
Linear Regression: How to Make What’s Old New Again 

Kimberly Roye 
Sara Jardine 

Christian Smart 
 

Galorath Federal 
 

Abstract 
With the booming popularity of machine learning techniques, modern data 
scientists may have you believe that using linear regression to analyze a dataset 
is outdated and no longer an effective method. Though many cost estimating 
applications are nonlinear, when there are linear relationships among features, 
ordinary least squares regression often performs better than the most powerful 
machine learning techniques. Scenarios for which linear regression should be 
chosen over more complicated algorithms are presented, as well as techniques 
such as regularization, gradient descent, and Bayesian methods.  

Introduction 
Machine learning techniques are growing in popularity across a multitude of 
industries. In the cost community, these algorithms are also being used to help 
cost analysts predict effort or cluster datapoints to facilitate deeper 
understanding of patterns within data. Linear regression is a machine learning 
technique that has largely been overshadowed by alternative techniques that 
use more computational power and require coding skills to implement. We will 
introduce some of these techniques, such as regularization, gradient descent, 
and Bayesian methods, that are proven to be useful in certain situations. 
However, we will also show that linear regression can still be the best method for 
explaining simple relationships between variables within certain datasets. Despite 
innovative machine learning methods, linear regression is still a powerful method 
that supersedes many fancier methods taking preference in modern day data 
analysis.  

Linear Regression – A Quick Refresh 
In cost and data analysis, we are often concerned about the relationships 
between a few factors and one primary target variable. The target variable is our 
dependent variable, and our goal is to understand how other variables within the 
available dataset impacts the increase or decrease of this variable. Most often, 
we are attempting to understand factors impacting cost; how many effort hours 
are required to develop a new component, how much will this new program cost 



if additional functionality and lethality is incorporated into a vehicle, or how much 
will it cost to sustain this missile? 

Historically, when estimating costs in defense and aerospace programs, the 
relationships that exist between cost and technical parameters such as weight 
and speed are typically non-linear (e.g., power equation). However, occasionally 
we witness a linear relationship between effort/cost and an independent 
variable.  

Linear models use least squares to fit a line through a dataset. The goal is to fit the 
best line to the data to minimize the sum of the squares of the residuals. The 
residuals are the distance from the line to each data point. In the optimal 
situation, the data point will fit tightly to the line that is fit to the data. This results in 
small distances between the line and each data point. 

The equation for the line is 𝑌𝑌� = 𝛽𝛽1𝑋𝑋 + 𝛽𝛽0 + 𝜀𝜀 with 𝛽𝛽1 being defined as the slope of 
the line, 𝛽𝛽0 is the y-intercept and 𝜀𝜀 is an error term representing random sampling 
noise. Figure 1 provides an example of how the linear regression line is fit to the 
data points based on a given target, dependent, and independent variable. 

 

 

 

 

 

 

 

 

 

Figure 1: Linear Regression Example (Source: Javatpoint) 

The data that is used in this paper to illustrate the use of linear regression and other 
methods is a dataset of software programs currently in the sustainment phase. 
After exploring the available data, we have discovered that the number of 
Software Changes and the Duration of the program are both influential in 
estimating the total hours (or effort) required annually to sustain a software 
program. This means we are no longer focusing on just one independent variable, 
but two. 



When there is more than one independent variable in a linear model, it is now 
called a multiple linear regression model. The equation form for the model based 
on the software dataset is 𝑌𝑌�  =  𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + 𝛽𝛽0 + 𝜀𝜀 where 𝛽𝛽1 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽2 are the slopes 
of the two independent variables and 𝛽𝛽0 is the Y-intercept. 

Figure 2 presents the plot of the multiple regression line fit to the software data. 
For this resulting model, we have a multiple linear regression model with Software 
Changes (SC) and Duration being the independent variables estimating Total 
Hours.  

