chassis 

$67.94K 
USD/lb 

Integrated 
Components per PCB 

5% Receiver 
$38.86K 
USD/n 

Clock Speed 20% 
Converter & 
Noise 
Reduction 

$11.29K 
USD/MHz 

PCB Size 40% RF Module 
$5.07K 
USD/in2 

Discreet Components 
per PCB 

10% 
Interconnect 
– Data Bus 

$1.99K 
USD/n 

Volume 75% 
RF Machined 
Housing 

$189 
USD/ft3 
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H). The cost tool was then run repeatedly and for 

each consecutive run only one parameter from 

the list was changed keeping all other values in 

their baseline condition. The overall system cost 

was then collected for each permutation of 

parameter value (Table 16, columns K & L). Using 

the results of each run from the cost tool the delta 

“mid” and delta “range” values were calculated 

for each parameter (Table 16, columns P & Q). 

With the delta “mid” values calculated the values 

could be ranked in order of greatest to least 

impact to overall system cost. The ranking 

appears in the table and is color coded, as before, 

with the ten most Impactful Parameters as red, 

the next ten as yellow, the next ten as green, and 

the remainder as uncolored (Table 16, column R). 

A. Results--Nonuniform Variation Factor 

(KSM) 

The results were collected similarly as were done 

in Figure 2. Consistent with the earlier example 

the various parameters have a wide variety of 

impact to overall system cost.  

The results were numbered by parameter (Table 

16, column R). It is very clear from Table 16 that 

for any parameter there exists a set of 

components upon which the parameter applies. 

And for each of the components there is clearly a 

difference in the Sensitivity of that 

parameter depending upon to which 

component it is applied. In the case of 

Clock Speed, for example, the parameter 

is associated with six different 

components. The Converter and Noise 

Reduction component has the highest 

sensitivity for this parameter, and in 

addition, ranks as 15th most Impactful 

Parameter in sensitivity for the entire 

system.  

In Table 6 the maximums for each 

parameter are collected. In other words, 

for the parameter of Total CCAs it was 

determined in Table 16 that of the six 

components, Data Processing had the 

highest sensitivity and is in fact ranked 

as 1st overall. Therefore, in Table 6 for the 

parameter of Total CCAs only the component 

Data Processing is listed with its Corresponding 

sensitivity, or delta “mid” value. The same logic 

applies for all the other parameters listed in 

Table 6. 

In addition, all cost scenarios were numbered in 

order of overall impact to system cost (Table 16, 

column R). Included are the corresponding 

components along with the parameter which 

influences the component costs. As mentioned, 

the ranking was color coded with red for the 

highest impact or sensitivity (1-10), yellow for 

medium (11-20) and green for low (21-30). It can 

be seen, for example, that the total number of 

CCAs in the Data Processing component has the 

highest cost sensitivity and was ranked 

correspondingly with a value of 1.  

V. Return on Investment (ROI) Sample Cost 

Model 

While all the calculations and results presented 

thus far are of theoretical importance the value of 

this work lies in the application of the results. The 

question of primary concern relates to how a 

system architecture can be optimized in terms of 

performance and cost early in the life cycle of a 

program. To illustrate the significance of the 

Component Parameter 
Rank Of 
Impact 

Parameter 
Baseline 

Parameter 
Try 

Data 
Processing 

Total 
CCAs 

1 2 1 

Converter 
& Noise 
Reduction 

Total 
CCAs 

2 3 2 

Receiver 
Total 
CCAs 

3 2 1 

RF Module 
Total 
CCAs 

4 0.5 0.5 

Digital 
Processing 
Chassis 

Weight 5 18 17 

Rcv Chassis Weight 6 15 14 

Table 7. Baseline/Try Parameter Value 
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results upon potential improvements to the 

sample system the following discussion is offered.  

The information which appears Table 16, column 

R indicates the top 30 most Impactful 

Parameters. It is unrealistic to consider 

improvements to a system in such a broad 

number of parameters over a broad set of 

components. Instead, focus will be applied to a 

more conservative subset. For consideration, the 

top five most Impactful Parameters will be 

analyzed such that the potential improvements to 

the sample system can be determined. Table 7 

lists the top six most Impactful Parameters. 

The next step was to assign Baseline/Try values, 

Table 7. The column Parameter Baseline indicates 

the value of the parameter which was used in the 

baseline cost estimations. Observing Table 7, a 

system designer should understand that the total 

number of CCAs in the Data Processing 

component is the most sensitive parameter 

within the entire system and has the greatest 

impact to overall cost. Therefore, a system 

designer should focus resources at this location 

to optimize the system for performance vs. 

overall system cost. With some effort, as an 

example, it may be possible to combine parts 

such that CCA board space could be reduced and 

ultimately the need for an entire CCA might be 

eliminated. A reasonable reduction goal in this 

Parameter could be from 2 CCAs down to 1 CCA. 

The goal of 1 CCA, in this example, is listed under 

the column heading Parameter Try. In fact, this 

column contains a reasonable reduction in 

parameter value for five of the highest sensitivity 

parameters. The RF Module was eliminated from 

this exercise because it was unreasonable to 

reduce the parameter value below its baseline 

value. 

Once the top five most Impactful Parameters 

were determined and reasonably achievable 

Parameter Try values were assigned the cost 

model could be run with ALL the potential 

improvements applied simultaneously and the 

corresponding impact to cost could be observed. 

It is important to mention that no longer are the 

KSMs involved in the calculation. KSMs were only 

used to create a variation factor to understand 

the sensitivity, it was a theoretical adjustment. In 

this exercise, real values are being explored. 

The two scenarios in Table 8 compare the 

Baseline Cost with the Try Cost. The Try Cost 

includes all the Parameter values from the 

Parameter Try column of Table 7 applied 

simultaneously. 

By modifying the top five cost driving parameters 

from a baseline value to an achievable and 

improved value it is demonstrated that there 

would be a significant improvement to overall 

system cost. The results of the two scenarios are 

summarized in Table 8. 

As can be seen in Table 8, the percentage 

improvement is 21% over the baseline which is a 

significant impact! Another way to interpret this 

result is in terms of return on investment (ROI). 

To modify a parameter value, it would of course 

be necessary to expend some resources to 

achieve the new value. For example, to reduce a 

design from 3 CCAs to 2 CCAs some amount of 

resources, or investment, must be made. To 

perform some amount of research, design, 

analysis, or trade study, there must be some 

expended resource which yields a parameter 

improvement. A system designer should know 

the cost of that expended resource. In this case if 

the system designer remains below a $1.7M 

investment then the project overall would 

demonstrate an improvement. In other words, a 

system designer could spend up to $1.7M to 

Table 8. Baseline vs. Potential Try Cost 

  Value 

Baseline System Cost $8,464K 

New System Cost (Try Cost) $6,682K 

Savings $1,781K 

% Improvement 21% 
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Table 10. Indentured Cost Numbering Structure 

Table 9. Indentured System Numbering Structure 

Level 1 Level 2 Level 3 Block Name 

001     Radar 

  001.01   Antenna 

    001.01.01 Radiator 

    001.01.02 TR Product 

    001.01.03 Duplexer 

  001.02   Transmitter 

    001.02.01 Power Amplifier 

    001.02.02 Up Converter 

    001.02.03 Local Oscillator 

  001.03   Synchronizer 

    001.03.01 Synchronizer 

  001.04   Receiver 

    001.04.01 
Low Noise 
Amplifier 

    001.04.02 Down Converter 

    001.04.03 Local Oscillator 

    001.04.04 IF Amplifier 

    001.04.05 Filters 

    001.04.06 
2nd Down 
Converter 

    001.04.07 
2nd Local 
Oscillator 

    001.04.08 Detector 

    001.04.09 
Analog to Digital 
Converter 

  001.05   Processor 

    001.05.01 Processor 

  001.06   Power 

    001.06.01 Transformer 

    001.06.02 Rectifier 

    001.06.03 Filter 

    001.06.04 Regulator 

  001.07   Display 

    001.07.01 Video Amplifier 

    001.07.02 Display 

Level 1 Level 2 Level 3 Block Name 

001     Radar 

  001.01   Antenna 

  001.01RU   Antenna Roll Up 

    001.01.01 Radiator 

    001.01.02 TR Product 

    001.01.03 Duplexer 

  001.02   Transmitter 

  001.02RU   Transmitter Roll Up 

    001.02.01 Power Amplifier 

    001.02.02 Up Converter 

    001.02.03 Local Oscillator 

  001.03   Synchronizer 

  001.03RU   Synchronizer Roll Up 

    001.03.01 Synchronizer 

  001.04   Receiver 

  001.04RU   Receiver Roll Up 

    001.04.01 Low Noise Amplifier 

    001.04.02 Down Converter 

    001.04.03 Local Oscillator 

    001.04.04 IF Amplifier 

    001.04.05 Filters 

    001.04.06 2nd Down Converter 

    001.04.07 2nd Local Oscillator 

    001.04.08 Detector 

    001.04.09 Analog to Digital Converter 

  001.05   Processor 

  001.05RU   Processor Roll Up 

    001.05.01 Processor 

  001.06   Power 

  001.06RU   Power Roll Up 

    001.06.01 Transformer 

    001.06.02 Rectifier 

    001.06.03 Filter 

    001.06.04 Regulator 

  001.07   Display 

  001.07RU   Display Roll Up 

    001.07.01 Video Amplifier 

    001.07.02 Display 
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achieve improvements in those top five 

parameters which most significantly impact 

overall system cost. And of course, anything less 

than $1.7M contributes to profit margin. If those 

achievements could be realized there would be a 

21% improvement in overall system cost which is 

clearly a significant improvement.  

 

VI. Example:  Sensitivity Algorithm Applied 

to “Real” Cost Model  

With the cost sensitivity algorithm fully 

developed and understood, the effort now turns 

towards implementation of a “real” example. For 

the development of the cost sensitivity algorithm 

a sample cost model has been used. While this 

has led to a theoretical benefit, what remains to 

be seen is if this algorithm can be utilized in a 

more real-life example. To address and satisfy 

this question, a real example is available. In 

particular, a cost model based on the 

standardized WBS structure for an airborne 

RADAR system for a military aerospace 

application has been developed and can be 

utilized to test the cost sensitivity algorithm. 

 

A. Selection of a “Real” Cost Model 

In A System Engineering Approach 

Using Sensitivity Analysis For 

Reducing System Cost, JACP April 

2022, an effort was made to 

consolidate block diagrams from a 

wide sample of available examples. 

This was done to create a generalized 

block diagram of an airborne RADAR 

for military applications and where 

each of the examples could be 

considered a subset of the more 

generalized form. The resulting block 

diagrams and definitions were then 

organized into a WBS structure (Table 

9). 

The generalized WBS structure was shown useful 

as a foundation for both a system model and a 

cost model. As can be seen, the suggested cost 

model (Table 10) is the same as the WBS in that it 

maintains the same structure however the cost 

model includes additional rows for “Roll Up.” A 

cost tool could call out Level 2 hardware, for 

example an antenna. However, an antenna is also 

a collection of Level 3 hardware blocks. In this 

case, both options are included in the cost model. 

And when the model is run to produce an 

estimate either, but not both would be selected.  

This new RADAR cost model represents a real-life 

example of a RADAR cost model upon which to 

verify the benefits of employing the cost 

sensitivity algorithm. 

 

B. Impactful Parameters & KSM Values 

The work of determining the Impactful 

Parameters has already been completed. The 

same set of Impactful Parameters which were 

previously used and appear in Table 4 will be 

used once again in this analysis. No additional 

work in this area is required. 

The work of determining the KSM values has 

already been completed. The same set of KSM 

Figure 3 - Real-Life Cost Delta vs. Parameter 
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values which were previously used and appear 

in Table 5 will be used once again in this 

analysis. No additional work in this area is 

required. 

 

C. Re-Run of Algorithm & Data Collection 

As before, an Excel file was created for the real-

life cost model analysis which shows all the 

components with their respective parameters 

and their variation factors (Table 17). The table 

was again used to collect and organize the 

information including hardware components, 

Impactful Parameters, KSM values, etc. As 

before, the spread sheet calculates the vary “up” 

and vary “down” values for the parameters. To 

establish a baseline cost, the cost model was run 

to estimate the cost for the overall system and 

the results were compiled. 

The cost tool was then run repeatedly, and for 

each consecutive run, only one parameter from 

the list was changed keeping all other values in 

their baseline condition. The overall system cost 

was then collected for each permutation of 

parameter value. Using the results of each run 

from the cost tool, the delta “mid” and delta 

“range” values were calculated for each 

parameter. With the delta “mid” values 

calculated, the values could be ranked in order of 

greatest to least impact to overall system cost. 

The ranking appears in the table and is color 

coded, as before, with the ten most Impactful 

Parameters as red, the next ten as yellow, the 

next ten as green, and the remainder as 

uncolored (Table 17).  

 

D. Results - Algorithm on “Real” Cost Model 

The results are graphically illustrated in Figure 

3. As before, the various parameters have a wide 

variety of impact to overall system cost.  

The results were sorted by parameter (Table 

11). It is very clear from the table that for any 

parameter, there exists a set of components 

upon which the parameter applies. And, for each 

of the components, there is clearly a difference in 

the sensitivity of that parameter depending upon 

to which component it is applied. In the case of 

Parameter Component 
Sensitivity 
or Delta 
“mid” 

Rank Of 
Impact 

Clock 
Speed 

(USD/
MHz) 

Antenna $53.59K 17 

Display $52.39K 18 

Power $36K 20 

Processor $76.72K 13 

Receiver $144.95K 10 

Synchronizer $54.75K 15 

Transmitter $169.79K 9 

Discreet 
Comp per 
PCB 

(USD/n) 

Antenna $6K 26 

Display $2.08K 28 

Power $13.58K 24 

Processor $14.63K 23 

Receiver $21.52K 21 

Synchronizer $4.29K 27 

Transmitter $16.08K 22 

Integrated 
Comp per 
PCB 

(USD/n) 

Antenna $5.46K 16 

Display $109.04K 11 

Power $73.66K 14 

Processor $48.07K 19 

Receiver $180.15K 8 

Synchronizer $12.15K 25 

Transmitter $102.36K 12 

PCB Size 

(USD/in2) 

Antenna 0 29 

Display 0 41 

Power 0 39 

Processor 0 37 

Receiver 0 35 

Synchronizer 0 33 

Transmitter 0 31 

Total CCAs 

(USD/n) 

Antenna $216.25K 6 

Display $525.89K 4 

Power $279.63K 5 

Processor $573.07K 2 

Receiver $913.70K 1 

Synchronizer $207.09K 7 

Transmitter $571.00K 3 

Table 11. Real-Life Cost Model Results Sorted by Parameter 
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Clock Speed, for example, the parameter is 

associated with seven different components. The 

Receiver component has the highest sensitivity 

for this parameter, and in addition, ranks as 10th 

most Impactful Parameter in sensitivity for the 

entire system.  

In Table 12, the maximums for each parameter 

are collected. In other words, for the parameter of 

Total CCAs, it was determined in Table 11 that of 

the seven components, Receiver had the highest 

sensitivity and is in fact ranked as 1st overall. 

Therefore, in Table 12, for the parameter of Total 

CCAs, only the component Receiver is listed with 

its corresponding sensitivity, or delta “mid” value. 

The same logic applies for all the other 

parameters listed in Table 12. 

In addition, all cost scenarios were numbered in 

order of overall impact to system cost (Table 17, 

column R). Included are the corresponding 

components along with the parameter which 

influences the component costs. As mentioned, 

the ranking was color coded with red for the 

highest impact or sensitivity (1-10), yellow for 

medium (11-20) and green for low (21-30). It can 

be seen, for example, that the total number of 

CCAs in the Receiver has the highest cost 

sensitivity and was ranked correspondingly with 

a value of 1.  

 

E. Multivariable Analysis & Trade Studies 

A robust structured system modelling approach 

utilizes the concept of modularity. If the system is 

comprised of modules, then the possibility exists 

where modules could be swapped to modify the 

system for various performance characteristics. 

At the same time, if the cost model mirrors the 

system model, then as the system is being 

defined, a rough cost estimation could be 

determined simultaneously. 

Even with a modular approach, when designing a 

system more than one variable must be 

considered. Choices are made regarding those 

variables. In most cases, variable choices have 

competing impacts. For example, one design 

architecture may have “better” performance 

using more power vs. “worse” performance using 

less power. Decisions for a sub-system need to be 

evaluated at a system level. A system designer 

needs to consider the design as a system and 

realize that any change potentially has an impact 

beyond the sub-system. It is not usually possible 

to make an architecture or hardware change 

irrespective of the larger view of the system. This 

is really the heart of system engineering, 

consideration of an entire system, not just a 

collection of sub-system parts. 

This is particularly important when considering 

cost because it is not possible to swap out cost as 

modular blocks and estimate new costs without 

understanding that there are affects to the 

system. There are multilevel impacts when 

modular blocks are substituted. Simply swapping 

out a block and estimating cost gives a first order 

indication of the cost impact. But until the design 

is finalized it is only a rough estimate. There is a 

spiral approach to design. As choices are made, 

impacts are assessed, costs can be estimated, new 

choices are made, and eventually the design 

spirals into a solution. 

To decide between competing variables a trade 

study can be employed. A trade study is a useful 

tool which allows a designer to compare and 

Table 12. Real-Life Parameter Maximums 

Parameter 
Variati
on 
Factor 

Componen
t 

Sensitivi
ty or 
Delta 
“mid” 

Total CCA 20% Receiver 
$913.71K 
USD/n 

Integrated 
Components 
per PCB 

5% Receiver 
$180.15K 
USD/n 

Clock Speed 20% 
Transmi
tter 

$169.79K 
USD/MHz 

Discreet 
Components 
per PCB 

10% Receiver 
$21.52K 
USD/n 

PCB Size 40% Antenna $0K USD/
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contrast the various possible choices to 

determine which solution would be “best” for the 

given application. 

This work is intended as a tool for a cost analyst 

to provide a designer a “compass” on where to 

focus attention by identifying the components 

with the highest cost sensitivities. 

 

VII. Return on Investment (ROI): “Real” Cost 

Model 

Consistent with the sample cost model example, 

all the calculations and results presented remain 

of theoretical importance. 

However, the value of this 

work lies in the application 

of the results. The question 

which is of primary 

concern relates to how a 

system architecture can be 

optimized in terms of 

performance and cost early 

in the life cycle of a 

program. To illustrate the 

significance of the results 

upon potential 

improvements to the real-

life system, the following 

discussion is offered.  

The information which 

appears in Table 17 

includes the top 29 most 

Impactful Parameters. 

What was discovered was 

that a few parameters have 

the greatest sensitivity 

affecting the cost of the 

overall system. It is 

unrealistic to consider 

improvements to a system 

in such a broad number of 

parameters over a broad 

set of components. Instead, 

focus will be applied to a 

more conservative subset. What remains to be 

done is to modify a reasonable set of those 

Impactful Parameters to see realistically how it 

will affect system cost. In Table 13, three options 

are presented: option A represents a reasonable 

and achievable change in hardware, option B 

represents improvements to the top three 

parameters, and option C represents 

improvements to the top five cost driving 

parameters. 

The column Parameter “Was” indicates the value 

of the Parameter which was used in the baseline 

cost calculations. The value in the “Try” column 

Option A: Was/Try, Reasonable Expectation  

Component 
Level 2 

Parameter 
Rank of 
impact 

Parameter 
"Was" 

Parameter 
"Try" 

          

Receiver Total CCAs 1 3 2 

Processor Total CCAs 2 2 1 

Receiver 
Integrated 
Components per PCB 

8 45 42 

Transmitter Clock Speed 9 400 300 

Receiver Clock Speed 10 250 300 

     

Option B: Was/Try, Multiple Teams  

Component 
Level 2 

Parameter 
Rank of 
impact 

Parameter 
"Was" 

Parameter 
"Try" 

          

Receiver Total CCAs 1 3 2 

Receiver 
Integrated 
Components per PCB 

8 45 42 

Transmitter Clock Speed 9 400 300 

     

Option C: Was/Try, Top 5  

Component 
Level 2 

Parameter 
Rank of 
impact 

Parameter 
"Was" 

Parameter 
"Try" 

          

Receiver Total CCAs 1 3 2 

Processor Total CCAs 2 2 1 

Transmitter Total CCAs 3 2 1 

Display Total CCAs 4 4 3 

Power Total CCAs 5 2 1 

Table 13. Was/Try Parameter Value Options 
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contains a reasonable modification to parameter 

value. In other words, with some reasonable 

effort, it may be an achievable goal to modify the 

“was” to the “try” value. 

Option A is a reasonable effort. This is an option 

which if undertaken, it may result in achieving 

these goals. Options B & C are not very realistic. 

Option B, for example, because it involved three 

distinct parameters, it would require three 

separate disciplinary teams. While option C 

indiscriminately selects the top five drivers and is 

hardly likely to be achievable. Still, options B & C 

help to bound the possible improvements. 

The cost model could be run with ALL of the 

potential improvements applied simultaneously 

and the corresponding impact to cost could be 

observed. It is important to mention that no 

longer are the KSMs involved in the calculation. 

KSMs were only used to create a variation factor 

to understand the sensitivity, it was a theoretical 

adjustment. In this exercise, real values are being 

explored. 

By modifying the cost driving parameters from a 

baseline value to an achievable and improved 

value (Table 17), it is demonstrated that there 

would be a significant improvement to overall 

system cost. Table 14 is a summary of the system 

cost result when the options are exercised. 

As can be seen in Table 14, the percentage 

improvements are 23%, 13% and 41% over the 

baseline which is a significant impact! Of course, 

as mentioned, option A is really the only option 

under consideration and has a 23% potential 

improvement in cost.  

Another way to interpret this result is in terms of 

return on investment (ROI). To modify a 

parameter value, it would of course be necessary 

to expend some resources to achieve the new 

value. For example, to reduce a design from 3 

CCAs to 2 CCAs some amount of resources, or 

investment, must be made. There must be some 

amount of research, design, analysis, or trade 

study. There must be some expended resource 

which yields a parameter improvement. A system 

designer should know the cost of that expended 

resource. In this case, if the system designer 

remains below a $3.9M investment then the 

project, overall, would demonstrate an 

improvement. In other words, a system designer 

could spend up to $3.9M to achieve 

improvements in those parameters for option A 

which most significantly impact overall system 

cost. And of course, anything less than $3.9M 

contributes to profit margin. If those 

achievements could be realized there would be a 

23% improvement in overall system cost which is 

clearly a significant improvement. 

