
Data Management for Cost Engineering Projects

Cara Cuiule

Agenda

- Introduction
- Data Types
- Storing Data
- Existing Data Repositories in Cost Estimation
- Case Study

Introduction

- Why store data in an organized repository?
- Data challenges
- Considerations for data management projects
 - Size of data
 - Type of data
 - Data transformation
 - Data security

Data Types

Data Types

- ■Structured Data
- Unstructured Data
- ■Semi-Structured Data

Structured Data

- Table = sets of rows and columns
- Fixed data types
- Tables can form Relational Databases
- Best type of data for analysis

Project ID	Phase	Start Date	End Date	System ID	Submission Date
Project_1	Α	01/01/1999	01/01/2000	System_1	01/01/2010
Project_1	В	01/01/2000	01/01/2002	System_1	01/01/2010
Project_2	Α	01/01/1999	01/01/2009	System_2	01/01/2010
Project_2	В	01/01/1999	01/01/2009	System_3	01/01/2010

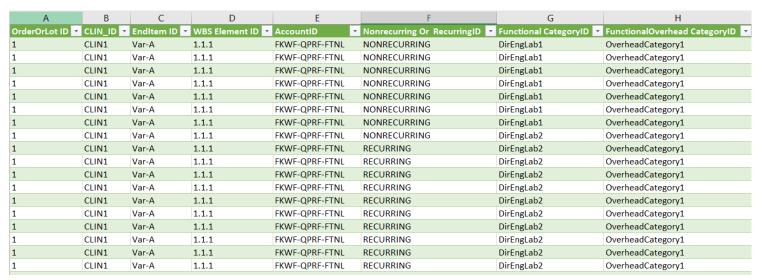
Unstructured Data

- Unstructured data cannot be stored in a pre-defined column and row format
- Examples
 - Conference lecture recording
 - Open-ended survey question answer
 - A PDF of a contract document
- Unstructured data value: extracting structured data

Semi-Structured Data

- Data not in tables but has "tags" or "keys"
- Example: JSON demo File

```
"Orderor Lot 10": W1V, w. iceaaonline.com/pit2022
"CLIN ID": "CLIN1",
"EndItemID": "Var-A",
"WBSElementID": "1.1.1",
"AccountID": "FKWF-QPRF-FTNL",
"NonrecurringOrRecurringID": "NONRECURRING",
"FunctionalCategoryID": "DirEngLab1",
"FunctionalOverheadCategoryID": "OverheadCategory1",
"StandardCategoryID": "DIRECT ENGINEERING LABOR",
"ReportingPeriodID": 1,
"Tag1": "JVXRMC.SFMXND.WQFVMY",
"Tag2": "WQCCFB.SQXSYG.SBNRNT",
"Tag3": "FKCYJT.SQMDPH.YRPLZV",
"Value Dollars": 9519,
"Value Hours": 118
"OrderOrLotID": "1",
"CLIN ID": "CLIN1",
"EndItemID": "Var-A",
"WBSElementID": "1.1.1",
"AccountID": "FKWF-QPRF-FTNL",
"NonrecurringOrRecurringID": "NONRECURRING",
"FunctionalCategoryID": "DirEngLab1",
"FunctionalOverheadCategoryID": "OverheadCategory1",
"StandardCategoryID": "DIRECT ENGINEERING LABOR",
"ReportingPeriodID": 2,
"Tag1": "JVXRMC.SFMXND.WQFVMY",
"Tag2": "WQCCFB.SQXSYG.SBNRNT",
"Tag3": "FKCYJT.SQMDPH.YRPLZV",
"Value Dollars": 12730,
```


https://cade.osd.mil/tools/csdr-tools

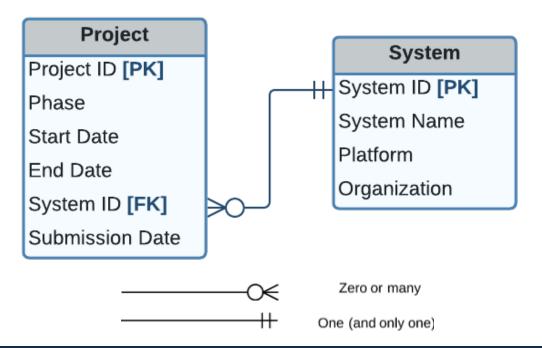
Presented at the 2022 ICEAA Professional Development & Training Workshop: www.iceaaonline.com/pit2022

Semi-Structured Data **Transformation**

If semi-structured data has a lot of common. tags, then a structured version will be very complete

Storing Data

Relational Tables: Structured Data


Project ID	Phase	Start Date	End Date	System ID	Submission Date
Project_1	Α	01/01/1999	01/01/2000	System_1	01/01/2010
Project_1	В	01/01/2000	01/01/2002	System_1	01/01/2010
Project_2	Α	01/01/1999	01/01/2009	System_2	01/01/2010
Project_2	В	01/01/1999	01/01/2009	System_3	01/01/2010

