
 
 

 

 

 

 

 

What Does Agile Software 

Development Need? 

Predictable Cost or Predictable Outcomes? 

 

 

 

 

Christina Kosmakos-ckosmakos@technomics.net 

Dave Brown-dbrown@technomics.net 

 

 

 

 

International Cost Estimating & Analysis Association 

5/17/2022 



i 
 

Abstract 

Despite ongoing laudable attempts to advance the state-of-the-art in agile software 

estimating processes and techniques, the software development and cost analysis 

communities are far from ‘cracking the nut’. There is a dire need for a cost estimating 

approach that accurately predicts agile project costs with the correct granularity to 

enable budget and execution planning.  This paper will detail the exploration of three 

approaches that utilize extrapolation from actuals to implement a solution. 

 

Keywords: Agile, Extrapolation, Software, Estimating 

  



ii 
 

Table of Contents 
Abstract........................................................................................................................................ i 

Introduction ................................................................................................................................ 1 

Overview of the Problem ............................................................................................................ 1 

The Planning Horizon: Short Term versus Long Term ............................................................ 2 

How Important is Cost? .......................................................................................................... 2 

Exploration of Three Potential Solutions .................................................................................... 3 

Extrapolation from Actuals Background .................................................................................. 3 

Three Extrapolation Methodologies ........................................................................................ 4 

Approach 1: Cost per Month ................................................................................................... 6 

Approach 2: Cost per Story Point per Month........................................................................... 6 

Approach 3: Three Month Rolling Average Cost per Story Point per Month ............................ 7 

Comparing the Approaches .................................................................................................... 7 

Looking Beyond Cost ............................................................................................................. 9 

Application ................................................................................................................................11 

Next Steps ................................................................................................................................12 

Conclusion ................................................................................................................................12 

References ...............................................................................................................................14 

 



1 
 

Introduction 

Agile software development originated in the spring of 2000 with the purpose of 

speeding up development times and bringing new software to market faster.  Whether 

agile has been successful in accomplishing its original goal does not change the fact 

that it has become increasingly prevalent in the software development community, 

replacing the previously prominent waterfall approach.  This necessarily means that the 

cost estimating community must follow suit and adapt methodologies that support this 

transition. 

 

From the perspective of the cost estimator, software development efforts would ideally 

have the ability to be planned far in advance with minor variability.  Waterfall is more in 

line with this notion than the iterative nature of agile.  Despite ongoing attempts to 

advance the state-of-the-art in agile software estimating processes and techniques, the 

software development and cost analysis communities are far from solving this problem. 

To date, a cost estimating approach that accommodates both an estimator’s need for a 

long term view and agile developer’s need for short term agility has not been developed. 

 

This paper presents research resulting in three agile software cost estimating 

approaches intended to address these needs.  The results represent an advance in 

creating a practical solution for predicting agile project costs with the correct granularity 

to enable budget and execution planning.   

Overview of the Problem 

Over the past decade, the software development process has transitioned from the 

prominent waterfall approach to the more prevalent agile approach.  Waterfall is a 

sequential development process that flows through all phases of a project including 

analysis, design, development, and testing.  An important differentiation of the waterfall 

approach is that each phase completely ends before the next phase begins.  On the 



2 
 

other hand, agile is a time boxed, iterative approach that delivers software incrementally 

from the start of the project vice in total at once near the end.   

The Planning Horizon: Short Term versus Long Term 

Agile inherently takes a short term planning horizon and then iteratively adjusts the plan.  

Cost estimators prefer a long term planning horizon, seen by the typical Life Cycle Cost 

Estimate (LCCE).  This ideological discrepancy between the two is the source of the 

challenge for accurately estimating agile software development costs.  The initial steps 

in resolving the problem are thought to be: 1) assessing and better understanding 

current agile software development programs; 2) making best use of data that is 

typically available in an agile environment; and 3) creating methodologies for projecting 

future costs.   

How Important is Cost? 

