

Let's Go Agile! Data-Driven Agile Software Cost and Schedule Models

Dr Wilson Rosa Sara Jardine Chad Lucas

2022 ICEAA Workshop May 2022

DReasonete duat three 2022 the FapeAr Proceesianal Danedopment & Training a Moekshape by view bige a and increase and pit 2022 ty

Agenda

Introduction

- Problem Statement
- Proposed Solution
- Breakthroughs
- History Behind Agile at DHS

Agile Project Dataset

- Data Collection
- Data Sources
- Variables
- Data Normalization
- Demographics
- Descriptive Statistics

Effort and Schedule Models

- Benchmarks
- Effort Estimation
 Models
- Schedule Estimation Models
- Model Rankings

2

Results

- Model Usefulness
- Model Limitations
- Main Takeaways

What is the Problem?

3

What is the Solution?

Offer a set of data-driven software development effort and schedule estimating models for DHS agile projects

 Acquisition cost community can use these models to:

- Estimate effort and schedule to support DHS and DoD decision reviews of agile programs
- Crosscheck vendor proposals and evaluate contractor performance

Study Breakthroughs

5

- Delivers first-ever agile software cost dataset (n=18) for DHS cost community
- Presents a new process for collecting, normalizing, and analyzing agile project cost and schedule data for Firm Fixed Price and Time & Materials contracts
- Introduces *Functional Story* as a new sizing measure for agile cost estimation
- Offers data-driven agile software project effort and schedule benchmarks and regression models for six different sizing measures:

History Behind Agile at DHS

Agile uses an iterative approach to deliver solutions incrementally through close collaboration and frequent reassessment

2021 DHS Agile Guidebook DHS CAD launched the cross-agency Joint Agile 2019 Software Innovation (JASI) Cost IPT DHS Agile Methodology for Software Development 2018 and Delivery for IT, Policy Instruction 102-01-004 DHS USM directed DHS CAD to find ways to 2017 improve agile software development programs [1] 2016 DHS Agile Development and Delivery for IT Instruction Manual 102-01-004-01 OMB issued a 25-point plan to reform IT projects and called on federal agencies 2010 to implement shorter delivery timeframe

6

Agile Project Dataset

Data Collection

- 100% data collection efforts occurred during the COVID-19 pandemic
 - March 2020 to January 2022
- Data provided by the Program Managers
- Dataset included 18 agile projects
 - DHS (15) and DoD (3)
 - Across 11 different companies
 - 12 completed during COVID-19 era

Data Sources

- All data in this study were provided by the Agile Program Management Offices
- 100% obtained from Official/Authoritative Documents:

9

Size

- Requirements Traceability Matrix
- Functional Requirements
 Document
- Product Backlog (in JIRA)

Context
 Acquisition Documents
 Agile Core Metrics

Variable Selection (Common Sense)

10

Dependent Independent

Effort

 Actual labor hours to complete all contractor development activities · Reported at the release level

Functional Story

 Subset of functional requirements describing what the software does in terms of tasks and services

 Feature or unit of business value that can be estimated and tested

· Describes work that must be done to deliver a feature for a product

Unadj. Function Point

 Function point count without the assignment of complexity to any of the objects counted

Schedule

- Actual development time (months) to complete all software development activities
- Reported at the release level

Issue

- Unit of work traced through a workflow, from creation to completion
- Total issues are the sum of stories, bugs. tasks, epics, and others

Story Point

• Unit of measure to express the overall size of a story, task, or other piece of work in the backlog

Simple Function Point

 Method for sizing software requiring the identification of elementary processes and logic files to approximate a function point count

Data Normalization: How did we measure effort?