 

VIII. Conclusion 

This paper documents the application of a cost 

sensitivity algorithm upon the various 

components in a system to analyze and 

determine which subsystem components in a 

chosen design solution have the highest 

sensitivity to overall cost. This paper highlights 

the areas to which a system designer could apply 

Table 14. Was/Try Parameter Value Cost Results 

Option A: Was/Try, Reasonable Expectation 

$16,975,050 <-- Baseline System Cost 

$13,080,099 <-- New Improved System Cost 

$3,894,951 <-- Savings 

23% <-- % Improvement 

  

Option B: Was/Try, Multiple Teams 

$16,975,050 <-- Baseline System Cost 

$14,799,474 <-- New Improved System Cost 

$2,175,576 <-- Savings 

13% <-- % Improvement 

  

Option C: Was/Try, Top 5 

$16,975,050 <-- Baseline System Cost 

$10,008,258 <-- New Improved System Cost 

$6,966,793 <-- Savings 

41% <-- % Improvement 
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focus to reduce the overall system cost early in 

the life cycle of a program. It was shown using 

sensitivity analysis that a cost sensitivity 

algorithm was developed including a discussion 

on key size metrics. It was shown the cost 

sensitivity algorithm was applied to a sample cost 

model and that it demonstrates which component 

parameters were most sensitive and the biggest 

cost drivers in the system design. In addition, an 

alternative was suggested which offered the 

system designer a significant opportunity to 

improve cost. A return on investment (ROI) was 

calculated using the result to suggest a trade 

study budget for achieving the potential cost 

improvements. The fully developed cost 

sensitivity algorithm with KSMs was then applied 

to a “real” example cost model based on a 

generalized work breakdown structure (WBS) for 

a RADAR system applied to military applications 

in the aerospace industry. The result of applying 

the algorithm was presented and demonstrates 

the significant impact achievable to overall 

system cost when focus is applied appropriately 

to the areas for which overall system cost is most 

sensitive. And finally, for the “real” example, the 

algorithm highlights the areas where trade 

studies could be performed and yields a target 

return on investment (ROI) budget to achieve 

those cost improvements at the beginning of the 

life cycle of a program. 
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Appendix 

Table 15. Full Data Set Using 20% Variation Factor 
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Table 16. Full Data Set Using KSM Variation Factors 
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Table 16. Full Data Set - Algorithm Using “Real” System Cost Model 
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Introduction 

Defense cost analysts employ a multitude of 

techniques to estimate the cost of a weapon 

system. One of the most widely accepted and 

utilized techniques is learning curve analysis. 

Learning curves are traditionally used to estimate 

recurring costs in a production process (Mislick & 

Nussbaum, 2015). While previous researchers 

have studied learning curves along a multitude of 

dimensions, one area that lacks empirical 

examination in defense programs is the concept 

of a step-down function. This lack of empirical 

examination has led to some debate on whether 

step-down functions should be employed in cost 

estimates. We examine the evidence in military 

fighter airframes to shed light on the issue. Thus, 

the purpose of this article is four-fold: 1) 

empirically detect step-down functions in defense 

aircraft programs 2) examine the impact of 

weight normalization on step-down functions 3) 

analyze factors that impact step-down functions 

and 4) develop an empirically based Cost 

Estimating Relationship (CER) to predict first unit 

production costs based upon development unit 

cost data. 

The Step-Down Function 

The production of an end item often begins with 

prototype or development units. This presence of 

prototype or development units has created the 

idea of a step-down function. More specifically, 

step-down functions occur between the 

Engineering, Manufacturing, and Development 

(EMD) and the Production phases and are a 

method for estimating the theoretical first unit 

production cost based on development asset data 

(Mislick & Nussbaum, 2015). In learning curves, a 

step-down would appear as a downward shift on 

the graph with learning resuming at the same or 

a modified slope.  

The theory undergirding step-down functions is 

that the development unit is a near production 

copy in design, physical, and performance 

characteristics, but is usually accomplished in an 

EMD environment rather than a production line 

set-up (Hardin & Nussbaum, 1994). Therefore, 

the cost to manufacture a development asset is 

expected to be more expensive than a production 

model (Hardin & Nussbaum, 1994). 

Mathematically, the ratio of the production phase 

first unit cost to the development first unit cost 

(or average development unit cost) is known as a 
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step-down factor. The actual cost difference 

between the development first unit cost (or 

average development unit cost) and the 

production first unit cost is the step-down 

(Mislick & Nussbaum, 2015). When first unit 

production costs are greater than development 

costs it is called a step-up rather than a step-

down. 

The Government Accountability Office (GAO) 

identifies two main learning curve 

methodologies: Continuous and Step-Down (GAO, 

2020). The Step-Down methodology is further 

broken into two subcategories consisting of 

Sequential and Disjoint theory. These three 

models are shown in Figure 1.  For ease of 

visualization, the models are shown in log space. 

Continuous learning curve theory is the 

traditional learning curve described by Wright 

(1936) for aircraft production but includes the 

developmental units as part of the curve as 

shown in Figure 1(a). As such, continuous 

learning curve theory assumes the same 

improvement slope in production as well as 

development. The production estimate can 

simply be calculated by continuing down the 

curve for the desired quantity (GAO, 2020).  

The two subsets of Step-Down theory, Sequential 

and Disjoint, typically assume that the 

improvement slope remains the same in 

development and production but there is a step 

down in the value between the cost of the first 

development unit and the cost of the first 

production unit (GAO, 2020). Sequential theory 

states that the cost improvement continues when 

the first production unit equals the last 

development unit plus one. For example, if the 

last development unit is 10, then the first 

production unit would be 10 + 1 = 11. Initially, 

Sequential theory sounds like Continuous theory 

where you consider learning made in 

development and apply it to production units. 

Where it differs is that there is a discontinuity in 

the curve between development and production 

as shown in Figure 1(b). 

Figure 1. Step-Down Function Types in Log Space 
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Table 1: Summary of Step-Down Studies 

Author Data Focus Method Conclusion 

Waller 
(1976) 

DoD electronics data 
set (data unavailable) 

Formulate step-down 
factors using disjoint 
and sequential 
theories 

Compared theoretical first 
production unit (T1s) 
developed using disjoint 
and sequential theories 

Mixed results; There was 
no clear conclusion to 
whether disjoint or 
sequential theory was a 
better predictor for all 

Federic  
(1979) 

Same data set as Waller 
(1976) and included 
hypothetical data  

Cost continuity does 
not have to be 
distinctly disjoint or 
sequential but a 
potential spectrum 
between the two 
theories 

Cost improvement curves 
were fit using different 
points on the spectrum 
between production 
quantities only and 
prototype and production 
quantities together 

Mixed results; There was 
no clear conclusion to 
whether disjoint or 
sequential theory was a 
better predictor for all 

Hubach, 
Pehrsson, 
& Fox 
(1987) 

8 Airframe systems, 6 
engines, 6 avionics 
systems 

Determine what is the 
appropriate range of 
production data to use 
in fitting cost 
improvement curves 

Used Ordinary Least 
Squares (OLS) regression to 
calculate 6 curves for each 
system – 3 disjoint and 3 
sequential curves. 

Mixed results; Airframe 
did best under disjoint 
theory. Engine modeling 
was marginally better 
using sequential modeling. 
Avionics had inconclusive 
results 

Malcolm 
(1991) 

7 Marine amphibious 
assault vehicles 

Focused on the 
relationship between 
development and 
production unit costs 

Used OLS regression with 
disjoint and sequential 
theories 

Sequential model was the 
most applicable to 
estimating the costs of the 
amphibious assault 
vehicles 

Hardin & 
Nussbaum 
(1994) 

Reviewed 9 step-up/
step-down studies 

Analyzed the 
relationship between 
development and 
production costs and 
compared it to other 
step-down or step-up 
studies 

N/A, no unique model 
development. 

A general step-up or step-
down factor can be 
applied to all types of 
systems, but the equation 
would have a much higher 
variance 

Cherwonik 
et al. 
(2012) 

2 assault vehicles 

Use a reference point 
other than T1 to 
calculate the learning 
curve and examined 
the step-up/down 
factors 

Created basic production 
learning curves and then 
calculated step-down 
factors for prototype to 
production units 

Utilizing a prototype 
Average Unit Cost (AUC) 
compared to T1000 
provided the least varied 
step factor 

Bui (n.d.) 

6 prototype aircraft 
airframes, 12 
production aircraft 
airframes, and 6 
tactical missiles 

Analyzed production 
step-down factors for 
aircraft and tactical 
missile manufacturing 
experiences 

Use OLS regression to 
generate learning curves 
and determine the step-
down percentage from the 
calculated T1 and average 
prototype unit cost 

Airframe step-down was 
between prototype and 
Full Scale Development 
(FSD) and had lower step-
down factors. Missile step 
downs were higher but 
occurred between FSD 
and production 
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Disjoint theory restarts improvement at the first 

production unit and does not consider learning 

created during development phases to be 

significant (GAO, 2020). Disjoint theory has a 

curve displacement, but the improvement starts 

over at unit one rather than at the last 

development unit plus one as shown in Figure 1

(c). Because it restarts learning, disjoint theory 

usually results in significantly lower production 

estimates (GAO, 2020). 

 

Previous Step-Down Function Studies  

To the best of our knowledge, there are no 

previous step-down function studies published in 

peer-reviewed literature. However, we were able 

to find seven reports (or conference 

presentations) specifically related to step-down 

functions in defense programs. These reports are 

summarized in Table 1.  

There are several key points from the studies in 

Table 1. First, note that all but one of the step-

down studies are more than 25 years old. Second, 

the majority of the studies have very small 

sample sizes. For example, the most recent study 

from 2012 only examined two assault vehicles. 

Third, many of the studies, in addition to 

examining the step-down function itself, 

attempted to develop a Cost Estimating 

Relationship (CER) between development and 

first unit production costs.  Thus, one of the goals 

of this article is to develop a new CER with more 

recent data from fighter aircraft for modern-day 

practitioner use.  

Perhaps the most comprehensive study we 

discovered is by Hardin and Nussbaum (1994). 

They reviewed nine internal Navy studies that 

focused on missile systems, radar, and general 

electronics. Part of their study examined CERs 

developed for these disparate system types both 

individually and as an aggregated CER. Their 

conclusion was that there could be a general (i.e. 

aggregated) step-up or step-down factor CER that 

can be applied to all types of systems, but that 

equation would have a much higher variance. 

Therefore, in general, they recommend using 

system specific step-up/step-down factors in lieu 

of a CER that applies to all system types. This 

finding from Hardin and Nussbaum provides the 

motivation for our study focusing on fighter 

aircraft programs as a single system type. 

 

Data 

The data is primarily sourced from Contractor 

Cost Data Summary Reports, or DD 1921-2s 

(Progress Curve Reports), via the Life Cycle 

Management Center (LCMC) at Wright-Patterson 

Air Force Base, Ohio. The focus of this study is 

fighter airframes. The original dataset included 

18 programs with 513 lots. The following four 

criteria had to be met for a program to be 

included in the final dataset:  

1. Have at least one development lot  

a. If no development lot is listed based off DD 

1921-2, the early lots can be deemed 

development if the absolute value of the 

airframe weight is at least 5% different 

than its successor and if the lot has less 

than three aircrafts manufactured  

2. Have at least four or more production lots  

3. Have direct man-hour data for each lot  

a. If less than 20% of direct man-hour 

production data was missing, the data was 

imputed  

4. Is fighter airframe  

 

The first inclusionary criterion is to ensure that 

there is adequate data to formulate a step-down 

factor. To maximize the programs that can be 

included, two sub-criteria had to be met. Both 

criteria were developed by reviewing the data 

available that had development lots identified 

and by speaking to a subject matter expert at the 

Air Force Life Cycle Management Center (S. 

Valentine, personal communication, October 27, 

2021). The sub-criteria were purposely made to 

be conservative in nature to ensure that the 

inclusion of any lots in the final dataset would not 

skew the results. 
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The second inclusionary criterion is to ensure 

that there was adequate data to calculate the 

production theoretical first unit (T1). The 

third inclusionary criterion is that the 

programs must have complete direct man-

hour data for each lot. To maximize the 

programs that could be included, programs 

with minimal missing direct man-hour data 

were reviewed. If the program’s production 

lots were missing less than 20 percent of its 

direct man-hour data, a line was fitted to the 

available production lots and an equation 

was generated. The equation was used to 

calculate the missing production direct man-

hours per aircraft. Table 2 shows the final 

dataset after employing the inclusion/

exclusion criteria. 

Table 3 shows the 10 programs analyzed in 

this article. The program names have been 

omitted and are designated as Program A, 

Program B, etc, as a precaution in protecting the 

data. Note the two programs with asterisks. First, 

Program F, had missing production man-hour 

data for two production lots. However, because 

Program F was missing less than 20 percent of 

the direct man-hour data, the hours were derived 

in accordance with inclusion criteria 3(a) above. 

Second, Program J’s development lot was 

categorized in accordance with inclusion criteria 

1(a) above. This program did not have a 

development lot annotated on the 1921-2 due to 

its unique acquisition history.  

 

Methods 

The term improvement curve denotes that costs 

are used as the primary measure. While there are 

merits to employing improvement curves, using 

cost as the dependent variable has some well-

documented limitations. These limitations 

include concerns with wrap rates (Mislick & 

Nussbaum, 2015), economies of scale (GAO, 

2020), and escalation (Hogan et al., 2020). An 

alternative unit of measure for calculating 

learning curves is hours and is the approach this 

article takes. Practitioners have noted that as a 

program progresses and both cost and hours are 

provided by contractors, hours are the preferred 

learning curve unit of measure (S. Valentine, 

personal communication, August 25, 2021). In 

addition, negotiations between the government 

and contractor regarding the program learning 

curves are typically discussed from a man-hour 

perspective. These hours are reported on DD 

1921-2s. More specifically, the direct man-hours 

per aircraft from the DD 1921-2 is the summation 

of four categories: engineering, tooling, quality 

control and manufacturing. Of these categories, 

only quality control and manufacturing are 

Table 2: Inclusion/exclusion criteria 
describing the establishment of the final 

analyzed dataset 

  
Number 

of 
programs 

Number 
of entries 

Original dataset 18 513 

No development lots 4 69 

Less than four production 
lots 

1 6 

Missing >20% direct man-
hours for lot(s) 

2 114 

Not airframe 1 12 

Remaining dataset 10 312 

Table 3: Final Dataset 

Aircraft Service Type 
Dev 

Lot(s) 
Prod 

Lot(s) 
Total 

Program A Air Force Fighter 1 8 9 

Program B 
Navy/
Marine 

Fighter 1 50 51 

Program C Air Force Fighter 1 13 14 

Program D Air Force Fighter 2 55 57 

Program E Air Force Fighter 7 33 40 

Program F* Air Force Fighter 9 11 20 

Program G Navy Fighter 3 67 70 

Program H Air Force  Fighter 1 12 13 

Program I Marines Fighter 6 4 10 

Program J** Air Force Fighter 2 26 28 

Total 312 
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accounted for in learning curves and included in 

our dataset. 

Determining Step-Down Factors 

The first objective of this article is to determine 

whether there are step-down factors in the ten 

fighter aircraft programs. Two unique step-down 

factors are calculated for each program. The 

theoretical first production unit (T1) is calculated 

via OLS regression analysis. This calculated 

production T1 is then divided by the 

development first unit direct man-hours (EMD 

FUH) (note: for purposes of this research this is 

considered equivalent to development T1). Next, 

the production T1 is divided by the Engineering 

and Manufacturing Design (EMD) average unit 

hours (EMD AUH). The two equations are shown 

below: 

Step-Down Factor 1 = Production T1/EMD FUH

   (1) 

Step-Down Factor 2 = Production T1/EMD AUH

   (2) 

These step-down factors will then be tested via a 
Sign test. The Sign test is the non-parametric 
equivalent of a paired t test where it tests for 
consistent differences of two groups using the 
median (Shier, 2004). The non-parametric test is 
required because the total amount of programs 
reviewed is less than 30 and a particular 
distribution cannot be assumed.  
 
This Sign test will be conducted for both step-
down factor calculations (EMD FUH and EMD 
AUH). The Sign test is based on the direction of 
the plus and minus sign of the observation and 
not on their numerical value. In other words, the 
Sign test will determine as a group of programs 
whether the actual first development lot direct 
man-hours or development average unit hours 
are statistically different than the calculated 
production T1. The hypotheses for the Sign test 
are as follows:  
 
H0: Difference in median of the signed differences 

= 0 
Ha: Difference in median of the signed differences 

≠ 0 

 

Deriving a Cost Estimating Relationship (CER) 

Previous step-down studies (Hardin & Nussbaum, 

1994) and cost estimation textbooks (Mislick & 

Nussbaum, 2015) highlight the utility of a CER for 

practitioner use. The goal of these CERs is to 

provide a basis for determining an aircraft’s 

production T1 when development data exists. 

Our first CER uses the development FUH as the 

independent variable (x) and the calculated 

production T1 as the dependent variable (y). The 

data will be fit to a linear (see Equation 3) and 

power (see Equation 4) function using a non-

linear solver; the adjusted R2 will be used to 

determine which equation best fits the data. 

These models will also be used for EMD AUH as 

the independent variable and the calculated 

production T1 as the dependent variable. Thus, a 

total of four regression models will be evaluated. 

 y = β0 + β1x1 + ε   (3) 

Where: 
y: Production T1 
x1: EMD FUH or EMD AUH 
 
 y = Axb + ε   (4) 

  

Where: 

y: Production T1 
x: EMD FUH or EMD AUH 
 
 
Impact of Weight Normalization on Learning 

Curves 

Normalization by weight in learning curves is not 

a widespread approach. However, some 

practitioners advocate for it and there is 

precedence in the literature. For example, 

Alchian’s (1950) study of 22 bomber, fighter, 

trainer, and transport airframes after World War 

II normalized the data using direct labor hours 

per pound. Therefore, we examine the impact of 

weight normalization in our dataset. 

The normalization is accomplished by dividing 

the program’s direct man-hours by the airframe 

weight. Next, we repeat the Sign tests as 

described in the Determining Step-Down Factors 

section previously with the newly normalized 

data. The results from the Sign test will indicate 

whether a step-down function exists in the data. 

Comparing the results from the Sign tests of the 
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non-normalized to the normalized data will 

illuminate any impacts from weight 

normalization.  

 

Results 

We first developed step-down factors for the ten 

aircraft programs. Recall that two unique step-

down factors (see Equations 1 and 2) are 

calculated for each program: one using EMD FUH 

and one using EMD AUH. A factor below 1 means 

that the EMD FUH or EMD AUH had higher direct 

man-hours per aircraft (step-down). A factor 

above 1 means that the EMD FUH or EMD AUH 

had lower direct man-hours per aircraft (step-

up). Some programs have the same step-down 

factor for both EMD FUH and EMD AUH 

calculations due to only having one development 

lot. These programs are marked with an asterisk 

in Table 4. 

The step-down for the EMD 

FUH calculation ranged from 

0.168 to 1.316. The range for 

EMD AUH is 0.212 and 1.411. 

These airframes have a mean of 

0.656 and standard deviation of 

0.344 for the EMD FUH and 

0.787 mean and 0.364 standard 

deviation for EMD AUH. Only 

Program C and Program J had step-up factors.  

The data in Table 4 appears to show a consistent 

step-down factor for both calculations. Testing 

for statistical significance of that observation is 

discerned by the Sign test. The null hypothesis is 

that there is no step-down factor, and the 

alternative hypothesis is that there is a step-

down factor. This test uses an alpha of 0.1. 

Results of the Sign Test is shown in Table 5. 

Both EMD FUH and EMD AUH rejected the null 

hypothesis. This means that, for the sample, there 

is a statistically significant step-down factor 

between development and production. These 

initial results indicate that practitioners 

developing estimates on fighter airframes should 

consider incorporating a step-down factor in 

their estimate.  

 

Predicting Production T1: the Cost Estimating 

Relationship 

Some previous step-down factor research 

(Malcolm, 1991; Hardin & Nussbaum, 1994) 

developed CERs for practitioner use in predicting 

production T1 values from EMD data. Thus, the 

next step of this research uses the step-down 

calculations from Table 4 to create CERs. 

Equation forms were limited to linear and power 

functions due to their prevalence in learning 

Table 4: Step-Down Factors 

Aircraft Type 
Step-Down 
EMD FUH 

Step-Down 
EMD AUH 

Program A* Fighter 0.675 0.675 

Program B* Fighter 0.876 0.876 

Program C* Fighter 1.316 1.316 

Program D Fighter 0.631 0.822 

Program E Fighter 0.36 0.726 

Program F Fighter 0.168 0.212 

Program G Fighter 0.376 0.506 

Program H* Fighter 0.833 0.833 

Program I Fighter 0.391 0.493 

Program J Fighter 0.935 1.411 

* Denotes only one development lot 

Table 5: Sign Test Results 

  EMD FUH EMD AUH 

Test Statistic 22.5 17.5 

Prob > |z| 0.0039 0.084 

Table 6: Cost Estimating Relationship 

Step-Down 
Factor Type 

Equation 
Type Equation Adjusted R2 

EMD FUH Linear y = 0.3939x +27.1994 0.4983 

EMD FUH Power y = 0.0003x2.3502 0.4246 

EMD AUH* Linear y = 0.5842x + 28.847 0.8149 

EMD AUH Power y = 0.9083x0.9618 0.8222 

*Recommended CER is bolded in the Table 
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curve use. A total of four individual equations 

were created. See Table 6. 

As shown in Table 6, we recommend using the 

EMD AUH linear CER. The adjusted R2 is nearly 

equivalent between the linear and power AUH 

models. However, by choosing the linear CER, 

OLS regression can be utilized for further 

evaluation. This practical consideration trumps 

the minor decrease in adjusted R2 incurred by 

selecting the linear model. The recommended 

CER has a coefficient of variation (CV) of 0.3222. 

This implies that the CER is a good starting point 

for a cost analyst to use, but some caution is 

advised due to the moderately high CV.  

 

Weight Normalized Step-Down Factor Analysis 

As previously discussed, weight normalization in 

learning curves is advocated by some 

practitioners and is also found in previous 

literature. Therefore, we normalize the data by 

weight and recalculated the step-down factors to 

determine the impacts. Note that one platform, 

Program G, is excluded from our original dataset 

due to lack of airframe weight information. The 

resultant step-downs are shown in Table 7. 

The mean and standard deviation for EMD FUH is 

0.689 and 0.345, respectively. These values are 

higher than the mean and standard deviation of 

the non-normalized data. Similarly, the mean and 

standard deviation for EMD AUH is 0.826 and 

0.371, respectively. These EMD AUH results are 

also higher than the non-normalized data. These 

higher mean values indicate that normalizing by 

weights reduces the impact of a step-down factor. 

In other words, the reduction in hours for the 

first unit of production from its prototype 

development hours is less when normalized for 

weight than when it is not normalized for weight.  

Next, the Sign Test is conducted for the weight 

normalized data. The alpha is 0.10 and the results 

of the Sign Test are shown in Table 8. 

The EMD FUH Sign Test rejects the null 

hypothesis. This suggests that for the sample, 

there is a statistically significant step-down factor 

between development and production. This 

finding is consistent with the finding from the 

non-normalized EMD FUH data in Table 5. 

However, EMD AUH fails to reject the null 

hypothesis of the Sign Test. This finding is 

contrary to the finding from the non-normalized 

EMD AUH data in Table 4 which rejected the null. 

The normalized EMD AUH result indicates that 

there is not a step-down between development 

and production. In other words, normalizing for 

weight matters in the EMD AUH calculations. 

