

Dynamic Software Effort
Estimation
How SWEET It Is!

Will Gellatly-wgellatly@technomics.net

Lindsey Jones-ljones@technomics.net

Alex Wekluk-awekluk@technomics.net

Dave Brown-dbrown@technomics.net

Peter Braxton-pbraxton@technomics.net

International Cost Estimating and Analysis Association (ICEAA)

2/24/2022

i

Abstract
Software estimation is a complex and diverse field that must accommodate technical

inputs that vary by life-cycle phase and estimating approach. In response to this

challenge, our team developed the Software Effort Estimating Tool (SWEET), an Excel-

based model designed for both flexibility and transparency. Practitioners are often faced

with both a dearth of software data and opaque “black-box” models with a plethora of

dubious inputs. Our approach circumvents these issues by building on the widely-

accepted International Software Benchmarking Standards Group (ISBSG) database and

providing the analyst direct insight into the effect of potential cost drivers. SWEET

dynamically builds an effort estimating relationship (EER), reflecting in real time the

analyst’s selection of data fields and source data. Our paper explores how we combined

statistical analysis with practical knowledge of software development and the acquisition

cycle to drive the development of this “clear-box” model. We balanced filtering out data

fields of limited utility with providing the analyst the ability to generate an essentially

limitless number of relationships.

Keywords: Software, Agile, Tools, CERs

ii

Table of Contents
Abstract.. i
Introduction .. 1
Technomics Research Competition .. 2
Problem Statement .. 3

Software Development Estimation .. 3
Limitations of Existing Estimating Tools .. 4
ISBSG as a Data Source .. 5

Analytical Approach ... 6
ISBSG Dataset ... 6
Productivity Factor Analysis .. 9
Function Point Growth Analysis ...14
Independent and Dependent Variable Identification...17
Effort Estimating Relationship (EER) Development ...19
Tailoring EERs ..20

Software Effort Estimation Tool (SWEET) ...21
Tool Overview ...21
Tool Inputs ..21
Tool Outputs ..28
Active Analysis ..29
Example Analyses ...30
Data Modeling Limitations ...35

Conclusion ..36
Next Steps ..36

Sizing Integration ...36
Organizational Calibration ...37
Analytical Improvements ...38
Tool Re-Hosting ..38

Appendix ...40
Acronym List..40

Bibliography ..41
Annotated Sources ..42

iii

Figure 1: Software Estimating Methods... 1

Figure 2: Software Cost Within the IT Industry .. 4

Figure 3: ISBSG Data Points by Year and Project Type ... 7

Figure 4: ISBSG Data Points by Function Point Sizing Methods (2009-2019) 7

Figure 5: Number of Adjusted Function Points in ISBSG Projects (2009-2019) 8

Figure 6: ISBSG Data Points by Development Methodologies Over Time 8

Figure 7: Distribution of Productivity (Overall) ... 10

Figure 8: Distribution of Productivity (Small Projects).. 11

Figure 9: Distribution of Productivity (Medium Projects) .. 12

Figure 10: Distribution of Productivity (Large Projects) ... 13

Figure 11: Distribution of Productivity (Extra-Large Projects) .. 14

Figure 12: SWEET Inputs Screen ... 22

Figure 13: SLOC Conversion in SWEET ... 27

Figure 14: Data Selection in SWEET .. 27

Figure 15: EER Results in SWEET ... 29

Figure 16: Example Inputs (Initial) ... 30

Figure 17: Example Outputs (Initial) .. 31

Figure 18: Example Inputs (Updated).. 32

Figure 19: Example Outputs (Updated) ... 32

Figure 20: Example Data Selection ... 34

Figure 21: Example Outputs (Final) .. 34

Table 1: Software/IT Historical Cost Growth ... 3

Table 2: ISBSG Data Points by Decade and Project Type .. 6

Table 3: Code Growth by Count Approach .. 15

Table 4: Code Growth by Development Methodology ... 16

Table 5: Code Growth by Development Type ... 16

Table 6: Code Growth by Language Type ... 16

iv

Table 7: Code Growth by Relative Size ... 16

Table 8: Significant Effort Drivers .. 19

Table 9: EER Comparison ... 20

1

Introduction
As practicing software cost analysts, the authors of this paper are constantly looking for

ways to improve estimating capability for projects that include a significant software

development activity. The Software Effort Estimation Tool (SWEET) was created to

address a specific need: what is the best way to build an estimate of software

development, based on a known functional size? We believe that the best methods are

highly defensible and transparent, in both the source data and underlying calculations.

As shown in the figure below, estimating method selection is influenced by when the

estimate is being generated, and is also dependent upon the data available for a

software development estimate.

Figure 1: Software Estimating Methods

In the above graphic, the most defensible estimates are produced later in the life cycle,

using an extrapolation from actuals method (Cost Estimating Body of Knowledge

(CEBoK), 2013). If analysts have an actual cost history available, then a method such

as the one described in Are We Agile Enough to Estimate Agile Software

2

Development Costs? is most appropriate. (Kosmakos & Brown, 2022) If an actual

cost history is not available and requirements are mature enough to estimate functional

size, then a parametric method and tool such as SWEET is an ideal choice. It should

be acknowledged, however, that an estimate of functional size is not always available,

especially for programs/projects early in the life cycle. In these situations, an alternative

method is preferred, such as the one described in Uncertainty of Expert Judgment in
Agile Software Sizing. (Braxton, 2022)

This paper presents the data and analysis used to develop SWEET. By using dynamic

CER generation, transparent data, and traceable calculations, we offer a highly

defensible solution for software cost estimating. It is best employed when the analyst

needs a parametric solution based on known functional size.

Technomics Research Competition
The development of SWEET was funded by the Technomics Research Competition

(TRC). TRC was created to encourage analyst growth and the advancement of

methods, tools, and processes in the wide range of fields that apply to day-to-day

project work. The competition allows employee-owners to explore topics of interest to

them with the goal of producing a practical work product that can improve the

organizations Technomics supports. In addition, the TRC provides the opportunity for

employee-owners to work with colleagues from outside of their specific projects or areas

of expertise, thus allowing for sharing of knowledge and diverse persectives as they

work toward the development of their work product. The work discussed in this paper

was conducted as part of the annual TRC during calendar year 2021.

