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Abstract 
Agile software estimating and planning often rely on expert judgment to assess the size 

of the development effort at various levels of granularity and stages of maturity. 

Previous research by the author quantified the inherent risk and uncertainty of the self-

similar scales (e.g., T-shirt sizing) commonly used in these assessments. This paper 

expands those a priori mathematical results and empirically tests the accuracy of 

experts in applying those scales. It elucidates the ideal ratio to align with the desired 

confidence interval, and recommends feedback mechanisms to improve consistency. 
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Introduction 
As shown in the figure below, the selection of a software estimating method is highly 

dependent on the phase within the development and sustainment cycle, which in turn 

determines the data available for a software development estimate. 

 

Figure 1: Software Estimating Methods 

In the above graphic, the most defensible estimates are produced later in the life cycle, 

using an extrapolation from actuals method (Cost Estimating Body of Knowledge 

(CEBoK), 2013).  If estimators have an actual cost history available, then this method, 

such as the one described in Are We Agile Enough to Estimate Agile Software 

Development Costs? is most appropriate. (Kosmakos & Brown, 2022)  If an actual 

cost history is not available, and requirements are mature enough to estimate functional 

size, then a parametric method and tool such as SWEET is an ideal choice, as 

described in Dynamic Software Effort Estimation: How SWEET It Is! (Gellatly, 

Braxton, Brown, Jones, & Wekluk, 2022)  It should be acknowledged, however, that an 

estimate of functional size is not always available, especially for programs/projects early 

in the life cycle.  In these situations, an alternative method is preferred, such as the one 

described in this paper, Uncertainty of Expert Judgment in Agile Software Sizing. 

(Braxton, 2022) 
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The genesis of this paper was to take a very straightforward question to the effect of 

“what if we’re wrong?” when applying the sort of scale used in T-Shirt Sizing and use it 

to form the basis of a series of increasingly refined thought experiments (i.e., create an 

excuse to have fun with probability distributions!).  The goal of the research is two-fold:  

(1) to derive the Risk and Uncertainty implications of such scales; and (2) to carefully 

consider how the application of such scales can be improved. 

This paper builds on a 2021 IT-CAST presentation (Braxton, 2021) and addresses 

practical implications of low-level vs. high-level risk and uncertainty. 
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Prologue:  Who Wants To Be a Millionaire? 

“Baby all the lights are turned on you/ 

Now you’re in the center of the stage” 

 - Billy Joel, “Everybody Loves You Now,” Cold Spring Harbor 

While this anecdote from the author’s life was not the genesis of this paper, it is an apt 

illustration of the central 

“double or half” conceit. 

In the basic Who Wants To 

Be a Millionaire game show, 

the dollar value 

(approximately) doubles for 

each question, with $1,000 

and $32,000 as the “safe” 

plateaus.  Beyond $32,000, 

the contestant is faced with a 

choice:  walk away with the 

amount already earned, or 

go for the next question 

(“double”) but risk losing all 

but the $32,000.  For the 

$64,000 Question (see what 

they did there?!) the losing 

side of the bet is precisely 

“half.”  The actual situation 

Figure 2: "Double or Half" in a Game Show Context 
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faced by the author is illustrated in Figure 1.1 

In a recent episode of The Chase, chaser James “The High Roller” Holzhauer offered 

the contestant a five times x (5x) vs. one fifth x (x/5) proposition!  While the show seems 

to offer the chaser considerable flexibility in an effort to bait the contestant into a riskier 

one-on-one chase, this sort of exponential scale with 𝑅 times 𝑥 as the more lucrative 

option and 1/𝑅 times 𝑥 as the less lucrative option, where x is the amount “earned” in 

the Cash Builder Round, is not uncommon.  It is important to note that the ratio R is 

usually more on the order of two and a half (2.5) or three (3).  For our T-shirt sizing, we 

will start off with a ratio of two (2.0) and then generalize to other possible values of 𝑅. 

  

                                            

1 https://millionaire.fandom.com/wiki/Peter_Braxton  
 

https://millionaire.fandom.com/wiki/Peter_Braxton
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Problem Statement 
The sentiment “You can’t cure bad cost analysis with good risk analysis” is attributed to 

ICEAA Lifetime Achievement Award winner Dick Coleman.  Maybe not, but we have to 

try, and we might just improve our cost analysis in the process!  This paper poses the 

question of how best to quantify the uncertainty (and risk) associated with agile software 

sizing estimates produced by subject matter experts (SMEs).  Specifically, it examines 

self-similar scales wherein the SME provides a size assessment chosen from amongst 

a discrete set of size options, interchangeably referred to as “notches” or “buckets” on 

the scale.  The simplest such scale is T-shirt size with a ratio of two (2.0), similar to the 

doubling dollar value in Millionaire.  In our initial thought experiment, we ask what would 

happen if the SME were off by one T-shirt size in either direction.  For example, what if 

they assessed the size as Medium, and it were really Small (half) or Large (double)? 

Despite the cost community’s best efforts to engender data-driven methods wherever 

possible, SME-driven methods persist, and it behooves us to set up both good 

structures (process) and good training (people) to maximize estimate fidelity.  That is 

the ultimate goal of the disquisitions in this paper. 

Sizing Methods 

The following are common sizing methods used in software cost estimating, as defined 

by Agile practitioners. 

• T-Shirt Sizing:  Agile teams popularized T-shirt sizing in project estimation to 

track how much time or effort an initiative will take. Each project is assigned a t-

shirt size—e.g., Small, Medium, Large, Extra-Large—to represent that task’s 

relative effort. 

• Planning Poker:  A gamified technique that development teams use to guess the 

effort of a task. Since the estimates are based on the entire group’s input, they 

can be more accurate than a single expert’s judgement. 

• Fibonacci Numbers:  This technique is borrowed from nature: an exponentially 

increasing scale that allows relative sizing and a realistic way to forecast work. 
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The technique creates a buffer in estimating that allows for change and 

uncertainty. 

• Story Points:  A unit of measure for expressing an estimate of the effort required 

to write software code. Scrum teams assign story points relative to work 

complexity, breadth, and amount of risk or uncertainty. 

• Function Points (FP):  A size measure that can be used as an input to estimate 

cost, effort, schedule and staffing needed to develop a software project. Function 

point analysis identifies logical groups of data that a project or application 

maintains or accesses, and logical processes that query or report that data. FP 

analysis counts three Input/Output (I/O) processes: external inputs, external 

outputs, and external inquiries. 

• Simple Function Points (SiFP):  Developed by Meli and acquired by the 

International Function Point Users Group (IFPUG) in 2019, SiFP identifies only 

one process: Unspecified Generic Elementary Process (UGEP) corresponding to 

one of the three transactional processes. SiFP identifies data function and 

assigns a count based on how many data elements it has. 

• Source Lines of Code (SLOC):  A quantitative measurement in computer 

programming for files that contain code from a computer programming language. 

The number of lines indicates the size of a file and gives an indication of the 

amount of work involved to write the code. 

Note that some of these methods may be used in combination.  For example, you could 

use Planning Poker to assign Fibonacci numbers to story points, the second, third, and 

fourth choices above.  There are other characterizations of software effort, such as 

Level of Effort (LOE), which are not generally accepted as sizing metrics. 

T-Shirt Sizing Scales 

Our focus in this paper is T-Shirt Sizing, which is any use of the adjectival categories 

commonly associated with literal t-shirts – Extra Small (XS), Small (S), Medium (M), 

Large (L), Extra Large (XL), etc. – to define an ordinal scale.  This scale can be 

denominated in hours, dollars, Story Points, Function Points, or the like. 
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Thought Experiment:  “Double or Half?” 

“You may be right/ I may be crazy/ 

But it just might be a lunatic/ You’re looking for” 

 - Billy Joel, “You May Be Right,” Glass Houses 

Our going-in risk position when applying a T-shirt sizing scale is that the SME 

performing the assessment very well may be right, but could just easily be off by one T-

shirt size in either direction.  If the “true” size is a “notch” higher on the scale than the 

SME’s assessment, that represents an underestimate (setting the stage for an overrun); 

and if a notch lower, an overestimate (setting the stage for an underrun). 

Macro-Level T-Shirt Sizing 

Figure 3 shows one particular – and perhaps extreme! – instantiation of a T-shirt sizing 

scale.  It is baselined at a Small effort of 1,000 hours, or about half a developer-year, 

and each “notch” on the scale doubles from the previous.  We denote this with the ratio 

value R = 2.  We will reference this primary scale throughout the paper. 