The contradictory findings of the Sign Test in 

Table 8 between EMD FUH and EMD AUH 

warrants further investigation. We hypothesize 

the difference may lie in “legacy” versus 

“modern” aircraft. The rationale is that touch 

labor in legacy aircraft was simpler, with 

machinists completing fewer complex tasks, in a 

pre-computer environment. To discern if this is 

Table 7: Step-Down Factors Normalized by 
Weight 

Aircraft Type 
Step-
Down 

EMD FUH 

Step-Down 
EMD AUH 

Program A* Fighter 0.67 0.67 

Program B* Fighter 0.909 0.909 

Program C* Fighter 1.296 1.296 

Program D Fighter 0.631 0.821 

Program E Fighter 0.371 0.749 

Program F Fighter 0.176 0.247 

Program H* Fighter 0.774 0.774 

Program I Fighter 0.401 0.505 

Program J Fighter 0.968 1.462 

* Denotes only one development lot 

Table 8: Sign Test Results  
(Normalized by Weight Data) 

  EMD FUH EMD AUH 

Test Statistic 16.5 9.5 

Prob > |z| 0.0547 0.3008 
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the case, we divide the aircraft into the legacy and 

modern categories via subject matter expert 

inputs. Next, we run a Wilcoxon Rank Sum test. 

The Wilcoxon Rank Sum test is a non-parametric 

test that tests the locations of each set of data. If 

the distribution of each dataset is the same, then 

the location can be interpreted as the median 

(McDonald, 2014). The Wilcoxon Rank Sum test 

compares the following hypotheses: 

H0: Median ranks are the same 
Ha: Median ranks are different 

The null hypothesis states that there is no 

difference in the step-down factor between the 

legacy and modern aircraft. The alternative 

hypothesis states that there is a difference in the 

step-down factors. The results of the Wilcoxon 

Rank Sum test are shown in Table 9. 

As shown in Table 9, all tests reject the null 

hypothesis at an alpha level of 0.10. This 

indicates that there is a difference in the step-

down factors across all four measures. These 

results lend credence to the aforementioned 

suggestion that the mixed results of Table 8 are 

likely due to differences in the six modern verses 

the four legacy aircraft. To corroborate these 

findings, we rerun the Sign Test previously 

performed, but this time we only include the 

modern fighter aircraft. The results of this new 

test rejected the null and supports our 

hypothesis. However, due to the low n value of six 

associated with just examining the modern 

fighter aircraft subset, the results of that Sign 

Test cannot be fully trusted. Therefore, while we 

mention this robustness check, we caution the 

reader that this result must be taken with a grain 

of salt, and therefore we do not show the actual 

test results.  

In summary, there are three key points 

associated with weight-normalization. First, step-

down factors exist even when normalizing by 

weight. Second, the impact of normalizing by 

weight, however, is to dampen the magnitude of 

the step-down factors. Lastly, when calculating 

weight normalized step-down factors, it is 

imperative to separate the modern from the 

legacy aircraft.   

 

Factors that Impact Step-Down Functions 

The final analysis examines the impact of factors 

that the GAO (2020) has identified as important 

to consider when developing a step-down factor 

in learning curves. The four factors identified by 

the GAO are: 

A break from the last prototype unit to 

production 

Similarity between prototype units and 

production units 

The production rate 

The extent to which the same facilities, 

processes, and people are used in 

development and production 

Only five of the programs in our study had the 

requisite data to examine the four GAO criteria. 

Within those five programs, it was discovered 

that all five in the sample had similar 

development and production aircraft and had 

minimal changes in facilities, processes, and 

people. Those results effectively removed two of 

the four GAO considerations (numbers two and 

four) from the analysis. A regression was 

conducted with the two remaining factors 

(number one and three above). It found the 

production rate to be a significant factor with a p-

value of 0.0058. The positive sign supports the 

intuition that the larger the production rate, the 

bigger the step-down factor will be in the 

learning curve. 

We strongly caution that this result from the GAO 

influential factors is not conclusive. Our data 

sample of five was simply too small to draw any 

definitive conclusions. Additionally, as discussed 

Table 9: Wilcoxon Rank Sum Test Results 

  Original Data 
Normalized by 

Weight 

  
EMD 
FUH 

EMD 
AUH 

EMD 
FUH 

EMD 
AUH 

Test 
Statistic 

2.0254 2.2386 1.8371 2.327 

Prob > |z| 0.0428 0.0252 0.0662 0.02 



41 Journal of Cost Analysis and Parametrics: Volume 10, Issue 3. November 2022 

Step-Down Functions in Airframe Learning Curves    Susan L. Moore et al 

above, our data only looked at two of the four 

factors. While we are encouraged that the 

singular result we found did align with the 

theory, future research with a more robust 

dataset is needed to have confidence in the result. 

 

Discussion and Conclusion 

The debate regarding step-down factors begins at 

the most fundamental level regarding whether 

they exist or not in defense aircraft. Our 

examination of fighter airframes provides 

empirical evidence that step-downs are present. 

In our dataset, the mean step-down factor was 

found to range from 0.656 (FUH) to 0.787 (AUH), 

which is a significant reduction in hours for the 

first unit of production from its development 

unit. 

While we were able to detect the presence of step

-down functions, we did not attempt to discern 

whether the step-down function is Sequential or 

Disjoint. Some of the prior non-peer reviewed 

studies from Table 1 attempted to delineate 

between the two. However, we did not believe 

the nature of our data lent to such a 

determination. As a result, the nature of the step-

down function (Sequential or Disjoint) remains 

an open question. 

A second issue that is debated is the impact of 

weight normalization on step-down functions. 

We find that weight normalization does have an 

impact in fighter airframes, but it only dampens 

the magnitude of the step-down rather than 

removing it fully. The magnitude of the mean 

differences are approximately 6% for both FUH 

and AUH calculations. This implies that those 

practitioners who choose to normalize by weight 

should show smaller hour reductions. 

Additionally, it is important to segregate the data 

between modern and legacy platforms if weight 

normalization is your preferred approach. 

Overall, the authors remain agnostic to whether 

practitioners choose to normalize by weight or 

not. We simply reiterate the step-downs will still 

occur in most cases, but to a lesser extent. 

Lastly, we provide a recommended CER to 

estimate the theoretical first unit production cost 

with development data. Our recommended form 

is linear with average unit development hours as 

the independent variable. The simplicity of the 

CER and ease of implementation mirrors the 

prior DoD studies (Malcolm, 1991; Hardin and 

Nussbaum, 1994). Thus, we believe this has great 

potential for practitioner adoption.  

In summary, this article is a significant step 

forward in understanding step-down functions in 

DoD programs. With advancement, however, 

comes limitations that merit acknowledgment. 

Specifically, the small sample sizes in our tests 

mutes the statistical results. In some cases, such 

as the examination of the four postulated GAO 

factors, the lack of data meant even exploratory 

examination was not possible. These limitations, 

however, present an opportunity for future 

researchers. While we focused solely on fighter 

aircraft airframes, there is the potential to 

replicate our analysis with other platform types. 

Similarly, as more data is collected, a more robust 

investigation into the factors that impact step-

down functions can occur. All these endeavors 

can add to a fuller understanding of step-down 

functions in military systems. We hope this 

article provides a launching ground for these 

future research efforts. 
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The main tenets of the Agile methodology 

include: incrementally gathering requirements, 

designing the system, developing and testing the 

code, demonstrating to users to get feedback, and 

incorporating changes to the requirements and 

working software. The DevOps methodology 

encourages faster software development and 

release to users by putting the development and 

operations related activities in parallel with each 

other and automating as much of the process as 

possible. Traditionally, software was built with 

sequential steps, using what is called the 

Waterfall model: first, the requirements were 

gathered, then the system was designed, after 

which the developers implemented the system, 

testers then tested it, and the system was 

delivered to users and customers upon 

completion. Following the Agile and DevOps 

methodologies allow the development team to 

provide working software quickly by continually 

demonstrating working features, as well as get 

guidance on how much to do or when to stop if 

schedule and budget constraints are reached. 

Theoretically, the biggest savings were expected 

in software development and sustainment efforts. 

MITRE presented the expected cost impacts of 

applying Agile methodologies, which states that 

in the best-case scenario, some savings are 

Are Agile/DevOps Programs Doing Enough Systems Engineering? 

Anandi Hira 

 

Abstract: Agile and DevOps methodologies offer efficient processes to deliver high quality products 

and deploy them to the users quickly. Many commercial organizations have reported large savings 

in cost and increased productivity from implementing Agile and DevOps methodologies. MITRE 

completed a qualitative study of the cost impacts as a result of applying Agile methodologies and 

expected the Systems Engineering, Integration and Test, and Program Management (SEITPM) costs 

would either remain the same or slightly increase for Agile programs compared to Waterfall 

programs (Manring, 2016). However, this paper later demonstrates that data from Space Ground 

systems suggest that the SEITPM costs (as an entity) are approximately 30% lower for Agile/

DevOps programs compared to Waterfall programs. In this research study, I analyze whether the 

difference in SEITPM costs between Agile/DevOps and Waterfall programs is statistically significant 

by comparing the means and evaluating the statistical significance of including a categorical 

variable in a regression. The results indicate that the decrease in SEITPM costs for Agile/DevOps 

programs is statistically significant. Reduced systems engineering could potentially lead to troubles 

while implementing the architecture/design or in the product quality of the completed system. 

Some examples of possible troubles are missing requirements, interface, and integration issues with 

other software and/or hardware modules/components, latent defects in the code, and high defect 

rates. To understand whether the reduced SEITPM costs has any adverse effects, I also conduct a 

survey with major industry prime contractors to determine if their observations reflect Space 

Ground systems data, what caused the reduction in SEITPM costs, and if they noticed any positive or 

negative changes in product quality as an effect. In general, organizations have experienced changes 

in SEITPM activities but have not experienced adverse effects in product quality as a result. 

Fortunately, Agile and DevOps methodologies provide a way to reduce costs without negative 

effects on the product’s quality.  
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expected in software development effort and 

significant savings expected in sustainment effort 

(see Figure 1) (Manring, 2016). 

SEITPM is an abbreviation that Department of 

Defense (DoD) programs use to signify the effort 

and costs spent in Systems Engineering 

(requirements gathering, architecting and 

designing of the program), Integration and Test, 

and Program Management. In the Waterfall 

software development lifecycle model, the steps 

of developing a software project (requirements 

gathering, architecting and designing, coding, 

testing, and deploying) are followed sequentially. 

Due to this, there is typically a high level of 

SEITPM effort and costs that occur at the 

beginning of a program (primarily due to systems 

engineering and program management), which 

quickly drops and levels until the end of the 

program (for program management), ending in 

an increase for integration and testing efforts. For 

Agile/DevOps programs, on the other hand, these 

SEITPM-type activities (as well software 

development) are expected to occur at a more 

constant rate throughout the software 

development lifecycle. See Figure 2 to visually see 

the difference of how SEITPM costs are expected 

to behave differently through a software 

development lifecycle for Waterfall and Agile/

DevOps programs/projects.  

Traditionally, different teams were responsible 

for Systems Engineering, Program Management, 

and Integration and Test activities. These labor 

categories were typically considered to be 

separate from the development activities, and 

therefore, tracked separately from the 

development activities. The Agile and DevOps 

methodologies, however, increase the speed at 

which requirements can change and those 

changes can be made in the resulting code by 

tightly knitting all the activities with the software 

development efforts (Seaver, 2018).  

The definitions of the Waterfall, Agile, and 

DevOps lifecycle models describe how SEITPM 

costs theoretically are distributed across the 

lifecycle. The MITRE study (see Figure 1) 

suggests that the total SEITPM costs will be the 

same or higher for Agile programs, but that 

hypothesis is not based on an empirical analysis 

(Manring, 2016). This research study will 

determine whether total SEITPM costs differ 

between Agile/DevOps and Waterfall programs 

as the MITRE study suggests. Additionally, I 

survey several Agile/DevOps teams in industry to 

understand whether they noticed a change in the 

Figure 2. Visual representation of how Systems Engineering, 

Program Management, and Integration and Test (SEITPM) 

costs behave through a software development lifecycle for 

Waterfall and Agile/DevOps programs. This graph is 

created to visually depict how the costs theoretically differ 

and is not based on real data.  

Figure 1. Recreation of MITRE’s image demonstrating cost 

impacts of Agile methodology on various Cost Elements 

(Manring, 2016) 

Life Cycle Cost Element 

Cost Impact 
Range 

Best 
Case 

Worst 
Case 

Program Management/System 
Engineering 

= + 

Software Development - = 

Integration and Test = + 

Fielding/Deployment = ++ 

Training + ++ 

Sustainment -- - 

++ significance increase, + increase, = no impact, - 
decrease, -- significant decrease 
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SEITPM effort/costs, as well as the causes and 

effects of the changes they observe within the 

development environments. After a brief 

introduction to the different software 

development lifecycle models (Waterfall, Agile, 

and DevOps), this paper has 2 parts:  

1. Empirical comparison of SEITPM costs 

between Agile/DevOps and Waterfall 

programs 

2. Completed surveys and discussions with 

Agile/DevOps teams in industry.    

 

Software Development Lifecycle Models 

Waterfall 

Traditionally, software was developed in 

sequential steps, as demonstrated in Figure 3. 

First, the team needs to understand and gather 

the requirements of what the software system 

needs to do, then design the system so that the 

requirements can be satisfactorily met. Taking the 

completed design and architecture, developers 

implement the system, followed by testing to 

ensure that the software works as intended. 

Finally, the software system is deployed to the 

users, and maintained as required. The main 

concept is that each of the steps must be done 

sequentially in order to fully understand and 

implement the system correctly.  

Software systems had a reputation for high failure 

rates, budget, and schedule overruns, and not 

meeting the users’ needs. The source of these 

problems was that working software is only 

produced at the very end of the waterfall 

development lifecycle. This caused high amounts 

of risk and uncertainty in understanding whether 

the requirements could successfully be met, as 

well as whether the users would be satisfied with 

system (Ben-Zahia & Jaluta, 2014). Additionally, it 

was difficult to assess progress, and testing efforts 

would often be cut short due to schedule and 

budget overruns (Davis, 2000). As technology 

began to change quickly, the completed systems 

would either no longer be applicable to the 

current needs or compatible with updated or 

changed platforms (Sinha & Das, 2021). 

Agile 

To react to the increasing changes in technology 

and users’ needs, a group of software developers 

came up with a way to speed up software 

development and deploy more quickly to market/

field. The group developed a manifesto and 12 

principles to define the goal and main tenets build 

software successfully (Beedle, et al., 2001). The 

main tenets are to shorten the time it takes to get 

working software to users, and continuously and 

quickly get feedback from users. The lifecycle 

model constructed to fulfill the manifesto and the 

12 principles are visually described in Figure 4. 

Instead of performing the steps needed to develop 

Figure 3. Waterfall software development lifecycle model  

Figure 4. Agile software development lifecycle model  
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software sequentially as in the Waterfall model, 

they are performed iteratively in short “sprints” 

or iterations throughout the lifecycle. This allows 

the developers to get feedback from users on a 

regular basis, demonstrate progress by 

demonstrating working software, and incorporate 

changes to the requirements or needs. Many 

commercial organizations and teams reported 

being able to deploy software to the market/field 

earlier, higher development productivity, cost 

savings, and better customer experience and 

satisfaction as a result of implementing Agile 

practices and methodologies (Russo, 2021). 

 

DevOps 

While Agile made developing, testing, and 

deploying software rapidly a common 

phenomenon, many organizations had separate 

development and testing teams in order for the 

testing and verification to be independent from 

the development efforts. Additionally, many tools 

to automate various activities (such as 

developing, testing, and deploying software) 

became more widely available and highly utilized 

in development environments. The use of parallel 

teams and increased use of automation coined the 

term DevOps to further shorten the development 

cycle and get operational software out to the 

users at a faster pace (see Figure 5). Generally, 

people have been using Agile and DevOps 

methodologies in conjunction. In some ways, 

Table 1. Brief description of datasets used  

Figure 5. DevOps software development lifecycle model  

Dataset Program Level Data Description Data attributes Data Filters 

Dataset A 
Total or by 
Increment 

· Targeted Ground 
systems and software-
intensive programs 
across the Air Force and 
Space Force. 
· Data comes from Earned 
Value reports from 
contractors, which 
includes all costs to-date 
by WBS element. Also 
includes an Estimate At 
Completion (EAC) for 
incomplete programs. 

Costs by major program 
elements (SEITPM, 
Software, Hardware, and 
Space segment) as well as 
software development 
hours, ESLOC (Equivalent 
Source Lines of Code), 
Requirements, Agile-like 
development process, % 
Complete, data sources, 
period of performance in 
months. 

At least 85% 
complete, to 
ensure 
confidence in 
actual and 
estimated costs. 
Also, removed 
programs 
included in 
below dataset. 

Dataset B 
Annual – 
summed for Total 
or Total to Date 

·  Targeted Ground 
systems and software-
intensive programs 
across the Air Force and 
Space Force. 
· Data comes from the 
Government’s budgeting 
tool called CcaRs. Based 
on Contract Line Item 
Numbers (CLINs). 

Costs by major program 
elements (SEITPM, 
Software development, 
and Platform 
development), as well as 
ESLOC, Requirements, 
User Stories, or Story 
Points. 

Programs for 
which costs 
could be 
retrieved to be 
consistent with 
the above 
dataset. 
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DevOps can be considered as an extension or 

special case of Agile.   

 

Part 1: Data Analysis 

Research Methodology 

Datasets 

This study uses two sets of data collected from 

government-funded software development 

programs collected by the Air Force Cost Analysis 

Agency (AFCAA), further described in Table 1.  

Dataset A focused on identifying whether 

programs were Agile-like, while Dataset B 

collected data that followed DevOps processes. 

Three programs were in both datasets. To avoid 

double counting these programs, the versions 

from Dataset A were removed from this analysis. 

Note, though previous research found that 92.5% 

complete is equivalent to a complete program 

(Tracy & White, 2011), this study uses a 85% 

completion as the threshold to balance between 

accuracy and retaining data points. Most data 

points represent large, in-progress programs. 

As mentioned in the Software Development 

Lifecycle Models section above, many teams and 

organizations utilize both Agile and DevOps 

processes in conjunction. Therefore, the Agile-like 

and DevOps programs are grouped together. 

Table 2 shows that there are a comparable 

number of data points in the 2 groups used in this 

study. 

Base Year Normalization 

As mentioned in Table 1, both datasets used in 

this study provide the costs of major program 

elements, and these costs are in terms of Then 

Year dollars (the cost at the time of spending). To 

ensure that the data and costs are comparable, the 

costs were normalized to Base Year 2020 (BY20) 

dollars. The steps to perform the conversions 

(explained in Table 3) differ by dataset because of 

how differently the data was collected for both 

datasets. 

SEITPM Estimation Methodologies 

Typically, SEITPM effort and costs are estimated 

in comparison to the Prime Mission Product 

(PMP), which is the actual software development 

and infrastructure costs (costs needed to support 

the development and/or operations environment, 

Group Data Sources 
# of data 

points 

Waterfall · Dataset A 30 

Agile/DevOps 
· Dataset A 

27 
· Dataset B 

Table 2 Software Size Metrics 

Dataset Data Source Description BY20 Conversion Method 

Dataset A 

Data comes from Earned Value 
reports, which means the dollars are a 
cumulative sum of Then Year dollars 
(dollars’ value at time of spending). 

Mid-Point Method 

The mid-point or middle year of a program is used 
(start and end years are provided in the data) as the 
original Constant Year (CY), which is then converted 
to BY20 by applying appropriate escalation indices. 

Dataset B 
Data comes from budget tool that 
stores costs on annual basis (in Then 
Year dollars). 

Sum of Annual Escalations 

Since costs are provided on annual basis, each year’s 
costs are escalated to BY20 dollars. All the converted 
years’ costs of a program are summed up for the total 
cost. 

Table 3. Ways to group and estimate SE, IT, and PM efforts and costs  
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such as software licenses and supporting 

hardware). SEITPM is compared to PMP in 2 

ways, typically (Markman, Ritschel, & White, 

2021):  

1. SEITPM is estimated as a factor of, or in 

proportion to, the PMP costs (SEITPM/PMP) 

2. Using a regression where SEITPM costs is a 

dependent variable and PMP costs is the 

independent variable. The resulting 

regression is also called a Cost Estimating 

Relationship (CER) 

As explained previously, SEITPM consists of 3 

types of labor/activities: Systems Engineering, 

Integration and Test, and Program Management. 

Depending on how teams actually track and 

bucket their costs and efforts across these 3 

activities, it is very common for these 3 activities 

to be grouped or separated in the 3 ways 

demonstrated in Table 4. 

 

Analysis Method 

The primary objective of this research study is to 

determine whether there is a significant 

difference in SEITPM costs between Agile/DevOps 

and Waterfall programs. As mentioned in the 

previous subsection, SEITPM is estimated in 2 

ways: as a factor of PMP costs or using a 

regression against PMP costs. Therefore, this 

study analyzes if there is a difference in SEITPM 

costs across the Agile/DevOps and Waterfall 

groups by looking at the data in both ways. A high

-level description of the analysis method by type 

is explained in Table 5. 

Also explained in the previous subsection are the 

3 variants of the SEITPM and PMP costs, and all 3 

variants are used in the comparison between 

Agile/DevOps and Waterfall programs.  

 

Results 

SEITPM Proportion Comparison 

The t-test is a parametric test, which means that 

the test assumes the variables used as inputs are 

normally distributed. Table 6 has the Shapiro-

Wilk test p-values for the log-transformed 

variables (most variables were not normally 

distributed before the transformation) across the 

2 groups (Waterfall and Agile/DevOps), and p-

values larger than 0.05 imply the variable cannot 

reject the null hypothesis of not being normally 

distributed. 

For the variables that returned p-values of less 

than 0.05 (dark red text in Table 6), the non-

parametric Mann-Whitney test is run instead of 

Estimation 
Method 

Analysis Method 

SEITPM/
PMP 
Proportion 

Compare the means of the SEITPM/PMP 
proportions, as well as the individual 
activities’ proportions (Systems 
Engineering (SE), Program Management 
(PM), and Integration and Test (IT)), 
between the 2 groups using t-test. The t-
test should return a p-value of less than 
0.05 for difference to be considered 
statistically significant. The variables 
used as inputs are log-transformed and 
tested for normal distribution using the 
Shapiro-Wilk test (need a p-value of at 
least 0.05). If the variables are not 
normally distributed, the Mann-Whitney 
test is run, which also requires a p-value 

SEITPM  
vs PMP 
Regression
/CER 

Include a categorical/dummy variable 
for Agile/DevOps and evaluate the p-
value of the coefficient, as well as 
goodness of fit and prediction accuracy 
statistics. The p-value of the coefficient 
should be less than 0.05 for statistical 
significance. 