System ID	System Name	Platform	Organization
Sys_1	Drone Variant X	Unmanned Air	Org A
Sys_2	Drone Variant Y	Unmanned Air	Org A
Sys_3	Rotorcraft Variant B	Manned Air	Org B

Entity Relational Diagram

One-to-many relationship (most common)

Pros/Cons of Relational Databases

Pros

- Organize data
- Easily set data, security parameters in Relational Database Management System

Cons

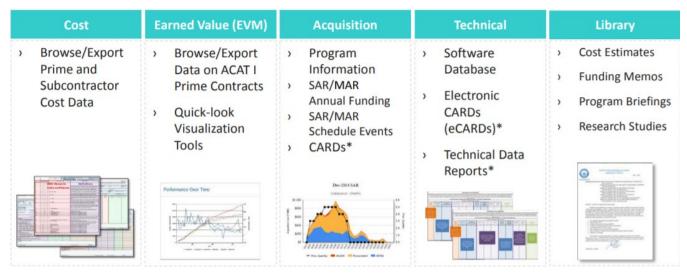
- Can only store structured data
- Changing data structure or security after initialization is difficult
- Need to learn SQL to use it

Storing Unstructured and Semi-Structured Data

- Store in non-relational databases (NoSQL)
- Transforming into structured data takes extra effort/resources

shutterstock.com · 1369502807

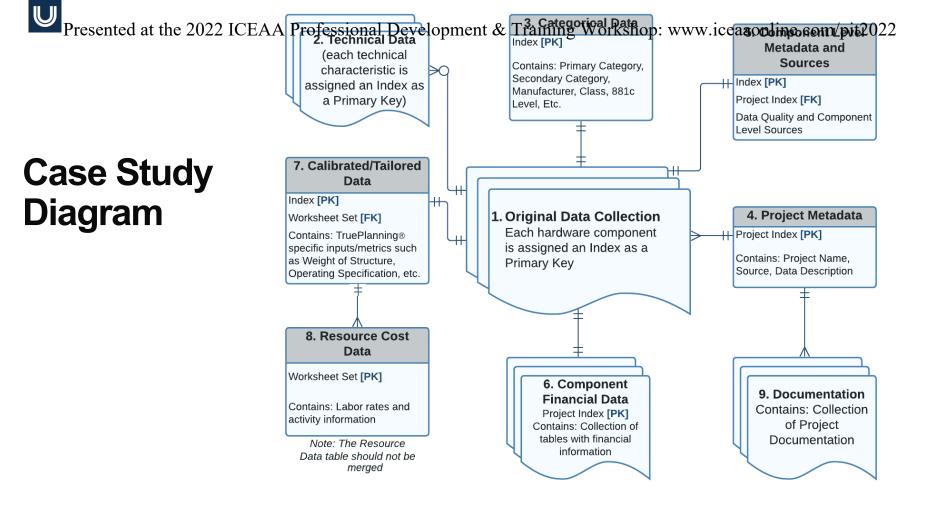
Storing Large Amounts of Data


	Data Warehouse	Data Lake
Data Structure	Structured - collection of relational	Collection of any type of data
	databases	
Schema	Schema is created before data is	Schema is created when the data is
Creation	written to the repository	read from the repository ("schema-on-
	("schema-on-write")	read")
Structure	Not Agile, takes more effort to add	Very Agile, new sources of data can be
Flexibility	new sources of data	added quickly
Туре	SQL	NoSQL
Processing	Faster	Slower
Speed		
Normalization	Extract – Transform – Load (ETL)	Extract – Load – Transform (ELT)
Method		

Adapted From: https://towardsdatascience.com/what-is-a-hybrid-data-lake-b7ef2c3cce0c https://www.dell.com/en-us/blog/schema-read-vs-schema-write-started/

Existing Data Repositories in Cost Estimation

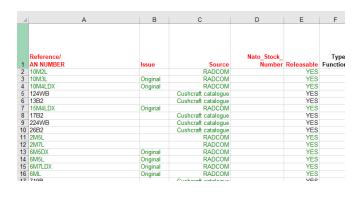
- Federal Logistics Information System (FLIS)
- Cost Assessment Data Enterprise (CADE)

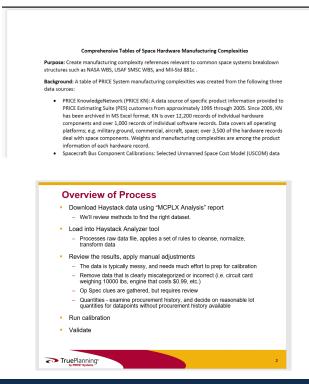

https://www.dau.edu/Lists/Events/Attachments/47/08-09-2017%20DAU-Lunch-Learn-CADE-final MTaylor.pdf