 
Figure 2: Plot of Multiple Linear Regression Model for Software Hours 

The model was trained with 221 datapoints from the original dataset of 316 
datapoints and the same model applied to the remaining 95 datapoints that 
were withheld to test the model. This is performed to determine how well the 
model predicts Total Hours based on new data that has not been included in the 
training or learning process. The goodness-of-fit metrics for the training and testing 
metrics are presented in Table 1. 

Table 1: Multiple Linear Regression Goodness-of- Fit Statistics 

Metric Training Test 
𝑹𝑹𝒂𝒂𝒂𝒂𝒂𝒂𝟐𝟐  75% 75% 
Root Mean Squared Error (RMSE) 26,928 48,089 

 



The 𝑹𝑹𝒂𝒂𝒂𝒂𝒂𝒂𝟐𝟐  tells us how much of the variability in Total Hours is explained by Software 
Changes and Duration. The Root Mean Square Error (RMSE) is the square root of 
the average of the squares of the residuals and is a measure of the spread in the 
residuals. When visually observing the plot in Figure 2, it is not surprising that the 
RMSE is large for this dataset since we observe several points that fall far from the 
line fit to the data. Ideally, we would want to see all points falling closer to the line 
but based on the nature of the imperfect data in our study, a high RMSE seems 
reasonable.  

Methods to Improve Linear Models 
Suppose we are worried that the model we built is performing much better on the 
training data than on unseen data. The goal with a linear model is, as previously 
mentioned, to minimize the sum of the squares of the residuals while finding the 
patterns in the data that will help to predict the target variable for new data. If 
the model constructed does not predict Total Hours well for new software 
programs entering the sustainment phase, then the model is deemed not useful, 
and we are back to square one. In this case, alternative techniques should be 
considered to determine a more applicable model. 

Regularization is a technique that reduces error in a model by fitting a function on 
the training dataset while helping to avoid overfitting the data. The method 
performs this by adding a penalty to the least squares method to reduce the slope 
of the line and make predictions less sensitive to the parameters of the model. 
Another technique is gradient descent, which is an iterative method that 
attempts to find values for the intercept and slope of a line to fit the data. A third 
technique is Bayesian methods, which can also be applied to linear regression 
methods. When incorporating Bayesian methods, we create the linear regression 
model using probability distributions rather than point estimates. This yields a Y that 
is assumed to be drawn from a probability distribution. A more detailed discussion 
of each of the three methods to improve linear models is as follows. 

Regularization 
Regularization is often referred to as the shrinkage method since the penalty term 
that is added helps to constrain the slope parameters to zero. First, we will define 
the cost function. As mentioned, linear regression (or Ordinary Least Squares) 
seeks to find the best line that minimizes the sum of the residuals. The cost function 
quantifies the error between predicted and expected values (the residuals) and 
presents it in the form of a single real number. The cost function can either be 
minimized or maximized. In regularization, the cost function will be minimized to 
find the values of the model parameters for which the cost function returns the 
smallest number possible. The loss function formula is defined as: 



𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑀𝑀𝑎𝑎 𝐸𝐸𝑆𝑆𝑆𝑆𝐸𝐸𝑆𝑆 =  
1
𝑎𝑎
� (𝑦𝑦𝑖𝑖 − 𝛽𝛽1𝑥𝑥𝑖𝑖 − 𝛽𝛽0)2

𝑛𝑛

𝑖𝑖=1
 

where n is the sample size. With each type of regularization, a penalty is added 
to the loss function to estimate the parameters. 

With the incorporation of a penalty, bias is introduced into the model. Bias is the 
difference between the average prediction of the model and the actual value 
which we are trying to predict. Models with high bias underfit the data. However, 
with the addition of a minimal amount of bias, the variance is reduced. Variance 
is the variability of model prediction for a given data point and tells us the spread 
of the data. When there is high variance, the model tends to overfit the data. 
Figure 3 provides a visual for understanding the goal of balancing bias and 
variance to ensure strong models are created to capture patterns in the data 
and are not too specific to the training data used to train the algorithm. 