The entire scale varies more than 500-fold, from Extra Small (XS) to Six Extra Large 

(6XL).  We use the term “self-similar” to emphasize the fact that the scale looks the 

same from any point of reference:  the next notch is always double, the previous notch 

is always half.  This is an exponential scale, though examples in the physical sciences, 

such as the Richter scale for earthquakes and the Decibel scale for sound, usually use 

the term logarithmic, since taking the logarithm of the phenomenon being measured 

actually creates a linear scale. 
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Figure 3: T-Shirt Sizing Scale 

 

Characterizing Risk and Uncertainty 

Recall that risk is the potential for growth of estimated quantities like size, schedule, 

effort, or cost, and opportunity is the potential for reduction.  We usually use risk as an 

umbrella term for both risks and opportunities, since both represent deviation from a 

central value but in opposite directions.  Our primary measure of risk in this paper is the 

Cost Growth Factor (CGF), which is the ratio of the expected value to the point 

estimate.  A CGF greater than one (1.0) represents net risk; less than one, net 
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opportunity.  Throughout, we will subtract one (100%) from CGF value to isolate the 

growth component as a proportion of the point estimate in percentage terms. 

Likewise, uncertainty is the variability in the estimate, reflected by properties of a 

probability distribution such as variance or standard deviation.  Taking advantage of the 

self-similarity of agile scales, we generally want to express uncertainty in relative 

(unitless) terms.  We do this by dividing the standard deviation by either the expected 

value (risk-adjusted estimate) or the point estimate (non-risk-adjusted).  The former is 

the traditional coefficient of variation (CV), and we denote the latter as a pseudo-CV.  

We report both values throughout but treat CV as the primary metric.  Note that CV is 

generally smaller, as it divides the same numerator by a larger denominator. 

This approach is consistent with default “Parametric” cost estimating approaches like 

straight averages and (OLS) regressions.  Those methods are generally unbiased (zero 

percent cost growth), and the CV is computed as the standard deviation or standard 

error of the estimate divided by the unbiased mean. 

We will demonstrate in this paper that straightforward – if not always pretty! – math 

leads to growth percentages and CVs under various distributional assumptions related 

to our central “double or half” conceit.  The roadmap is as follows. 

In each instance, we’ll vary the precise nature of the “double-or-half” thought experiment 

to establish a specific probability distribution.  Next, we’ll compute the mean of that 

probability distribution and compare it with the point estimate (H hours) to determine the 

resultant cost growth factor, or CGF, from which we’ll subtract one (1) to express it as 

an expected percent growth.  Then, we’ll compute the variance and its square root, the 

standard deviation.  Dividing this by the original point estimate yields a “pseudo CV,” but 

we’ll emphasize the more appropriate coefficient of variation, or CV, which necessitates 

dividing by the risk-adjusted mean from the previous step.  We’ll compile these risk and 

uncertainty benchmarks, both expressed as percentages. 

As we proceed through the analysis, we’ll move from a simple discrete case to some 

more realistic continuous cases.  (Even though the scale itself is discrete, we believe in 

outcomes that are continuous for all practical purposes.)  Then we’ll introduce the notion 
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of confidence to both the discrete and continuous cases.  Note that the term confidence 

ideally reflects the true accuracy of the SMEs providing the assessment, and not their 

expressed confidence, which may be colored by false bravado or simply well-meaning 

overconfidence. 

We’ll also consider generalization to scale ratios other than 2. 

Symmetric Uncertainty on an Asymmetric Scale 

“We didn’t start the fire/ 

It was always burning, since the world’s been turning” 

 - Billy Joel, “We Didn’t Start the Fire,” Storm Front 

We didn’t invent geometric scales like T-shirt sizing, they were clearly found to be useful 

by the software development community.  They are more versatile in capturing the full 

range of outcomes for development of simple to complex software capabilities than a 

linear scale would be. 

You might think that plus or minus one notch would lead to uncertainty but no risk, and 

this would be true if the T-shirt sizing scale were linear.  A constant slope as reflected in 

the principle of “rise over run” would mean the increase moving one notch larger would 

exactly cancel out the decrease moving one notch smaller, for a net expectation equal 

to the SME’s size assessment on which the uncertainty is centered. 

With the exponential T-shirt sizing scale, however, the slope is not constant but rather 

ever-increasing.  This means that moving one notch larger incurs a greater penalty, 

more than canceling out the reduction of moving one notch smaller.  With this 

symmetric uncertainty – equally likely to be off in either direction – applied to an 

asymmetric (exponential) scale, we should not be surprised that the result entails not 

only a significant amount of uncertainty but also some manner of risk. 
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Naïve Uncertainty:  Coin Flips 

Figure 3 illustrates our first and simplest 

scenario. 

Suppose the SME’s assessment is 

correct half the time, and that the true 

value is one notch higher (double) one 

quarter of the time and one notch lower 

(half) the remaining quarter of the time.  

We use H hours as the point estimate 

without loss of generality (w.l.o.g.).  Since the scale is self-similar, the double-or-half 

proposition “looks” the same regardless of whether the assessed estimate is large or 

small. 

Just as the Cincinnati Bengals won the coin toss to start Super Bowl LVI, we can model 

this discrete distribution as two successive flips of a fair coin:  one to determine whether 

the SME is right or wrong; and if wrong, a second to determine whether the SME is low 

or high, assuming they are equally likely to under- or over-estimate. 

The mean is the expected value, or the sum of products of the three possible outcome 

values and their respective probabilities: 

∑𝑥𝑖𝑝𝑖

𝑖

= (1 4⁄ )(𝐻 2⁄ ) + (1 2⁄ )(𝐻) + (1 4⁄ )(2𝐻) =
9𝐻

8
= (1 +

𝟏

𝟖
)𝐻 

 

The CGF is 1.125, tantamount to 12.5% growth over the point estimate, highlighted in 

red. 

We use the shortcut formula for the variance of a probability distribution, the expected 

value of the square less the square of the expected value, which we just determined. 

HH/2 2H

1
/4 1
/41

/2

Figure 4: Discrete Distribution 
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∑𝑥𝑖
2𝑝𝑖

𝑖

− [∑𝑥𝑖𝑝𝑖

𝑖

]

2

= (1 4⁄ ) (𝐻
2

4⁄ ) + (1 2⁄ )(𝐻2) + (1 4⁄ )(4𝐻2) − [
9𝐻

8
]
2

=
25𝐻2

16
−

81𝐻2

64

= [
√𝟏𝟗

𝟖
𝐻]

2

 

 

The “pseudo-CV,” i.e., the multiplier to the point estimate to get standard deviation, is 

highlighted in purple, approximately equal to 54.49%.  The CV is the square root of 19 

over nine, or about 48.43%. 

We will continue this convention throughout in the derivation of risk and uncertainty 

results:  percentage growth over and above 𝐻 hours will be highlighted in red, and 

pseudo-CV, as the coefficient of 𝐻 before squaring in the variance calculation, will be 

highlighted in purple. 
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Problem Context:  Self-Similar Scales in Agile 

Software Development 

Continuous Risk on a Discrete Scale 

As noted, T-shirt sizing takes a different approach than a traditional three-point estimate 

often elicited from SMEs.  In that case, the SMEs are allowed to choose any range of 

minimum (optimistic), most likely, and maximum (pessimistic) values.  This allows 

considerable flexibility, but SMEs generally have a poor track record accurately 

characterizing uncertainty in this approach. (Braxton & Coleman, Teaching Pigs to Sing: 

Improving Fidelity of Assessments from Subject Matter Experts (SMEs), 2012)  While T-

shirt sizing appears to be a one-point estimate – the SME provides one and only one 

size – the premise of this paper is that the risk analyst is actually getting a three-point 

estimate “for free,” where the min and max are the adjacent sizes or “notches” on the 

scale.  By providing the SME a “drop-down menu” with limited choices, we simplify the 

sizing process and enable them to focus on the basic judgment, steering clear of false 

precision.  This also represents “sailor-proofing” of a sort, helping guard against wildly 

inappropriate intervals.  Because we generally believe that risk is right skew, the 

exponential scale is appropriate.  Because it is self-similar, a notion drawn from fractal 

geometry, the uncertainty will be proportionally identical at each step of the scale.  Even 

though these steps are discrete, outcomes are continuous, and we should model them 

as such. 
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“Maximum” Uncertainty:  The Uniform Distribution 

Figure 4 represents our first potential 

refinement to the probability model.  We are 

still treating “double or half” as the endpoints, 

but reflecting the more realistic assumption of 

a continuous distribution of outcomes.  

Though cost and risk analysts tend to leap to 

a three-point estimate (like Triangular), we 

start with Uniform as the most naïve 

continuous distribution. 

The mean of a Uniform distribution is simply the average of the min and max values, 

which is equivalent to the middle (median) value. 

𝐻
2⁄ + 2𝐻

2
=

5𝐻

4
= (1 +

𝟏

𝟒
)𝐻 

This represents 25.0% growth, highlighted in red.  The variance is the range squared 

divided by 12. 

(2𝐻 − 𝐻
2⁄ )

2

12
=

9𝐻2

4 ∙ 12
= [√3 ∙

𝐻

4
]
2

= [
√𝟑

𝟒
𝐻]

2

 

The pseudo-CV highlighted in purple is the square root of three divided by four, or about 

43.30%.  The CV is the square root of three divided by five, or about 34.64%. 