3

Problem Statement

Software Development Estimation
Estimation of software development effort and cost is a long-standing challenge in both

the IT and cost estimating communities. History has shown that for many IT programs

and projects, software development represents not only a large portion of total cost, but

also carries a disproportionately high level of cost risk. Although software development

is often a focused area of cost estimation, analysts generally have a poor track record1.

This historical record is shown in Table 1.

Table 1: Software/IT Historical Cost Growth

As noted in the table and source material (Smart, 2021), software/IT cost over-runs are:

• Common: multiple industries experienced significant cost overruns for a long time

• Frequent: 70-80% of projects experience cost and schedule growth

• High: average cost growth of 50% or more

• Extreme: cost growth in excess of 100% is a common occurrence (1 in 4)

Further evidence shown in Figure 2 suggests that within the realm of IT, software is

particularly prone to cost overruns. (McKinsey, n.d.)

1 Actually, cost estimators too often get blamed for a poor track record. When actuals deviate widely from
estimates, it could be due to: (1) poor estimates; (2) ignored estimates (i.e., the baseline from which
growth is measured was not set to the estimate); or (3) poor performance. It very well could be all three!

4

Figure 2: Software Cost Within the IT Industry

Limitations of Existing Estimating Tools
In response to the need for better software estimating capability, a variety of

approaches have been developed over the years, including parametric models (e.g.,

COCOMO), commercial estimating tools, and sizing frameworks (e.g., function point

counting). Based on our review of these approaches, as well as professional estimating

experience, we have observed the following limitations within the software estimating

community:

• Over-reliance on a single sizing metric (i.e., SLOC)

• Parametric models do not expose underlying data (most commercial models)

• Estimating methods do not include a data source (function point counting)

• Cost estimating relationships (CERs) often do not accommodate missing input

data

• Methods are based on limited or no historical data

5

We believe that many of these limitations can be addressed through the use of an

appropriate data set, methods that don’t rely on any single input value or sizing metric,

and methods that are transparent in both the source data as well as underlying

equations.

ISBSG as a Data Source
The dataset that forms the basis of SWEET is from the International Software

Benchmarking and Standards Group (ISBSG) data repository (https://www.isbsg.org).

The repository contains software project data across the IT industry. Data are

submitted to ISBSG by trusted international IT organizations, including both private

sector and government sponsored projects. ISBSG was selected for SWEET because

it contains:

• A large volume of projects. ISBSG’s software development repository contains

10,600 projects, dating from 1989 to 2020.

• A variety of descriptive variables (fields) on each project. A total of 252 fields are

available. Of these, 105 are quantitative, and 147 are qualitative.

• A variety of fields that describe software size. Although not all metrics are

available for each project, ISBSG allows for the reporting of software size based

on IFPUG function points, COSMIC points, SLOC, and a variety of less prevalent

metrics.

• Multiple development methodologies. Fields are included which indicate whether

each project was developed according to agile, incremental, waterfall, or a

number of other possible development methodologies.

• Fields that report on the work effort, measured in person-hours, of the

development team.

• A data quality rating, which contains an ISBSG-assigned letter grade, A through

D. For purposes of this analysis, we excluded data that was rated D.

• It is available, through purchase of a subscription, to the general public. Details

are available at https://www.isbsg.org/isbsg-subscriptions/.

https://www.isbsg.org/
https://www.isbsg.org/isbsg-subscriptions/

6

It is important to note one limitation of the ISBSG dataset, specifically that not all of the

available fields are populated for all projects. For example, adjusted function points are

reported for approximately 71% of projects and number of users are reported for only

8% of projects. As a result, the amount of data available for analysis is reduced,

possibly significantly, depending on the type and number of fields chosen for analysis.

Analytical Approach

ISBSG Dataset
The large amount of data presented in ISBSG required considerable preliminary

analysis to focus our effort on the most suitable variables for software effort estimation.

Data covered by the database include new development, enhancement and re-factoring

or re-development effort. The data are dominated by enhancements, which constitute

about seventy percent of the dataset. Most of the remaining data points are new

development efforts. About 16.5% of the data are from the 1990s, 43.5% from the

2000s, and the remaining 40% from the 2010s. Table 2 shows the allocation of data by

decade and category.

Table 2: ISBSG Data Points by Decade and Project Type

Decade Number of Data Points
1990s 1576

2000s 4145

2010s* 3804

Development Type Number of Data Points
Enhancement 6620

New Development 2806

Re-Development 104

7

Figure 3 provides a more detailed characterization by year and project type.

Figure 3: ISBSG Data Points by Year and Project Type

The ISBSG data includes a variety of function point counting methods, where IFPUG

4+, NESMA, and COSMIC represent 98.6% of the data. The spread of that data over

time is shown in Figure 4 and Figure 5 below.

Figure 4: ISBSG Data Points by Function Point Sizing Methods (2009-2019)

8

Figure 5: Number of Adjusted Function Points in ISBSG Projects (2009-2019)

Waterfall is the most frequent software development methodology represented in

ISBSG, representing 3,568 data points. Agile development first appears in 2005, and

increases in the following years. Figure 6 below shows the type of development efforts

in the database by year.

Figure 6: ISBSG Data Points by Development Methodologies Over Time

9

Productivity Factor Analysis
After our initial analysis of the ISBSG dataset, we recognized that we had sufficient data

points to proceed using function points as a sizing metric. First, we wanted to analyze

productivity factors, which is a measurement of how much code can be developed in a

given time frame. Our analysis generated factors expressed as function points (FPs) per

hour.