 
Figure 3: Understanding Underfitting and Overfitting 

Three regularization methods will be covered: Ridge, Lasso, and Elastic-Net 
regression. A simple explanation of each method is included in the following 
sections. 

Ridge Regression 
As mentioned, regularization methods are considered when we suspect the 
selected model may be overfitting the data. Ridge regression attempts to fit a 
new line to the data while introducing a small amount of bias. The purpose of 
including this bias is to drop the variance and provide better long-term 
predictions. 



Ridge regression minimizes the loss function with an added function. Ridge 
regression seeks to minimize: 

1
𝑎𝑎
� (𝑦𝑦𝑖𝑖 − 𝛽𝛽1𝑥𝑥𝑖𝑖 − 𝛽𝛽0)2

𝑛𝑛

𝑖𝑖=1
+ 𝜆𝜆 ∗ 𝑆𝑆𝑆𝑆𝐸𝐸𝑆𝑆𝑀𝑀2 

This method is an extension of OLS but adds a penalty to the method. Lambda, 
denoted by λ, determines the severity of this penalty. The value of λ can range 
from 0 to positive infinity. If λ=0, the ridge regression penalty is also equal to zero. 
This means the ridge regression line will be the same as the OLS base case 
regression line since both are minimizing the sum of squared residuals. The user 
must determine the value of λ that optimizes the regression results. This should be 
done using cross-validation to determine which regression equation results in the 
lowest variance.  

Cross-validation is a statistical resampling technique used to evaluate models. It 
uses a random, limited sample to estimate how the model is expected to perform 
on data that has not been used to train the model. This technique is an iterative 
process. To determine the optimal value of λ, k-fold cross-validation is used and 
follows these steps: 

Step 1: The data is randomly sorted 

Step 2: The dataset is split into k groups 

Step 3: A sample of the data is extracted as a hold out or test dataset 

Step 4: The remaining datapoints are used as the training dataset 

Step 5: The original OLS model is fit to the training dataset and evaluated 
on the test dataset 

Step 6: An evaluation score is calculated and retained, and the model is 
discarded 

Step 7: This process occurs iteratively until all the k groups have been used 

Step 8: The model with the lowest error will be selected and the λ value from 
this model is considered optimal  

Once the optimal λ value is chosen, the model that minimizes the loss function is 
calculated. 

Ridge regression can be applied to continuous and discrete variables. This 
method is best used when there is a large quantity of variables within the dataset, 
specifically if there are more variables than data points. Ridge regression was 



applied to the software sustainment dataset using the R programming 
application. 

The optimal lambda based on cross validation is 0.001. Using this lambda in the 
algorithm for Ridge Regression, we obtained the optimum model of: 

𝑇𝑇𝐸𝐸𝑇𝑇𝑎𝑎𝑆𝑆 𝐻𝐻𝐸𝐸𝑆𝑆𝑆𝑆𝐻𝐻 =  −7,924.07 + 110.99 ∗ 𝑆𝑆𝑆𝑆 + 1,345.49 ∗ 𝐷𝐷𝑆𝑆𝑆𝑆𝑎𝑎𝑇𝑇𝐷𝐷𝐸𝐸𝑎𝑎 

This model is very close to the version created using OLS. Table 2 presents the fit 
statistics for the Ridge regression model. Though we see the RMSE is the same as 
the OLS model, the R2adj is significantly less for the test set than the training set. This 
means the model does not fit as well on new data as it does on the data within 
the training dataset. 