Table 5. Summary of analysis methods by the 2 SEITPM 
estimation methods  

Numerator or 
Dependent 
Variable 

Denominator 
or Independent 
Variable 

Total Costs 

SE + IT + PM PMP SEITPM + PMP 

SE + PM PMP SEPM + PMP + IT* 

SE + PM PMP + IT SEPM + (PMP + IT) 

* Note, IT costs need to be added separately to get the 
total program’s cost in the 2nd option/row 

Table 4. Ways to group and estimate  
SE, IT, and PM efforts and costs  
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Figure 6. Box plots of the 3 SEITPM variants' and individual activities' (SE, PM, and IT) proportions to PMP costs across 

Waterfall and Agile/DevOps groups  

Figure 7. Box plots of the 3 SEITPM variants' and individual activities' (SE, PM, and IT) proportions to PMP costs across 

Waterfall and Agile/DevOps groups using the subset of smaller programs  
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the t-test. The Mann-Whitney test also needs to 

return p-values of less than 0.05 for the 

difference between the groups to be considered 

statistically significant.  

Along with the p-value, the t-test reports a t-value 

which represents the ratio of the difference 

between the two groups’ means. Therefore, t-

values larger than 1 and p-values of less than 0.05 

indicate there is a statistically significant 

difference between the Waterfall and Agile/

DevOps means for the variable being tested. The 

Mann-Whitney also produces a W-value, but it is 

the sum of the ranks of the first sample and does 

not indicate a difference between the 2 samples. 

The W-value does not provide a sense of 

difference or proportions between the 2 samples 

and, therefore, is not reported in this paper.  

Table 7 shows the tests’ 

results comparing Waterfall 

and Agile/DevOps groups 

and Figure 6 visually 

demonstrates the differences 

between the groups using 

box plots (the proportions 

on the y-axis are not shown 

to maintain confidentiality). 

Both show that SEITPM, PM, 

and IT proportions of Agile/

DevOps programs are 

significantly lower than 

Waterfall programs.   

The largest Agile/DevOps 

program is significantly 

smaller than several programs in the Waterfall 

group (in terms of PMP BY$M). To compare the 

means of the SEITPM proportions of PMP costs 

across similarly-sized programs, the dataset is 

trimmed at programs with PMP costs that are no 

larger than 5% more than the largest Agile/

DevOps program. 

Re-running the above-explained analyses for the 

smaller programs subset of the data led to the 

same conclusions: SEITPM, PM, and IT 

proportions for Agile/DevOps programs are 

significantly lower than Waterfall programs. SE is 

the only activity whose difference between the 

Agile/DevOps and Waterfall groups is not 

statistically significant. Table 8 and Figure 7 show 

the statistical test results and the visual 

representation of the groups’ behaviors across 

the SEITPM variants and individual activities, 

respectively. As before, the dark red text in Table 

8 represents tests with p-values that suggest the 

  Shapiro-Wilk p-values 

  Waterfall 
Agile/

DevOps 

log(SEITPM/PMP) 0.45 0.81 

log(SEPM/PMP) 0.97 0.98 

log(SEPM/(PMP + 
IT)) 

0.92 0.64 

log(SE/PMP) 0.0006 0.02 

log(PM/PMP) 0.44 0.06 

log(IT/PMP) 0.19 0.04 

Table 6. Shapiro-Wilk test for normality p-values on log-
transformed variables  

  t-test/Mann-Whitney test 

  t-values p-values 

log(SEITPM/PMP) 3.295 0.0009 

log(SEPM/PMP) 2.84 0.003 

log(SEPM/(PMP + IT)) 2.13 0.02 

log(SE/PMP)   0.08 

log(PM/PMP) 3.09 0.002 

log(IT/PMP)   0.004 

Table 7. T-test and Mann-Whitney test results on log-
transformed variables  

  Shapiro-Wilk p-values t-test/Mann-Whitney test 

  Waterfall 
Agile/ 

DevOps 
t-values p-values 

log(SEITPM/PMP) 0.43 0.81 3.06 0.002 

log(SEPM/PMP) 0.72 0.98 2.54 0.007 

log(SEPM/(PMP + IT)) 0.92 0.64 2.13 0.02 

log(SE/PMP) 0.004 0.02   0.11 

log(PM/PMP) 0.61 0.06 2.69 0.005 

log(IT/PMP) 0.12 0.04   0.004 

Table 8. Shapiro Wilk and either t-test or Mann-Whitney test results on log-
transformed variables across the subset of smaller programs  
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data cannot be considered normally distributed 

or that the difference between the groups is not 

considered statistically significant. The 

proportions on the y-axis in Figure 7 are not 

shown to maintain confidentiality, but the 

SEITPM, PM, and IT proportions are about 30% 

lower for the Agile/DevOps programs. 

 

SEITPM CER (Cost Estimation Relationship) 

In order to rigorously compare and evaluate the 

regressions’ and goodness-of-fit statistics, as well 

as use a curve that fits the actual trend of how 

SEITPM costs grow, I log-transformed the 

variables and ran linear regressions. The 2 

regressions I compare are:  

1. SEITPM vs PMP without any other variables 

2. SEITPM vs PMP with Agile/DevOps 

categorical variable (set to 1 if the program is 

an Agile/DevOps program or 0 otherwise) 

In both cases, the SEITPM and PMP variables are 

log-transformed. The Agile/DevOps variable is 

not log-transformed, and Equation 1 displays 

how the linear regression is run and how it 

converts back to unit-space. Therefore, all 

regression statistics displayed in this section are 

in log-space, not unit-space. To reduce bias in the 

regression, I used the Minimum-Unbiased-

Percentage Error (MUPE) with Modified 

Marquardt method, which weighs the data points 

such that the average error percentage is 0 (Hu, 

2001).  

log(SEITPM) = a + b × log(PMP) + Agile/DevOps × c 

SEITPM = a × PMPb x (10c)Agile/DevOps 

Figure 8 displays that the trendlines of SEITPM 

costs against PMP costs for Agile/DevOps 

programs are, with a few exceptions, consistently 

and proportionately lower than Waterfall 

programs. Similar trends are visible when SEPM 

is graphed against PMP and PMP+IT. 

 

Equation 1 Log-transformed linear regression and 

conversion to unit-space with Agile/DevOps categorical 

variable 

Figure 8. SEITPM costs against PMP (Prime Mission Product) costs trendlines, grouped by 
development type (Waterfall and Agile/DevOps). Actual data points are removed to preserve 

the confidentiality of the programs  
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SETIPM = 1.6734 × 0.6864Agile/DevOps × PMP0.9005 

SEPM = 1.3201 × 0.6863Agile/DevOps × PMP0.8858 

SEPM = 1.0578 × 0.7206Agile/DevOps × (PMP + IT)0.8908 

The p-values on the intercept variable (in log-

space) and on the Agile/DevOps variable, and a 

couple goodness-of-fit statistics on the 

regressions are listed in Table 9. The 6 

regressions are for the 3 variants of SEITPM with 

and without the Agile/DevOps categorical 

variable. The results in Table 9 show that Agile/

DevOps categorical variable is statistically 

significant (the p-values are well below 0.05 for 

all 3 variants of SEITPM) and the goodness-of-fit 

statistics are better than the regressions without 

the categorical variable. Additionally, the base/

coefficient values for the Agile/DevOps variables 

(in Equation 2) suggest that SEITPM costs are 

about 30% lower for Agile/DevOps programs 

compared to Waterfall programs (similar to the 

results found when comparing the means in the 

SEITPM Proportion Comparison subsection 

above). Note, the resulting regressions/CERs in 

Equation 2 should not be used without 

understanding the underlying data and its ranges 

or for application types or domains not 

represented in the datasets used in this study. 

Conclusion 

Analyzing the data available on the Space Ground 

systems concludes that the SEITPM costs are 

about 30% lower for Agile/DevOps programs 

compared to Waterfall programs. Looking at each 

of the activities separately (SE, PM, and IT), 

Program Management (PM) and Integration and 

Test (IT) costs are also significantly lower for the 

Agile/DevOps programs compared to Waterfall 

programs. While there is a slight reduction in 

Systems Engineering (SE) for Agile/DevOps 

programs, the difference is not considered 

statistically significant.  

These differences can be caused by the 

differences in the Agile and DevOps 

methodologies compared to Waterfall, such as:  

• Systems Engineering (SE) and Integration 
and Test (IT) activities should be more 
incremental and level-loaded, along with 
software development activities (Seaver, 
2018).  

• The Agile principles encourages teams to be 
self-organizing and be part of the task 
management and decision-making process. 
Therefore, moving some of the Program 
Management and Systems Engineering 

  
Without Agile/DevOps 

variable 
With Agile/DevOps variable 

  
SEITPM 
vs PMP 

SEPM vs 
PMP 

SEPM vs 
PMP+IT 

SEITPM 
vs PMP 

SEPM vs 
PMP 

SEPM vs 
PMP+IT 

Intercept p-value 0.5642 0.6672 0.2724 0.0399 0.3485 0.8554 

Agile/DevOps 
      0.0028 0.0123 0.0293 

p-value 

Adj R2 for MUPE 85.16% 80.19% 80.62% 87.01% 81.83% 81.79% 

Standard Error 0.2026 0.2388 0.2352 0.1849 0.225 0.2261 

Average Error % 39.09% 48.78% 47.94% 34.41% 43.95% 44.77% 

% of Predictions within 
25% of actuals 

50.88% 31.58% 31.58% 49.12% 36.84% 33.33% 

% of Predictions within 
30% of actuals 

54.39% 40.35% 42.11% 56.14% 42.11% 43.86% 

Table 9. Goodness-of-fit and prediction accuracy statistics for SEITPM/SEPM Regressions/CERs (Equation 2)  

Equation 2 SEITPM/SEPM Variants’ Regressions/CERs 
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activities down to the software development 
team (Beedle, et al., 2001).  

• Agile teams are cross-functional and breaking 
out the effort and costs for specific activities 
becomes difficult, if not impossible (for 
example, software development and 
integration activities) (Beedle, et al., 2001). 

• The Agile principles suggest maximizing the 
amount of work that is not done or 
streamlining the processes to focus on doing 
just enough work (Beedle, et al., 2001).  

A concern of the reduced activities (and as a 

result, cost) is whether there would be adverse 

effects on the product’s quality, such as not being 

able to meet scalability or level of service 

requirements. To understand whether applying 

the Agile and DevOps methodologies lead to a 

reduction in SEITPM costs and whether this 

reduction leads to lower product quality, the next 

step of this research was to survey and have 

discussions with industry partners asking for 

insights, causes, and effects of the phenomenon. 

 

Part 2: Survey Industry 

Research Methodology 

Survey Questions 

The goals of surveying industry were to 

understand whether or not the software 

development teams were actively noticing that 

the Agile/DevOps programs required less SEITPM 

activities, as well as the causes and effects of this 

phenomenon. The questions formulated to meet 

these goals, along with Agile principles or beliefs 

that support the questions are in Table 10. 

 

Survey Participants  

I worked with Space Systems Command (SSC) 

Financial Management Cost Research (FMCR) 

department to set up meetings with their industry 

partners to brief the data analytics results and get 

their answers on the questions listed in the 

previous subsection. These industry partners are 

also represented in the dataset used in the first 

part of this research study. The suggestions I 

made for the participants to attend the meeting 

and respond to the questions were Program 

Managers, cost analysts, and/or team members 

that have:  

• An understanding of the SEITPM efforts, 
staffing, and/or costs  

• Worked on an Agile/DevOps program that is 
at least 75% complete 

• And also worked on a Waterfall program to 
be able to comment on the differences 
between Waterfall and Agile/DevOps 
programs (or members from both types of 
programs could also join for real-time 
comparisons) 

The participants were given 2 options for how to 

order the briefing of the results and answering the 

questions:  

1. Participants could provide responses before 
the briefing. I would then review the 
responses and ask follow-up questions after 
briefing the results.  

2. Participants can first view the briefing of the 
results and dynamically answer the 
questions during the meeting. This option 
allowed for participants to get necessary 
context and background for the questions, 
which may help participants get clarification 
and figure out who can answer the questions.  

I received responses and held meetings with 5 

organizations, using a combination of the two 

methods above with a combination of Program 

Managers, cost analysts, and software developers. 

The organizations and respondents are not 

mentioned in this paper to maintain 

confidentiality.  

 

Results  

In many cases, the industry partners provided 

very extensive responses to the questions. In this 

paper, I provide a summary of the responses that 

sufficiently answer the questions.  

Question 1: Include SEITPM in Scrum/Development 

Teams?  
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Agile Principles [4] Q# Questions 

Teams should be highly 
collaborative, self-
organizing, and cross-
functional. 

1 

On Agile/DevOps programs, do you include SEITPM FTEs in the Scrum/
development teams?  Does the role of the SEITPM FTEs in the Scrum/
Development teams focus only on the Scrum team product?  Are any 
overarching system-level Systems Engineering or system architecture 
efforts included? 

Incrementally gather 
requirements, develop 
and test software, and 
deliver to users. 

2 
Are SEITPM hours/cost level-loaded across the lifecycle versus high in the 
beginning for Agile/DevOps programs? 

    

The data we have suggests that the overarching SEITPM is about 20% 
lower for Agile/DevOps programs compared to Traditional programs. By 
looking at each of the activities (Systems Engineering, Program 
Management, and Integration & Test) separately: 

The best architectures, 
requirements, and 
designs emerge from self-
organizing teams. 

3 

Systems Engineering may have reduced slightly, but not significantly. Are 
you noticing if the overarching system-level Systems Engineering is about 
the same across Waterfall and Agile/DevOps programs? If different, how so 
and why? 

Teams should be highly 
collaborative, self-
organizing, and cross-
functional. 

4 

Program Management is significantly less for Agile/DevOps compared to 
Waterfall programs. Are you noticing the same behavior? What is causing 
that (examples: reduced deliverables, management activities being moved 
into development teams)? 

Incrementally gather 
requirements, develop 
and test software, and 
deliver to users. 

5 

Integration & Test is significantly less for Agile/DevOps compared to 
Waterfall programs. Are you noticing the same behavior? What is causing 
that (example: integration and testing efforts being captured within 
development efforts, as they moved into Scrum/development teams)? 

Teams should be highly 
collaborative, self-
organizing, and cross-
functional. 

6 

On 2 different datasets, Causal Inference algorithms found a causal link 
between analyst and programmer capability. From my previous 
experiences, I found that teams that had good analytical skills also had the 
tendency to be better programmers. Have you noticed if the analytical 
and/or programming skills of the developers improved with SE and PM 
FTEs being involved in the sprints/iterations? 

The best architectures, 
requirements, and 
designs emerge from self-
organizing teams. 

7 
Has including SEITPM FTEs in the Scrum/development teams led to 
improved requirements gathering and accuracy, architectures, and 
designs? 

Incrementally gather 
requirements, develop 
and test software, and 
deliver to users. 
Incremental deliveries, 
feedback loops, and 
frequently tested 
software lead to better 
working software and 
higher customer 
satisfaction. 

  
Since requirements are gathered and the design/architecture is built 
incrementally: 

8 Have you noticed positive or negative changes in the quality of products?  

9 
Have you noticed any trouble with meeting level of service requirements 
later in the development lifecycle, compared to when using the Waterfall 
lifecycle mode? 

10 
Has the maintainability of the product improved/decreased for Agile/
DevOps programs compared to Waterfall? 

11 
Have you noticed reduction/increase in rework, scrapped code, and 
defects? 

Table 10. Industry Survey Questions 
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Question: On Agile/DevOps programs, do you 

include SEITPM FTEs in the Scrum/development 

teams? Does the role of the SEITPM FTEs in the 

Scrum/Development teams focus only on the 

Scrum team product? Are any overarching system

-level Systems Engineering or system architecture 

efforts included? 

The goal of the first question is to see if 

organizations are creating cross-functional teams 

in practice, and whether systems engineers 

perform any overarching system-level functions 

within that role. While systems engineers are 

needed to ensure that a single component works 

as expected, Systems Engineering (SE) at the 

overarching system-level ensures that 

components are able to integrate and that the 

system as a whole works as expected. Summaries 

of responses received are represented in Figure 9.  

In general, the industry is creating cross-

functional teams that include software 

developers, systems engineers, and in some cases, 

testers. However, the SEs typically only serve to 

provide support in the development of the team’s 

tasks. Hence, no Systems Engineering (SE) that 

could be attributed to the systems-level is being 

done within the development/Scrum teams.  

Question 2: Is SEITPM level-loaded?  

Question: Are SEITPM hours/cost level-loaded 

across the lifecycle versus high in the beginning 

for Agile/DevOps programs? 

Since Agile and DevOps methodologies promote 

performing all activities in an iterative fashion, 

the SEITPM activities and efforts should be mostly 

level-loaded across the lifecycle in comparison to 

the Waterfall programs. All industry partners 

confirmed noticing the same phenomenon.  

Question 3: Reduction in Systems Engineering?  

Question: Systems Engineering may have reduced 

slightly, but not significantly. Are you noticing if 

the overarching system-level Systems Engineering 

is about the same across Waterfall and Agile/

DevOps programs? If different, how so and why? 

In the first part of this research study, the Mann-

Whitney test suggested the means of SE/PMP 

were not significantly different between Agile/

DevOps and Waterfall programs. With this 

question, the industry partners let us know 

whether they noticed any significant reductions in 

the amount of SE used or needed for Agile/

DevOps programs compared to Waterfall ones. 

Organization 4 worked on a program where they 

initially thought they were realizing a 65% 

Figure 9. Quantitative Summary of Survey Question 1 
Responses  

Industry Partner Summarized Answer 

Organization 1 
Similar amount of SE activities. Maybe some more upfront activities, but balances with 
savings by including SE FTEs with the development team. 

Organization 2 Don’t have data, but probably similar between Agile and Waterfall 

Organization 3 
Slight reduction, but similar. Developers tend to pick up some of the functionality 
along the way. 

Organization 4 Not sure. 

Organization 5 

One program noticed higher SE activities and costs compared to a typical Waterfall 
program, but noted that the nature of the program warrants this. On another program, 
the team is noticing significantly lower SE costs because the activities are being 
pushed down to the software development teams. 

Table 11. Survey Question 3 Response Summaries  
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savings in SE costs. Later, they realized they did 

not do enough SE activities upfront, which led 

to increased costs later in the lifecycle. 

Therefore, they are not sure if the SE costs 

would be lower for Agile/DevOps programs in 

an ideal scenario. This experience 

demonstrates a concern that insufficient 

systems engineering can lead to adverse effects 

on the program.  

In general, the industry partners did not have 

or analyze their data for whether or not the SE 

costs were different between Agile/DevOps 

and Waterfall programs. However, most 

responses indicate that the team did not notice 

significant changes in SE activities between 

Agile/DevOps and Waterfall programs. This 

may indicate that the industry partners are also 

being cautious with ensuring that enough 

systems engineering activities are being done 

on programs.  

Question 4: Reduction in Program Management?  

Question: Program Management (PM) is 

significantly less for Agile/DevOps compared to 

Waterfall programs. Are you noticing the same 

behavior? What is causing that (example: 

reduced deliverables, management activities 

being moved into development teams)? 

This question received mixed answers across 

the organizations. While the data suggests that 

PM costs are lower for Agile/DevOps programs 

compared to Waterfall, the industry partners 

had different experiences. Three organizations 

noted that the development team took over 

some of the PM responsibilities and activities, 

which leads to a reduction in the PM costs. One 

organization further noted that the reduction is 

caused by the developers directly interacting 

with the Government side of the program, 

versus going through the PM. Yet, the first two 

organizations state that the PM activities may 

have actually increased for Agile/DevOps 

programs in order to change existing processes 

and engage the stakeholders regularly. 

Question 5: Reduction in Integration and Test?  

Question: Integration & Test (IT) is significantly 

less for Agile/DevOps compared to Waterfall 

programs. Are you noticing the same behavior? 

What is causing that (example: integration and 

testing efforts being captured within 

development efforts, as they moved into 

Scrum/development teams)? 

Generally, all industry partners are seeing a 

reduction in IT costs because the activities are 

either being bucketed with development or 

because of savings from automated and 

continuous testing.  

Question 6: Improvements in analytical and/or 

programming skills?  

Question: On 2 different datasets, Causal 

Inference algorithms found a causal link 

between analyst and programmer capability. 

From my previous experiences, I found that 

teams that had good analytical skills also had 

Figure 10. Quantitative Summary of Survey  
Question 3 Responses  

Figure 11. Quantitative Summary of Survey  
Question 4 Responses  
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the tendency to be better programmers. Have you 

noticed if the analytical and/or programming 

skills of the developers improved with SE and PM 

FTEs being involved in the sprints/iterations? 

Causal Inference algorithms attempt to discover 

causal relationships from observational data. I 

applied these algorithms on 2 software 

development datasets, and the algorithms 

returned a link between analyst and programmer 

capabilities in both datasets (though, I did not 

emphasize or report this result in the studies, as 

the focus was on causal relationships with effort 

and schedule) (Hira, Boehm, Stoddard, & Konrad, 

Preliminary Causal Discovery Results with 

Software Effort Estimation Data, 2018) (Hira, 

Boehm, Stoddard, & Konrad, Further Causal 

Search Analyses With UCC's Effort Estimation 

Data, 2018) (Alstad, Hira, Brown, & Konrad, 

2021). In general, industry agrees that including a 

system engineer with the Scrum/development 

teams improves productivity, and that the Agile 

methodology allows developers to demonstrate 

and improve their analytical and programming 

skills.  

Question 7: Requirements, Architectures, and 

Designs Improving?  

Question: Has including SEITPM FTEs in the 

Scrum/development teams led to improved 

requirements gathering and accuracy, 

architectures, and designs?  

Table 13. Survey Question 7 Response Summaries  

Industry Partner Summarized Answer 

Organization 1 
Improvements in peer review and test case development. However, not sure 
analytical/coding skills improved because of Agile or including SE personnel with 
the software development teams. 

Organization 2 
Noticed cross-training between the SE and development personnel, and 
improvements in the knowledge base. 

Organization 3 
The Agile methodology provides opportunities for developers to demonstrate 
their skills more compared to Waterfall. 

Organization 4 
Noticed an increased in productivity with including a SE with the development 
team. 

Organization 5 
Noticed an increase in productivity because SE and IT personnel being part of the 
Scrum team allows issues to be troubleshooted faster. 

Table 12. Survey Question 6 Response Summaries  

Industry Partner Summarized Answer 

Organization 1 
Improvements in requirements gathering, architectures, and designs do not come 
free with Agile/DevOps. Need a higher-level architecture team. 

Organization 2 
Really see improvements when stakeholders participate in planning meetings. 
They are able to clarify and see the requirements. 

Organization 3 
Noticed less rework, which implies better accuracy. Architecture can depend on 
external systems and other dependencies, but easier to incorporate changes with 
Agile/DevOps model.  

Organization 4 Not sure (don’t have sufficient experience to comment on this) 

Organization 5 

One program did not start to adopt Agile methodologies until a bit later, but the 
developers found some of the requirements are not as testable as they could and 
should have been. Therefore, they are having to rewrite them. Another program 
started with Agile/DevOps methodologies and found the design is better as a 
result. 
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One of the Agile Principles states that “the best 

architectures, requirements, and designs emerge 

from self-organizing teams” (Beedle, et al., 2001). 