To accomplish this, we established a subset of the data by stratifying the data as

follows. We identified various sizing methods that are included in the ISBSG dataset

and removed non-function points methods (e.g., ‘other’, Lines of Code (LOC)). We also

removed any projects with D or lower Quality Grades and established a data age

restriction of 25 years old or newer. For each project in this subset, we calculated a

productivity factor by dividing the Adjusted Function Points by Normalized Work Effort to

get a measurement of FP/hour. Adjusted Function Points is functional size adjusted by

the Value Adjustment Factor (VAF), and Normalized Work Effort is the full lifecycle effort

for all teams reported (not just the development team).

Next, we evaluated histograms of the productivity factors for this entire subset of data,

as well as smaller subsets by relative size. The productivity histogram is shown in

Figure 7 below.

10

Figure 7: Distribution of Productivity (Overall)

For the total productivity data subset (5914 data points), the histogram skews right, with

a median of 0.087 FPs/hour and a mean of 0.163 FPs/hour.

Next, we wanted to determine whether the relative size of software development

projects has an effect on the productivity. The productivity dataset was further sub-

divided by project size: small (less than 100 FPs); medium (100 to 1000 FPs); large

(1000 to 9000 FPs); and extra-large (more than 9000 FPs). These histograms are

presented in Figure 8, Figure 9, Figure 10, and Figure 11 below.

11

Figure 8: Distribution of Productivity (Small Projects)

For the 2448 small software development projects, the histogram again shows right

skew, with a median of 0.068 FPs/hour and a mean of 0.121 FPs/hour.

12

Figure 9: Distribution of Productivity (Medium Projects)

For the 3124 medium-sized projects, the histogram skews right, with a median of 0.101

FPs/hour and a mean of 0.167 FPs/hour.

13

Figure 10: Distribution of Productivity (Large Projects)

For the 330 large projects, the histogram again shows right skewness with a median of

0.144 FPs/hour and a mean of 0.373 FPs/hour.

14

Figure 11: Distribution of Productivity (Extra-Large Projects)

Finally for the nine extra-large software development projects, the histogram is also

skewed right. The median is 2.16 FPs/hour and the mean is 2.71 FPs/hour. The median

and mean for extra-large projects show a significant increase in productivity over small,

medium, and large projects; however, there are significantly fewer data points for extra-

large projects.

Still, as the relative size of the software development project increases, the median and

mean productivity factors increase, suggesting that software teams become more

efficient as the project size increases, thereby achieving economies of scale.

Function Point Growth Analysis
After analyzing the effect of relative project size on productivity, we analyzed code

growth for projects using function point sizing methods. To do this, we used a subset of

data where the function point count approach was equal to the function point size

15

estimate approach. This was done to ensure that a change in the count methodology

wasn’t driving any growth.

First, we calculated a function point growth factor for each project using the formula,

where: functional size is the actual number of function points and size estimate is the

estimated number of function points for each project. As such, we define function point

growth as the ratio of the difference between the actual size and the estimated size to

the estimated size.

Next, we calculated average function point growth factors for different subsets of the

data segmented by variables such as: Count Approach, Development Methodology,

Development Type, Language Type, and Relative Size.

We noticed that the majority of software projects had zero growth, meaning that the

number of estimated function points was equal to the number of actual function points.

Unfortunately, we are unable to determine if this is due to consistent requirements

throughout the program or improper reporting of the data. Pending verification, we

would usually recommend using the right-hand side (“Excluding Zero Code Growth”) of

the following tables, but the drastic reduction of the dataset is cause for concern.

Table 3: Code Growth by Count Approach

For Count Approach, we noticed that the rankings of most-to-least code growth changes

when excluding projects where the estimated size equaled the actual size. As expected,

code growth factors increased as the number of data points decreased when we

removed the projects with zero code growth.

16

Table 4: Code Growth by Development Methodology

For Development Methodology, the general trends were relatively similar when

excluding the projects with zero code growth, but Agile and Waterfall code growth

increased significantly with a large decrease in the number of data points. As expected,

all positive code growth factors increased and all negative code growth factors

decreased.

Table 5: Code Growth by Development Type

For Development Type, the general trends were relatively similar when excluding

projects with zero code growth. Again, as expected, all code growth factors increased

with the decrease in data points.

Table 6: Code Growth by Language Type

For Language Type, the general trends were relatively similar and all code growth

factors increased when the software projects with zero growth were excluded.

Table 7: Code Growth by Relative Size

17

For Relative Size, again the general trends were relatively similar, and all positive code

growth factors increased and negative code growth factors decreased when the

software projects with zero growth were removed. Here we also saw a general trend

that as the relative size of the software project increases, the code growth also

increases. The smaller software projects generally had less code growth and, in some

cases, had negative code growth where the actual project size was smaller than

estimated. This runs counter to the “size effect” often encountered in risk, wherein larger

efforts tend to grow by a larger absolute amount but a smaller percentage.

Independent and Dependent Variable Identification
After completing the preliminary ISBSG dataset analysis, we determined the

independent and dependent variables that would provide the best software

development estimations. First, we identified variables in the ISBSG dataset that

represented logical candidates for a parametric estimating relationship.

We identified a handful of potential data fields that could be dependent variables,

including size, cost, and effort. For size, this would be the amount of code required to

complete the software development project, either in adjusted function points or SLOC.

For cost, this would be the actual cost of the software development. For effort, this

would be the number of hours required to complete the software development project.

Ultimately, we chose Normalized Work Effort expressed in hours as our dependent

variable. We preferred this measure because it represents a cost estimating output

rather than an input, such as function points or SLOC. Furthermore, an estimate

expressed in hours enables use of developer-specific labor rates. Additionally, there

18

were significantly more data points with reported values for Normalized Work Effort vs.

Total Project Cost (8,657 vs. 1,826). At the same time, Total Project Cost has a

significant disadvantage as a dependent variable because it introduces exchange rate

risk. There are 19 different currencies included in the data set, and only 741 of the

1,826 data points for Total Project Cost were in US dollars.

Next, we identified several potential independent variables. We made sure to use

variables that represented actuals (vs. estimates) that could be drivers of the dependent

variable, effort. We also wanted to include variables that a cost analyst should know

pre-software development. Additionally, we made sure that the number of potential

options for each variable was not large enough to affect statistical analysis. For

example, there are 151 different programming languages in the ISBSG dataset. To

mitigate this issue, we grouped seldom-used categories into an “other” category.