Note that by the very nature of continuous probability distributions, we are forced to 

abandon the second “coin flip,” wherein the SME is equally likely to over- or under-

estimate.  In this case, the probability of an underestimate (overrun) is twice that of an 

overestimate (underrun), since it is directly proportional to the ratio of the bases of the 

two half-rectangles:  (2H-H) = H and (H – H/2) = H/2, respectively.  This can be seen in 

the “cartoon” above. 

HH/2 2H

Figure 5: Uniform Distribution 
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“Standard” Uncertainty:  The Triangular Distribution 

Figure 5 reflects an alternative to the 

Uniform distribution.  As with the Uniform, 

the Triangular assumes the “double-or-half” 

interval represents the entire range of 

possible outcomes.  Whereas the Uniform 

arguably gives too much weight to the tails, 

the Triangular perhaps gives not enough.  

While this Triangular is asymmetric by 

design, a good rule of thumb to remember 

is that the half-base of a symmetric Triangular must be divided by the square root of six, 

or almost two and a half, to yield the standard deviation. 

The mean of a Triangular is the average of the min, most likely, and max.  (The intuition 

that the middle value should be more heavily weighted proves incorrect!) 

𝐻
2⁄ + 𝐻 + 2𝐻

3
=

7𝐻

6
= (1 +

𝟏

𝟔
)𝐻 

This represents 16.7% cost growth, highlighted in red. 

The variance is sum of squares of the three parameters less the sum of their pairwise 

products, all divided by 18. 

(𝐻 2⁄ )
2
+ 𝐻2 + (2𝐻)2 − 𝐻2

2⁄ − 𝐻2 − 2𝐻2

18
=

7𝐻2

4⁄

18
=

7𝐻2

2 ∙ 36
= [√

7

2
∙
𝐻

6
]

2

= [
√𝟏𝟒

𝟏𝟐
𝐻]

2

 

The pseudo-CV highlighted in purple is the square root of 14 over 12, or about 31.18%.  

The CV is the reciprocal of the square root of 14, or about 26.73%. 

Note that both the CGF and CV are reduced from the Uniform case, since more 

probability is naturally concentrated near the peak of the triangle, the SME’s “most 

likely” assessment. 

  

HH/2 2H

Figure 6: Triangular Distribution 
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“Standard” Risk:  The Lognormal Distribution 

For many cost and 

schedule risk 

applications, the 

Lognormal is thought to 

be the preferred 

distribution.  As we apply 

the Lognormal to our 

present scenario, we 

immediately notice the issue illustrated in Figure 6.  Whereas the Uniform and 

Triangular are finite distributions, the Lognormal has an infinite right tail.  For this 

reason, our 2H point (“double”) cannot be at the extreme end of the distribution.  We are 

forced to define a right-hand tail probability which, however small, must be nonzero.  

For reasons of symmetry and convenience, we introduce an equal probability for the 

(finite) left tail, and we denote them both alpha over two.  This leaves the majority of the 

probability, specifically one minus alpha, in the “double-or-half” range between H/2 and 

2H.  We’ll discuss this choice of notation further in the next section. 

Because the log of a Lognormal is Normal, the “double-or-half” range of the self-similar 

scale naturally translates into a symmetric confidence interval in the transformed space 

(aka “related normal”).  In this case, we assume that the SME estimate represents 

median, which for the Lognormal falls to the right of the mode (peak) but the left of the 

mean (balancing point).  The interval is (𝑙𝑛𝐻– 𝑙𝑛2, 𝑙𝑛𝐻, 𝑙𝑛𝐻 + 𝑙𝑛2).  If we translate this to 

a standard normal by subtracting the mean (lnH) and dividing by the standard deviation, 

the Z-score for the top end of the interval becomes ln2 divided by sigma.  Since the 

right-tail probability is alpha over two, we use the corresponding percentile and inverse 

CDF of the standard normal to solve for sigma, as shown below. 

𝛷−1(1 − 𝛼
2⁄ ) =

𝑙𝑛2

𝜎
 

 

-50 0 50 100 150 200 250 300

Lognormal
Lognormal

α/2
α/2

1-α

Figure 7: Lognormal Distribution 
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𝜎 =
𝑙𝑛2

𝛷−1(1 − 𝛼
2⁄ )

=
1

𝑙𝑜𝑔2𝑒
𝛷−1(1−𝛼

2⁄ )
 

From sigma, the standard deviation of the related normal, we can directly calculate the 

CV of the lognormal itself. (Braxton & Sayer, Probability Distributions for Risk Analysis, 

2013) 

𝐶𝑉 = √𝑒𝜎2
− 1 

Since the mean of the lognormal is 𝑒𝜇+
𝜎2

2 , the cost growth relative to the point estimate 

(median) is: 

𝐶𝐺𝐹 = 𝑒
𝜎2

2 = √1 + 𝐶𝑉2 

 

Figure 8 below illustrates the increase in CGF and CV as the percent chance of being 

outside the “double-or-half” range (as denoted by alpha) increases.  Higher alpha 

values results in an increasingly skewed lognormal with a heavy right tail.  We truncate 

the graph at alpha equals one half, the proverbial “coin flip,” as CGF and CV values 

beyond that are impractically high. 
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Figure 8: Lognormal CGF and CV as a Function of Confidence 
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Generalization #1:  Confidence Level 

This is a good juncture to back up and 

formally introduce our notion of 

confidence. 

Let us return momentarily to the discrete 

case, retaining the second coin flip as fair, 

with an equal probability of over- or 

underestimate when the SME is wrong.  

Now, however, the first coin flip becomes 

unfair.  We borrow the notion (and notation) of significance level from hypothesis and 

denote as alpha the sum of the two tail probabilities, or the chance the SME is wrong.  

The chance the SME is right then becomes the complement, or one minus alpha. 

 

Figure 10: Discrete CGF and CV as a Function of Confidence 

When alpha = 0, our estimate is certain, and both cost growth and CV shrink to zero.  

When alpha = 1, we are 100% wrong, and we have a “barbell” split between the two 
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Figure 9: Discrete Distribution (with Confidence) 
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adjacent sizes, H/2 and 2H.  In this case, the two “tails” in their entirety are the adjacent 

“buckets” or “notches” on the scale.  Growth maxes out at 25%, and CV maxes at 60% 

(pseudo-CV of 75%), as illustrated in the graph.  The equations behind these graphs 

are derived below. 

Once again, the expected value is the sum of the products of the possible outcomes 

and their associated probabilities.  The former remain unchanged, but the latter now 

reflect the “unfair” first coin flip.  Cost growth as a function of alpha is highlighted in red. 

∑𝑥𝑖𝑝𝑖

𝑖

= (𝛼 2⁄ )(𝐻 2⁄ ) + (1 − 𝛼)(𝐻) + (𝛼 2⁄ )(2𝐻) = (1 +
𝜶

𝟒
)𝐻 

As always, we use the variance shortcut, the expected value of the square minus the 

square of the expected value. 

∑𝑥𝑖
2𝑝𝑖

𝑖

− [∑ 𝑥𝑖𝑝𝑖

𝑖

]

2

= (𝛼 2⁄ ) (𝐻
2

4⁄ ) + (1 − 𝛼)(𝐻2) + (𝛼 2⁄ )(4𝐻2) − [(1 +
𝛼

4
)𝐻]

2

= 

(1 +
9𝛼

8
)𝐻2 − (1 +

𝛼

2
+

𝛼2

16
)𝐻2 =

10𝛼 − 𝛼2

16
𝐻2 = [

√𝟏𝟎𝜶 − 𝜶𝟐

𝟒
𝐻]

2

 

The pseudo-CV is highlighted in purple above, and the CV is below.  Both are now 

expressed as a function of alpha. 

𝐶𝑉 =
√10𝛼 − 𝛼2

4 + 𝛼
 

The previous specific case of alpha equals one half is called out on the graph, with a 

CGF of 1.125 (12.5% growth, linearly interpolated between 0% and 25%) and CV of 

48.43%.  Also, the perhaps more realistic case of alpha equals one fourth.  Because 

CGF is linear with alpha, this equates to half as much cost growth, or 6.25%.  However, 

since CV is quadratic, it is only reduced to 36.75%, or by about a quarter. 
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We can now extend the 

traditional three-point estimate 

Triangular distribution to 

incorporate our confidence 

construct.  Again, for reasons of 

convenience and convention 

(not to mention aesthetics!), we 

extend the two tails proportionally, 

maintaining the one-to-two ratio of 

the left and right half bases.  With the tail probability split by the same ratio, a common 

scale factor can be determined.  Because the small orange right triangles are similar to 

the large blue right triangles they overlap, the respective ratios of their areas (orange to 

blue) is equal to the square of the ratio of a corresponding pair of sides.  Thus, the scale 

factor is seen to be a function of the square root of alpha.  Note that this formulation is 

called the Trigen distribution in some Monte Carlo simulation tools. 