From the responses received in Table 13, 

industry generally notices improvements in 

requirements gathering, designs/architectures, 

and rework as a result of adopting Agile/DevOps 

methodologies. However, as the first organization 

stated, this does “not come free.” The 

improvements depend on having a good 

architecture team, the team engaging with the 

stakeholders, and working together to write the 

requirements. 

Question 8: Change in Quality of Products?  

Question: Since requirements are gathered and 

the design/architecture is built incrementally, 

have you noticed positive or negative changes in 

the quality of products? 

While 2 organizations have experienced both 

positive and negative changes to product quality, 

3 organizations have noticed improvements in 

product quality as a result of adopting Agile/

DevOps methodologies. While product quality 

can improve, teams must ensure to not lose focus 

of the bigger picture and not think of their 

development environment as a playground.   

Question 9: Trouble with Meeting Level of Service 

Requirements?  

Question: Since requirements are gathered and 

the design/architecture is built incrementally, 

have you noticed any trouble with meeting level 

of service requirements later in the development 

lifecycle, compared to when using the Waterfall 

lifecycle mode? 

“Level of service” requirements refer to 

requirements that affect the usage of the software 

systems, such as meeting availability, reliability, 

scalability, etc. needs. One concern with the 

design/architecture being built incrementally is 

whether the architecture/design can and will 

scale to the needs of the users, especially if these 

requirements are pushed towards the end of the 

lifecycle.  

While 2 organizations could not comment on this 

question, the remaining 3 noticed that there is no 

issue in meeting level of service requirements as 

long as the discussions, implementing, and 

testing of these requirements are being done 

early.  

Question 10: Change in Maintainability?  

Question: Since requirements are gathered and 

the design/architecture is built incrementally, 

has the maintainability of the product improved/

decreased for Agile programs compared to 

Waterfall? 

For this question, maintainability refers to how 

easily existing software can be modified and 

maintained. Specific metrics were not required 

for this question, but just the teams’ intuition on 

how easily they were able to make changes to 

their existing code. 

From the responses, it seems the maintainability 

of software depends on the system itself and 

decisions made by the team. This question 

received varied responses across the 

participants. 

 

Table 14. Survey Question 11 Response Summaries  

Industry Partner Summarized Answer 

Organization 1 Stable, upfront requirements needed for less rework. But Agile can lead to rework. 

Organization 2 Fewer defects, because seeing and fixing earlier. 

Organization 3 
Decrease in rework and less defects. Comes down to overall design, complexity of 
programs, and maturity of teams. 

Organization 4 No answer 

Organization 5 Same, but earlier in the lifecycle. 
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Question 11: Change in Rework and Defects?  

Question: Since requirements are gathered and 

the design/architecture is built incrementally, 

have you noticed reduction/increase in rework, 

scrapped code, and defects? 

Agile/DevOps teams are noticing fewer defects at 

the end of the lifecycle, because defects are being 

noticed and fixed earlier. Only 1 organization 

provided insight on rework, which seems to 

depend on the stability of requirements.  

 

Conclusion 

From the survey responses received from and 

follow-up discussions with industry, the 

phenomena and insights that are mostly common 

across the 5 organizations are:  

• Software development/Scrum teams are 

cross-functional: SE and IT full-time 

equivalents (FTEs) are generally included.  

• SEITPM activities/effort/costs are level-

loaded across the lifecycle.  

• IT costs are lower due to the activities being 

bucketed with development, and due to 

savings from automated and continuous 

testing.  

• Including SE FTEs with development/Scrum 

teams leads to higher productivity. 

• Organizations have noticed an improvement 

in requirements gathering, architectures and 

designs from adopting Agile/DevOps 

methodologies.  

• There is an improvement in the product 

quality, though a couple organizations 

mentioned that they have also had scenarios 

where there was a negative impact. 

• The organizations have not faced challenges 

in meeting level of service requirements as 

long as the discussions, implementation, and 

testing of these requirements are being done 

early. 

• There are fewer defects at the end of the 

lifecycle because they are found and fixed 

earlier. The amount of rework required 

depends on the stability of requirements, 

however. 

However, industry, as a whole, did not have 

unified or strong insights for the remaining 3 

questions in the survey.  

The goal of the survey questions was to ask 

industry if they noticed the reduced SEITPM costs 

in Agile/DevOps environments and whether that 

led to positive or negative effects in the final 

products. In general, organizations and software 

development teams noticed reductions in 

Integration and Test (IT) costs most significantly. 

Though the data suggests Program management 

(PM) costs are also lower for Agile/DevOps 

programs compared to Waterfall programs, 

industry did not necessarily notice a decrease in 

the PM activities. The organizations also noticed 

mostly positive effects in product quality, defects, 

and meeting level of service requirements. While 

improvements were not necessarily noticed for 

rework and maintainability, they also did not 

necessarily worsen compared to Waterfall 

programs.  

 

Threats to Validity 

This research study is based specifically on 

Ground software systems from the Space Systems 

Command (SSC) and Air Force. The programs 

range from new development to modifications to 

existing systems and vary in terms of 

functionality provided and sizes. Given the nature 

of the data used in this study, there are 2 threats 

to validity:  

1. Since the data and survey participants come 

from Ground systems, the findings in this 

study might not apply to other application 

domains (particularly the SEITPM costs 

estimating regression (Equation 2)). As 

mentioned in the Future Work section 

(below), a good future step would be to 

analyze data across different application 

domains/types to evaluate how generalizable 

the findings are.  
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2. The Agile/DevOps programs in the datasets 

used in this study have a considerably small 

total cost/size range compared to the 

Waterfall programs. Therefore, the results in 

this paper might not hold for larger, more 

complex programs using the Agile/DevOps 

methodologies. Also mentioned in the Future 

Work section (below) is the suggestion to 

update this study when larger Agile/DevOps 

data is collected to observe whether the 

SEITPM costs are still lower than for the 

Waterfall programs.  

 

Comprehensive Conclusions 

This research study consists of 2 parts:  

1. Analyze the SEITPM costs between Agile/

DevOps and Waterfall programs 

2. Survey industry to get their insights on the 

SEITPM cost differences between Agile/

DevOps and Waterfall programs. 

The first part of the study showed that the 

SEITPM costs are about 30% less for Agile/

DevOps programs compared to Waterfall 

programs and that this difference is statistically 

significant. By looking at the individual activities 

separately, the reduction in PM and IT costs 

Agile/DevOps and Waterfall programs are 

statistically significant, while the reduction in SE 

costs is not.  

Reduced SEITPM costs can imply insufficient 

systems engineering and planning activities, 

which can lead to the program’s inability to scale 

to requirements, increased defects, reduced 

maintainability of the code, and overall decline in 

products’ quality. The second part of the research 

study, surveying and having discussions with 

industry, was designed to understand whether 

the development teams are noticing a decline in 

product quality as a side-effect to adopting Agile 

and/or DevOps methodologies.  

Discussions with industry concluded that the 

software development teams usually did not 

notice a major reduction in SEITPM costs and 

activities for Agile/DevOps programs – 

particularly for SE and PM. One thing to note here 

is that the industry partners did not study their 

own data prior to these discussions and were 

asked to answer based on their intuition. This 

suggests that there is not an active attempt to 

reduce SEITPM activities because maintaining 

product quality is essential. However, they did 

note that the responsibilities, activities, and cost 

reporting between software development and 

SEITPM activities had blurred and overlapped 

more than on Waterfall programs. In general, the 

industry noticed either an improvement or 

similarity in the product’s quality, number of 

defects, rework, and maintainability compared to 

Waterfall programs.  

In answer to the question posed in the title of this 

paper (are Agile/DevOps programs doing enough 

systems engineering?), this research study found 

that software development teams are able to and 

have been doing enough engineering to produce 

high quality products while utilizing Agile/

DevOps methodologies and reducing costs.  

 

Future Work  

There are several future steps that could enhance 

this analysis further:  

1. Perform a similar analysis on a dataset that 

contains data points across the various 

application domains to evaluate whether the 

findings in this study are generalizable.  

2. Reach out to more industry teams, not just 

SSC’s industry partners, to get their 

responses on the survey questions. With 

more responses, we may be able to 

understand if there are patterns that are 

more common than others as well as all the 

unique ways Agile/DevOps teams are 

formed.  
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3. Collect annual SEITPM costs across multiple 

Waterfall and Agile/DevOps programs to be 

able to generalize how the SEITPM activities’ 

levels behave throughout the lifecycle and 

how they differ between the 2 groups.  

4. Update this analysis when more data on 

Agile/DevOps programs is collected, 

especially on larger programs. Since the 

Agile/DevOps programs are significantly 

smaller than many of the Waterfall programs 

in the data used, it is unclear if the behavior 

identified (that SEITPM costs are significantly 

lower for Agile/DevOps programs compared 

to Waterfall programs) will continue as the 

Agile/DevOps programs grow in size and 

difficulty.  
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Projecting Future Costs with Improvement Curves: Perils and Pitfalls 

Brent M. Johnstone 

 

Abstract: Improvement curves are one of the most common projection tools used by cost estimators. Their 

use is surrounded however by perils and pitfalls. Common errors include: the fallacy of "straight edge and 

graph paper" projection, the dangers of recovery slopes, failure to understand how development and 

production environments differ, and the dangers of using learning curve slopes to measure production line 

efficiency. This paper examines these potential pitfalls and proposes ways to avoid them. 

Introduction 

Improvement curves are one of the most common 

tools that cost estimators use to project future 

costs. Unlike a ladder or power tool bought at the 

hardware store, improvement curves do not 

come with warning labels. Perhaps they should: 

the consequences of misusing them can be quite 

significant. The stakes of a bad cost estimate can 

be high – millions or even billions of dollars in 

funding or profits may depend on decisions 

estimators make. Consider this paper in some 

sense a warning label: it identifies the perils and 

pitfalls of improvement curves and looks at 

common errors in projecting future costs based 

on the author's experience in the military aircraft 

industry.  

This paper will examine five potential perils: 

• the peril of straight-line projection  

• failure to account for the impacts of 

development versus production 

• the dangers of recovery slopes  

• carelessness about designating the first unit 

• dangers of using learning curve slopes to 

measure production line efficiency  

 

Peril: The Straight-Line Projection 

A common method of projection using the 

learning curve is to regress historical data, 

calculate the curve slope, then assume that same 

slope to project the cost of future work. “You are 

on an 83% learning curve,” the analyst announces 

as if he is stating an inviolable law of nature. “You 

should be on the same slope for future lots.” 

Proof that this slope is valid for future projection 

is typically buttressed by a statement of the 

regression line’s R2 – the higher the R2 the 

“better” the model and the more certain the 

future projection. This can be called the “straight 

edge and graph paper” school of estimating – 

projecting the future is no more difficult than 

drawing a best fit line on log-log paper and 

projecting that line through the number of units 

being estimated. 

What could be wrong with this? Empirical studies 

have demonstrated that this is in fact is not a 

reliable method to project future costs. Dutton 

(1984) cautioned: 

In general, the empirical findings 

caution against simplistic uses of 

either industry experience curves or a 

firm’s own progress curves. Predicting 

future progress rates from past 

historical patterns has proved 

unreliable. 

Similarly, Fox, et al. (2008) cited: 

Even with both an excellent fit to 

historical data (as measured by 

metrics like R2), and meeting almost 

all of the theoretical requirements of 

cost improvement, there is no 
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guarantee of accurate prediction of 

future costs.…[E]ven projections based 

on producing an almost identical 

product over all lots, in a single facility, 

with large lot sizes, and no production 

break or design changes, do not 

necessarily yield reliable forecasts of 

labor hours. 

Continuing, Fox, et al. writes: 

Out-of-sample forecasting using early 

lots to predict later lots has shown 

that, even under optimal conditions, 

labor improvement curve analyses 

have error rates of about +/- 25 

percent. 

The primary reason for this failure is that the 

learning curve is frequently not a straight line in 

log-log space over the product life cycle. The 

initial learning curve studies (Wright, 1936; 

Crawford, 1944) understood improvement 

curves as straight-line logarithmic functions. 

Within a few years, however, observers began to 

see improvement curves not as straight lines in a 

log-log space, but curvilinear functions that 

exhibited an “S” shape based on product and 

process maturity (Carr, 1946; Stanford Research 

Institute, 1949; Asher, 1956; Cochrane, 1960; 

Cochrane, 1968). 

The S-shaped improvement curve as commonly 

drawn is composed of three stages, captured 

graphically in Figure 1 (Carr, 1949; Cochrane, 

1960; Cochrane, 1968). 

The first stage, typically in the product 

development phase, shows high hours per unit 

and relatively flat improvement curve slopes. The 

limited degree of improvement is caused by an 

evolving engineering design and immature 

manufacturing processes. Part shortages disrupt 

the continuity of production. Scrap and rework is 

high, and there are typically a high number of 

engineering changes.  

In the second stage, typically during early 

production, the hours per unit decrease sharply 

along a relatively steep improvement curve. The 

production rate increases significantly from the 

relatively low delivery rates of the development 

Figure 1. Profile of the S-Curve (Notional) 
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phase. Engineering changes decrease sharply, 

while improvements in tooling and 

manufacturing processes are implemented. 

Manufacturing scrap and rework also decreases 

at a faster rate. Shortages decrease as the supply 

chain begins efficiently feeding the production 

line.  

In the third stage, production rates continue to 

increase to their maximum build rate. 

Manufacturing processes, tooling and engineering 

designs mature. Consequently, the pace of 

production improvements slow and the learning 

curve slope flattens in response. (Boone, 2021) 

The easiest way to understand the changing 

curve slope over time is to understand the 

definition of the learning curve itself. A Northrop 

publication from the 1960’s defines the learning 

curve as “the rate at which management 

identifies and solves problems in relation to 

design, methods, shortage of parts, inspection 

and shop education.” (Jones, 2001) Logically, the 

rate at which problems are solved will change 

over time – the “low hanging fruit” with the 

fastest payoffs will be picked first, leaving the 

more intractable and difficult problems to be 

solved later, or maybe not at all.  

What is the significance for our estimator? If he 

does not consider where he is in the product life 

cycle but blindly continues the historical slope, he 

may significantly overstate or understate future 

hours. (Reference Figure 2.) If his history is from 

the initial development stage, he may miss the 

steepening which typically occurs in the early 

production stage and overstate his estimate. If his 

history is from the early production stage, he may 

miss the flattening that occurs as product designs 

and manufacturing processes mature and 

understate his estimate. This does not mean that 

the analyst should never project a historical slope 

forward. Suppose the program has reached full 

production and its engineering and 

manufacturing processes are mature. In such a 

case it might be appropriate to project the next 

production lot by continuing the historical slope. 

But these decisions cannot be made carelessly 

Figure 2. S-Curve & Impact on Projections (Notional) 
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without understanding where historical 

experience falls along the product life cycle. 

But what about those sterling best fit statistics 

our analyst quoted earlier? True, many writers on 

learning curves recommend using best fit 

statistics as a criterion for choosing a particular 

learning curve slope and theory -- but as a 

criterion, not the sole criterion. Nussbaum and 

Mislick (2015) introduce numerous factors which 

should be considered in determining learning 

curve slopes including the nature and quality of 

production tooling; supplier competence and 

experience; expected number of design changes; 

length of part lead times; similarity of the product 

to other systems; and historical experience across 

the product lifecycle. These factors can and do 

change over the course of a production program.  

Using R2 blindly to justify continuing a straight-

line projection – on the basis that past is prologue 

– recalls the metaphor of driving a car by only 

looking through the rear-view mirror. Schumeli 

(2010) distinguishes sharply between 

explanatory models and predictive power. R2 is a 

statistic which explains the historical association 

between the variables of a model. It can make no 

justifiable claim about the future. As Schumeli 

notes, models which do a good job of explaining 

observed behavior may do a poor job of 

predicting future behavior.  

Continuing on this theme, Schumeli writes: 

Researchers report R2-type values and 

statistical significance of overall F-type 

statistics to indicate the level of 

explanatory power. …A common 

misconception in various scientific 

fields is that predictive power can be 

inferred from explanatory power. 

However, the two are different and 

should be assessed separately. …

Measures such as R2 and F would 

indicate the level of association, but not 

causation. …In general, measures 

computed from the data to which the 

model was fitted tend to be 

overoptimistic in terms of predictive 

accuracy: “Testing the procedure on the 

data that gave it birth is almost certain 

to overestimate performance.” 

(Mosteller and Tukey, 1977) 

Regardless of the historical R2, if a regression 

model ignores product and manufacturing 

maturity and their associated cost impacts, it will 

not do a good job of predicting the future. 

 

Solution: Using Multiple-Leg Curves Prevents 

“Straight Edge” Fallacy 

Without actual cost history, analogous program 

data combined with analysis of the programmatic 

factors previously referenced by Nussbaum and 

Mislick can be used to derive the projected 

learning curve slopes and breakpoints to project 

a S-shaped improvement curve. My earlier paper 

on improvement curves (Johnstone, 2015) 

suggests a methodology for early production 

when there are limited actual cost history. In this 

instance, let us assume there is sufficient 

historical data on the program in question, and a 

change in slopes can be inferred from a visual 

inspection of the data. 

There are several learning curve models which 

allow an S-shaped improvement curve to be 

derived (Miller, 1971; Jones, 2001). This paper 

suggests a discontinuous regression model which 

can be easily built from historical data. 

We start from our familiar improvement curve 

model: 

   (1) 

Where: 

y = Manufacturing hours per unit 

x = Cumulative units built to date 

α1 = Y-intercept, equal to theoretical first unit 

(TFU) hours 
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β1 = Rate of learning, such that 2β equals learning 

curve slope 

After hours per unit and cumulative quantities 

are converted to natural logarithms, this yields 

the following linear form:  

        (2) 

Kennedy (1992) outlines a method for using 

dummy variables to capture a change in the 

intercept and slope coefficients between two 

periods. To create a two-leg segmented learning 

curve, we introduce breakpoint unit T. Based on 

our a priori selection for T, data is separated into 

pre-break period 1 (x < T) and post-break period 

2 (x ≥ T). In addition, dummy variable D is 

created such that D is zero for period 1, and one 

for period 2. Product dummy variable Dx is also 

created such that Dx takes the value x in period 2 

but is 0 otherwise. This creates the regression 

equation: 

             (3) 

Equation (3) represents two separate cases. 

Where x < T, variables D and Dx are 0 and 

equation (3) reduces back to our standard 

improvement curve equation (2). But where x ≥ T 

and D takes the value of one, different intercept 

and slope values are introduced such that: 

             (4) 

Where: 

y = Manufacturing hours per unit (HPU) 

α1 = Y-intercept for leg #1, equal to theoretical 

first unit hours for leg #1 

α2 = Intercept adjustment for leg #2, such that α1 

+ α2 equals the Y-intercept for leg #2 

β1 = Rate of learning for leg #1, such that 2β 

equals learning curve slope #1 

β2 = Rate of learning for leg #2, such that 2(β1 - β2) 

equals learning curve for leg #2 

To demonstrate how such a curve can be built, a 

notional data set was constructed as follows. 

Based on a visual inspection of Figure 3, unit 101 

was chosen as the breakpoint T. To illustrate 

further, a table of selected units (Table 1) is 

displayed to show D, x and Dx. Finally, a sample 

output from Microsoft Excel (Figure 4) is shown 

after selecting the natural logarithm of hours per 

unit as the dependent variable y and regressing D, 

x and Dx as independent variables. 

We may interpret the results as follows: For units 

1-100, hours per unit are calculated using a 

theoretical first unit (TFU) of 5,192 hours and a 

slope of 74.3%. For units 101-300, hours per unit 

are calculated using a TFU of 1,497 hours 

(calculated as e(8.555 – 1.244) or α1+α2) and a slope of 

89.9% (calculated as 2(-0.428 + 0.274) or 2(β1 + β2)). 

This equation also has a high R2 of 0.97 – which 

significantly fits the historical data better than an 

equivalent single slope learning curve (R2 = 

0.925).  

It can be argued that the R2 of the best fit of a 

discontinuous line will always show some 

improvement, however miniscule, over the best 

fit of a single line. To test the statistical 

significance of the parameter values for period 1 

(pre-break) and period 2 (post-break), a Chow 

test can be performed in the format suggested by 

Kennedy (2002). By comparing the sum of 

squared errors (SSE) of the regressions for a 

Figure 3. Notional Data Set 
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Table 1. Notional Data Table (Partial). 
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single slope as opposed to a multiple leg slope, 

we can create an F-statistic of the form:  

             (5) 

 

The “combined” dataset represents the residuals 

for the single leg curve, while the “separated” 

dataset represents the residuals for the two-leg 

curve with its dummy variables representing pre- 

and post-break datasets, where K represents the 

number of parameters (including the intercept) 

of the combined dataset, T1 the number of 

observations in period 1, and T2 is the number of 

observations in period 2.  

The resulting test-statistic derived from equation 

(5) can be evaluated against a F-table at the 

desired level of error with K and T1+T2-2K 

degrees of freedoms. Our null hypothesis – that 

α1 - α2 = 0 and β1 - β2 = 0 – would conclude there is 

no significant structural break in the hours data 

to justify a two-leg curve. The alternate 

hypothesis – that α1 - α2 ≠ 0 and β1 - β2 ≠ 0 – would 

conclude just the opposite: there is a significant 

structural break in the data beginning at unit T. In 

our notional example (calculations not shown 

here but available upon request), we can reject 

the null hypothesis with a 99.9% confidence, 

concluding that our data does indeed show a 

break in the learning curve slope. 

As noted above, a high R2 – even one buttressed 

by a sufficiently high F-statistic for the Chow test 

-- does not guarantee the accuracy of the 

forecasts made from this equation. But this two-

leg model is more in line with the theoretical 

expectations set by the S-curve as well as 

historical experience, and therefore more likely 

to give us a better projection of future costs. 

 

Figure 4. Microsoft Excel Output 
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Peril: Development Slopes –  

Ignorance Is Not Bliss 

One of the conclusions of the S-curve theory is 

that improvement slopes in a development phase 

of a program will be relatively flat. This is 

because so many programmatic issues conspire 

together to prevent rapid improvement in costs. 

These include very high number of engineering 

changes, late parts usually due to late engineering 

release, tooling which requires rework, 

engineering errors, and the realization that 

manufacturing processes and part flows that 

work on the drawing board don’t necessarily 

work on the shop floor. It’s hard to overstate the 

chaos of the start-up of a manufacturing line. It’s 

a recurring theme on many programs that parts 

are installed in one station only to be ripped out 

and replaced just a few stations further down the 

line because of engineering changes. 

Yet in much of the learning curve literature this 

tends to be glossed over. In many surveys the 

data from the development units is either 

excluded, or data limitations prevent an analysis 

of development slopes. For example, in RAND’s 

2001 study of military fighter aircraft (F-14, F-15, 

F-16, F-18, AV-8B), Engineering and 

Manufacturing Development (EMD) data is 

included as a single aircraft lot, not as individual 

units. This prevents any analysis of a unique EMD 

slope. RAND’s conclusion that the average 

improvement slope for manufacturing is 80% 

therefore tells us little about the shape of the 

improvement curve in the development phase 

itself (Younossi, 2001). Similar issues plague 

other industry-wide studies (Resetar, 1991; Hess, 

1987; Levinson, 1966). However, insight into 

individual unit cost data is often only found in 

company-proprietary datasets. Only at the 

individual unit level does the slower rate of 

improvement for the development phase 

becomes apparent. 