Prior to analyzing the potential independent variables, we also normalized the

independent variable inputs. The ISBSG qualitative data fields are open inputs, which

result in inconsistencies. We reviewed all of the independent variable inputs to ensure

consistency (e.g., “Multi-tier” vs. “Multi tier”). Seldom-used inputs were classified as

“other” to simplify the Effort Estimating Relationship (EER) and minimize the impact to

the degrees of freedom.

Finally, we tested each of the 26 potential independent-to-dependent variable

correlations using Spearman rank correlation. Table 8 shows a subset of the results

from the Spearman correlations between the independent variables and Normalized

Work Effort, the dependent variable.

19

Table 8: Significant Effort Drivers

Effort Estimating Relationship (EER) Development
After choosing the dependent variable and finalizing the list of 26 potential independent

variables, we created a baseline EER to compare with potential candidate EERs. This

EER used Normalized Work Effort as the dependent variable and Adjusted Function

Points as the independent variable. The baseline EER generated an R2 of 0.3924.

Next, we created more than 50 candidate relationships for estimating software

development effort. Different groups of independent variables were used for each run.

Since every data field (i.e., variable) is not available for every observation, each EER is

based on a different number of observations depending on the specific independent

variables tested. Table 9 below shows the summary matrix used to compare all of the

EERs.

20

Table 9: EER Comparison

After each run, we would assess the results and add new inputs that improved curve fit,

such as CMM level and age of data. We also removed prospective inputs that didn’t

show statistical significance, such as Application Group and Architecture. We also

removed Total Elapsed Time. While this variable showed significance and an increase

in R2, we were concerned with collinearity as well as inaccurate/aggressive schedule

estimates early in a program’s life cycle.

This EER exploration process generated numerous questions and provided numerous

hard-won insights. While there are mechanical methods such as stepwise regression to

cycle through various combinations of variable, we found significant value in going

through the manual process, especially with as variegated a dataset as ISBSG. Rather

than giving an analyst a proverbial fish – our preferred “off the shelf” EER – what if we

could teach the analyst to fish – providing them the capability to generate their own

EERs with transparency and traceability? That’s where SWEET comes in!

Tailoring EERs
In order to assist cost analysts with EER development and analysis, we developed an

effort estimating interface that allows the analyst to filter the dataset based on inputs

available at the time an estimate is needed, such as early in the development or before

contract award. We also wanted to be able to provide an option to remove data points,

such as outliers or non-analogous projects, via a quick input. We decided a dynamic

21

EER development tool that runs without the use of VBA would help cost analysts

develop reliable and defensible software development effort estimates. This vision

resulted in development of the Software Effort Estimation Tool (SWEET).

We believe SWEET offers these benefits to the cost analyst:

• Custom EER generation, based on analyst-selected inputs and analyst-selected

data.

• Dynamic (real time) recalculation of EER results.

• Transparent equations and transparent data. This, along with the use of an

industry-leading dataset, enables the cost analyst to produce highly defensible

estimates.

Software Effort Estimation Tool (SWEET)

Tool Overview
SWEET is a prototype Excel-based effort estimation tool that is built upon the analytical

work discussed above and leverages the rich ISBSG data set. The core tenet of

SWEET is that it allows the analyst to dynamically build an EER based on analyst-

selected inputs and analyst-selected data. To do this, SWEET has three key interfaces:

Inputs, Data Selection, and Results, and also includes a SLOC-to-FP conversion

capability.

Tool Inputs
The Inputs screen as shown in Figure 12 below is built on a set of inputs that were

determined to be characteristics that an analyst would either know or be able to

determine in the course of understanding the software development effort to be

estimated.

22

Figure 12: SWEET Inputs Screen

The tool uses a color-coding system to define how the analyst interacts with the various

inputs as defined below.

• Blue: Settings, which can be adjusted by the user as needed. Additional options

can be selected from a drop-down menu.

• Gray: Output variable. There is only one option; user cannot change variable.

• Green: Active user inputs.

• Black: Inactive user inputs. These cells will change color depending on the

sizing method selected (in blue). For example, if the user changes the sizing

method to COSMIC Data, then the Adjusted Function Points cells will change to

black, and the COSMIC Data cells will change to green.

• Orange: User input for statistical significance.

Results (Quick View)

Type of Analysis LOG
Estimated Effort

(Hours)
8,850.0

R2 0.393

Output Normalized Work Effort Full life-cycle effort for all teams reported in hours.
Degrees of
Freedom

6521

Detailed EER Stats

Sizing
Adjusted Function

Points

Adjusted Function
Points

3500

Input count Output count Enquiry count File count Interface count

COSMIC Entry COSMIC Exit COSMIC Read COSMIC Write

Inputs (Quantitiative) User Base - Distinct
Users

User Base -
Concurrent Users

IT experience
(Weighted Average)

Project Elapsed Time

Max Team Size

Average Team Size

Inputs (Non-
Quantitiative)

Software Process
CMM

Agile Development Yes

Analysis Inputs Significance (Alpha) 0.05

23

The majority of the SWEET inputs are not required to generate an estimate but are

used to help establish a clearer view of the estimate in question over time. Additionally,

the choice of inputs used is one of the main drivers of the dynamic EERs that the tool

generates. The list below defines the various elements that were selected and some

insights into how or when they should be used.

• Type of Analysis (required): The user may select LOG or Linear in this drop-down

box. The selection determines the mathematical formulation used to derive the EER

used by the tool, Log Ordinary Least Squares (LOLS) or Linear Ordinary Least

Squares (OLS), respectively. SWEET defaults to LOG, which is the recommended

analysis method. The advantage of a LOG model is that it can better accommodate

economies or diseconomies of scale within the data by way of a power function and

multiplicative indicator variables. However, some users may prefer the simplicity of

a linear model. The user may also wish to try each choice and select the option that

produces the best result.