One might consider a practical limit on alpha in this case to be when the left tail extends 

all the way to zero (0).  When this happens, both half-bases have doubled, so that the 

expanded Triangular has become T(0, H, 3H), maintaining the two-to-one ratio of half-

bases.  The two tail triangles are both half as wide and half as tall as the half-triangles in 

which they are embedded, and therefore have one fourth the area.  Thus, this 

corresponds to alpha equals one fourth, highlighted on the graph below.  For any values 

of alpha greater than one fourth, the left tail extends beyond zero and into the 

negatives, which is often considered untenable for cost estimating.  (The developer will 

never pay us for the privilege of developing the software!)  As long as the occasional 

negative values are not too extreme, however, this will generally “come out in the wash” 

of a Monte Carlo simulation. 

The expected value is again the average of the min, most likely, and max. 

𝜇 =

[(1 −
√𝛼

1 − √𝛼
)

𝐻
2 + 𝐻 + (2 +

√𝛼

1 − √𝛼
)𝐻]

3
⁄

= (1 +
𝟏

𝟔 − 𝟔√𝜶
)𝐻 

HH/2 2H

α/3 2α/3

Figure 11: Triangular Distribution with Confidence 
(Proportional Tails) 
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The cost growth as a function of alpha is highlighted in red above.  The variance is 

again the sum of the squares of min, most likely, and max, less the sum of their pairwise 

products, all divided by 18.  A derivation is given in the appendix. 

𝜎2 =

[
 
 
 √𝟕 − 𝟒√𝜶

𝟐

𝟔 − 𝟔√𝜶
𝐻

]
 
 
 
2

 

The pseudo-CV is highlighted in purple above, and the CV is given below.  Substituting 

alpha equals zero, we can check that the CGF and CV reduce to the previous 

Triangular values. 

𝐶𝑉 =  
√7 − 4√𝛼

2

7 − 6√𝛼
 

Alpha = 0.25 is highlighted on the graph, with 33.3% cost growth and CV = 39.53%. 

 

Figure 12: Triangular CGF and CV as a Function of Confidence 
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Proportional or Symmetric Tails 

As the Lognormal, Discrete, and Triangular examples are introduced, our new question 

is, what if things get “worse than double” or “better than half”?!  When the author faced 

the famous Canadian provinces question for $250,000, it was now a “double or quarter” 

proposition2.  (Note that for project execution, the left tail is good, but for game show 

winnings it is bad!) 

When extending the tails, the question arises as to whether the tail probability should be 

split proportionally or symmetrically.  Because of the Lognormal’s relationship with the 

underlying normal, it can kind of have its cake and eat it, too.  In our formulation, the tail 

probability was split evenly, which creates literal symmetry of tails for the related normal 

in transformed space.  In the original space, the infinite right tail has more influence on 

growth and CV than the finite left tail. 

Figure 12 shows the natural 

extension of the Uniform 

distribution to go beyond 

“double or half” where the two 

tails are split in proportion to 

the half-bases, i.e., one-

third/two-third, just as 

previously demonstrated for the 

Triangular.  While the height of the 

rectangle in the tailless case of the Uniform was 2/(3H), to ensure the total probability 

under the “curve” was one, the height is now reduced by a factor of one minus alpha to 

accommodate the tail probabilities. 

 

 

                                            

2 The author rattled off all ten provinces, but shamefully omitted Nunavut amongst the territories.  Had he 
been wrong, he would’ve dropped down to $32,000, or roughly one-fourth of the $125,000 previously 
earned. 

HH/2 2H

α/3 2α/3

Figure 13: Uniform Distribution with Confidence 
(Proportional Tails) 
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Once again, the mean is the average of the min and max: 

𝜇 =
[
(1 − 2𝛼)
(1 − 𝛼)

𝐻
2 +

(2 − 𝛼)
(1 − 𝛼)

𝐻]

2
⁄ =

5 − 4𝛼

4 − 4𝛼
𝐻 = (1 +

𝟏

𝟒 − 𝟒𝜶
)𝐻 

Cost growth as a function of alpha is highlighted in red. 

The variance is the range squared divided by 12: 

𝜎2 =
(3𝐻)2

12[2(1 − 𝛼)]2
= [

√𝟑

𝟒 − 𝟒𝜶
𝐻]

2

 

The pseudo-CV as a function of alpha is highlighted in purple.  The CV is given below. 

𝐶𝑉 =
√3

5 − 4𝛼
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If instead the tails are split 

equally, we have the slightly 

different scenario illustrated in 

Figure 13.  The dimensions of 

the rectangle are the same, but it 

is shifted so that the tails contain 

equal probability, namely alpha 

over two. 

Notice that in this case the cost growth highlighted in red is not a function of alpha, 

because the distribution balances on the same point (25% growth) regardless of how 

long or short the symmetric tails are. 

𝜇 =
[
(2 − 5𝛼)
(4 − 4𝛼)

𝐻 +
(8 − 5𝛼)
(4 − 4𝛼)

𝐻]

2
⁄ =

5

4
𝐻 = (1 +

𝟏

𝟒
)𝐻 

The variance, and with it the pseudo-CV highlighted in purple, are the same as the 

Proportional Tails case, because the spread of the distribution is the same, but the CV 

is slightly different. 

𝜎2 =
(6𝐻)2

12[4(1 − 𝛼)]2
= [

√𝟑

𝟒 − 𝟒𝜶
𝐻]

2

 

𝐶𝑉 =
√3

5 − 5𝛼
 

The case of Triangular with Symmetric Tails is deferred to the appendix. 

  

HH/2 2H

α/2 α/2

Figure 14: Uniform Distribution with Confidence 
(Equal Tails) 
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Figure 15: Uniform CGF and CV as a Function of Confidence (Proportional Tails) 

 

Figure 16: Uniform CGF and CV as a Function of Confidence (Equal Tails) 
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Here is a handy summary of all the previous results generalized with the confidence 

parameter, alpha.  The first pair of columns shows the Growth and CV percentages as a 

function of alpha, and the second pair of columns provides specific values for the case 

where alpha equals one fourth.  It is left as an exercise for the student to determine 

appropriate upper bounds on alpha for each scenario. 

Table 1: Risk and Uncertainty as a Function of Confidence 

 

Growth % CV 

Growth % 
(α = 0.25) 

CV 
(α = 0.25) 

Discrete 
(Generalized) 

𝛼

4
 

√10𝛼 − 𝛼2

4 + 𝛼
 6.2% 36.74% 

Lognormal √1 + 𝐶𝑉2 − 1 √𝑒𝜎2
− 1 19.9% 66.16% 

Uniform 
(Proportional) 

1

4 − 4𝛼
 

√3

5 − 4𝛼
 33.3% 43.30% 

Uniform 
(Equal) 

1

4
 

√3

5 − 5𝛼
 25.0% 46.19% 

Triangular 
(Proportional) 

1

6 − 6√𝛼
 

√7 − 4√𝛼
2

7 − 6√𝛼
 

33.3% 39.53% 

For the Lognormal case, it is not immediately apparent how Growth and CV are 

functions of alpha, but recall that 𝝈 =
𝑙𝑛2

𝛷−1(1−𝛼
2⁄ )

.  The general logical flow is to calculate 

variance of the related normal (sigma squared) first, then the CV of the lognormal as a 

function of sigma squared, and finally the Growth as a function of CV (right to left). 

As is often the case in risk, some distributions – in this case, the Lognormal – indicate 

lower growth but higher CV, whereas others – in this case, Uniform and Triangular – 

indicate higher growth but lower CV.  Fortuitously, these tend to have similar impacts at 

high percentiles of interest, such as the 70th and 80th. 

Thus far, we have generalized our distributions with the confidence of the SME but 

maintaining the scale ratio of two (𝑅 = 2.0).  Now we turn to generalizing the scale ratio 

and the context in which it is used for assessment.  
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Planning Poker, Fibonacci Numbers, and the Golden 

Mean 

Micro-Level T-shirt Sizing 

T-shirt sizing as described is a “macro-level” method, assessing Program Epics (PEs) 

very early in development when very little detail is available.  By contrast, in a typical 

agile implementation, scrum teams conduct planning for three-month program 

increments and three-week sprints.  This involves “micro-level” assessments of work to 

be completed in the immediate future.  We posit that a priori SME assessments at these 

two levels are of comparable accuracy and precision.  If Risk is indeed fractal, then 

these assessments should “look” the same whether they are on a large scale or a small 

scale. 

One possible counterargument is that the micro-level assessments should be more 

accurate because the assessor has more direct control over the execution of the work, 

which will be conducted more or less right away.  At this detailed planning stage, we 

would hope that there are relatively few unknowns.  A possible counterargument in the 

opposite direction invokes the “size effect” in risk analysis, wherein smaller efforts are 

often “allowed” to overrun by a greater percentage because they have a smaller 

absolute impact.  If a two-story-point task doubles in size, it’s no big deal, but if a 

16,000-hour Epic doubles in size, that’s a significant impact to the program. 