So why does this matter? Because decisions 

which are made about the slope of the initial 

units can be critical to establishing the eventual 

production cost.  

Let us take a simple example. An estimator 

establishes the cost of a 300-unit program using 

an S-curve profile. For the ten-unit development 

phase, he projects using an 86% slope. When 

production begins at unit 11, the slope steepens 

to a 72% slope which is maintained until T-101, 

at which point it flattens to 82%. When the 

estimate starts running through the company 

approval cycle, however, the program manager 

objects. 

For one thing, the program manager doesn’t like 

the idea of a three-leg curve. Shouldn’t a learning 

curve be a single line? Moreover, a relatively flat 

development slope might appear uncompetitive 

to the source selection committee. The discussion 

goes on for several minutes, until the program 

manager suggests that the program use the same 

T-1 and T-300 costs as originally proposed but 

simply draw a single slope in log-log space 

between those two points. The program manager 

recognizes that the development phase will be 

initially understated, but it is only for ten units, 

after all, and it might put the company in a better 

competitive position. 

Figure 5 illustrates the program manager’s 

solution. Unfortunately, this solution does not 

just put the development cost estimate at risk. It 

also significantly understates the cost of the first 

three production lots. 

While it is true that the gap between the two 

approaches begins to close at Lot 3, the damage 

has been done. If the analyst’s original estimate 

was right, the first two production lots will 

overrun by 21% and 15% respectively. This could 

lead to adverse publicity, and the perception that 

the program is unable or unwilling to control its 

costs. It could also lead to a substantially 

degraded financial position for the company. If 

the original estimate is wrong – and history says 

the odds it will be too low are far better than 

being too high – then the damage to the program 

and to the company will be even greater.  
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Solution: Recognize That Choices Matter 

The solution here is relatively simple – be aware 

that choices about learning curve slopes during 

the development phase impact the estimate. 

These choices can be consequential whether the 

program follows a straight-line logarithmic 

function or an S-curve pattern.  

One word on the assumption that development 

programs always have relatively flat 

improvement slopes: It is true that you can 

sometimes find development programs which 

have a steep improvement curve. In the author’s 

experience, such an occurrence is typically due to 

an unusually high first unit cost, which in turn is 

driven by programmatic issues. Programs that 

push the manufacturing state of the art by 

introducing new or radical processes often show 

high first unit costs as companies struggle to 

implement these on the shop floor. This poor 

performance is typically followed by rapid cost 

improvement as issues are worked through. The 

Convair B-58 program, built in the 1950’s and 

1960’s, provides an example. Not only was the B-

58 the first supersonic bomber, but it introduced 

the first widespread use of honeycomb bonded 

structure (Hess, 1987). Issues with the 

fabrication of the panels and their subsequent 

installation led to a high first unit cost but a rapid 

movement down the learning curve for follow-on 

units (Large, 1974). These examples are the 

exception, however, and not the rule. 

 

Peril: The “Slippery Slope” – 

 Extraordinary Impacts and Recovery Slopes 

One of the most vexing situations for an estimator 

are those cases where there are sharp increases 

in unit cost over time -- but the increases are 

expected to be mitigated over time. These can be 

divided roughly into two camps: (a) “expected” 

disruptions, such as major engineering changes, 

Figure 5. Impact of Flatter Development Slope on Performance (Notional) 
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production breaks or work transfers between 

sites and (b) “unexpected” disruptions caused by 

unforeseeable circumstances. An example of an 

unexpected disruption would be a critical load 

part shortage which creates significant behind 

schedule and out of station costs. Both types of 

disruptions appear similarly on graphs of 

historical costs. Figure 6 shows an example of this 

kind of behavior, with a sharp initial increase in 

cost and an eventual asymptotic recovery to the 

underlying curve. 

Of course, ex ante we do not have the advantage 

of how and when this recovery will occur. Herein 

is our estimating dilemma. How might we deal 

with this issue?  

This is best illustrated by an example. At unit 150 

a severe part shortage produces a substantial 

behind schedule position with workarounds and 

significant out of station work. This situation (See 

Figure 7) is expected to end at some point but no 

one can say with confidence when.  

There are two often-taken approaches to this. 

The first is to simply ignore these units and 

project the cost as if these impacts had never 

occurred (See Figure 8). This is often justified by 

a claim that it represents where the company 

“should be” performing had the extraordinary 

impact not occurred. Whether the extraordinary 

impact is anticipated (e.g., driven by an 

engineering change or a production break) or 

unexpected (e.g., driven by part shortages or 

schedule problems), this procedure is never 

justified. Assuming away these type of cost 

increases may seem like a viable approach to the 

cost estimator. It is never one to the shop floor 

managers and directors who cannot deal with the 

world as we wish it was, but as it is. This 

approach often creates an insurmountable gap 

between current performance and what the 

analyst thinks the values “should be.” 

Figure 6. Disruption Example (Notional) 



Projecting Future Costs with Improvement Curves: Perils and Pitfalls   Brent M. Johnstone 

74 Journal of Cost Analysis and Parametrics: Volume 10, Issue 3. November 2022 

Figure 7. Illustration of Disruption (Notional) 

Figure 8. Recovery Curve – Doing Nothing 
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Unfortunately for the shop floor, that gap cannot 

simply be wished away.  

The second approach is to create a “recovery 

slope” which accepts the cost increases but 

returns unit cost near to what it would have been 

had the extraordinary impact not occurred. This 

is clearly a more realistic approach than the first. 

But how quickly should we forecast recovery? 

Frequently, an arbitrary number of units is 

chosen, and the recovery is then forecast over 

that number of units (See Figure 9). Sometimes, 

the choice of units is based on historical 

analogies. Sometimes it is based on a point in 

time when the manufacturing schedule recovers 

to the baseline. Sometimes it is simply picked out 

of the air. All these have problems. Our historical 

analogies may not be apt, or we may not have the 

data. Cost improvements usually lag schedule 

improvements, especially since schedule 

improvements are often made by increasing 

manpower or overtime or both. Bottom line, it is 

very easy to make unrealistic shop projections 

which cannot be achieved. 

 

Solution: Calculating Learning Setback and 

Projecting Forward 

A more reasonable approach is to take the break-

in point of the disruption and set back the unit 

position on the learning curve (Fowlkes, 1963). 

For example, prior to the part shortage we were 

on an 85% slope. The first unit to feel the impact 

of the shortage represents approximately 850 

hours per unit – equivalent to position 100 on 

that same 85% slope. To forecast the recovery, 

we regress on the learning curve back to unit 100 

and forecast future units on the same pattern as 

established in the past, i.e., the next five units are 

equivalent to the cost of units 101 thru 105, etc. 

on an 85% improvement slope. 

Figure 9. Recovery Curve - Point of Recovery 
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This produces a “scallop” in the overall 

improvement curve (See Figure 10). True to the 

learning curve pattern, the most improvement is 

seen in the initial units after the disruption, with 

the unit-to-unit decreases slowing as we move 

farther away from the initial disruption. In this 

case, we recover asymptotically to the old cost 

curve – that is, we never achieve the same hours 

per unit we would have anticipated had the 

disruption not occurred. But we come closer and 

closer to it until eventually the difference between 

the two becomes marginal.  

The use of setback in the learning curve is widely 

accepted for production breaks and engineering 

changes (Anderlohr, 1968; DCAA, 1994; Smith, 

1986). But there is sometimes resistance to using 

it in other scenarios.  

This resistance is largely based around the idea 

that learning – and the loss of learning – 

exclusively centers around the operator on the 

shop floor. In the case of engineering changes (the 

operator must learn a new way of building the 

part) and production breaks (there is a significant 

turnover on the floor with employees receiving 

new assignments), there is clearly an impact to the 

body of knowledge the shop floor operator has 

accumulated. But our common use of the term 

“learning curve” often misleads us into believing 

that cost improvement only results from repetitive 

operations by the mechanics. It is more accurately 

called out as a “cost improvement curve.” 

In his paper on production breaks, Anderlohr 

defined five elements of learning: (1) operator 

learning, (2) supervisory learning, (3) tooling, (4) 

continuity of production and (5) manufacturing 

methods (Anderlohr, 1969). Yet the improvement 

that comes from the repetition of tasks by shop 

personnel accounts for slightly more than 20% of 

the total cost improvement. The rest of “learning” 

Figure 10. Recovery Curve – Setback 
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comes from other sources. (Jones, 2001). If we can 

adjust our position on the improvement curve for 

negative impacts to operator or supervisor 

learning, surely it is legitimate to adjust it for 

negative impacts to the other three areas as well? 

Viewed from this perspective, it should be plain 

that, for example, an interruption to the supply 

chain due to late parts – which in turn creates part 

shortages, workarounds and behind schedule 

conditions – represents a retrograde to the 

existing improvement curve and can be fairly 

represented by a setback on the learning curve.  

In the author’s experience, this produces the most 

realistic and reasonable recovery slope and the 

one most achievable by the shop floor. But there 

are cases where a more aggressive approach may 

seem appropriate. Smith (1986) makes a common 

argument: “The firm is reexperiencing, not 

experiencing; they are going down a cost 

improvement curve they have been over before 

and should be better equipped to solve the 

problems the second time around so some method 

of accelerating recovery…may be useful”. We can 

modify the setback methodology shown above and 

assume that we forecast the new units not on the 

same pattern seen in the past – the 85% 

improvement slope – but a slightly more 

aggressive one. In this case, an 82% slope has 

been used (See Figure 11). 

This allows us to completely return to the hours 

per unit projected on the old cost curve. (In fact, 

had we continued the projection another ten or 

twenty units, the recovery slope would fall 

underneath the old cost curve, giving us a lower 

per unit value.) The more aggressive the slope 

assumption, the faster the interception point will 

be achieved. However, we can easily fall in the 

same trap as the earlier case where we selected an 

arbitrary number of units and drew a line to 

intercept the old cost curve. If 82% was an 

appropriate slope, why not 80%? Why not 78%? 

Why not 75%? It is easy to rationalize the answer 

Figure 11. Recovery Slope – Accelerated Setback 
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we (and our management) want to hear. Cochrane 

(1968) suggests a methodology for calculating an 

accelerated recovery, but it too requires an 

arbitrary choice of an acceleration factor which 

might be difficult to justify. The best guide would 

seem to be prior experience, but often we cannot 

find an analogy which exactly correlates to the 

situation we are estimating.  

In short, projecting recovery slopes from 

disruptions is fraught with potential risks and the 

greatest care must be taken with doing so. When 

calculating a recovery slope, it is always best to 

review your assumptions and projections with the 

shop floor to make sure what you have mapped 

out can in fact be realized. 

 

Peril: Being Careless When Establishing the 

First Unit 

This example is drawn from an actual proposal. 

Values referenced below are notional.  

A small aircraft pylon used to carry mission 

equipment required subassembly work. For the 

first thirty units, the Special Projects organization 

produced it on an 84% learning curve. At unit 31, 

the task was transferred from Special Projects to 

the regular Production department, who would 

produce the next order for 400 units.  

The cost analyst (fortunately not the author!) 

proposed that the first Production unit would 

have the same hours per unit as the last unit 

produced by Special Projects. He also proposed 

the same 84% learning curve slope going forward. 

However, for projection purposes, he treated the 

first Production unit as unit one on the learning 

curve. The estimator apparently believed he was 

setting the unit costs back on the learning curve. 

But while he reset the cumulative unit count, he 

did not adjust the hours at unit #31 to something 

higher.  

Figure 12 shows the consequences. Case A 

represents what the Production department 

expected to see when the contract was awarded. 

Figure 12. Illustration of Misidentified First Unit (Notional) 



Projecting Future Costs with Improvement Curves: Perils and Pitfalls   Brent M. Johnstone 

79 Journal of Cost Analysis and Parametrics: Volume 10, Issue 3. November 2022 

Case B represents what they found in the estimate 

– an estimate that was approximately half of what 

they expected! 

By treating T-31 and subsequent units as if we 

were restarting the learning curve back at unit 1, 

we have restarted the 16% cost reduction that 

occurs every time the number of units doubles. 

This significantly accelerates the rate of learning – 

which was not the intention of the estimator. GAO 

(2020) refers to this as “disjoint theory” (treating 

the first production unit as T-1 and restarting the 

curve) as opposed to “sequential theory” (treating 

the first production unit as the last development 

unit plus one). There may be times where disjoint 

theory is appropriate, but in this case the analyst 

simply did not realize what had been done. 

Fortunately, Production was able to mitigate the 

impact by holding a series of lean events and 

substantially restructuring the production process 

– as it turned out, there were significant 

inefficiencies in the existing production process 

which were subsequently eliminated. However, 

this happy accident cannot be counted on in the 

future to save an estimator from his mistakes. 

 

Solution: Take Care and Graph, Graph, Graph! 

Fortunately, the solutions are relatively simple. As 

a rule, analysts should always graph their learning 

curve results – preferably in both a log-log and an 

arithmetic space. Graphing the actual cost history 

as well as the projected hours per unit would have 

quickly surfaced the problem. In addition, examine 

your takeoff point for projections and its position 

on the curve carefully. Seemingly insignificant 

decisions can have profound impacts on the 

numbers.  

 

Peril: Steep Curves = Efficiency? 

The author has heard proposal evaluators 

frequently assert that a flat learning curve is proof 

of manufacturing inefficiency. Its counterpart is 

often asserted as well: a steep learning curve 

proves the efficiency of a manufacturing 

operation. In fact, the slope of a learning curve by 

itself does not prove that a factory is efficient or 

inefficient. A hypothetical example will 

demonstrate this. 

Company A assembles widgets; it has 

demonstrated an 80% learning curve over 1,000 

units. Company B builds a similar but not identical 

product and demonstrates a 90% learning curve 

over the same range. There has been no transfer of 

manufacturing knowledge or personnel between 

the two companies. Which company is more 

efficient?  

Many cost estimators would immediately answer 

Company A since it has the steeper learning curve. 

But this ignores the reasons why Company A had 

such a steep learning curve. This is quickly 

demonstrated by comparing the performance of 

the two companies on an hours per pound basis 

(See Figure 13). This shows Company A’s high first 

unit cost, exceeding 40 hours per pound. Upon 

investigation, it turns out this high T-1 was driven 

by late engineering release, inadequate tooling, 

late material, and the oversizing of shop floor 

crews to recover manufacturing schedule.  

Company B on the other hand had its engineering 

released on time, which allowed its tooling 

program to build high quality tools and deliver 

them to the floor when needed. On-time 

engineering allowed the supply base to deliver its 

parts on time, which in turn allowed Production to 

size its crews efficiently and still maintain the 

production schedule. Its first unit cost was almost 

half of Company A’s.  

Both companies ended the 1,000th unit at the 

same hours per pound. But over the course of 

those thousand units, it took Company A almost 

25% more hours to produce its product.  

A steep learning curve can demonstrate a strong 

dedication to lower costs and continuous 

improvement. It can also indicate the necessity to 

recover from poor performance and 
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mismanagement on the earliest units. “[T]he more 

room there is for improvement,” noted Fowlkes 

(1963), “the more improvement there is to be 

expected.” Without further investigation, it cannot 

be determined from the numerical value of a 

learning curve slope alone which of these two 

cases is true. 

 

Solution: Avoiding the Facile Conclusion 

There is a widespread perception among cost 

estimators that relatively flat learning curves are a 

symptom of production inefficiency, and -- by 

implication – that relatively steep slopes are proof 

of manufacturing efficiency. In fact, as our 

example demonstrates, just the opposite may be 

the case. The learning curve slope alone cannot 

tell us if a manufacturing operation is efficient or 

not. Further analysis and understanding behind 

the underlying trends are necessary. 

Unfortunately, there is no easy way out. 

Conclusions:  

The quantity of books, articles, and academic 

research published about learning curves is 

astonishing. Literally hundreds of publications 

have been released since T. P. Wright’s original 

1936 article. Authors have suggested a variety of 

models and approaches: Wright’s cumulative 

average model, Crawford’s unit curve model, the 

Stanford B-curve, DeJong’s incompressibility 

model and Cochran’s S-curve are only a few 

examples. (Wright, 1936; Stanford Research 

Institute, 1949; DeJong, 1957; Cochran, 1960; 

Cochran, 1968) And yet within this wealth of 

material, there are relatively little guidance on 

what not to do. A new driver should not be handed 

a key to the sports car in the driveway before 

being previously schooled on speed limits and 

stop signs. 

In the introduction, this paper was offered as a 

warning label to be attached to the improvement 

curve. Each of the five situations outlined 

Figure 13 
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represents a potential pitfall which can entangle 

the cost estimator and transform the learning 

curve from a useful tool to a danger to himself 

and others. The negative consequences of a bad 

estimate – on company profits and government 

funding – can be severe. 

Unfortunately, most learning curve training 

rarely addresses these issues. It is content to 

show the basic calculations for Wright and 

Crawford curves, offer some advice on midpoint 

calculation and show a methodology for dealing 

with major engineering changes or production 

breaks. But it rarely goes much beyond these 

areas. It simply assumes estimators will find out 

about those other matters “soon enough.” They 

will – but they might take someone else down 

with them in the process. 

Cautionary tales rarely make compelling reading. 

After all, who among us actually reads the 

warning labels attached to the products we buy? 

But in this case, questioning long-held premises 

or putting in an extra half hour of analysis may 

yield unexpected benefits. By obeying the speed 

limits of estimating, our hypothetical driver and 

his sports car in the driveway might make it back 

home in one piece. 
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Introduction 

The International Cost Estimating and Analysis 

Association (ICEAA) is a cost estimating 

organization built by cost estimators for cost 

estimators. While having a technical-specific 

emphasis does facilitate state-of-the-art 

estimating training and incorporation of best 

practices in quantitative areas like data science, 

we sometimes lose focus on other opportunities 

for professional growth. As a community, we 

spend a lot of time building on our strengths, but 

this paper seeks to target a weakness for many 

technically competent professionals. Fortunately, 

there are many examples of anecdotal and 

empirical findings of the behaviors and attributes 

that lead to effective leadership in professional, 

educational, and popular media. 

In a recent survey of cost analysts, (Snyder, 2021) 

the community unanimously agreed that 

leadership is important to the end cost product 

and that “soft skills” like being a good 

communicator are important to leadership 

efficacy. “Soft skills” are essentially people skills – 

and due to the nature of being less tangible, non-

technical, and sometimes personality driven, they 

are harder to define and teach. These skills 

become increasingly important when one works 

on larger teams, begin leading cost projects, and/

or as direct visibility to the decision maker 

increases. This paper expands upon previous 

work regarding soft skills to improve cost team 

outcomes such as: higher team morale, efficiently 

delegating work, and quickly identifying 

challenges. It seeks to leverage proven training 

on how to communicate and empower members 

of estimating teams more effectively. Although 

there is specific guidance to cost team leadership, 

given the nature of cost estimating, the insights 

can be helpful in all aspects and roles within our 

field. Much of the success of our work relies on 

efficiently receiving inputs from others and then 

communicating our results to decision makers. 

Taking personal inventory of strengths and 

limitations in soft skills and working on 

communication skills throughout the leadership 

chain will improve all estimators, not just those in 

cost lead positions. 

(CE)^2 : Communication and Empowerment for Cost Estimators 
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EQ and Self-Awareness 

“Leadership and learning are  

indispensable to each other”  

– John F. Kennedy 

Effective leaders boost team morale, create 

strong relationships in the workplace, and help 

others embrace stretch goals; all of these key 

skills require emotional intelligence (EQ).1 There 

are several different interpretations of EQ 

(emotional quotient). For the purposes of this 

paper, we will define EQ as the ability to 

recognize your own emotions, knowing how you 

are perceived by others, understanding your 

impact on those around you, and being able to 

use that knowledge to motivate or adapt the 

behaviors. To bring out the best in others, it is 

critical to first understand your own strengths 

and weaknesses through self-awareness. 

Personality and EQ assessments seek to measure 

one or more of the following: personality traits, 

dynamic motivation, symptoms of distress, 

personal strengths, and attitudinal 

characteristics.2 The path to self-awareness 

involves honest communication with yourself and 

those that know you best. This communication 

can be complimented by structured self-report 

personality and EQ assessments readily available 

on the internet.  

Dr. Tasha Eurich published the chart above in the 

Harvard Business Review that outlines internal 

and external self-awareness3. Dr. Eurich 

distinguishes internal self-awareness as how 

clearly we see ourselves, our aspirations, our 

strengths/weaknesses, and our impact on others. 

External self-awareness is how other people view 

us for those same criteria. Research has shown 

there is no relationship between internal and 

external self-awareness,3 so it is possible to rate 

high on one scale and low on the other. It is 

critical that both new and veteran leaders take 

time to focus on self-awareness as it is positively 

associated with important leadership outcomes. 

In a study of more than 1,200 leaders in a variety 

of industries, higher level leaders had larger 

discrepancies between their self-assessments and 

the assessment of them by those around them; 

meaning the larger a leader’s team, the more 

important it is to close that gap by improving the 

communication with those that report to them.4 
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Communication 

“Communication is the real work of leadership.” 

-Nitin Nohria, Dean of Harvard Business School 

from 2010-2020  

Part of what differentiates humans from the rest 

of the animal world is our ability to work as a 

team through our communication. Unfortunately 

for our profession, most cost team leads are put 

into those positions solely due to their technical 

abilities. However, high technical achievement 

does not necessarily teach the skills or empathy 

needed to understand other people. When 

leading an estimating team, leaders should be 

looking for opportunities to increase 

productivity, maximize employee engagement, 

and effectively navigate the estimating process. 

All of these can happen by improving team 

communication. Using best practices across 

multiple industries, we can get inspiration for the 

best communication strategies leaders can 

implement to impact our cost estimating teams. It 

should be noted that the literature on leadership 

say the best leaders continually 

develop leaders within their 

own team, so all members of 

a cost team can benefit from 

beginning to practice these 

communication strategies at 

any stage in their career. 

The communication skills 

found most often to be 

employed by effective 

leaders were: adaptability, 

approachability, trust, and 

inspiration. 

 

Adaptability – Adaptability 

in leadership involves 

understanding and 

accommodating the 

communication styles of 

each team member. The best 

leaders use their EQ to 

understand that each person 

is different and one of the keys to effectively 

communicating is tailoring communication styles, 

both verbal and nonverbal, to the audience. Such 

tailoring allows you to be more persuasive and 

build stronger relationships with your team 

members. Some team members may appreciate 

short emails with no pleasantries while another 

may interpret that style as cold or harsh. Leaders 

should give their teams hope and support, so 

being careful with words and having a cool head 

in stressful situations might be especially 

important. Ultimately, using tact and showing 

respect when interacting with every team 

member sets the foundation for modeling a 

collaborative and efficient work environment. 

Thus, having self-awareness regarding your 

default communication style and adapting to your 

team’s individual needs is critical.  

