Decision Support and Operation Design for Mission-Critical Applications

Amin Rahimian

Principal Investigator, <u>sociotechnical.pitt.edu</u>

Assistant professor of Industrial Engineering, rahimian@pitt.edu

© M. Amin Rahimian, sociotechnical.pitt.edu

Medical Diagnosis and Treatment

- When to rely on automation
 - Algorithmic recommendations
- Trust and Explainability

Medical Triage

Adapted from DARPA ITM - Distribution A: Approved for public release: distribution unlimited.

Trust: "the willingness of a party to be **vulnerable to the actions of another** party based on the expectation that the other will perform a particular action important to the trustor, **irrespective of the ability to monitor or control** that other party." Mayer et al. 1995

Trust: "the willingness of a party to be **vulnerable to the actions of another** party based on the expectation that the other will perform a particular action important to the trustor, **irrespective of the ability to monitor or control** that other party." Mayer et al. 1995

Soldier-Robot Teaming

- Teaming in face of a dynamic adversary
- Target search and location in hazardous environments
- Task assignment and optimal resource allocation
- Information fusion in the battlefield

Improving Coordination and Cooperation in Heterogeneous Crowds of Soldiers and Robots (Analytic Framework for AI/AA)

Multi-Armed Bandits for Target Search

1	

Limited information of the environment. Position in the space and past positions and signals acquired. Actions in different positions have different consequences.

2

The decision maker can guide the agent in different directions, but some directions can get the agent closer to the target.

3

The closeness to the target is inferred from signal detection that is acquired in each step.

4

The target position is unknown and signals are subject to noise and random variations. Learn the target location by accumulating historical information.

© M. Amin Rahimian, sociotechnical.pitt.edu

POSITION

Multi-Armed Bandits for Target Search

1	

Limited information of the environment. Position in the space and past positions and signals acquired. Actions in different positions have different consequences. **CONTEXT/STATE**

The decision maker can guide the agent in different directions, but some directions can get the agent closer to the target. ARMS

2

The closeness to the target is inferred from signal detection that is acquired in each step. **REWARDS**

The target position is unknown and signals are subject to noise and random variations. Learn the target location by accumulating historical information. **EXPLORATION-EXPLOTATION TRADE-OFF** © M. Amin Rahimian, sociotechnical.pitt.edu

Human-Agent Teaming in Mission Critical Applications

- How to combine complementary capabilities of humans and autonomous agents?
 - Soldier-Robot Teaming
 - Self-driving cars
- How to determine and adapt team size and structure?

Adapting Team Structure to Context

- Individual level attributes
 - Ability level
 - Social perceptiveness
 - Cognitive style diversity
 - Diversity
 - Skill diversity
 - Cognitive style diversity
 - Identity diversity
 - Functional diversity
 - Personality traits
- Group size
- Incentives / nature of the task
- Social Influence
- Distribution of information
- Aggregation mechanism

When Social Influence Promotes Wisdom of Crowds (Context-Dependent Framework)

 μ : Systmatic bias σ : Dispersion

 θ : True value

Social influence structure $0 \le \omega \le 1$ © M. Amin Rahimian, sociotechnical.pitt.edu

n

Context-dependent Framework

Each agent is endowed with an independent and identically distributed initial estimate: a_i

Collective estimate:
$$a^n(\omega) = \omega a_1 + (1 - \omega) \frac{1}{n} \sum_{i=1}^n a_i$$

 $a^n(0)$ collective estimate generated by decentralized influence structure. $a^n(\omega), \omega > 0$ collective estimate generated by a centralized influence structure.

Feature of the estimation context: True value $\Omega(\omega, F^{\theta}_{\mu,\sigma}) \coloneqq \mathbb{P}^{\theta}_{\mu,\sigma}[|a^{n}(\omega) - \theta| < |a^{n}(0) - \theta|]$

Simulation Results

Empirical Results: prior work

[©] M. Amin Rahimian, sociotechnical.pitt.edu

Empirical Results: prior work

Empirical results: prior work

Empirical results: prior work

Can collective accuracy be improved by algorithmically rewiring social networks' structure without knowledge of the ground truth?

Page (2008). The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies.

Operation Design in Mission-Critical Applications

- Adversarial information operations
 - U.S. bioweapon
 - AIDS (1980s)
 - Ebola (2014)
 - COVID (2019)
 - Ukraine (2022-)

Adversarial information operations

- Spreading faster and farther
 - Newspapers
 - Broadcast
 - Social media
 - Multimedia messaging
 - Online and offline

Data collection & intervention design

• Large-scale, limited-information & resource-constrained environments

Trading off seed nodes for more queries

We can seed less nodes with more queries keeping the performance fixed (at 15%)

More seeds or more network data?

- Edge queries
 - unit revenue per adopter
 - $C_S = 100$, cost per seed
 - $C_T = 200$, cost per query iteration
 - Seeds half the cost of query iteration
 - More, random seeds is better

More seeds or more network data?

- Edge queries
 - If seeds are each twice as costly as query iterations

•
$$C_S = 200, C_T = 100$$

• We should query the network, but incompletely

Hiding information acquisition resources

- Trading off performance for security
- Forward-looking value of information
- Differential privacy

Thanks! - Q&A

Please reach out!

Amin Rahimian <u>rahimian@pitt.edu</u> <u>sociotechnical.pitt.edu</u>