Before we return to these questions of accuracy, we introduce an alternate sizing 

method commonly used in Planning Poker, wherein individual development tasks are 

sized in Story Point using Fibonacci numbers.  Recall that Fibonacci numbers, the 

eponym of Italian mathematician Leonardo da Pisa (literally “son of Bonacci”), are the 

sequence starting with 1 and 1, and whose subsequent entries are the sum of the two 

previous numbers:   

1 + 1 = 2, 1 + 2 = 3, 2 + 3 = 5, 3 + 5 = 8, 5 + 8 = 13, 8 + 13 = 21, 13 + 21 = 34,⋯ 
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Table 2: Fibonacci Numbers and Successive Ratios 

 

In some alternative formulations, larger sizes are replaced with “rounder” numbers, such 

as 50 and 100 instead of 55 and 89.  At some point, an “infinity” (∞) designation is used 

for a task that is too large to effectively size individually and which should be broken 

down into smaller tasks prior to sizing.  The scale is often visualized using fruits!  (This 

was perhaps the subliminal inspiration for the later idea of an analogized scale.) 

One appeal of using Fibonacci numbers is that they combine “additive” and 

“multiplicative” properties.  The additive aspect is more apparent, since the sum of any 

two consecutive sizes is equal to the next largest size.  The SME may think, consciously 

or subconsciously, “This work is about equivalent to a 2 and a 3, therefore it must be a 

5.”  The multiplicative aspect emerges when we examine the ratio of consecutive terms 

and notice that it appears to converge quickly to a constant.  It turns out that this 

constant is a very special number in geometry in particular and mathematics in general, 

the Golden Ratio or Golden Mean. (Livio, 2008) 

n Fn closed form ratio low/high

1 1                  1                              

2 1                  1                              1.000000 low

3 2                  2                              2.000000 high

4 3                  3                              1.500000 low

5 5                  5                              1.666667 high

6 8                  8                              1.600000 low

7 13                13                            1.625000 high

8 21                21                            1.615385 low

9 34                34                            1.619048 high

10 55                55                            1.617647 low

11 89                89                            1.618182 high

12 144              144                         1.617978 low

13 233              233                         1.618056 high

14 377              377                         1.618026 low

15 610              610                         1.618037 high

16 987              987                         1.618033 low

17 1,597          1,597                      1.618034 high

18 2,584          2,584                      1.618034 low

19 4,181          4,181                      1.618034 high

20 6,765          6,765                      1.618034 low

21 10,946        10,946                   1.618034 high

22 17,711        17,711                   1.618034 low

23 28,657        28,657                   1.618034 high

24 46,368        46,368                   1.618034 low

25 75,025        75,025                   1.618034 high

26 121,393     121,393                 1.618034 low

27 196,418     196,418                 1.618034 high

28 317,811     317,811                 1.618034 low

29 514,229     514,229                 1.618034 high

30 832,040     832,040                 1.618034 low

Factor = 1.618:1
Range = 144:1
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Figure 17: Converging Ratios of Consecutive Fibonacci Numbers 

𝐹𝑛 =
1

√5
[𝜙𝑛 − (1 − 𝜙)𝑛] 

See Appendix A:  Fibonacci Sequence Convergence for a derivation of the above 

closed-form formula for the nth Fibonacci number, which implies convergence of the 

ratio of success terms to the Golden Mean, shown below in exact and approximate 

terms. 

𝜙 =
1 + √5

2
= 1.618… 

 

Preliminary results show that at a micro level, a good rule of thumb is that SMEs will be 

correct about a third of the time, will underestimate about a third of the time, and will 

overestimate about a third of the time.  In fact, analysis of thousands of line items shows 

that a binomial distribution with probability 0.5 is a pretty good approximation of micro-

level sizing accuracy.  The notional graph is shown in Figure 18 below.  The horizontal 

axis label indicates the number of notches on the scale the SME was off.  A zero 

represents the correct notch; a negative two (-2) represents an over-estimate by two 

notches; and a positive three (+3) represents an under-estimate by three notches.  The 

empirical data shows spikes in the zero and negative one (-1) bins of the histogram.  
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This indicates that SMEs are accurate or minimally overestimate more often than 

predicted by the notional distribution.  Further research and data aggregation may 

enable a more detailed releasable version of these findings in the near future. 

 

Figure 18: Micro-Sizing Accuracy (notional) 

The empirical distributions in this case do fail the chi square test with an assumed 

distribution of binomial with probability equals one half, but the maximum likelihood 

estimator (MLE) for binomial probability does come out eerily close to 0.50.  This 

distribution has a certain appeal as an extension to our original thought experiment.  

Instead of one coin flip, there are five or six coin flips, and with each heads the SME 

moved one notch to the right, and with each tail one to the left.  The sum of those 

individual (iid) Bernoulli trials is a Binomial, which by the Central Limit Theorem (CLT) 

converges fairly rapidly to a Normal.  This can be visualized with a quincunx, or 

returning to our game show theme, the Plinko board on The Price Is Right.  This 

distribution is symmetric, but since it is imposed of the asymmetric self-similar scale, the 

result is expected growth and greater uncertainty. 

While these findings may not be immediately applicable to macro-level sizing, there are 

two important things to note.  First, there is quite a range of under- and overestimates at 
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the micro level.  Whereas our original thought experiment only allowed the SME to be 

off by one notch in either direction, the evidence here is that they can easily be off by 

two or three notches or more in either direction.  (This is a compilation across a wide 

range of initial size estimates.  Extreme underruns are only possible for large initial 

estimates, whereas for small initial estimates, there is “nowhere to go but up.”)  Second, 

these initial results corroboratehigh the principle of (near) symmetry on an asymmetry 

scale. 

Alternate Sizing Scales 

Thus far, we have examined a T-shirt sizing scale with an explicit ratio of two (2.0) 

between sizes, and Fibonacci numbers with an implicit ratio that approaches the golden 

mean (1.618…).  These may both seem a little abstract and arbitrary, but we now 

introduce a third notional sizing model that was constructed more as a build-up but 

behaves in very much the same way. 

Table 3: Notional Sizing Model Parameters 

 

This Notional Sizing Model actually purports to incorporate both Size and Complexity.  

Each is assessed on a three-point scale:  Small (S), Medium (M), or Large (L); and 

Easy (E), Moderate (M), or Complex (C), respectively.  This pair of assessments places 

the effort in one particular square of a series of 3 x 3 tables, which simultaneously 

determines schedule duration (first sub-table, between 12 and 24 months); level of effort 

(second sub-table, between 2.5 and 8.5 full-time equivalents); and total effort (person-

months, between 30 and 204).  The third is of course just the product of the first two.  

The fourth sub-table expresses this effort calibrated to a percentage of the “middle” 

square, representing size Medium and complexity Moderate. 

 

Sked
(mo) S M L

E 12 15 18

M 15 18 21

C 18 21 24

LOE
(FTE) S M L

E 2.5 3 3.5

M 3 4.5 6

C 3.5 6 8.5

effort 
(PM) S M L

E 30 45 63

M 45 81 126

C 63 126 204

effort 
(relative) S M L

E 37.0% 55.6% 77.8%

M 55.6% 100.0% 155.6%

C 77.8% 155.6% 251.9%
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Figure 19: Notional Sizing Model 

At this point, it becomes apparent that the additional (implicit) assumption of symmetry 

maps this 3 x 3 model to 6-point scale, wherein there are three pairs of equivalent 

assessments as shown on the horizontal axis of Figure 19 above:  Small-Moderate and 

Medium-Easy; Small-Complex and Large-Easy; and Medium-Complex and Large-

Moderate.  The largest defined notch on the scale is 6.8 times as large as the smallest.  

This allows us to calculate the (geometric) average ratio between notches, which is 

illustrated by the orange “smooth” series on the graph. 

6.8
1

5⁄ = 1.467⋯ 

Note that “sizing” is generally intended to be an objective assessment, i.e., a property of 

the code itself.  However, these sorts of assessments that generate size estimates in 

hours or dollars may implicitly take into account productivity and even labor rates as 

well.  We will revisit the question of decomposition of risk and uncertainty at the end of 

the paper.  
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Generalization #2:  Scale Ratio 

We have heretofore introduced three concrete examples of SME-driven sizing, each 

with its own scale ratio.  There is no reason we cannot repeat our previous derivations 

with a generalized scale ratio, R.  Our erstwhile “double or half” values now become RH 

and H/R, respectively. 

Though the Lognormal equations involve the most specialized functions, they are 

actually easiest to generalize!  The confidence interval in log space now becomes: 

(𝑙𝑛𝐻 − 𝑙𝑛𝑅, 𝑙𝑛𝐻, 𝑙𝑛𝐻 + 𝑙𝑛𝑅) 

 

The derivation of the standard deviation of the related normal is the same, with R 

replacing 2 in the logarithms. 