Case Study

Case Study

- Collection of data being gathered for hardware components
- Work in progress


Data Category	Data Type
1. Original Data Files	Any
2. Technical Data	Semi-Structured
	Collection of Tables
3. Categorical Data	Structured
4. Project Metadata	Structured
5. Component Level Data Sources and Data Quality	Structured
6. Component Financial Data	Structured
7. Calibrated/Tailored Data	Semi-Structured
	Collection of Tables
8. Resource Cost Data	Structured
9. Documentation	Any



Collection of Documents with Unknown Structure

- 1. Original Data
- 9. Documentation

Collection of semi-structured data

2. Technical Data

- Each data source has unique technical characteristics that cannot be anticipated ahead of time

Index	Caliber	Capacity
GunAmmo_120	.243 Win	10
GunAmmo_121	.308 Win	10
GunAmmo_122	.300 Blackout	5

Index	AVERAGE POWER RATING PER CHANNEL		ATTENUATION IN DECIBELS
000014072	27.0 WATTS OUTPUT		IN DECIDELS
000033553	1.0 KILOWATTS OUTPUT	1 RECTANGULAR OR SQUARE	
000033559	20.0 WATTS OUTPUT	RECTANGULAR OR SQUARE	4.0

6. Financial data

Can come in a variety of currencies and Fiscal Years, usually Unit Production Cost

Index	Unit Production Cost (Currency;£,GBR,2003;Metric)
MoD_103	99.95
MoD_104	169.95
MoD_107	799
MoD_109	536.6220705

	Unit Production Cost (Currency;\$,USA,1984;Metric)
MoD_100	75.13627277
MoD_101	105.1907819
MoD_102	145.2634607

3. Categorical Data

- Structured version of technical data
- Includes (but not limited to);
 - Categorization
 - **–** 881c Level
 - Proprietary

Index	Primary Category	Class	881c Level1	Proprietary
KN_1	Airframe	Military	Aircraft System	No
KN_2	Fuselage	Military	Aircraft System	No
KN_3	Window Assembly	Military	Aircraft System	No
KN_4	Spoiler	Military	Aircraft System	No
KN_5	Aileron	Military	Aircraft System	No
KN_6	Throttle Quadrant	Military	Aircraft System	No
KN_7	Wing Flaps	Military	Aircraft System	No

4. Project Metadata

- Structured version of technical data
- Includes (but not limited to);
 - Project Index
 - Project Name
 - Data Description
 - Year of Study
 - TP CalibrationVersion

Project Index	Project Name	Project Data Description	Year of Study	TruePlanning Calibration Version
GunAmmoProj	Gun and Ammunition Item Lists	Firearms and Ammunition data webscraped from Internet	2018	16.2
KN	TruePlanning Knowledge Network	Legacy open source data from PRICE Systems.	Not Available	Not Available
EO_IR	FLIR Item List	FLIR data gathered from the internet	2018	16.2

5. Component Level Metadata

- Structured version of technical data
- Includes (but not limited to);
 - Component Index
 - Project Index
 - Source
 - Data Quality
 - Date

Index	Project Index	Source	Data Quality - Total Weight	Date
GunAmmo _1002	GunAmmoProj	https://www.hyattgunstore.com/h eckler-koch-vp9-flat-dark-earth- 9mm-pistol-with-standard- sights.html	Green	4/12/2018
GunAmmo _1003	GunAmmoProj	https://www.hyattgunstore.com/h eckler-koch-vp9-flat-dark-earth- slide-od-green-frame-9mm-pistol- with-standard-sights.html	Green	4/12/2018
GunAmmo _1004	GunAmmoProj	https://www.hyattgunstore.com/heckler-koch-vp9-9mm-pistol-withstandard-sights.html	Green	4/12/2018
GunAmmo _1005	GunAmmoProj	https://www.hyattgunstore.com/heckler-koch-vp9-sk-subcompact-9mm-pistol-with-night-sights-and-three-magazines.html	Green	4/12/2018

Model Specific Data

- 7. Calibrated/Tailored Data
 - Over 200 Columns

Index	Worksheet Set			Structure(Weight;	Weight of Electronics (Weight; Ibs; Metric)
GunAmmo_2	GunAmmoWS	1575.956	6	6	0
GunAmmo_3	GunAmmoWS	1566.889	5.15	5.15	0

8. Resource Cost Data

Worksheet Set	Cost Object	Activity	Resource	Country	Unit Cost	Cost Unit
GunAmmoWS	Hardware Component	Development Engineering		United States		
GunAmmoWS	Hardware Component	Development Engineering	Design Engineering	United States	98088.34	\$/Year
GunAmmoWS	Hardware Component	Development Engineering	System Engineering	United States	127403.67	\$/Year

Conclusion

Conclusion

- Data management for cost estimation organizes data based on differences
 - Data format
 - Structured, unstructured, semi-structured
 - Data collected
 - Technical, Cost, Calibrated, Metadata, etc.
- Choose tools based on project/data requirements before the project is started
- Might need additional resources (IT Department) to implement