• Sizing (required): The user must select the method used to input software size.

Software size is a measure of the volume of software required to perform a function

or set of functions. The tool allows for three alternatives: Adjusted Function Points,

Function Point Categories, or COSMIC Data. The tool also allows the user to input

size as Source Lines of Code (SLOC), and then convert to Adjusted Function Points.

When a sizing method is selected, the tool enables the one of the following sets of

input variables:

o Choice of Sizing Method: Select one of the following from the drop-down

menu.

o Adjusted Function Points: This input allows the user to enter the software

size, measured in Adjusted Function Points. Function points are a unit of

measure representing the business functionality being developed. There are

several standards that can be used when conducting a function point count,

24

including IFPUG, COSMIC, and Simple Function Points. (For more

information on sizing methods, see the References section.)

o Function Point Categories: This input method allows the user to separately

enter each component of a function point count. This method should be used

when details behind the function point count are known, and can be

decomposed using the five variables listed below.

 Input Count

 Output Count

 Enquiry Count

 File Count

 Interface Count

o COSMIC Inputs: This input method allows the user to separately enter each

component of a COSMIC count. This method should be used when details

behind the COSMIC count are known, and can be decomposed using the four

variables listed below.

 COSMIC Entry

 COSMIC Exit

 COSMIC Read

 COSMIC Write

o SLOC: If the user wishes to enter size based on Source Lines of Code

(SLOC), then the tool allows for a conversion from SLOC to Function Points.

The tool tab titled “(OPTIONAL) SLOC to FP Converter” allows the user to

enter Project SLOC, Programming Language, and SLOC per FP Factor. The

tool applies the included backfiring table to produce an adjusted function point

count, which can then be entered into the Inputs tab.

25

• User Base – Distinct Users (optional): This optional input allows the user to enter

the anticipated number of distinct users, which is an indication of how heavily the

system will be utilized, as well as a measure of the complexity and diversity of the

software’s functional requirements.

• User Base – Concurrent Users (optional): This optional input allows the user to

enter the number of concurrent users. Unlike the distinct users input, concurrent

users measures how many people are using the system at the same time.

• IT Experience (weighted average) (optional): This optional input allows the user

to enter an average number of years of software development experience among

the software developers. Higher numbers, which indicate a more experienced team,

are generally associated with higher productivity and therefore less overall

development effort.

• Project Elapsed Time (optional): This optional input allows the user to enter the

anticipated development time, expressed in calendar months. In cases where the

development project is not constrained by schedule, or the schedule is not known,

the user would leave this input blank.

• Max Team Size (optional): This optional input allows the user to enter the

anticipated maximum (peak) software development team size. In cases where the

max team size is not constrained, or the max team size is not known, the user would

leave this input blank.

• Average Team Size (optional): This optional input allows the user to enter the

anticipated average software development team size. In cases where the average

team size is not constrained or the average team size is not known, the user would

leave this input blank.

• Software Process CMM (optional): This optional input allows the user to select a

value that indicates the capability of the software development organization, as

measured by the Software Development Capability Maturity Model (CMM). If this

26

value is known, the user may indicate either a low level of maturity by selecting

“Level<=2” or a high level of maturity by selecting “Level 3+”. Although the full CMM

scale ranges from 1 to 5, analysis of ISBSG source data indicates that the best

statistical relationship is present when viewing CMM level in these larger categories.

• Agile Development (optional): This optional input allows the user to specify

whether the software development team will follow an agile development process.

By selecting “Yes”, results will be adjusted to account for efficiencies within the Agile

Development process that are present within the source data of the tool.

The Inputs screen also includes a quick results box which provides the analyst with the

estimated effort based on the inputs that have been entered. Additionally, it provides the

R2 Value and Degrees of Freedom for the dynamic EER and the estimate generated

using the EER. An analyst has a quick view of the results so they can determine if they

wish to enter further inputs or conduct further analysis to refine their existing inputs.

As discussed above, it is acknowledged that not every effort is sized in Function Points.

For this reason, SWEET includes a SLOC to FP conversion tab to enable the analyst to

convert SLOC counts to function points as shown in Figure 13.

27

Figure 13: SLOC Conversion in SWEET

The conversion capability leverages the conversion table published by QSM on their

website. (SLOC per FP, n.d.)

The Data Selection interface, depicted in Figure 14, shows filtered projects based on

inputs entered by the analyst, with each project on a separate row. The columns in this

view show a wide range of data and characteristics that are known about each project.

Figure 14: Data Selection in SWEET

28

Within the Data Selection tab, the analyst can refine the dataset being used by SWEET

to develop the EER for the development effort in question. Because there is a wide

variety of data in each row of the Data Selection tab, there are a practically infinite

number of ways the EER could be customized. Here are a few examples of how an

analyst might further refine the data set behind the EER:

• If the project is known to support a specific industry sector, such as

“Government,” the user may consider removing projects from different industry

sectors.

• If the project is known to use a specific programming language such as Java, the

user may consider removing projects that are developed with different

languages.

• If the project is known to use a specific system architecture such as Client-

Server, the user may consider removing projects that implement different system

architectures.

Tool Outputs
The Results screen as shown in Figure 15 below provides the analyst with the results of

the estimate generated by the EER that was created for the development effort in

question, along with descriptive and inferential statistics that can be used to validate the

method.

29

Figure 15: EER Results in SWEET

The statistics are provided for each of the inputs that were chosen by the analyst with

the intent of enabling a quick and thorough assessment of the overall validity of the

estimate and whether there are any inputs that need further examination. The purple

Estimated Effort box provides the analyst with the results of the EER in hours. The EER

section provides the analyst with the equation for the EER to make it clear how the

effort estimate was derived.

All of these outputs give the analyst maximum transparency into the effort estimate that

is generated by SWEET, from the data being used all the way through the actual EER

that produces the estimate.