A second aspect of agile development is that cost may not be viewed as a risk that 

needs to be managed.  This viewpoint conflicts with a cost estimator’s view that there is 

always cost risk, and that a risk-adjusted LCCE is one of the best tools to understand 

and manage cost risk.  For example, an agile project manager might view the following 

parameters as fixed, and therefore known in advance: number of development teams, 

team size, and development schedule.  If all of these variables are known, then it is a 

simple exercise to estimate cost by multiplying total team size by time and an average 

labor rate.  For an agile project manager, the cost and schedule are fixed, whereas the 

amount and type of work completed at the end of development is not.  The amount and 

type of work completed is therefore managed based on user input and continuously 

updated priorities.  This view is summarized in the GAO Agile Assessment Guide1: 

Since Agile programs have flexible requirements and fixed budgets for an 

iteration, some have argued that conventional performance management tools, 

                                            

1 GAO-20-590G, AGILE ASSESSMENT GUIDE: Best Practices for Agile Adoption and Implementation, 
https://www.gao.gov/assets/gao-20-590g.pdf 



3 
 

such as life cycle cost estimating, are not applicable to Agile programs. Those 

arguments are made because Agile programs have structures and processes 

that are dynamic and iterative and spread planning activities throughout the 

program’s duration instead of conducting extensive planning upfront, as in 

traditional program development. 

One way to resolve these differing views of cost is for the cost estimator to project not 

only cost but also amount of work completed for this cost.  That is, if cost is assumed to 

be fixed, then the relevant question (for both cost estimator and agile practitioner) is: 

What will be delivered at the end of the development life cycle?  Even if the agile 

philosophy prevents an exact specification of the end product(s), it is still useful to 

quantify the amount of work completed.  Agile metrics, such as story points, are one 

way to quantify work completed. 

Exploration of Three Potential Solutions 

Extrapolation from Actuals Background 

This paper explores utilizing one of the four primary cost estimating techniques known 

as Extrapolation from Actuals.  This technique uses actual cost of a system to predict 

the future cost of the same system.  As with any cost estimating technique, there are 

associated strengths and weaknesses that should be considered and understood.  One 

benefit of extrapolating from actuals is it utilizes actual costs (i.e., hard evidence) to 

predict future costs and therefore provides the highest credibility and greatest accuracy 

when properly applied2.   

Another benefit, which is particularly appealing for an agile environment, is it allows the 

estimator to continuously update the estimate throughout the life cycle of the program.  

An extrapolation from actuals can be revised and improved as frequently as actual cost 

                                            

2 ICEAA CEBoK, Unit I – Module 2 



4 
 

and technical data (again, hard evidence) is collected.  For an agile program, monthly 

updates are often possible.   

There are two primary weaknesses of an extrapolation from actuals approach.  The first 

is that some amount of actual cost history (i.e., hard evidence) is required.  This makes 

the approach unusable for any program in which software development work has not 

yet begun.  In such a situation, the techniques described in Dynamic Software Cost 

Estimation (Gellatly, Jones, Wekluk, Brown, & Braxton, 2022) are a good choice when 

a measure of functional size (such as Function Points) is known.  In situations where 

neither actual cost nor functional size is known, then the techniques described in 

Uncertainty of Expert Judgment in Agile Software Sizing (Braxton, 2022) should be 

considered. 

The second weakness of extrapolation from actuals is that the work to date may not be 

representative of the remaining work to be completed.  These weaknesses are 

characteristic of any extrapolation, and must be acknowledged. 

With these benefits and drawbacks in mind, this paper explores three different 

variations of extrapolating from actuals within an agile environment.  Each method is 

evaluated based on its ability to predict the cost of agile development, as well as its 

ability to predict the productivity and corresponding outcome of agile development. 

Three Extrapolation Methodologies 

The first of the three approaches utilizes a cost per month metric. The second employs 

a cost per story point metric, and the third leverages a three month rolling average cost 

per story point.  These three approaches were assessed for how accurately they can 

predict future costs on a monthly basis. 

Actual cost, collected from the start of development, is needed for all three approaches.  

Cost is collected on a monthly basis from the performing activity and reflects each sprint 

team’s expenditures for a specific build.  For example, if the performing activity was 

working on Build 5 of the software development effort with two different sprint teams, 



5 
 

then the cost would be collected as Sprint Team 1 Build 5 and Sprint Team 2 Build 5.  

The ability to differentiate costs by build by sprint team is critical, particularly if software 

metrics such as story points are collected in the same way. 

The story point metric is considered in both the second and third approaches.  Story 

points are a commonly used agile metric that measures the overall size and complexity 

of a user story, feature, or other piece of work.  The number of story points associated 

with a user story represents the size and complexity of the user story relative to other 

user stories in the same project. There is no set formula for estimating story points.  