- Figure 5. Effort hours in this study captures total labor incurred by the contractor's agile development teams
- Total labor includes 11 cost elements aligned to the DHS IT Work Breakdown Structure (WBS)

ID	DHS IT WBS Element
1.i.1	Program Management
1.i.2	Systems Engineering
1.i.4.2	Software Development
1.i.4.3	Data Development & Transition
1.i.4.5	Training Development
1.i.4.6.1	Development Test & Evaluation
1.i.4.6.1	Cybersecurity Test & Evaluation
1.i.4.7	Logistics Support Development
1.i.7	System Level Integration & Test
1.i.8.6.1	Help Desk/Service Desk (Tier 3)
1.i.8.6.4	Software Maintenance

Why use total labor?

Reporting labor at the total level (as opposed to software development alone), is recommended since most DHS agile development contracts are FFP or T&M, and generally do not breakout effort by major cost elements as seen in traditional cost-plus contracts

Notes:

*Performed by a Certified Function Point Specialist

**Functional Stories (from product backlog) = Functional Requirements (from RTM or FRD)

Dataset Demographics

Sample Size:18 Projects

Automated Information System

Majority (13) used cloud-hosted Amazon Web Services

Majority (15) used FFP or T&M Contracts

Presented at the 2022 ICEAA Professional Development & Training Workshop: www.iceaaonline.com/pit2022

14

Dataset Demographics

Number of Datapoints by Agile Process and Framework

Framework • Kanban • SAFe • Scrum

Number of Datapoints by Agile Process and Team Approach

Team Approach • DevOnly • DevOps • SecDevOps

Descriptive Statistics

Descriptive Statistics

Size Measure	Min	Median	Max	StdDev	
Functional Stories	16	95	1,881	441	
lssues	75	842	5,744	1,547	
Stories	27	424	4,964	1,274	
Story Points	602	2,708	24,492	6,109	
UFP	86	659	9,628	2,368	
SiFP	94	712	10,650	2,631	

Relevant Range

- > 20-5,000 stories
- 10-2,000 functional requirements
- 80-11,000 function points
- ➢ 9-200 Peak Staff FTEs

When selecting a regression model, consider the relevant range of each independent variable

Effort and Schedule Models

Effort Benchmarks

Category	Benchmark	25 th Quartile	Median	75 th Quartile	StdDev	CV
	Hours/Functional Story	410	494	653	261	47%
Effort	Hours/UFP	61	81	107	40	46%
	Hours/SiFP	57	71	100	39	47%

Practical Application:

For example, in practice, analysts can develop an effort estimate by taking the estimated size (e.g., SiFP = 200) multiplied by the appropriate effort benchmark (median value from lookup table above):

Effort = *Size* x(Effort Benchmark) = 200 x (71) = 14,200 hours

Schedule Benchmarks

Category	Benchmark	25 th Quartile	Median	75 th Quartile	StdDev	CV
	Functional Story/FTE/ Month	0.19	0.28	0.32	0.14	47%
Schedule	UFP / FTE / Month	1.2	1.8	2.1	0.9	50%
	SiFP / FTE / Month	1.3	2.1	2.3	1.1	52%

Practical Application:

For example, an analyst can develop a schedule estimate by taking the estimated size (e.g., SiFP = 200), dividing by the appropriate schedule benchmark (median value from lookup table above), and by the estimated peak staff (e.g., FTE = 10)

Schedule = Size x (Schedule Benchmark)⁻¹x (Peak FTE)⁻¹ = 200 x (2.1)⁻¹x (10)⁻¹= 10 months

Effort Estimation Models

Model	CER	Ν	SE	R ²	${\sf R}^2_{adj}$	R^2_{pred}	MAD			
	$E = 935.5 x REQ^{0.882}$	15	0.39	89.6%	88.8%	85.9%	31.3%			
1	Effort (E) =	 Total final development hours 								
	REQ =	Functional stories from backlog, RTM, or FRD								

Model	CER	Ν	SE	R ²	R^2_{adj}	R ² _{pred}	MAD			
	$E = 1365 x STORY^{0.6228}$	15	0.66	70.2%	67.9%	59.0%	54.1%			
2	Effort (E) =	Total final development hours								
	STORY =	Total stories obtained from JIRA backlog								