Active Analysis
One of the benefits of SWEET is that it allows the user to see real-time impacts of

changing inputs and dynamically updates the underlying dataset, the EER, and the

effort estimate. The example presented below shows how this process might play out

Results (Detailed Stats)
1 2 3
2 1 Intercept

Agile (0 - Not
Agile, 1 - Agile)

LN(Adjusted
Function Points)

Intercept

Coefficient -0.440 0.660 4.144
SE 0.177 0.010 0.052

R^2 / SEE 0.393 1.102 #N/A
F / dF 2108.972 6521 #N/A

SSR / SSE 5120.617 7916.545 #N/A
T-stat -2.487 64.898 79.335

P-value 0.0129 0.0000 0.0000

EERT Calculation
Estimated Effort

(Hours)
8,850

EER

Log Form

Linear Form

Normalized Effort (hrs) = e^(4.14) * Adjusted Function Points^0.66* (e^(-0.44))^Agile Development

30

as more information becomes known over time and at different stages of the

development lifecycle at which the analyst would be developing an estimate.

Example Analyses
SWEET can generate an estimate based solely on a sizing input and user selection of

development methodology, specifically agile or not. The figure below shows the Inputs

form for such a case. It should be noted that the Agile input is set to “Yes” since it is a

binary yes/no input, and the majority of development efforts these days use some flavor

of agile development.

Figure 16: Example Inputs (Initial)

As shown in the top right corner of Figure 16, the inputs tab also provides a quick view

of the results including an overall estimate, which in this case is 8,856 hours to develop

a project with a size of 3500 function points using agile development methods. Figure

17, the detailed results tab, indicates that the underlying EER is statistically sound.

31

Figure 17: Example Outputs (Initial)

This tab also provides the log form for the EER that SWEET generated for the user to

produce an effort estimate. For this example, it translates to:

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝑁𝑁𝐸𝐸 (ℎ𝑁𝑁𝑟𝑟) = 𝑁𝑁4.14 ∙ 𝐴𝐴𝑁𝑁𝐴𝐴𝐴𝐴𝑟𝑟𝐸𝐸𝑁𝑁𝑁𝑁 𝐹𝐹𝐴𝐴𝐹𝐹𝐹𝐹𝐸𝐸𝑁𝑁𝑁𝑁𝐹𝐹 𝑃𝑃𝑁𝑁𝑁𝑁𝐹𝐹𝐸𝐸𝑟𝑟0.66(𝑁𝑁−0.44)𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐷𝐷𝐴𝐴𝐷𝐷𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴𝐷𝐷𝐷𝐷

= 62.8 ∙ 𝐴𝐴𝑁𝑁𝐴𝐴𝐴𝐴𝑟𝑟𝐸𝐸𝑁𝑁𝑁𝑁 𝐹𝐹𝐴𝐴𝐹𝐹𝐹𝐹𝐸𝐸𝑁𝑁𝑁𝑁𝐹𝐹 𝑃𝑃𝑁𝑁𝑁𝑁𝐹𝐹𝐸𝐸𝑟𝑟0.66(0.644)𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐷𝐷𝐴𝐴𝐷𝐷𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴𝐷𝐷𝐷𝐷

As the software development project being estimated is further defined, the analyst can

enter additional inputs. Figure 18 shows a project estimating scenario that is based on

the same 3500 FP input, but provides two inputs in addition to development

methodology. Specifically, it is now known that the software being developed will have

150 distinct users and the development team has an average five years of experience.

32

Figure 18: Example Inputs (Updated)

Based on these additional inputs, the estimated effort to develop the software in

question has increased to 10,869 hours and has fewer degrees of freedom than the

initial estimate. This is because the number of data points in the SWEET data set that

are applicable to the software in question is much smaller due the use of additional

variables to be compared against.

Figure 19: Example Outputs (Updated)

33

Figure 19, the detailed results tab, depicts the new EER in log form that the tool

generated when two additional independent variables – Distinct User Base count and IT

Experience – considered:

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝑁𝑁𝐸𝐸 (ℎ𝑁𝑁𝑟𝑟)

= 𝑁𝑁5.51 ∙ 𝐴𝐴𝑁𝑁𝐴𝐴𝐴𝐴𝑟𝑟𝐸𝐸𝑁𝑁𝑁𝑁 𝐹𝐹𝐴𝐴𝐹𝐹𝐹𝐹𝐸𝐸𝑁𝑁𝑁𝑁𝐹𝐹 𝑃𝑃𝑁𝑁𝑁𝑁𝐹𝐹𝐸𝐸𝑟𝑟0.57 ∙ 𝐷𝐷𝑁𝑁𝑟𝑟𝐸𝐸𝑁𝑁𝐹𝐹𝐹𝐹𝐸𝐸 𝑈𝑈𝑟𝑟𝑁𝑁𝑁𝑁𝑟𝑟0.11

∙ 𝐼𝐼𝐼𝐼 𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹𝑁𝑁−0.53 ∙ (𝑁𝑁−0.58)𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐷𝐷𝐴𝐴𝐷𝐷𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴𝐷𝐷𝐷𝐷

= 247.2 ∙ 𝐴𝐴𝑁𝑁𝐴𝐴𝐴𝐴𝑟𝑟𝐸𝐸𝑁𝑁𝑁𝑁 𝐹𝐹𝐴𝐴𝐹𝐹𝐹𝐹𝐸𝐸𝑁𝑁𝑁𝑁𝐹𝐹 𝑃𝑃𝑁𝑁𝑁𝑁𝐹𝐹𝐸𝐸𝑟𝑟0.57 ∙ 𝐷𝐷𝑁𝑁𝑟𝑟𝐸𝐸𝑁𝑁𝐹𝐹𝐹𝐹𝐸𝐸 𝑈𝑈𝑟𝑟𝑁𝑁𝑁𝑁𝑟𝑟0.11

∙ 𝐼𝐼𝐼𝐼 𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹𝑁𝑁−0.53 ∙ 0.56𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐷𝐷𝐴𝐴𝐷𝐷𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴𝐷𝐷𝐷𝐷

This demonstrates the unique power of SWEET to dynamically generate a new EER as

an analyst enters additional data on the development project being estimated.