Rather, estimating the number of story points within a user story is an amalgamation of 

the amount of effort involved in developing the feature, the complexity of developing it, 

and the risk inherent in it. 

The preceding discussion highlights the need for cost estimators to have access to cost, 

story point and other metrics that address project complexity to enable cost estimation.  

A valuable source of cost and story point actuals is the agile project management tool 

known as JIRA, which some performing activities use.  Specifically, this software is 

intended for use in tracking team efforts and it enables routine accessibility to useful 

monthly data.  There are other agile project management tools (e.g., ProofHub, Wrike, 

Smartsheet, etc.) or periodic data calls that could provide the required data.    

Two of the three approaches (i.e., 2 and 3) explored in this paper leverage several 

software several metrics, including Sprint Team, Story Points, Status, and Build.  JIRA 

provides the following key information and context:  

 number of story points completed 

 whether the story points should be associated with Team 1 or 2 

 the build associated with the story points  

 status indicator which will inform whether the story points have been closed (i.e. 

completed) 

 



6 
 

These data fields should be collected on a monthly basis, similar to the cost data.  They 

form the basis of an important computed metric -- closed story points per build per sprint 

team.  It is important to consider only closed story points and story points in external 

review each month.  We believe  that story points closed in the month will better reflect 

the actual effort completed in that month by offsetting the incomplete story point work at 

the beginning and end of the month.  This ultimately serves to better connect the story 

points with the cost metric.  Once the data has been collected from JIRA and exported 

to Excel, it is ready to be analyzed. 

Approaches 2 and 3 also employ planned story points.  Each agile sprint team must 

identify the number of story points they anticipate closing or submitting for external 

review in upcoming months.  These planned story points are logically viewed as the 

team’s backlog.   

Approach 1: Cost per Month 

This approach only considers the cost attributed to the build per sprint team, and 

generates projections using the actuals from the previous months.  This approach is 

normalized based on the working days per month.  In order to generate projections, two 

months of cost data are required.  The costs for the two months are then added 

together and divided by the sum of the working days for the two months.  This provides 

an average cost per day metric which can be applied to the working days of the month 

whose cost is being projected.  Projections are generated for each sprint team 

individually.  In other words, this method uses the cumulative average cost per team per 

day as the basis for extrapolation.  As more months of cost data are collected, the 

average cost per day metric is recalculated and then the build cost per sprint team 

projections are updated.   

Approach 2: Cost per Story Point per Month 

This approach considers the cost attributed to the build per sprint team and the story 

points attributed to the build per sprint team.  An efficiency metric is then calculated by 

dividing the cost by the story points per month.  Similar to Approach 1, two months of 



7 
 

data are required to develop projections.  The costs for those two months are then 

added together and divided by the sum of the story points for those two months.  This 

provides an average cost per story point metric which can be applied to the planned 

story points of the month whose cost is being projected.  Projections are made for each 

sprint team individually.  This method therefore uses the cumulative average cost per 

story point per team.  As with the first method, when more months of cost and story 

point data are collected, the metric calculation and associated projection are updated.   

Approach 3: Three Month Rolling Average Cost per Story Point per 

Month 

This approach considers the cost attributed to the build per sprint team and the story 

points attributed to the build per sprint team, as done for Approach 2.  An efficiency 

metric is calculated the same way as done for Approach 2.  Unlike Approach 1 and 2, 

three months of data are required to develop projections.  The costs for the three 

months are then added together and divided by the sum of the story points for the three 

months, as done for Approach 2 with two months of data.  This provides an average 

cost per story point metric which can be applied to the planned story points of the month 

whose cost is being projected.  Projections are made for each sprint team individually.  

This method differs from Approach 2 as it does not take a cumulative average approach 

when creating the cost per story point metric for projections, but rather takes a three-

month rolling average.  This approach smooths the data for the previous three months, 

but is not impacted by any data that is more than three months old.  As with the first two 

methods, when additional months of cost and story point data are collected, the metric 

calculation and associated resulting projection are updated. 

Comparing the Approaches 

The dataset available for this analysis includes actual cost and story point data, by 

team, for 12 months.  The dataset includes the minimal amount of two months of data 

required for Approaches 1 and 2 and three months of data required for approach 3.  

Meaning, estimates could be created for each approach starting in month 4.  In months 



8 
 

4-12, estimates could be updated based on the new data available in the previous 

months. 