 

Approachability - Most of us learned as children 

that we have “two ears and one mouth, because 

we should listen twice as much as we talk.” Active 
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listening should be the foundation of 

communication for every leader. If team 

members know that you are really listening to 

their inputs, they are more apt to openly share 

their ideas and provide honest feedback. As the 

Gallup poll shows,6 this drives employee 

engagement, but also increases productivity and 

creativity. Approachability means setting time 

aside to speak directly to your team and 

removing distractions like not looking at your 

phone or computer screen when they speak. 

When a person brings issues to your attention, 

empathize with their feelings appropriately, and 

encourage them to continue talking. 

 

Trust - Consistent in the literature on team 

effectiveness, trust has been shown to be the 

most important component of any successful 

team. When teammates fear each other, fear their 

leader, or believe they are in competition, they 

lose the ability to be creative for fear of making 

mistakes and will hoard knowledge and 

resources to give 

themselves a tactical 

advantage over other 

team members. To have 

team members trust each 

other, the leader needs to 

model transparency, 

integrity, and 

vulnerability through 

consistent action. The 

book “Connect – Building 

Exceptional Relationships 

with Family, Friends, and 

Colleagues” outlines the 

six hallmarks of 

exceptional relationships 

that stem from these 

areas of trust and 

authenticity:7 

1. You can be more fully 

yourself, and so can 

the other person. 

2. Both of you are willing to be vulnerable. 

3. You trust that self-disclosures will not be 

used against you. 

4. You can be honest with each other. 

5. You deal with conflict productively. 

6. Both of you are committed to each other’s 

growth and development. 

If you can build trust in you as the lead and 

within the team dynamic, all members will be 

more willing to share ideas and learn. 

Inspiration – A leader that believes in their 

people can have a positive effect on the overall 

culture of their team. This effect involves 

celebrating success, framing missteps as 

opportunities for growth, and providing more 

positive than negative feedback. A 2004 study8 

showed leaders should be in the habit of 

providing significantly more positive feedback 

than most would assume. This research showed 
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high performing business teams had a positive to 

negative comment ratio of 5.625, medium 

performing teams had a ratio of 1.875, and the 

low performing teams had a positive to negative 

comment ratio of .365.8 When placed in a bad 

team culture, even a star employee can become 

apathetic and perform to less than their abilities. 

Conversely, wanting to meet the expectations of 

an inspiring leader that believes in you can cause 

a mediocre performer to achieve more than they 

themselves felt possible. Leadership inspiration 

has resulted in greater productivity, greater 

workplace satisfaction; and employee 

engagement has been shown by Gallup to be 

superior to the more authoritarian approach. 

Procter & Gamble runs a development program 

which focuses explicitly on teaching leaders on 

how to inspire colleagues; A.G. Lafley even goes 

as far as to say, “The command-and-control 

model of leadership just won’t work 99 percent of 

the time.”9 

 

Empowerment 

“As we look ahead into the next century, leaders 

will be those who empower others”- Bill Gates 

To paraphrase from the Google re:Work website, 

the most effective leaders usually realize they 

work for their teams and not the other way 

around.10 Part of leading others is believing your 

team can become the best version of themselves 

and make an important contribution to the group 

effort. When developing cost estimates with a 

team, it is a balancing act for a cost team lead to 

figure out how to best utilize the available 

resources to complete the workload in a timely 

manner with the highest quality work. Taking 

into consideration the skillset and past 

performance of the individual, a cost leader can 

set high but achievable goals. True leaders don't 

manage or mandate actions or tasks; instead, 

they motivate and empower staff to identify and 

complete the work necessary for the established 

outcome.11 The best way for a leader to do this is 

the commit to planning up front; the more work 

completed before the project begins, the clearer 

expectations and trust. As Dave Stachowiak, EdD 

puts it, “by doing more work up front, we 

minimize the amount of rework, conflict, and 

unclear expectations.” By putting into practice 

the seven steps of delegation set up by Dr. 

Stachowiak, a cost team leader can ensure the 

whole team feels empowered and that 

communication is happening throughout the 

project.  

1.  What does success look like? Begin with the 

end in mind, envisioning the expectations for the 

timeline and final delivered product. Plan with 

as much detail as possible the expected 

outcomes for the final deliverable(s): What will 

be in the scope of the work; What will the 

documentation look like; Who will receive the 

briefing. This planning process needs to be 

completed by the team lead alone before any 

tasks are delegated. 

2.  Who is the right person for this particular 

job? The size of the team and capabilities within 

available time/resources need to be taken into 

consideration. You may have one person that is 

your go-to, but it can be demotivating if this 

person feels disproportionately over-burdened. 

Think of the capability and motivation of the 

team members. Each person on the team is not 

just doing a job but could also use the existing 

work as an opportunity to stretch abilities, build 

leadership confidence and skills beyond their 

current capabilities. 

3.  Communicate expectations. Take time to 

clearly set expectations for which team 

members will be responsible for sections of the 

work and try to be as detailed as possible. Keep 

in mind the communication principles discussed 

earlier of adapting your style to individual 

members and inspire them by reiterating that 

you believe they can accomplish the work. 

4.  Individual estimator (staff member) plans 

the project. Once individual responsibilities 



88 Journal of Cost Analysis and Parametrics: Volume 10, Issue 3. November 2022 

(CE)^2 : Communication and Empowerment for Cost Estimators  Christina N. Snyder, CCEA® 

within the estimate are clarified, 

allow the estimators to plan out the 

details of their own work. Not only 

does this convey trust but it allows 

them to have ownership over the 

work that they are doing. While 

considering previous performances, 

assign appropriate levels of 

autonomy to keep them engaged, 

allowing every estimator on the 

team, from juniors to seniors, to be 

creative and bring their unique ideas 

to the team.  

5. Review the plan with the 

individual estimators (staff member). 

If there are any gaps that you think 

will affect quality, objectives, or timeline on the 

final deliverable, make sure to address them up 

front. However, resist the temptation to change 

inconsequential things that you may have done 

differently to maximize each member’s feelings 

of empowerment and ownership. 

6. Set the check-in drumbeat. At the outset, 

determine clear milestones and expectations 

regarding follow-ups.  This clarity will provide 

an effective way for leaders to provide direct 

feedback without being perceived as 

micromanaging. It is important, as the team lead, 

to realize that no feedback is worse than 

negative feedback 

7. Provide access to resources. If they need to 

get information from external stakeholders 

make sure those connections have been made up

-front and that data requests or information will 

be forthcoming. Help people anticipate obstacles 

so they can figure out how to work through 

them. Even if you do not 1have full answers for 

all challenges or questions, be honest and 

forthcoming to let them know if there are 

problems that need to be worked through. 

8.  Empower your team. Empowering your 

team has an exponential impact. Not only will 

your team feel more ownership over their work 

and inspired by your trust, but leadership 

research shows that employees who feel more 

empowered are more likely to have higher levels 

of trust in their leaders. 

 

Summary 

“Leadership is about making others better as a 

result of your presence and making sure that 

impact lasts in your absence.” 

ICEAA members and the cost community 

unanimously agreed that leadership is important 

to the end cost product and that “soft skills,” like 

being a good communicator and an empowered 

team, are important to leadership efficacy. By 

working on being highly internally and externally 

self-aware, focusing on effective communication, 

and efficiently delegating work, cost team 

outcomes – including estimate development time 

and efficiencies in the process – will also improve. 

Much of the success in cost estimating relies on 

efficiently receiving inputs from others and then 

communicating our results to decision makers. 

Taking an inventory of your own strengths and 

limitations of your own soft skills and working on 

your communication skills at every level of 

leadership will improve all estimators. 
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Theory of Complex Work 

Harry T. Larsen 

Background 

The manufacturing learning curve graph depicts 

the direct labor hours per unit of production 

plotted in its manufacturing sequence. When 

plotted with log/log scales, learning curves tend 

to follow a linear downward trend as shown in 

figure 1.           

The  power law, y(x) = a xb, has been found to 

describe the learning curve’s trend, with y(x) = 

hours(unit), x = sequential unit number, a = the 

hours at unit one, and b the slope exponent. The 

power law is transformed to a linear form by 

taking its logarithm: ln(y) = ln(a) + b ln(x). To 

summarize a learning curve’s statistics, a least 

squares regression can be performed on the 

logarithms of learning curve data, (ln(y1), ln(1));  

(ln(y2), ln(2));  .  .  . , (ln(yn), ln(n)). The regression 

estimate of a is termed the theoretical number 

one.  By convention, the slope of a learning curve 

is 2b. The learning curve is sometimes 

transformed to a cumulative average:  

 

 

For this discussion, the hours per unit description 

will be used. 

From an examination of historic learning curve’s 

labor hours in the airframe industry, some 

attributes are apparent.  

The slope of a long sequence of end item’s labor 

hours is very seldom steeper than 70.7%, b= -.5.  

When new work, e.g., a new design, for part of an 

end item is introduced at a unit, the hours for the 

new work are approximated by y(x) = anew xb, 

with x beginning at unit 1. The replaced work is 

removed via y(x) = areplace xb, with x at its current 

value.  With anew = #1 hours for the new work 

and areplace = the #1 hours for the replaced work. 

This produces a spike in the learning curve. 

Processes earlier in the manufacturing process 

have flatter slopes than do the later activities.   

In the aircraft industry major and final assembly 

curves often steepen as they progress, while 

fabrication curves typically are less steep.   

The learning curves of very large quantities of 

end items flatten. 

The learning curves of products with large 

aggregates of hours per unit tend to be smoother 

than learning curves of fewer hours per unit.  

The probability distributions about regressions of 

power law to labor hour data are approximately 

log-normal.  (This is true for both learning curve 

hours per unit as well as Cost Estimating 

Relationships (CERs) for labor hours.) 

There is a large cost variation around estimates 

for complex projects, particularly those that 

involve new technology. 

Although the power law describes broadly the 

learning curve’s log-linear behavior, it does not 

offer insight into the causes or mechanisms of its 

realization. Nor does it suggest means by which 

its labor hours per unit may be affected .   

 

Theory of Complex Work   

This model of work is based on the concept of a 

task. 

The construction of a product is accomplished by 

the successful completion of a set of tasks.  

A task is an activity that has a criterion of success.   
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A task is accomplished through repetitive trials.   

The trials are repeated until the criterion of 

success is met.   

A trial is modeled as a binomial event, with a 

probability of success p(t), with t = trial.  

At the completion of each trial, p(t), is increased 

by an amount (1 - p(t)) dl, where dl is a constant 

and dl << p(t).   

      p(t+1) = p(t) + (1 - p(t)) dl 

The time duration of each trial is a constant. 

Thus, a task's labor hours are proportional to the 

number of trials necessary to successfully 

complete the task. A task may be a part of a larger 

interrelated group of tasks.  The outcome of a 

task’s successful trial may cause another task’s 

success criterion to change, requiring it to be 

redone. The successful completion of a product’s 

tasks produces a unit of the learning curve.   

To model this process, at each trial, p(t) is 

compared to x ~ U(0,1), an event from a uniform 

distribution. If x < p(t) the trial is a success and 

the task for that unit is completed, otherwise the 

trial is repeated. Trials for the next unit’s task 

begin with the p(t) from the preceding completed 

task. The sequential completion of tasks produces 

the learning curve.   

This is a stochastic process, with inherent 

uncertainty. To produce an estimate, it is 

implemented as a Monte Carlo system, producing 

Probability Density Functions, PDFs. From those 

PDFs various statistics can be calculated, e.g., 

median, mean, and standard deviation. Or, if the 

estimate is to support a decision option, the PDF 

can be bifurcated.  

Fig 1 depicts a learning curve created by such a 

sequential completion of tasks. Its initial 

probability, p(0), is .03 while dl equals .001, with 

400 tasks and a trial time of 1 hour. 

 

Predictions 

The expected value of the number of trials to a 

successful completion is approximately 1/p(t). 

Thus, with p(t) small, the change in p between 
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successful trials is about dl/p(t). If this value is 

small the number of trials to successfully 

complete a set of tasks is a negative binomial 

distribution. A negative binomial distribution 

typically is defined as the discrete probability 

distribution of the count of failed trials up to a 

successful trial in a set of experiments. However, 

for this application, the count includes the 

successful trial.    

The mean of a negative binomial distribution is:   

(1) u = T N / p, where N is the number of 

tasks, and T is the time per trial for a task. 

Its standard deviation: 

(2) σ = T (N (1-p)) .5 / p,  

The relative standard deviation is: 

 σ / u = (T (N (1-p)) .5 / p) / (T N / p)  

 or 

(3)   σ /u = ((1-p) / N).5 

The number of tasks is:  From (3)   

(4)     N = (1-p) / (σ/u)2 

From equation (1) it can be 

seen that a project’s expected 

hours are proportional to the 

size of the project in terms of 

the number tasks, N, trial 

duration, T, and the difficulty of 

the project measured by the 

inverse of a trial’s probability of 

success, p. Thus, a project may 

have high labor hours due to 

either its task content or its 

difficulty.   

From equation (2), for p << 1, 

the standard deviation of labor 

hours is proportional to the 

square root of the number of 

tasks and the inverse of a 

trial’s  probability of success, 1/

p.  Consequently, as illustrated by the relative 

standard deviation formula (3), a project with a 

higher task content, while holding p constant, will 

have a relatively lower standard deviation. Hence 

its depiction on log/log scales becomes smoother 

as the project’s task content increases. 

Conversely, for a project that increases in size   is 

due to increased difficulty (smaller p), its 

sequential standard deviation remains directly 

proportional to the increased labor hours and 

does not collapse with the larger project size. 

Thus, we should expect that large projects that 

advance the state of the art   will have high 

relative standard deviations, while projects that 

do not will have low relative standard deviations.  

For small p the relative standard deviation, σ/u, 

is a function of N.  Figure  2 depicts   two learning 

curves, one with 200 tasks and one with 40 tasks.  

The relative standard deviation of the 40 task 

curve is (200/40).5 times the 200 task curve. 

For very large quantities a learning curve may 

flatten. When p approaches 1 the hours per unit 
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approaches the product of the number of tasks 

and the hours per trial. 

Figure 4 illustrates that p(0) and dl determine 

the hours for the first unit. As p(0) is increased 

the learning curve has a lower initial cost but 

remains asymptotic to a slope of 70.7% until p(t) 

approaches 1. 

A combination of learning curves with differing p

(0) values can produce a curve with a shallower 

slope. 



94 Journal of Cost Analysis and Parametrics: Volume 10, Issue 3. November 2022 

Theory of Complex Work       Harry T. Larsen 

More realistically, a distribution of p(0) values can 

produce a learning curve with a small hump followed 

by a flattening.  Figure 6 is a histogram of a 

lognormal distribution of 200 p(0) values, with a 

mean of .233 and a standard deviation of .133. Figure 

7 is the resulting learning curve of 200 

corresponding tasks beginning with those p(0) 

values. A log-log regression through unit 500 of the 

1000 units shown has a slope of .822, a slope in the 

range commonly seen in aircraft learning curve 

history.  

 If a design change is introduced to an existing 

production process, it is added at the initial 

probability of the task, p(0). The work replaced is 

removed at its current probability, p(x).  

In figure 8 the yellow line represents 70% of the 

tasks, which are unchanged. The red line scaled from 

one shows the new tasks. The orange, beginning at 

unit 200, shows the sum of new tasks and the 

continued unchanged tasks.   
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Feedback may occur between its tasks. When, for 

example, in an assembly task if a part does not fit due 

to a design or manufacturing error, the part may be 

reworked in the assembly activity to fit, but also, a 

design or specification change may be fed back to the 

fabrication area. The design change is treated as a 

new design, setting that task’s current p to p(0) as 

shown in figure 6, but for a single task.  Figure 9 

shows a simulation of two sets of 150 tasks, 

fabrication and assembly. Design changes are fed 

back from assembly to fabrication. In this example, 

the likelihood of a fabrication task’s p being reset to 

p(0) is proportional to the product of .0015 and the 

ratio of the number of trials for the preceding unit in 

assembly versus those in fabrication. Without 
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feedback, the fabrication curve would follow the 

trend of the assembly curve. 

The Derivation of Model Parameters 

For a system that cannot be transformed into a 

form suitable for the application of a regression, 

the author would normally use Excel Solver to 

find the least squares solution.  Such a solution 

requires that gradients be calculated for each 

parameter at each step of the search. For a Monte 

Carlo system producing a partially random 

output a very large number of model executions 

would be required. Probably not computationally 

feasible, at least on a personal computer. 

Fortunately, a deterministic formulation of the 

model that very closely approximates the 

stochastic version is possible.  

The model calculates labor hours to complete a 

task by iterating p(t+1) = p(t) + (1 - p(t)) dl 

until x ~ U(0,1) is less than p(t). The average 

number of iterations for x < p(t) is 1/p(t). Thus 

deterministically,  

p(unit+1) ~ p(unit) + (1 /p(t)) (1 - p(t)) dl, 

where p(unit) is the average probability during a 

unit’s trials.  The hours(unit) are equal to T N / p

(unit).  

Figure 1 shows the calculation. For example for 

unit 2: p(unit 2) = .178  = .156 + 6.4 * (1 - .156) 

* .004.   

Hours(unit 2) = 1126 = 2 * 100  / .178. 

The parameters of Table 1 generate the learning 

curve in figure 10.  Both the deterministic and 

stochastic versions are shown. 

The parameters of the model are N, T, p, and dl. N 

and T cannot be separately estimated from just 

the hours(unit) data. However formula 3, σ/u = 

((1-p) / N).5, provides a means of calculating N.  

N = (1-p) / (σ/u)2 . It requires the calculation of 

σ/u, the relative standard deviation.  One method 

is to calculate the sequential variation around the 

expected value of the hours per unit. Then correct 

the resulting standard deviation for the 

additional variation introduced by the sequential 

differencing.  That correction factor is the square 

root of .5. An approximation of the relative 

standard deviation is thus: σ /u = .707 STDev( 2 

( hours(nunit+1) - hours(unit)) / (hours

(nunit+1) +hours(unit)) taken over the range of 

units. 

Once N is estimated, Excel’s Solver can be used to 

find the p(0), dl, and T that minimize the 

difference between the actual and 

deterministically modeled learning curve.  

Of course, if the actual learning curve has 

dynamics beyond those modeled by the negative 

binomial distribution, those dynamics should be 

modeled. The modeling of design change 

feedback into manufacturing was introduced 

Table 1   
Deterministic 

fit 
Stochastic 

model 

  p 0.156 0.150 

  dl 0.004 0.004 

  T 2.06 2.00 

  N 97.2 100 

  

Unit p(unit) 
Deterministic 

Model 
Iterations 

1 0.156 1284 6.4 

2 0.178 1128 5.6 

3 0.196 1021 5.1 

4 0.213 942 4.7 

5 0.227 881 4.4 
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earlier. It can be included in the Table 1 

formulation by resetting the p(unit) values to p

(0), in proportion to the ratio of design changes 

to the total designs at each unit. 

 

Time Domain Formulation 

During the design of a product, there may be 

information flows between engineering tasks. But 

unlike a production line, these new requirements 

are applied to the design tasks themselves rather 

than to a subsequent design. Modeling the 

equation, p(t+1) = p(t) + (1 - p(t)) dl, in the time 

domain for both engineering and manufacturing 

allows these information flows to interact within 

and between the design tasks and factory tasks. 

To show these effects a small airplane program is 

modeled. It produces 300 aircraft over 7 years.  

Its design effort begins 3 years before the first 

factory complete aircraft. Table 2 shows 805 

engineering tasks in this simulation each with an 

associated task set in manufacturing. 

The engineering tasks are organized into a Work 

Breakdown Structure of 5 elements, and the 

corresponding manufacturing tasks into three 

cost elements. For example, there are 250 

Structure design tasks. One hundred twenty-five 

of those designs are built in fabrication. 

With modeling in time, design problems 

encounter in minor assembly and major assembly 

can be fed back to engineering where the design 

is changed and then sent on to the manufacturing 

elements. This creates a sustaining engineering 

effort as well as an increase in fabrication and 

minor assembly hours. In table 3 shows there is 

a .0006 probability that a trial in a major 

assembly or minor assembly task will cause a 

design/fabrication task to be redone, with an 

additional .0006 that a major assembly trial will 

cause a design/minor assembly task to be redone. 

This generates design changes proportional to 

the hours worked in manufacturing. After the 

design change is completed it is sent on to its 

corresponding manufacturing element where its 

p is set to p(0).  

Table 2 

Tasks   

WBS/CE Structure Subsystems Avionics Systems Eng Test Total 

Fabrication 125 23 15 8 10 181 

Minor Assy 100 69 45 15 20 249 

Major Assy 25 138 90 52 70 375 

Total 250 230 150 75 100 805 

Table 3 

  Feedback Parameters                 

WBS Structure 
Subsystem

s 
Avionics Systems Eng Test Cost       

Structure 0.05 0.05 0.05 0.05 0.05 Element 
Fabricatio

n 
Minor Assy Major Assy 

Subsystem
s 

0.05 0.05 0.10 0.15 0.20 
Fabricatio

n 
0 0.0006 0.0006 

Avionics 0.05 0.05 0.10 0.15 0.20 Minor Assy   0 0.0006 
Systems 
Eng 

0.05 0.05 0.10 0.15 0.20 Major Assy     0 

Test 0.05 0.05 0.10 0.15 0.20         
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Also, within engineering, .05 of Subsystems 

completed tasks produce a design change in 

Structure, while .15 of Systems Engineering 

produce design changes in Avionics, and .20 of 

Test produce design changes in Test.  These 

changes are treated like repetitive units in 

manufacturing, that is, the probability, p, is 

iterated from its last successful completion.  

To complete the description of the airplane 

program table 4 shows the engineering and 

manufacturing initiating parameters. Figure 11 

has the aircraft production schedule. Its blue line 

shows the beginning of the fabrication effort for 

each unit. The time domain model is programmed 

to expend labor hours as needed to complete 

each unit on time. Thus, the planned complete 

and complete lines are nearly coincidental.  This 

is of course unrealistic; but was done to keep this 

paper focused on the learning curve.  

Figures 12, 13, and 14 show four simulations, 

black, red, yellow, and blue, each with an 

increased level of feedback.  

The black lines show the engineering and 

manufacturing headcounts and learning curve 

when there is no feedback.  The engineering 

effort is completed on 6/1/26 on the planned 

schedule. The learning curve slope is 71.6%. 

The red lines have feedback initiated only in 

manufacturing. This feedback produces design 

changes in engineering, generating sustaining 

engineering. These design changes are fed back 

Table 4 

Program Parameters                   

WBS Structure 
Subsystem

s 
Avionics 

Systems 
Eng 

Test 
Cost 

Element 
Fabricatio

n 
Minor Assy Major Assy 

Start 10/01/23 10/01/23 10/01/23 06/01/23 12/01/24 
#1 flow 
months 

21 21 21 

Planned 
complete 

12/01/25 12/01/25 12/01/25 06/01/25 09/01/26 
Flow red. 

slope 
0.94 0.94 0.94 

p(0) 0.003 0.003 0.003 0.003 0.003 p(0) 0.003 0.003 0.003 

dl 0.00001 0.00001 0.00001 0.00001 0.00001 dl 0.00001 0.00001 0.00001 

Hours/
task 

3 3 3 3 3 Hours/task 0.50 0.75 1.25 

Tasks 250 230 150 75 100 Tasks 250 272 283 
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into manufacturing resetting its task’s current  

p(t) values to their p(0). The increased resources are 

seen in the red line of the manufacturing headcount 

chart and in the flattening of the learning curve. 