𝛷−1(1 − 𝛼
2⁄ ) =

𝑙𝑛𝑅

𝜎
 

𝜎 =
𝑙𝑛𝑅

𝛷−1(1 − 𝛼
2⁄ )

=
1

𝑙𝑜𝑔𝑅𝑒𝛷−1(1−𝛼
2⁄ )

 

The equations for CV (of the lognormal) in terms of variance (of the related normal) and 

for CGF in terms of CV remain the same. 

We can now begin to understand the interplay between ratio and confidence.  Figure 20 

shows Lognormal CGF and CV as a function of alpha for the three different R values 

presented above.  For example, a CV of 50% is achieved for an alpha of about 15% for 

the T-shirt scale with ratio 2.0, but to achieve that same CV takes an alpha of about 

30% for the Fibonacci scale with ratio 1.618 and more than 40% for the Notional model 

with ratio 1.467.  Intuitively, SMEs should have about the same inherent accuracy, so 

that the reported confidence should be dependent on the ratio of the scale being used.  

As a loose analogy from cost estimating, the same nominal learning curve slope (LCS) 

means different things depending on which learning curve theory is being applied. 
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Figure 20: Lognormal Risk and Uncertainty with Variations in Both Confidence and Ratio 

We can also generalize the original discrete distribution, in two steps.  First the fair coin 

flips.  The expected value is calculated below, with cost growth highlighted in red.  Note 

the natural appearance of the (𝑅 − 1) term.  By the nature of the self-similar scale, we 

must require R>1, and in practice R>>1, or the scale will be too “bunched up” and 

create the illusion of precision, offering the SME way too many choices. 

∑𝑥𝑖𝑝𝑖

𝑖

= (1 4⁄ )(𝐻 𝑅⁄ ) + (1 2⁄ )(𝐻) + (1 4⁄ )(𝑅𝐻) =
1

𝑅
(
𝑅 + 1

2
)
2

𝐻 = [1 +
𝟏

𝑹
(
𝑹 − 𝟏

𝟐
)
𝟐

]𝐻 

The variance calculation is below, with the pseudo-CV highlighted in purple. 

∑𝑥𝑖
2𝑝𝑖

𝑖

− [∑𝑥𝑖𝑝𝑖

𝑖

]

2

=
1
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(
𝐻

𝑅
)
2

+
1

2
𝐻2 +

1

4
(𝐻𝑅)2 −

1

𝑅2
(
𝑅 + 1

2
)
4

𝐻2

= [
3𝑅4 − 4𝑅3 + 2𝑅2 − 4𝑅 + 3

(4𝑅)2
]𝐻2 = [

𝑹 − 𝟏

𝟒𝑹
√𝟑𝑹𝟐 + 𝟐𝑹 + 𝟑]

2

𝐻2 

Dividing the pseudo-CV by the CGF yields the CV. 
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𝐶𝑉 =
𝑅 − 1

(𝑅 + 1)2
√3𝑅2 + 2𝑅 + 3 

As a sanity check, substituting 𝑅 = 2 produces the same result as before (√19
9

⁄ ). 

Further generalizing, we revert to the unfair second coin flip.  Here is the expected value 

with cost growth highlighted in red. 

∑𝑥𝑖𝑝𝑖

𝑖

= (𝛼 2⁄ )(𝐻 𝑅⁄ ) + (1 − 𝛼)𝐻 + (𝛼 2⁄ )(𝑅𝐻) =
𝛼 − 2(1 − 𝛼)𝑅 + 𝛼𝑅2

2𝑅
𝐻

= [1 + 𝜶
(𝑹 − 𝟏)𝟐

𝟐𝑹
]𝐻 

The variance calculation, with pseudo-CV highlighted in purple: 

∑𝑥𝑖
2𝑝𝑖

𝑖

− [∑𝑥𝑖𝑝𝑖

𝑖

]

2

=
𝛼

2
(
𝐻

𝑅
)
2

+ (1 − 𝛼)𝐻2 +
𝛼

2
(𝐻𝑅)2 − (

𝛼 − 2(1 − 𝛼)𝑅 + 𝛼𝑅2

2𝑅
)

2

𝐻2 = 

[(
𝑹 − 𝟏

𝟐𝑹
)√𝜶[(𝟐 − 𝜶)𝑹𝟐 + 𝟐𝜶𝑹 + (𝟐 − 𝜶)]]

2

𝐻2 

The CV is given below. 

𝐶𝑉 =
𝑅 − 1

2𝑅 + 𝛼(𝑅 − 1)2
√𝛼[(2 − 𝛼)𝑅2 + 2𝛼𝑅 + (2 − 𝛼)] 
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Figure 21: Discrete Risk and Uncertainty with Variations in Both Confidence and Ratio 

Substituting one half for alpha (fair coin flip) reduces to the generalized ratio results just 

derived.  Substituting two for R reduces to the earlier confidence-based result for T-shirt 

sizing. 

Generalizations of the Uniform and Triangular cases are deferred to the appendix. 
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Problem Context:  Reliance on the Reluctant Expert 

“Honesty is such a lonely word/ Everyone is so untrue 

Honesty is hardly ever heard/ But mostly what I need from you” 

 - Billy Joel, “Honesty,” 52nd Street 

How Accurate Is the Expert? 

This brings us back to the central question of how accurate the SME really is.  Daniel 

Kahneman and Amos Tversky won a Nobel Prize in Economics for cataloguing the 

foible of human assessments and decisions.  Andy Prince and Christian Smart have 

cleaned up in the ICEAA Best Paper department applying these findings to the business 

of cost estimating. 

The default answer to the question “How accurate is the expert?” is “Not very!”  Not only 

do expert assessments tend to be biased (risk), they tend to understate the true 

underlying variation of the phenomenon being estimated (uncertainty).  The typical 

expert is overly optimistic and overconfident.  We purport to translate SME inputs to be 

more realistic through appropriate use of a self-similar scale.  Once this is done, SME 

training may hold promise for further improvement of such estimates. 

Self-Similar Scales and the Ideal Ratio 

Self-similar scales are fractal in that mis-estimation will result in growth (or reduction) by 

the same ratio regardless of position on the scale.  This enables the convenient 

application of a single risk factor to the entire software development effort, or at least 

large chunks thereof.  It also holds promise for linking the macro- and micro-level 

assessments in a consistent manner. 

In these self-similar scales, there is an evitable trade-off between accuracy and 

precision (or granularity).  We can make a reductio ad absurdum argument and imagine 

the number of notches or the ratio growing without bound (approaching infinity).  In the 

former case, there is excessive granularity, with the notches losing all practical meeting.  

The scale collapses to a continuous assessment by the SME with no guardrails, and the 
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derivation of risk and uncertainty from adjacent notches is no longer possible.  In the 

latter case, the gaps between notches become too large, and the SME is frustrated by 

the inability to find a choice that closely represents the estimated size.  While CGF and 

CV can still be calculated, they may be prohibitively large, as it is no longer reasonable 

to think that the SME will be off by even one notch that large an appreciable proportion 

of the time. 

Intuition tells us there’s a happy medium, and based on our three examples, practical 

experience seems to indicate that that happy medium occurs for a scale ratio 

somewhere in the range of about one and a half (1.5) to two (2.0).  Another candidate 

on the upper end is the ubiquitous number 𝑒 = 2.71828 …, which leaps to mind because 

it is the base of the exponential function that is its own derivative!  The relevance of this 

fact to our estimation problem remains unclear, though it arguably makes it a better 

candidate than, say, its even more famous transcendental counterpart 𝜋 = 3.14159 …. 

Any ratio of about three (3.0) or greater makes the “jump” between notches on the scale 

too great, increasing the penalty for being wrong.  Conversely, any ratio of about one 

and a half (1.5) or less makes the gradation of the scale too fine, increasing the 

probability that the assessment will be off by several notches and not just one. 

Ultimately, the scale should be chosen to reflect the actual accuracy of the SMEs as 

captured by a given alpha value.  The literature seems to establish alpha in the 

neighborhood of a fourth to a third.  That is, SME ranges tend to capture somewhere 

between 66% and 75% of the true range of outcomes.  (Not coincidentally, plus or 

minus one standard deviation of the normal distribution encompasses about 68% of the 

probability.)  What remains to be seen, and we propose to test empirically, is what scale 

ratio corresponds to this alpha when it comes to software sizing. 