Effort Estimation Models

Model	CER	Ν	SE	R ²	R^2_{adj}	R ² _{pred}	MAD		
	$E = 604.3 x ISSUES^{0.6879}$	15	0.64	71.5%	69.3%	59.4%	51.6%		
3	Effort (E) =	Effort (E) = Total final development hours							
	ISSUES =	Sum of stories, bugs, tasks, epics, or any other fixe							

Model	CER	Ν	SE	R ²	R^2_{adj}	R ² _{pred}	MAD		
	$E = 206.5xSTY_PTS^{0.6842}$	14	0.39	84.4%	83.1%	78.2%	32.7%		
4	Effort (E) =	 Total final development hours 							
	STY_PTS =	Story points obtained from JIRA backlog							

Effort Estimation Models

Model	CER	Ν	SE	R ²	R^2_{adj}	R ² _{pred}	MAD		
	$E = 189.5 x UFP^{0.8747}$	15	0.38	90.0%	89.3%	85.6%	31.6%		
5	Effort (E) =	 Total final development hours 							
	UFP =	Total unadjusted function points							

1.50

Model	CER	Ν	SE	R ²	R^2_{adj}	R^2_{pred}	MAD	2.00			,	
	$\mathbf{E} = 261.1x\mathbf{SiFP}^{0.7708}x1.615^{D1}$	15	0.35	92.0%	90.7%	86.5%	25.9%	1.00			/	
	Effort (E) =	Total	final dev	velopment		ល _{-0.50}				•		
6	SiFP=	Simp	le Functi	ion Point	-1.00 -1.50							
	D1=	Dum	Dummy variable (scope), where full development =1 and enhancement =0									
		and e								0.00	0.50 sidual in T	1.00

Schedule Estimation Models

Model	SER	Ν	SE	R ²	R^2_{adj}	R ² _{pred}	MAD	2.00
	$S = 2.685 x \text{REQ}^{0.2135} x 2.718^{D1}$	15	0.26	88.4%	86.5%	81.8%	18.8%	1.00
	Schedule (S)=	Tota	l final dev	velopment n	0.00 -0.50			
1	REQ=	Fund	ctional sto	ories from ba	acklog, RTN	M, or FRD		-1.00
	D1=	Dum and e	my varia enhancei	ble (scope), ment =0	where full	developme	ent =1	-2.00 -0.60 -0.40 -0.20 0.00 0.20 Schedule (Months) Residual in
Model	SER	Ν	SE	R ²	R^2_{adj}	R ² _{pred}	MAD	2.00
	$S = 1.938 x UFP^{0.2025} x 2.739^{D1}$	15	0.27	88.1%	86.2%	80.8%	18.6%	
	Schedule (S)=	Tota	l final dev	/elopment n	nonths			N -0.50 -1.00
2	UFP=	Tota	l unadjus	ted function	points			-1.50 -2.00
	D1=	Dum and e	my varia enhancei	ble (scope), ment =0	ent =1	-2.50 -0.60 -0.40 -0.20 0.00 0.20 Schedule (Months) Residual in		
Model	SER	N	SE	R ²	R^2_{adj}	R ² _{pred}	MAD	2.00
	$S = 2.009x SiFP^{0.1923} x 2.826^{D1}$	15	0.27	88.0%	86.0%	80.4%	18.4%	
	Schedule (S)=	Tota	l final dev	/elopment n	nonths			N -0.50 -1.00
3	SiFP=	Simp	ole Funct	ion Point				-1.50 -2.00
	D1=	Dum	my varia	ble (scope),	where full	developme	ent =1	-2.50 -0.60 -0.40 -0.20 0.00 0.20
	Presented at the 2022 ICEA	Apple	Feshance	™9 ₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	ent & Trai	ning Worl	kshop: wv	w.iceaaonfine.com/pit2022 ^{ual in}

0.60

How do the Regression Models Rank?