The yellow lines show the effect of including the internal 

engineering feedback. 

In a project that stretches the engineering capability, due 

to a new technology, inexperience, or other causes, the 

design process may have errors. These errors can be 

expected to show up in the later stages of the first 

aircraft’s production and during the flight test period.   

The blue lines illustrate the effect of those errors being 

doubled between 4 months prior to the first aircraft’s 

completion and the completion of the engineering test 

effort, depicted as the box in figure 11. The simulated 

learning curve has the hump often seen in these 

circumstances. It is followed by a steep decline and then 

a transition to a more typical curve. 

 

Uncertainty 

When this stochastic process is implemented as a Monte 

Carlo system the predictions are in the form of 

Probability Density Functions, PDFs. In figures 12 - 14 

there are two fundamental causes of variation, the 

uncertainty of the trial outcomes and the feedback 

processes.   
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The histograms in figures 15 – 18 are from 1000 

iterations of the time domain model. Figures 15 

and 17 show the PDFs of unit 1 and 300 hours 

with only the trial outcome uncertainty, p(t) > x 

~U(0,1). Figures 16 and 18 show the PDFs 

including the feedback processes; while holding 

all other input parameters constant. Feedback 

from design changes increases the variation as 

the project progresses. Figure 18 shows about 

twice the variation and hours as the 

corresponding simulation without design 

changes, figure 17.   

All the distributions are close to lognormal. 

Fixing the Monte Carlo model’s random number 

generator to a single sequence for the first 6 

years of the simulation produces learning curves 

with its uncertainty beginning at unit 96, shown 

in Fig 19, with expanded scales in figure 20. 

It is notable that the uncertainty does not grow as 

one might expect from a typical random walk 

model. When the iterations of p(t), and thus labor 

hours, to a successful completion are greater than 

1/ p(t), p(t) becomes larger than expected.  For 
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the next unit’s iterations that larger probability 

reduces the expected number of iterations. Thus, 

a slight autoregressive dynamic is produced.           

Information 

The model links work to information.  Figure 22 

shows the bits per successfully completed unit for 

the two learning curves in figure 21. Information 

is calculated as: 

 where t is the first trial of unit and n is the 

number of trials to the successful completion of 

unit. Both curves have 1000 tasks and a trial time 

of 1 hour.  The black curve, with p(0) = .01 and dl 

= .00017, has a slope of  .717.  The blue curve, 

with a p(0) = .15 and dl = .003 was chosen to 

illustrate a curve with a hump that flattens as p

(large) approaches one.   

From an information perspective, work can be 

thought of as the effort required to resolve an 

uncertainty. The relationship between a 

product’s complexity, that is uncertainty to be 

resolved, and the work to resolve it is a subject 

for information theory. Connecting work with 

information allows the mathematics of 

information theory to be brought to bear on the 

nature of work. 

 

Summary  

The iteration of p(t+1) = p(t) + (1 - p(t)) dl 

describes much of the dynamics of the learning 

curve and work in general.  With N, the number of 

tasks, and p, a measure of difficulty, both the size 

and complexity of a project can be modeled. 

While these parameters can be derived from 

actual learning curves. By embedding the 

iteration of p(t) into a feedback system the 

impact of the broader work system can also be 

evaluated.  

The model p(t+1) = p(t) + (1 - p(t)) dl states 

that, given a measure of knowledge p(t), with a 

trial that knowledge will likely be increased in 

proportion to the remaining unknown.  While the 

constant of proportionality is on the order of p

(0) squared.  This process creates the learning 

curve.   

It also explains: 

Why initial development curves are flat. In some 

circumstances, the interaction of engineering and 

manufacturing can create a loss of control in the 

factory.  Prediction is necessary for effective 

control.  

Why learning curves eventually flatten. 

Knowledge of the process is fully gained. 

How processes with a range of process 

knowledge can have a flatter slope. The sum of a 
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range of slopes creates a learning curve with a 

flatter slope. 

The impact of design changes. The probability of 

success returns to p(0). 

Why assembly slopes are generally steeper than 

fabrication.  Feedback introduces a stream of 

design change into the earlier stages of 

manufacturing. 

Estimates ultimately are intended to support a 

decision. Some decision criteria are a linear 

consequence of the cost estimate. For those, the 

expected value provides sufficient information. 

Others are options, a split of the estimates PDF, 

and the estimate’s PDF is required. This model 

fulfills that requirement.  

Harry Larsen attended the University of Washington, graduating with a mathematics degree in 1966.  After 

graduation, he was hired by the Boeing Company as a production estimator.  He began building planning 

systems for Boeing operations on the company’s new supercomputer.  Many systems and twenty years later 

he became the Business Planning Manager of Boeing Marine Systems, a division of the Boeing Company, 

reporting to the division’s general manager.  He retired in 2002.   
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A Continuance of Marginal Cost Methodology  

in Project Change Management  

Daryl Ono, PhD 

 

Abstract: Change management is an inevitable part in the engineering management of engineering projects 

so effective change management is critical to determine if the proposed changes add economic value to the 

project.  The marginal cost methodology is proposed to effectively manage change and to parse the changes 

only to those which add economic value.  The marginal cost methodology is valuable in engineering decision 

making and also facilitates statistical analysis in trade studies for applications to future projects. 

Keywords: project change management, engineering economics, life cycle costing, marginal costs  

Introduction 

Engineering changes (“changes”) to project scope 

are inevitable: the more complex a project is and 

the longer the project lasts, the more changes can 

be expected. Changes are defined as adjustments 

to the original plan and could include additions, 

deletions, substitutions, repurposing, amongst 

others. Engineering changes can easily number in 

the hundreds or the thousands for large projects 

so effective change management is crucial for the 

project to stay on schedule and to minimize cost 

overruns.  

This paper will focus on the engineering life cycle 

cost of initial construction only. It will not cover 

the project once the equipment, building or 

facility is put into operations and the associated 

costs from that point on. Again 

the focus is only on the 

engineering project costs 

before the project begins 

normal operations. 

Often changes are handled on 

an ad hoc basis and change 

management tracking systems 

aren’t as robust as necessary to 

handle complex engineering 

changes. However, a more 

important question needs to be 

addressed – do the proposed 

engineering changes add value 

to the project? Large changes will warrant further 

engineering economic analysis but smaller 

changes should be tracked and evaluated also 

especially if there are numerous smaller changes 

implemented. It is imperative then to carefully 

track all relevant changes to determine if 

additional engineering economic analysis should 

be performed. 

Outstanding project management software such 

as “PROJECTMANAGER”, “Microsoft Project”, and 

“Easy Projects” can skillfully manage project 

changes and provide a repository for all projects, 

both past and present. Engineering project cost 

changes can be stored and easily accessed, so this 

advantage enables effective use of the 

engineering project cost changes for better 

engineering decision making.  

Figure 1.Project Summary 
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Life Cycle Cost Analysis 

Life cycle cost analysis studies all costs 

throughout the lifetime of a project, from 

inception (including research & development) 

through the completion of the project. The life 

cycle cost analysis is parsed into three arbitrary 

sections: (1) project inception, (2) project 

operations and (3) project completion. This 

analysis is done before the project is started and 

is part of economic feasibility study of the project. 

The primary difficulty with life cycle cost analysis 

is the uncertainty of future costs and the 

secondary difficulty is future technology. Life 

cycle cost analysis is time intensive and it’s 

helpful to have experience with these studies 

(which obviously takes time acquire). The longer 

the life of the project, the more uncertain the 

costs are. Finally, technological advances are 

difficult to anticipate and forecast but could be 

critical to the success of a project. Project risk will 

greatly increase if the project involves evolving or 

cutting-edge technology at any phase. 

The effectiveness of life cycle cost analysis is 

based on the accuracy of the cost inputs into the 

analysis. Generally acquisition costs are the most 

accurate forecast but these are only the “tip of the 

iceberg” and many other costs must be carefully 

analyzed and incorporated into the life cycle cost 

analysis. Each project has its own particular costs 

that are unique to the project and it is dangerous 

to omit any important cost. 

Trade studies of previous projects can mitigate 

the error of omitting critical costs. Trade studies 

are a lot of work and it’s difficult to see 

immediate benefits, but the project manager with 

foresight understands that trade studies are a 

best practice. Trade studies can be a guide to 

identify all relevant costs based upon previous 

projects. 

Figure 2.Overview of Life Cycle Costing 

Figure 3. Difficulties of Life Cycle Costing Figure 4. All Relevant Project Costs 
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Managing Project Change 

Once the project has commenced, cash outflows 

associated with the costs are now expended. As 

the project progresses these actual costs are 

accumulated and are compared to committed or 

budgeted project costs as a cost control 

mechanism. 

The project manager and project team gain 

experience and knowledge as the project 

progresses so they may propose or institute 

changes that improve the probability of 

successful project completion. There could be 

many proposed improvements and the key is to 

identify those changes that add economic value to 

the project. Some proposed improvements could 

involve increased reliability, cost cutting, process 

efficiency, etc. Successful project change 

management includes the proficient 

administration of these proposed changes. The 

analysis of the proposed changes could be time-

consuming and intense but the larger the 

proposed changes and its corresponding benefits, 

the greater the need for this analysis. Finally, as 

the project progresses, changes will be more 

difficult to implement, even if the changes are 

warranted.  

The graph above again compares committed 

costs to actual costs but adds the ease to 

implement project changes (yellow line). It is 

important to note the inverse relationship 

between costs incurred versus ease of change – 

over time, as project costs accumulate, the ability 

to implement changes becomes more difficult. 

Project changes are relatively easy to execute 

early in the project’s life but becomes more 

difficult to apply as the project progresses. 

Finally, the larger the cost of the proposed 

changes, the greater the need for engineering 

economics to determine the economic benefits of 

proposed change to the project.  

 

Overview of Methodology 

The marginal cost methodology from 

microeconomic theory can be applied to the 

engineering economics of engineering project 

cost changes. The benefit of the marginal cost 

methodology is that it can track engineering 

project cost changes and it can determine the 

incremental benefits of these changes. 

Is the engineering project cost change a change to 

an existing cost or is it a new additional cost 

altogether? Is the engineering project cost change 

a substantial betterment? Does the engineering 

project cost change alter the project scope? These 

 

Figure 6. Ease of Implementing Project Changes  

Figure 5.Comparison of Actual Costs to Committed Costs  

Figure 7. Schematic of Marginal Cost Methodology 
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 are the types of issues that the marginal cost 

methodology can address in regards to 

engineering project cost changes. In almost every 

case the engineering project cost change needs to 

add economic value for the engineering project 

cost change to be warranted. 

Any engineering project cost change that can be 

eliminated is beneficial especially if this 

elimination in no way hurts the project scope. It 

should be investigated why this cost was included 

in the original analysis but if an engineering 

project cost can be legitimately eliminated it can 

only be an advantage to the project. 

Time must be a major consideration when 

estimating the costs of a project. Some US Navy 

super aircraft carriers take four or more years to 

construct. Here in the Los Angeles area freeway 

and highway widening projects progress slowly 

for around a decade with no completion in sight 

for the foreseeable future. An article in the 

Business Insider describes how a project to update 

the US Air Force C-5M Super Galaxy cargo planes 

took 17 years to complete. 

Because of the long timeframes involved time 

becomes critical in the time value of money 

component of the engineering economic analysis. 

Engineering economic analysis must employ the 

present value methodology to accurately 

measure the economic value added of an 

engineering project cost change. Not only is the 

dollar amount of the engineering project cost 

change important but the timing of the 

engineering project cost change is also crucial. 

For the purposes of this paper engineering 

project cost changes will be categorized into 

three general groupings but there are no 

conventions that say that these must be the 

categories. The categories are created based on 

their timing during their construction cycle and 

include (1) investment costs, (2) operating costs 

and (3) terminal costs. Investment costs include 

engineering design and planning, procurement 

costs of materials and equipment, licensing and 

permitting costs, feasibility studies, etc. Operating 

costs could include construction labor, ongoing 

procurement costs, supervision, engineering and 

construction overhead, etc. Terminal costs 

include disposal costs, inspections, testing, cost of 

removal, reliability and maintainability estimates, 

trade studies and documentation, etc. This list is 

by no means comprehensive and there are many 

relevant costs and expenses that have been 

unintentionally omitted. 

Committed costs are those cash flows budgeted 

to the project. Both Figure 5 and Figure 6 show 

the general pattern of committed costs. 

Committed costs are low during the project 

planning stage but hit the maximum once there is 

the decision to undertake the project. Variance 

analysis should be conducted between committed 

costs versus actual costs throughout the project. 

Figure 8. Present Value of Project Costs 

Figure 9. Time as a Critical Component in Engineering 

Economics  
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Cost control measures should be employed 

during the project. Ideally actual costs of the 

project will be at or below committed costs at 

project completion – the project is over budget if 

actual costs are greater than committed costs. 

 

Methodology Explained 

The general cost function is: 

engineering project cost = ꝭ(a1, a2, a3) 

where a1 is the investment costs, a2 is the 

operating costs and a3 is terminal costs. 

Engineering project cost is abbreviated as EPC. 

The marginal costs are the following differential 

equations: 

The objective is to minimize the engineering 

project cost so it is imperative to understand the 

underlying structure of the individual costs that 

constitute the total engineering project cost. 

The equation for the engineering project costs is: 

where i is the hurdle rate used in engineering 

economics. 

The original engineering economics of the 

engineering project costs contains valuable 

information imperative for the current project 

but also to future engineering economics and 

trade studies. It would be wasteful to discard this 

information especially as this information can 

add insight to the final analysis and future trade 

studies.  

The equation for the marginal cost of engineering 

project cost changes is: 

where i is the hurdle rate used in engineering 

economics and engineering project cost changes 

are segregated into investment costs, operating 

costs and terminal costs.  

If the engineering project cost change is 

warranted, feasible and adds economic value, the 

marginal cost of the engineering project cost 

Figure 10. Summary of Life Cycle Costs 
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changes should be added to the present value of 

original engineering project costs: 

The benefit of this approach is that it is 

straightforward to track various engineering 

project cost changes to determine economic value 

added. Instead of updating the present value of 

original engineering project costs, keep this intact 

and add the marginal cost of the engineering 

project cost change to keep the engineering 

economics updated and integral in engineering 

decision making. 

This marginal cost methodology will help to 

discern the trend of engineering project cost 

changes, the timing of engineering project cost 

changes and determine the incremental economic 

value added of the engineering project cost 

changes.  

 

Financial Example 

The present value of original engineering project 

costs was calculated to be $75 million for 

construction that will last for 3 years. The hurdle 

rate is 8%. The first engineering project cost 

change is an increase in Year 1 material costs of 

$8 million. Labor rate savings are estimated to be 

$4 million in Year 2 and $2 million in Year 3. 

The present value of final engineering project 

costs is updated to $77.4 million. 

The marginal cost of engineering project cost 

changes is calculated as follows: 

 

 

The marginal cost of engineering project cost 

changes is $2.4 million. 

Again, the present value of original engineering 

project costs remains intact and the incremental 

engineering project cost changes are added to 

this amount. The marginal cost methodology can 

track the level and timing of engineering project 

cost changes to determine the economic value 

added of these changes. 

 

Statistical Analysis and Trade Studies 

Statistical analysis of engineering project cost 

changes should be performed to support trade 

studies. A particular engineering project cost 

change could make a large difference in a single 

project but in the long-run which engineering 

project cost changes are statistically significant? 

It would aid in engineering decision making to 

understand which of the individual engineering 

project cost changes drive the marginal cost of 

engineering project cost changes in the long-run.  

Descriptive statistics are imperative but 

inferential statistics, particularly regression 

analysis, should be the statistical tool of choice. 

The general equation for the regression equation 

in matrix notation is: 

 β = (X’X)-1X’Y 

where β is the regression coefficients, Y is the 

dependent variable and X are the independent 

variables.  

In the marginal cost methodology the present 

value of final engineering costs would be the 

dependent variable. In this paper the three main 

engineering project cost changes are categorized 

into (1) investment costs, (2) operating costs and 

(3) terminal costs so these would be the 

independent variables. If the project management 
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system carefully tracked and correctly 

categorized the engineering project cost changes 

then the setup of a multiple regression analysis 

for trade studies should be straightforward. If the 

independent variables are independent of each 

other then the multiple regression analysis 

should provide useful results.  

The multiple regression equation where the 

present value of final engineering project costs is 

the dependent variable is: 

where α is the intercept and ε is the error term. 

Appropriate regression tests should include 

ANOVA, t-statistics, correlation analysis and 

goodness-of-fit (r2) diagnostics. 

Regression analysis can help to determine which 

of the independent variables (investment costs, 

operating costs, terminal costs) are statistically 

significant to plan for regarding engineering 

project cost changes for engineering decision 

making. 

Was it a change in the level of proposed output of 

a project once in operation that warranted such 

as change? If that is true, regression analysis can 

be implemented to parse cost changes into their 

fixed and variable component to ultimately 

perform cost-volume-profit analysis. Linear 

regression is particularly useful to supplement 

cost-volume-profit analysis and the linear 

regression equation is: 

where α is the intercept and ε is the error term. 

Appropriate regression tests should include 

ANOVA, t-statistics, correlation analysis and 

goodness-of-fit (r2) diagnostics. 

Here α can be interpreted as total fixed costs and 

β as the variable cost per unit. If these two 

coefficients are statistically valid then cost-

volume-profit analysis can be implemented to 

provide valuable insight into the effects of 

changes in the level of proposed output. This 

could explain why an engineering project cost 

change was necessary. 

 

 

 

 

Case Study -  Statistical Analysis  

An aerospace subcontractor in the Los Angeles 

area (which requested anonymity) implements 

the marginal cost methodology in project change 

management and has kept accurate records of the 

present value of original engineering project 

costs, the present value of final engineering 

project costs, marginal cost of engineering project 

changes and engineering project cost changes, 

which was further segregated into investment 

costs, operating costs and terminal costs. 

Regression analysis was performed where the 

present value of final engineering project costs is 

the dependent variable and the independent 

variables are investment costs, operating costs 

and terminal costs. The table used in the 

regression analysis follows (in $thousands): 

PV Final 
Engr 

Investment Operating Terminal 

 $        3,471   $            260   $            442   $              23  

            2,979                 225                 459                   21  

            4,195                 275                 478                   20  

            4,701                 235                 438                   19  

            3,471                 240                 444                   22  

            3,960                 195                 379                   21  

            4,701                 235                 379                   20  

            4,701                 265                 379                   19  

            3,311                 230                 386                   24  

            4,664                 235                 539                   17  

            4,605                 302                 483                   19  
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Multiple regression analysis was performed and 

the regression equation is: 

Full results are shown in the appendix. 

Regression diagnostics for this dataset are 

generally good but the investment costs are 

statistically insignificant at the .05 level of 

significance. A larger sample size could change 

this conclusion but as of now investment costs do 

not add explanatory value to the present value of 

final engineering project costs. Data for 

investment costs should not be discarded and 

should be updated along with future additions to 

operating costs and terminal costs as it could be 

statistically significant with a larger sample size. 

The statistical analysis yields a key insight: the 

negative coefficients on some of the project 

changes, specifically changes to operating costs 

and terminal costs. 

The subcontractor only instituted changes after 

careful analysis that included the economic 

benefits of the changes and the timing of the 

changes. The negative coefficient implies that 

changes decreased the overall cost of the project. 

This conclusion is statistically significant. The 

subcontractor indicated that the project scope 

remained the same for all of the projects in the 

statistical analysis. The project remained the 

same but project costs decreased due to changes 

which were carefully implemented. Basically, the 

subcontractor made the right changes at the right 

time. The changes had the direct economic 

benefit of decreasing total project costs because 

of the utilization of effective project change 

management.  

 

In the case of changes to operating costs, an 

increase of $1 decreased the total project cost by 

approximately $6. This is a favorable benefit/cost 

ratio and shows the advantages of efficient 

project change management. The subcontractor 

indicated that changes were handled on an ad 

hoc, case-by-case basis because each project was 

unique, but the subcontractor followed the 

principles of project change management for each 

and every change. Unfortunately a “one size fits 

all” is inapplicable for aerospace subcontracting, 

but a disciplined approach to project change 

management can generate substantial benefits 

for a project. The type of project really doesn’t 

matter. 

Other statistical tests can be performed beyond 

the regression analysis presented in this case 

study. 

 

Limitations and Constraints 

Obviously, a larger sample size with favorable 

results would add greater credence to the 

statistical analysis just presented. The constraint 

to consider is that the data used in the statistical 

analysis is not public data and the anonymous 

subcontractor was kind enough to allow the 

authors to use its data. Additional studies in this 

area would therefore depend on other 

subcontractors to provide data for further 

analysis. In the hypercompetitive environment of 

aerospace subcontractors in the Los Angles area, 

competitors are unlikely to pool data for analysis 

and cooperate with each other. The aerospace 

subcontractors generally are unwilling to work 

with competitors, which make data acquisition 

difficult at best.  

The subcontractor the authors worked with 

follows the concepts of the Project Management 
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Institute (PMI) and its project cost accumulation 

was configured to facilitate statistical analysis. 

Companies are not required to configure their 

cost data in this manner. If the authors received 

data from other subcontractors whose computer 

architecture does not facilitate statistical analysis, 

the authors would be required to rearrange the 

cost data – this could introduce translation 

errors. Project costs must be configured by the 

subcontractor’s computer architecture, not the 

authors. The authors could reconfigure the data 

but that could be an error-prone process. 

The authors chose only three project cost 

categories: (1) initial investment (including 

R&D), (2) operations and (3) termination. A finer 

breakdown could have been used that would 

have introduced additional cost categories, 

although total project cost would remain 

unchanged. A finer breakdown of cost categories 

could have been implemented but again the 

authors studied the cost categories currently in 

use by the subcontractor. The subcontractor has 

over a dozen years of experience and these three 

cost categories were more than adequate for the 

subcontractor. Again the authors could have 

added additional cost categories in an attempt to 

derive additional intuition of project costs and 

this is something that the authors must consider. 

The graphics on the right are suggestions for the 

further dichotomy of costs. 

 

Conclusion 

The marginal cost methodology in project change 

management is a technique to successfully 

manage changes to project scope in the 

construction of projects. This is especially 

important for very expensive projects and 

projects which will take an extended period to 

complete. It facilitates both engineering 

economics and statistical analysis. The 

conclusions in the marginal cost methodology 

provide valuable insight to both current and 

future large-scale engineering projects but is 

equally beneficial to small or medium-sized 

projects that must contend with numerous 

changes. 

Project changes that are subjected to feasibility 

reviews, that are analyzed by employing 

disciplined quantitative techniques and that are 

implemented on a timely basis add economic 

value to a project.  
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Appendix: Regression Results 
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