It may be premature to try to use the generalized derivations above to “convert” 

between ratio (R) and confidence (one minus alpha).  The math is messy, and we do 

not yet have enough empirical evidence to know which distribution(s) may be most 

appropriate. 
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Teaching Pigs to Sing:  Lessons Learned for Two- and Three-Point 

Estimates 

As move toward empirical testing of scales, we leverage an approach used in a 

previous paper on the use of SMEs in Cost and Risk. (Braxton & Coleman, Teaching 

Pigs to Sing: Improving Fidelity of Assessments from Subject Matter Experts (SMEs), 

2012) 

We propose to follow the same approach as in the cited paper, where polling can be 

conducted live, either via pencil and paper or a survey platform such as Qualtrics 

(https://www.qualtrics.com/).  Because we cannot afford to wait three months, 12 

months, or five years for the test results to come to fruition, we generally have to ask 

about either knowable but unknown quantities such as the height of Mount Pinatubo or 

the box office gross for Avengers: Endgame, or unknowable (uncertain) near-future 

events such as the high temperature in Washington, D.C., next Friday or the box office 

gross for Thor: Love and Thunder.  (Note that the global pandemic has wreaked havoc 

with using box office gross as a potential test case!  For this reason, we would eschew 

any films released in 2020 or later.)  The previous paper tentatively established that 

SMEs have comparable accuracy for unknown but knowable and unknowable 

(uncertain) quantities. 

First and foremost, we wish to assess the prevailing accuracy and precision of our pool 

of SMEs and reflect them in our estimates.  Second, we wish to consider whether that 

accuracy and precision can be improved by how we devise our scale and how we train 

SMEs to use it. 

Empirical Experiment:  Analogized Scales 

SMEs in Search of a Basis 

CEBoK goes out of its way to discount Expert Opinion as an acceptable Cost Estimating 

Technique.  This is less about cautioning against over-reliance on SMEs, and more 

about making a philosophical and conceptual distinction between expert-driven and 

data-driven methods.  In Expert Opinion, the one and only expert-driven method, the 

estimate is presented as a direct assessment by the SME with no apparent basis, like 

https://www.qualtrics.com/
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Athena springing fully formed from the mind of Zeus.  Our experience working with 

Basis Of Estimate (BOE) authors and other technical contributors to cost estimates, 

individuals often labeled “experts,” shows that there usually is a concrete basis 

underlying their opinions.  Consciously or subconsciously3, SMEs leverage their 

experience with relevant (and perhaps not-so-relevant) programs in interpolating or 

extrapolating to the current assessment.  As professional estimators and elicitors, our 

job is to push them toward a data-driven method. 

This is where Expert Judgment comes in.  The four accepted Cost Estimating 

Techniques (Analogy, Parametric, Engineering Build-Up, and Extrapolation from 

Actuals) are all data-driven, but they also rely on the SME to help interpret and 

contextualize the data so that they are appropriately normalized and analyzed.  The 

data themselves are still the basis of the estimate, but Expert Judgment has played a 

key role.  At worst, estimators rely on SMEs to make a direct assessment as to the 

scope on which the estimate is based (e.g., software sizing!).  How then can we make 

this Expert Judgment more effective by borrowing best practices from the realm of data-

driven assessments? 

From Single-Point Analogy to Analogized Scales 

In cost estimating, it is never our intent to cut out the Expert (SME) but rather to force 

Experts to couch their assessments in concrete terms that have an explicit basis and 

rationale, which can be independently verified before the fact and empirically measured 

after the fact.  To this end, we propose to “Analogize” the self-similar scale and augment 

or replace numerical values with historical examples that (approximately) correspond to 

those sizes.  This approach is not entirely novel.  The Mohs scale of mineral hardness is 

not just 1 to 10, but talc to diamond.  The Beaufort scale is not just categories or wind 

velocities, but “light breeze” to “hurricane.”  One of the challenges is to find a sufficient 

range of analogy examples to populate the scale, but the prevalence of such Digital 

Engineering (DE) tools as Atlassian’s Confluence and Jira should help in this endeavor. 

                                            

3 What Daniel Kahneman refers to as System 1 and System 2, irrespectively. 

https://en.wikipedia.org/wiki/Mohs_scale_of_mineral_hardness
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As previously discussed, the analogized scale is still just asking for a one-point estimate 

from the SME – essentially a drop-down menu choice most closely matching their single 

best guess – but it provides a “stealth” three-point estimate in the form of the adjacent 

notches on the self-similar scale.  This approach also transcends Expert Opinion with a 

sort of a “stealth” Analogy.  It is hypothesized that sizing and similar assessments can 

be improved by labeling each notch on the scale with an actual example reflecting that 

approximate size. 

Based on previous research, there is some evidence that expertise in uncertainty 

assessments is equally or more important than expertise in subject area in itself.  We 

will assume at least a modicum of the latter and propose to develop the former through 

training.  The precise training approach is outside the scope of this paper. 

Experimental Formulation 

The first empirical research question is whether the accuracy of judgments on the same 

scale are affected by how the scale is labeled.  Three possible labeling schemes are 

numbers only, analogies only, or both.  Our hypothesis is that providing analogies will 

improve accuracy over the numbers only scale, and that analogies only might be the 

best of all.  Since we cannot ask the same individuals to repeat their assessments with 

a different scale (pending mind erasing technology!), we propose to randomize and 

present each respondent with one of the three possible scales.  We would then present 

the same set of ten (10) assessments, again in a random order. 

The second empirical research question is whether (absolute) accuracy or precision are 

dependent upon the scale ratio.  Our hypothesis is that SME accuracy and precisions 

are largely invariant to the chosen scale, as long as it is within a “reasonable” range.  

That being said, risk ranges would still need to be calibrated to the actual scale ratio 

used.  To avoid combinatorial explosion, we propose to test ratios of 1.5 and 2.0 only, 

again randomizing between the subjects.  The former is between the Notional and 

Fibonacci models, and the latter is the T-shirt model.  We are now up six different 

randomized treatments:  {numbers, analogies, both} x {1.5, 2.0}. 
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The third and final empirical research question is whether SMEs do better at judging 

large things, small things, or about the same.  Our hypothesis is that their accuracy and 

precision are roughly invariant to size.  This would fit into our fractal concept of risk and 

enable us to link otherwise disparate micro- and micro-level sizing models. 

Experiment #1: Heights of Mountains 

The first experiment falls into the “unknown but knowable” category.  While there is a 

certain appeal to using an objective logarithmic scale for physical phenomena, such as 

sound intensity (decibels) or earthquakes (Richter scales), these offer more limited 

analogy possibilities.  Instead, we chose heights of mountains, which most analysts 

have a general conception of (e.g., “Denver is the mile-high city”) but not an expertise 

in.  This scenario also offers sufficient variety of analogy possibilities.  Doubling 

between 1,000 feet and 32,000 feet results in a six-notch scale, whereas a similar range 

– pardon the pun! – can be covered by an eight-notch scale with ratio 1.5.  Examples of 

these scales are shown in Table 4 and Table 5.   

Table 4: Empirical Testing Scale (R = 2.0) 

scale (ft) mountain location elevation (ft) 

                   500  Driskill Mountain Louisiana                    535  

               1,000  Woodall Mountain Mississippi                    807  

               2,000  Mount Arvon Michigan                1,979  

               4,000  Black Mountain Kentucky                4,145  

               8,000  Guadelupe Peak Texas                8,751  

             16,000  Mont Blanc France              15,774  

             32,000  Mount Everest Nepal              29,031  

Table 5: Empirical Testing Scale (R = 1.5) 

scale (ft) mountain location elevation (ft) 

               1,000  Woodall Mountain Mississippi                    807  

               1,500  Crown Mountain St. Thomas, USVI                1,555  

               2,250  Eagle Mountain Minnesota                2,302  

               3,375  Mount Davis Pennsylvania                3,213  

               5,063  Black Mesa Oklahoma                4,975  

               7,594  Black Elk Peak South Dakota                7,244  

             11,391  Mount Hood Oregon              11,249  

             17,086  Pico Pan de Azucar Colombia              17,060  

             25,629  Nanda Devi India              25,643  
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Devising these scales produced several lessons learned.  First, we tried to use more 

familiar mountains as the reference analogies, but familiarity had to take a back seat to 

a relatively consistent scale.  Second, we say “relatively consistent” because it is nigh 

impossible to hit each notch on the scale exactly with a useful example.  In the tables 

above, the desired elevation in feet for the chosen scale ratio is in the leftmost column, 

and the actual elevation in feet of the analogy mountain is in the rightmost column.  

Third, this is a helpful reminder that every analogy data point represents either a “lucky” 

or “unlucky” program, which is to say it came in with a lower or higher cost than it 

“should have” on average.  (Some mountains used to be taller but had their tops blown 

off in volcanic explosions!)  Finally, while the world population of mountains is not 

necessarily right skew, the readily documented ones certainly are.  Lists of peaks, as 

the name implies, are invariably the tallest ones in a range – those are the ones people 

are excited to climb.  There may be a similar challenge when we try to analogize a 

software development scale.  The memorable projects are big, expensive ones.  We 

need to do the work to identify smaller more mundane efforts, as that end of the scale is 

equally important. 