It is important to note that the statistics corresponding to the agile variable changed

when the EER was revised to include two additional independent variables. Specifically,

the agile independent variable is not as significant in the revised EER. Additionally,

Figure 19 indicates that the IT experience variable is not necessarily statistically

significant and warrants further scrutiny. Neither of these points should necessarily lead

an analyst to determine the EER and resulting estimate aren’t valid. However, they are

cause to evaluate whether there are other candidate independent variables that offer

greater explanatory value.

As discussed earlier, an analyst can refine the ISBSG-based data set that is being

utilized to develop the EER. As Figure 20 depicts, the rows that indicate “EER” in the

EER field (Column B) specify which data are used by default in the generation of the

EER. The analyst has the option to remove projects by marking an ‘x’ in the Remove

column which will further refine the data set being used.

34

Figure 20: Example Data Selection

This leads to a new output on the detailed results tab as shown below:

Figure 21: Example Outputs (Final)

The effort estimate is now at 10,715 hours instead of 10,869 hours; however, it did not

change the LOG form for the EER in this case.

35

Overall, this shows that SWEET can dynamically adjust the EER being used as the

analyst enters additional data, and will provide the analyst with information that can help

determine if the effort estimate is valid for the analyst’s needs or will require further

refinement. In the estimating example discussed above, the analyst would probably

want to perform further research and analysis. When doing so, the analyst should

consider focusing on any input variables that are showing as not statistically significant.

The analyst may then choose to further refine the analysis by removing non-significant

variables or trying a different combination variables.

Data Modeling Limitations
The team identified some limitations in using the ISBSG data to build a dynamic

regression model. ISBSG is considered a sparse dataset, where many data fields are

minimally populated. When multiple fields are included as independent variables in a

regression, the number of available data points generally drops, sometimes

significantly. As a result, statistics tend to worsen as variables are added. This is

somewhat counterintuitive. The more that is known about a program, for example

towards the end of the development effort, more fields will be known and the statistics

and fit may be worse than when few variables are known. In some instances, we might

follow William of Occam and choose a simpler model over a more complex one. The

power of SWEET, though, is that the analyst can easily generate multiple model forms

as use them to cross-check each other.

SWEET is a dynamic regression model, where regressions are recalculated

automatically based on known independent variables the user wants to include. Users

may also hand-pick specific data points, resulting in a practically limitless number of

possibilities for the regressions. The dynamic nature presents a challenge for users,

since the results of the regression need to be verified to ensure the coefficients and

exponents are such that the EER responds to the independent variables in a

reasonable way.

36

Conclusion
Software estimation is historically difficult, and IT/software projects are prone to

overruns. In order to address deficiencies in estimating techniques, our team developed

the prototype SWEET Excel model for the Technomics Research Competition. Our

approach addresses many issues plaguing black box models by leveraging ISBSG data

and providing analysts with transparent insight into the effect of potential cost drivers.

SWEET dynamically builds an EER, reflecting in real time the analyst’s selection of data

fields and source in a “clear-box” model. We balanced filtering out data fields of limited

utility with providing the analyst the ability to generate an essentially limitless number of

EERs.

Next Steps

Sizing Integration
As the primary sizing field in the ISBSG data set, a Function Point (FP) count is the only

required input to SWEET and its complement of EERs. This critical fact accentuates

the need for reliable software sizing methods throughout the life cycle.

Organizations like IFPUG, COSMIC, and NESMA have been at the forefront of

developing FP counting standards and certification programs. In general, these

methods are manually intensive and require sufficient program documentation often not

readily available early in requirements and design. To surmount these challenges, we

propose two potentially fruitful approaches:

1) Expert-Based Analogy Scales: For early phase assessments, programs typical

rely on subject matter experts (SMEs). The accuracy and characterization of risk

and uncertainty of these assessments can be improved via training and

establishing an organization track record, as described in the cited paper

(Braxton, 2022).

37

2) Automated Counting Methods: Natural Language Processing (NLP) and other

automation techniques hold promise for parsing various forms of program

documentation and producing preliminary FP counts. One of the dilemmas faced

by such approaches is maturity vs. complexity. That is, if an automated method

produces a low count, is that because the corresponding requirement is simple or

because it is immature, and the documentation is not yet fully fleshed out? To be

fair, a human FP counter would face the same conundrum, but they are arguably

better equipped to discern which is closer to the truth. It should be noted that

another recently completed Technomics Research Competition project did in fact

create a prototype tool to accomplish simple FP point counting via NLP. Albeit

preliminary in nature, the results of this project were encouraging enough to

warrant continuing research. Stay tuned for more on the subject of NLP-based

FP counting!

It is also important to note that the Joint Agile Software Innovation (JASI) Cost IPT is

spearheading use of the Simple Function Point (SiFP) method as an alternative to

traditional function point counting. SWEET would benefit from incorporating one or

more of these three methods as a “front end.”

Organizational Calibration
Since ISBSG is a benchmarking repository, it represents a wide variety of projects and

development teams. Inevitably, if we are applying SWEET and its complement of EERs

to estimate software projects within a given organization, we will find that a particular

organization is more or less efficient on average than reflected by the comparable

subset of the ISBSG data. The standard approach in this case is to calibrate the EERs

to eliminate this “bias.” This process is well established in the Cost Estimating Body of

Knowledge (CEBoK), Module 3 Parametric Analysis, and in the legacy Parametric

Estimating Handbook (PEH).

Depending on the maturity of the organization, additional data collection and the

establishment of a track record may be required. Within the typical government

38

acquisition environment, relative efficiency or productivity may be driven by the buyer

(government customer), the seller (industry developer), or both.

In any case, a built-in calibration functionality would be a worthwhile addition to SWEET.

Analytical Improvements
One of the strengths of SWEET is the way that it dynamically filters the data set based

on the user’s choice of data fields. It is an admirable goal to retain a greater proportion

of the data set for analysis, and techniques such as multiple imputation are an

established process for retaining data points with missing values for certain fields.