24

Rank	Model Equation	R^2_{adj}	R ² _{pred}	MAD
	Effort M	odels		
1	$E = 261.1 x SiFP^{0.7708} x 1.615^{D1}$	90.7%	86.5%	25.9%
2	$E = 189.5 x UFP^{0.8747}$	89.3%	85.6%	31.6%
3	$E = 935.5 x REQ^{0.882}$	88.8%	85.9%	31.3%
4	$E = 206.5 x STY_PTS^{0.6842}$	83.1%	78.1%	32.7%
5	$E = 604.3 x ISSUES^{0.6879}$	69.3%	59.4%	51.6%
6	$E = 1365 x STORY^{0.6228}$	67.9%	59.0%	54.1%
	Schedule	Models		
1	$S = 2.685 \text{ x } \text{REQ}^{0.2135} x \ 2.718^{D1}$	86.5%	81.8%	18.8%
2	$S = 1.938 \times UFP^{0.2025} x \ 2.739^{D1}$	86.2%	80.8%	18.6%
3	$S = 2.009 \text{ x SiFP}^{0.1923} x \ 2.826^{D1}$	86.0%	80.4%	18.4%

Simple Function Point (SiFP), Unadjusted Function Points (UFP), and Functional Stories (REQ) are stronger predicters to both effort and schedule for agile projects

Results

When to Use the Models

26

When choosing the appropriate estimation model, analysts should consider: program's lifecycle maturity, and 2 which size measures are available at that time

IOC = Initial OperPrice and the 2022 ICEAA Professional Development & Training Workshop: www.iceaaonline.com/pit2022

Model Limitations

Internal Threats

 Dataset timeframe (2014-2021) raises potential issues as the earlier projects (2014, 2016, 2018) may have used agile processes tailored to fit the agency's need.

External Threats

Models proved to be effective for estimating agile in the DHS context. However, we cannot generalize beyond this group.
Agencies may not have access to Backlog, FRD or RTM for SiFP analysis

Constructive Threats

Small dataset does not allow for detecting effect with greater power (Overfitting)
Need a larger dataset to draw more confident statistical conclusions

Presented at the 2022 ICEAA Professional Development & Training Workshop: www.iceaaonline.com/pit2022

Main Takeaways

Wider range of **sizing measures (6)** to estimate future agile software programs and evaluate contractor proposals

SiFP and UFP proved to be the most accurate predictors of agile software development effort and schedule

Analysis reveals that "**Functional Story**" is an effective predictor of effort and schedule, and easy to obtain

Popular agile measures such as story points, stories, and issues *are not as effective predictors of effort and schedule*

SiFP and UFP can be calculated early in the program allowing estimation from contract proposal through IOC (when popular agile measures are difficult to obtain)

Acknowledgement

Name	Organization	Role
Katie Geier-Noreiga	DHS CAD	Sponsor
Tommy Reynolds	DHS CAD	Sponsor
Blaze Smallwood	Booz Allen	Contributor
Carol Dekkers	Galorath	Contributor
Ryan Kapsak	Galorath	Contributor
Jonathan Greene	Galorath	Contributor
Katharine Mann	DHS CAD	Contributor
Ryan Hoang	DHS CAD	Contributor
Jose Torres	DHS CAD	Reviewer
Dr. Christian Smart	Galorath	Reviewer
David DeWitt	Galorath	Reviewer
Duncan Thomas	Galorath	Reviewer

Presenter Information

Dr Wilson Rosa

Assistant Director, DHS Cost Analysis Division, OCFO wilson.rosa@hq.dhs.gov

Sara Jardine Senior Cost Analyst, DHS Cost Analysis Division, OCFO sara.jardine@associates.hq.dhs.gov sjardine@galorath.com

Chad Lucas Senior Cost Analyst, DHS Cost Analysis Division, OCFO chad.lucas@associates.hq.dhs.gov clucas@galorath.com

30