Experiment #2: Box Office Gross of Films 

While heights of mountains may or may not be skew right, it is well established that the 

popularity of books, songs, and movies have long, fat right tails.  Thus, for the second 

part of the survey, we use popular films from 1990-2019 and ask respondents to assess 

their domestic box office as reported by Box Office Mojo.  By focusing on recent films, 

we minimize the impacts of inflation.  (For cost estimating purposes, we would obviously 

want to normalize for inflation. For risk assessment purposes, we instead stick with 

nominal dollars because that’s the form in which amounts are almost always reported in 

the press, meaning that’s what respondents are mostly likely to inherently calibrate to.)  

As previously noted, we steer clear of the last two years so as to avoid any confounding 

pandemic effects.  (Box office returns were severely depressed or even non-existent for 

most of the pandemic, though they have recently rebounded, with Spider-Man: No Way 

Home recently surpassing Avatar to edge into third place all time – again, in non-

inflation-adjusted dollars.)  While Experiment #1 may be more typical of micro-level 

sizing, Experiment #2 may be more representative of macro-level sizing.  To extend 
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from one million dollars ($1M) to one billion dollars ($1B) – or $1,024M to be more 

precise – generates an 11-point scale with ratio 2.0, or about a 17-point scale with ratio 

1.5. 

Experiment #3: Driving Distances 

While indie films and Marvel blockbusters may pretty much be different species, we 

further test the fractal risk hypothesis by asking respondents to assess the driving 

distance (as specified by Google Maps) to both local and interstate destinations from 

the Technomics headquarters in Arlington, VA, The Artist Formerly Known As Crystal 

City (now “National Landing,” thanks to the arrival of Amazon’s HQ2).  
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Results and Recommendations 

Survey Results 

The empirical survey has not been completed as of this writing.  An initial survey is 

planned prior to the conference itself, and the author may leverage the conference app, 

if permitted, to solicit additional responses before, during, and after the presentation! 

SME Training and Data Accumulation 

The analogizing of the sizing scale forces research into past actuals, which is a 

significant side benefit, especially for those organizations that have neglected the 

“blocking and tackling” of cost and software data collection for far too long.  Where 

recourse to true actuals fails, we may have to resort to “anecdotal actuals” aka “expert 

testimony,” but by using it for scaling, at least we get it on the record!  This also serves 

as a cautionary tale, inspiring us to do better going forward.  Keep in mind that we want 

both Cost and Risk data (snapshots in time, at a minimum Initial and Final). 

Even at a more detailed (scrum team) level, an accumulation of examples can help 

bolster the memory and the judgment of the SME.  There we have an embarrassment of 

riches, but it may still take significantly resources to sift through the data representing 

various time intervals and scopes (sprint, PI, release; task, story, feature, PE, SE). 
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Conclusion and Next Steps 

Risk and Uncertainty Benchmarks 

The bottom line is that significant risk and uncertainty are inherent in these self-similar 

sizing scales even if we are off by no more than one size in either direction.  (Or in 

some cases, a little more than one size.)  While this may be little surprise to a cost and 

risk analyst, we have found this thought experiment to be an effective communication 

tool for conveying to program teams the inherent risk and uncertainty of their expert-

driven sizing. 

We have indulged in a great deal of algebra, for purposes of both research and 

enjoyment, but let’s not lose sight of the forest for the trees.  Table 6 reflects the fruits of 

our algebraic labor.  While the precise calculations have been shown to depend on 

underlying distributional assumption, good rules of thumb are that we should expect 

growth on the order of 10% to 30% and CVs on the order of 30% to 50% for macro-

level sizing.  We recommend applying these ranges to expert-based methods such as 

T-shirt sizing.  They can also be used as benchmarks for other early-phase software 

estimates. 

Table 6: Risk and Uncertainty Benchmarks for T-shirt Sizing 

 
Confidence Growth % CV 

Discrete 𝛼 = 0.50 12.5% 48.43% 

Uniform 𝛼 = 0.00 25.0% 34.64% 

Triangular 𝛼 = 0.00 16.7% 26.73% 

Discrete 𝛼 = 0.25 6.2% 36.74% 

Lognormal 𝛼 = 0.25 19.9% 66.16% 

Uniform (Proportional) 𝛼 = 0.25 33.3% 43.30% 

Uniform (Equal) 𝛼 = 0.25 25.0% 46.19% 

Triangular (Proportional) 𝛼 = 0.25 33.3% 39.53% 
These benchmarks all reflect a ratio of 𝑅 =  2.0. 
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Continuing Research 

The next step in this line of inquiry is to conduct the survey experiments described 

above and compile the results.  We are aiming to have that done in time to present at 

the conference itself, but it may also be expanded in a follow-on paper.  We seek to 

better understand the interplay between 𝑅, the ratio of an analogized scale, and 𝛼, the 

true confidence of SMEs in applying that scale.  Those empirical results should 

illuminate this question considerably, and the above derivations demonstrate how that 

interplay is dependent on distributional assumptions. 

Agile Software Risk Decomposition 

The rubric in Figure 22 below has been invaluable in discussing the need for robust 

data collection to improve upon expert-driven methods.  It can also serve as a basis for 

discussing alternative approaches to risk and uncertainty.  As previously pointed out, 

macro-level methods such as T-shirt sizing tend to span all the way from Requirements 

to Effort or Cost along the top tier of the diagram.  So, this approach may be appropriate 

early in the life cycle when little detail is available. 

 

Figure 22: Software Estimation Decomposition, Data Needs, and Risk 

The more traditional Inputs Risk approach, feasible with both more historical data and 

more detail on the present program being estimated, would compound the uncertainty 

associated with Sizing, Productivity, Rates, and possibly Escalation as separate factors, 

as implied by the arrows in the diagram.  As we work to improve expert-driven methods, 
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we are continually relating them to data-driven methods and exploring how the two can 

work most effectively in concert. 
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Acronyms, Initialisms, and Abbreviations 
Abbreviation Expansion Notes 

BOE Basis Of Estimate  

C Complex Notional Sizing Model 

DE Digital Engineering  

E Easy Notional Sizing Model 

FTE Full-Time Equivalent Notional Sizing Model 

L Large T-Shirt and Notional 

LCS Learning Curve Slope  

M Medium T-Shirt and Notional 

M Moderate Notional Sizing Model 

PE Program Epic Agile 

PI Program Increment Agile 

PM Person-Months Notional Sizing Model 

S Small T-Shirt and Notional 

SE Solution Epic Agile 

SME Subject Matter Expert  

XL Extra Large T-Shirt Sizing Model 

XS Extra Small T-Shirt Sizing Model 

XXL Double Extra Large T-Shirt Sizing Model 
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Appendix A:  Fibonacci Sequence Convergence 
Derivation of close-form formula for Fn and demonstration that ratio converges to 

Golden Mean 

Suppose the closed-form formula is of the form: 

𝐹𝑛 = 𝑐 ∙ 𝑎𝑛 + 𝑑 ∙ 𝑏𝑛 

Must satisfy basic Fibonacci relationship: 

𝐹𝑛 + 𝐹𝑛+1 = 𝑐 ∙ 𝑎𝑛 + 𝑑 ∙ 𝑏𝑛 + 𝑐 ∙ 𝑎𝑛+1 + 𝑑 ∙ 𝑏𝑛+1 

= 𝑐(𝑎𝑛 + 𝑎𝑛+1) + 𝑑(𝑏𝑛 + 𝑏𝑛+1) = 𝑐 ∙ 𝑎𝑛+2 + 𝑑 ∙ 𝑏𝑛+2 = 𝐹𝑛+2 

This will be true if both a and b are roots of the quadratic: 

𝑥2 = 𝑥 + 1 →  𝑥2 − 𝑥 − 1 = 0 → 𝑎 =
1 + √5

2
= 𝜙 , 𝑏 =

1 − √5

2
= 1 − 𝜙 

Now we solve for the coefficients c and d: 

𝐹1 = 1 = 𝜙𝑐 + (1 − 𝜙)𝑑 

𝐹2 = 1 = 𝜙2𝑐 + (1 − 𝜙)2𝑑 

 

𝑐 =
1

2𝜙 − 1
=

1

√5
 , 𝑑 =

1

1 − 2𝜙
= −

1

√5
 →  𝐹𝑛 =

1

√5
[𝜙𝑛 − (1 − 𝜙)𝑛] 

Since the second term vanishes as n increases without bound, the ratio of consecutive 

terms approaches a.  Also alternating with odd and even n, fluctuations seen earlier in 

graph. 
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Coda:  The Proverbial Cocktail Napkin 

“It’s a pretty good crowd for Saturday 

And the manager gives me a smile 

‘Cause he knows that it’s me they’ve been comin’ to see 

To forget about life for a while” 

 - Billy Joel, “Piano Man,” Piano Man 

Once again proving that I do all my best work on the back of a white envelope.  I wish 

I’d saved some more of these over the years, how about you? 

 

Figure 23: Artisanal Probability Calculations 