Our sense is that this represents a slippery slope for a database as extensive as

ISBSG, but it may be possible to develop an approach where the majority of the desired

fields are populated for the majority of the data points fitting a desired profile, and then

imputation can be used to fill in the gaps on a limited basis. The predisposition of the

cost analyst is to predict analysis on verifiable actuals wherever possible.

There is a largely untestable hypothesis in risk analysis that the programs with data are

the better-behaved programs. Thus, as eye-popping as benchmarks for growth and

uncertainty can be, they may be somewhat understated, since the programs for which

we lack data may have (or, in the case of canceled programs, would have) performed

even worse.

Tool Re-Hosting
SWEET uses Excel as a cost estimating lingua franca and eschews embedded Visual

Basic for Applications (VBA) to ensure that the “live” calculations reflect the dynamically

selected data set with maximum fidelity. The current version essentially functions as a

prototype, and it could be re-hosted to make improvements to user interface (UI), speed

of calculations, and/or visualization of results.

Business Intelligence (BI) tools such as Tableau and Power BI are well-suited for data

visualization, but not as much for statistical calculations. Conversely, tools like R are

well-suited for statistical calculations. By leveraging R Shiny in conjunction with R, we

39

might be able to achieve the best of both worlds. In the end, the purpose of the current

research was not development of a tool, but rather the exploration of the ISBSG data

set and the proof of concept for the Clear Box modeling approach. We are pleased to

have accomplished these objectives … and more!

40

Appendix

Acronym List
Acronym Expansion
BI Business Intelligence

CER Cost Estimating Relationship

COCOMO Constructive Cost Model

EER Effort Estimating Relationship

FP Function Points

ISBSG International Software Benchmarking Standards Group

JASI Joint Agile Software Innovation

LOC Lines of Code

LOLS Log Ordinary Least Squares

NLP Natural Language Processing

OLS Ordinary Least Squares

SiFP Simple Function Points

SLOC Source Lines of Code

SME Subject Matter Expert

SWEET Software Effort Estimating Tool

UI User Interface

VAF Value Adjustment Factor

VBA Visual Basic for Applications

41

Bibliography
Many papers have used ISBSG as a data source. The below list includes those that

were available via the ICEAA papers repository or Research Gate.

(n.d.). Retrieved from International Software Benchmarking Standards Group (ISBSG):
https://www.isbsg.org/

(n.d.). Retrieved from McKinsey: https://www.mckinsey.com/business-functions/mckinsey-
digital/our-insights/delivering-large-scale-it-projects-on-time-on-budget-and-on-value

Braxton, P. J. (2022). Uncertainty of Expert Judgment in Agile Software Sizing. ICEAA
Conference Proceedings. Pittsburgh, PA: ICEAA.

Cost Estimating Body of Knowledge (CEBoK). (2013). Annandale, VA: ICEAA.

Deng, K., & MacDonell, S. (2008). Maximising data retention from the ISBSG repository.
Proceedings of the Twelfth International Conference on Evaluation and Assessment in
Software Engineering (EASE2008). Bari, Italy: British Computer Society.

Dery, D., & Abran, A. (n.d.). Investigation of the Effort Data Consistency in the ISBSG
Repository.

Elyassami, S., & Idri, A. (2012). Investigating Effort Prediction of Software Projects on the
ISBSG Dataset. International Journal of Artificial Intelligence & Applications (IJAIA), 121-
132.

Kosmakos, C., & Brown, D. H. (2022). Are We Agile Enough to Estimate Agile Software
Development Costs? ICEAA Conference Proceedings. Pittsburgh, PA: ICEAA.

Minkiewicz, A. F. (2013). Lessons Learned from the ISBSG Data Base. ICEAA Conference
Proceedings. New Orleans, LA: ICEAA.

Minkiewicz, A. F. (2021). Lessons Learned From Software Maintenance and Support Datasets.
ICEAA Online Workshop Proceedings. Annandale, VA: ICEAA.

SLOC per FP. (n.d.). Retrieved from Quantitative Software Management (QSM):
https://www.qsm.com/resources/function-point-languages-table

Smart, C. B. (2021). Solving for Risk Management: Understanding the Critical Role of
Uncertainty in Project Management. New York, NY: McGraw Hill.

van Heeringen, H. (2013). Estimating Real-time software projects with the COSMIC FSMM and
the ISBSG data repository. ICEAA Conference Proceedings. New Orleans, LA: ICEAA.

42

Annotated Sources
(International Software Benchmarking Standards Group (ISBSG), n.d.) – Informational

web page for primary data source

(Minkiewicz, Lessons Learned from the ISBSG Data Base, 2013) – Describes

development of estimating templates for filtering of ISBSG data and data normalization

and calibration

(van Heeringen, 2013) – Specific focus on real-time software and COSMIC sizing within

the ISBSG database

(Minkiewicz, Lessons Learned From Software Maintenance and Support Datasets,

2021) – Leveraging ISBSG Maintenance and Support (M&S) database to development

Software Sustainment recommendations

(Deng & MacDonell, 2008) – Focus on maximizing the proportion of data points and

data fields that can be retained from the ISBSG database

(Dery & Abran) – Develops a normalized work effort field derived from the project work

effort field in ISBSG across data points with different number of project phases

(Elyassami & Idri, 2012) – Investigation of fuzzy ID3 decision tree models for software

effort estimation

	Abstract
	Introduction
	Technomics Research Competition
	Problem Statement
	Software Development Estimation
	Limitations of Existing Estimating Tools
	ISBSG as a Data Source

	Analytical Approach
	ISBSG Dataset
	Productivity Factor Analysis
	Function Point Growth Analysis
	Independent and Dependent Variable Identification
	Effort Estimating Relationship (EER) Development
	Tailoring EERs

	Software Effort Estimation Tool (SWEET)
	Tool Overview
	Tool Inputs
	Tool Outputs
	Active Analysis
	Example Analyses
	Data Modeling Limitations

	Conclusion
	Next Steps
	Sizing Integration
	Organizational Calibration
	Analytical Improvements
	Tool Re-Hosting

	Appendix
	Acronym List

	Bibliography
	Annotated Sources