In order to evaluate each approach, estimated costs and story points were compared 

against actuals.  This enables evaluation of how well each approach estimates future 

monthly costs.  The coefficient of variance (CV) and correlation were the two statistical 

evaluations utilized to understand the answer to this question.  CV is the ratio of the 

standard deviation of the error terms to the expected mean.  The higher the CV, the 

greater the level of dispersion around the mean, which indicates a relatively poor 

predictor. The lower the CV, the more precise the estimate.  Correlation is also used to 

understand how the actual costs and projected costs move in relation to one another.  A 

positive correlation indicates that the actual and projected costs move either up or down 

in the same direction, which indicates a strong predictor.  In contrast, a low or negative 

correlation indicates a poor predictor. 

The table below shows the CV and correlation for all three approaches for Sprint Teams 

1 and 2, and then at the total level. 

 

The results indicate Approach 3 is the best predictor by virtue of having the lowest CV 

(0.42) and highest correlation (71%).  Approach 2 is the second best predictor, and 

Approach 1 is the worst predictor. 

Based on these results, we conclude that a 3 month rolling average of daily cost per 

story point is the preferred method of extrapolation.  The CV and correlation statistics 

give an indication of how well the predictor performs. 

When looking at results by team, we see a slightly different outcome.  For Team 1, the 

best predictor is Approach 2.  For Team 2, the best predictor is Approach 3.  We also 

Approach CV Correlation CV Correlation CV Correlation

1 0.37 31% 0.60 78% 0.48 54%

2 0.31 61% 0.59 68% 0.45 65%

3 0.34 57% 0.49 84% 0.42 71%

Sprint Team 1 Sprint Team 2 Total



9 
 

note that all three approaches are better predictors for Team 2 than the corresponding 

predictors for Team 1.  These results, which give additional insight into this particular 

project, could be explained if Team 2 is better able to predict future story point 

requirements.  This may be a result of Team 2 having more consistent, or less complex 

requirements assigned to them, or possibly more expertise in their ability to predict 

future story points.  

Looking Beyond Cost 

The full dataset, showing both cost and story point actuals by month and by sprint team, 

is shown in the table below: 

 

Something that stands out is cost is relatively variable.  This is especially true when 

looking at the efficiency metric for each sprint team calculated as cost per story point, as 

seen in the table below:  

Cost Story Points Cost Story Points

January 116,825$           119 151,018$           88

February 134,048$           61 112,597$           171

March 114,612$           140 125,180$           104

April 165,175$           114 151,293$           117

May 149,500$           118 122,772$           179

June 108,191$           132 119,113$           125

July 133,288$           156 139,438$           137

August 108,022$           83 35,684$             91

September 159,247$           120 46,688$             83

October 94,635$             117 18,693$             42

November 52,542$             98 5,675$               131

December 32,408$             78 2,289$               90

Team 2Team 1
Month



10 
 

 

CV can then be calculated for the efficiency metric for each sprint team: 

 

These results indicate that the efficiency metric of cost per story point is variable, as 

seen by the CV (0.45 and 0.68) for both sprint teams.  This suggests that there is 

significant risk and uncertainty in agile software projects relative to how much work is 

accomplished.  It would be easy for deferred work to proceed unnoticed since the 

variable efficiency indicates that the amount of work completed per dollar spent is not 

consistent.  

Cost is relatively variable in this data set, however the risk and uncertainty would still 

exist when managing cost in a fixed environment.  Since productivity is variable, it is 

unclear how much work will be accomplished for a fixed cost amount.  Only by also 

considering an agile metric, such as story points, do we get a full picture of the entire 

outcome.  These results challenge the agile community viewpoint discussed in the 

Overview of the Problem section, which explained that cost is not a risk that needs to be 

managed for agile development projects.  This observation is supported by the results 

indicating Approach 3, which considers both cost and story points, is the superior 

method of extrapolation.  

Cost Story Points Cost/Story Point Cost Story Points Cost/Story Point

January 116,825$           119 980$                      151,018$           88 1,721$                   

February 134,048$           61 2,207$                   112,597$           171 658$                      

March 114,612$           140 822$                      125,180$           104 1,209$                   

April 165,175$           114 1,449$                   151,293$           117 1,293$                   

May 149,500$           118 1,270$                   122,772$           179 688$                      

June 108,191$           132 820$                      119,113$           125 957$                      

July 133,288$           156 854$                      139,438$           137 1,016$                   

August 108,022$           83 1,309$                   35,684$             91 393$                      

September 159,247$           120 1,327$                   46,688$             83 566$                      

October 94,635$             117 809$                      18,693$             42 445$                      

November 52,542$             98 539$                      5,675$               131 43$                         

December 32,408$             78 415$                      2,289$               90 25$                         

Team 2Team 1
Month

Cost/Story Point CV

Team 1 0.45

Team 2 0.68



11 
 

Based on these results, we conclude that both cost and productivity must be considered 

in agile development project estimation.  Extrapolations that take both of these variables 

into account will ultimately produce better results than extrapolations that consider cost 

alone.  

Application 

Application of all the methods described in this paper is highly dependent on data 

availability.  As with any extrapolation, the cost estimator must have access to relevant 

historical cost data.  Our analysis suggests that at least two or three months of data is 

needed.  Additionally, to use the methods described as Approach 2 and Approach 3,  

measures of completed and remaining (i.e., planned) story points are needed. 

Depending on the data available, these approaches could be used for budget and 

execution planning.   

There are various advantages and disadvantages to each approach we researched.  

For Approach 1, the most advantageous feature is that actual cost per month is the only 

data required.  In contrast, Approach 2 and 3 each require actual story points per month 

and planned story points of future months.  The obvious disadvantage of Approach 1 is 

it does not consider effort accomplished with the expended funds each month.  It 

requires the assumption that future cost is dependent solely on historical costs. 

Approach 2 and 3 are advantageous in the way that they consider the work 

accomplished with the expended funds each month.  The data shows that cost is 

variable each month, thus there is a relationship between work accomplished each 

month and funds expended.  

The statistical results, CV and correlation, provide a quantitative measure of how good 

each extrapolation approach is at predicting total cost.  In our dataset, we found a high 

level of variance, both on a month-to-month basis and between the two sprint teams.  

These results indicate that more research and data collection is required to fully 

understand the cost and productivity of agile development.  However, given the data 



12 
 

available for analysis, Approach 3 represents the best estimating method.  The CV and 

correlation results should then be used as the basis for risk adjusting any estimate that 

uses this method. 

Next Steps 

In order to expand and grow the cost community’s software development cost 

estimating effort further, collecting more data from other programs that utilize agile 

would be beneficial.  This would potentially facilitate generation of various cost 

estimating relationships between effort, time, and cost.  The long term goal is to 

establish a software cost estimating methodology that accurately predicts the agile effort 

of a program prior to initiation.  In order to obtain a complete picture, we suggest a 

requirement for activities performing agile development projects to provide historical 

metrics such as the time spent on each story point and the anticipated story points to be 

completed in a given timeframe.  The latter would be an effort to minimize the challenge 

of the iterative nature of agile and create a metric that can be used to predict more 

accurately.   

Conclusion 

This paper demonstrates that extrapolation from actuals is a viable method for 

estimating agile software development cost.  Our research indicates that the best 

results are achieved when a combination of cost and productivity is considered.  An 

estimation method that considers cost alone produces less accurate results and 

potentially masks the true risk and uncertainty of the project.  

Which does agile need: predictable cost or predictable software outcomes?  Cost 

estimators tend to focus on cost.  However, we believe that within an agile environment, 

a cost-centric view will obscure a large portion of risk and uncertainty.  As a result, the 

success of any agile software development project will depend on the estimator’s ability 

to predict the final outcome of the development effort.  Our research shows that the final 

outcome is likely to depend on multiple factors, including both cost and work 



13 
 

accomplished. Additionally, we have found that variation between development teams, 

and the development team’s ability to forecast story point requirements are also likely to 

impact the final outcome of the project.   

Ultimately, agile software development projects will be well served by close 

collaboration of the agile developer and cost estimator.  The cost estimator who uses 

the extrapolation techniques discussed in this paper, will be able to provide the best 

estimate of project cost and productivity.  The agile developer plays a critical role in the 

collection of data, predicting remaining story points, and understanding the context of 

the data.  A collaborative effort that considers all these variables has the best chance at 

achieving the ultimate goal: a favorable project outcome. 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 
 

References 

1 GAO-20-590G, AGILE ASSESSMENT GUIDE: Best Practices for Agile Adoption and 

Implementation, https://www.gao.gov/assets/gao-20-590g.pdf 

2 ICEAA CEBoK, Unit I – Module 2 

 