Table 2: Ridge Regression Goodness-of-Fit Statistics 

Metric Training Test 
𝑹𝑹𝒂𝒂𝒂𝒂𝒂𝒂𝟐𝟐  75% 36% 
Root Mean Squared Error (RMSE) 26,928 48,089 

 
Lasso Regression 
Lasso regression is like Ridge regression, but with some important differences. Lasso 
regression seeks to minimize: 

1
𝑎𝑎
� (𝑦𝑦𝑖𝑖 − 𝛽𝛽1𝑥𝑥𝑖𝑖 − 𝛽𝛽0)2

𝑛𝑛

𝑖𝑖=1
+ 𝜆𝜆 ∗ 𝑎𝑎𝑎𝑎𝐻𝐻(𝑆𝑆𝑆𝑆𝐸𝐸𝑆𝑆𝑀𝑀) 

Instead of adding the penalty to include 𝜆𝜆 ∗ 𝑆𝑆𝑆𝑆𝐸𝐸𝑆𝑆𝑀𝑀2 as with the Ridge method, the 
penalty multiplies λ by the absolute value of the slope. However, like Ridge, λ can 
range from 0 to positive infinity, and the optimal value is determined by cross-
validation. An important difference between Lasso and Ridge aside from the loss 
function is that as we increase the value of λ, the slope gets smaller and moves 
towards zero. Ridge regression can only shrink the slope asymptotically near zero 
while Lasso can shrink it to zero. 

Lasso seeks to discard useless variables from equation, so the models produced 
by Lasso will at times be simpler and easier to interpret. 

Lasso regression was applied to the software sustainment dataset. The optimal 
lambda based on cross validation is 0.001, as with Ridge regression. Using this 
lambda in the algorithm for Lasso regression, we obtain the optimum model of: 

𝑇𝑇𝐸𝐸𝑇𝑇𝑎𝑎𝑆𝑆 𝐻𝐻𝐸𝐸𝑆𝑆𝑆𝑆𝐻𝐻 =  −7,924.07 + 111 ∗ 𝑆𝑆𝑆𝑆 + 1,345.49 ∗ 𝐷𝐷𝑆𝑆𝑆𝑆𝑎𝑎𝑇𝑇𝐷𝐷𝐸𝐸𝑎𝑎 

This model is identical to the model produced with Ridge regression. Table 3 
presents the fit statistics for the Lasso regression model. Again, the R2adj is 



significantly less for the test set than the training set. There is no improvement 
realized using Ridge or Lasso regression. 

Table 3: Lasso Regression Goodness-of-Fit Statistics 

Metric Training Test 
𝑹𝑹𝒂𝒂𝒂𝒂𝒂𝒂𝟐𝟐  75% 36% 
Root Mean Squared Error (RMSE) 26,928 48,089 

  

Elastic-Net Regression 
Elastic-Net regression is a hybrid approach that combines the components of 
Ridge and Lasso regression methods and includes two lambdas in the loss 
function. Elastic-Net seeks to minimize: 

1
𝑎𝑎
� (𝑦𝑦𝑖𝑖 − 𝛽𝛽1𝑥𝑥𝑖𝑖 − 𝛽𝛽0)2

𝑛𝑛

𝑖𝑖=1
+ 𝜆𝜆 ∗ 𝑆𝑆𝑆𝑆𝐸𝐸𝑆𝑆𝑀𝑀2 + 𝜆𝜆 ∗ 𝑎𝑎𝑎𝑎𝐻𝐻(𝑆𝑆𝑆𝑆𝐸𝐸𝑆𝑆𝑀𝑀) 

For this method, cross-validation is used on different combinations of 𝜆𝜆1and 𝜆𝜆2 to 
find the best values. When both values of lambda are zero, the resulting model 
will be the same as the base case OLS model. 

This hybrid approach groups and shrinks the parameters associated with the 
correlated variables or removes them if they are highly correlated. Based on the 
characteristics of Lasso regression, Elastic-Net tends to favor a more simplified 
model. 

Elastic-net regression was applied to the software sustainment dataset. The 
optimal lambda based on cross validation is 0.008. Using this lambda in the 
algorithm for Elastic-net regression, we obtain the optimum model of: 

𝑇𝑇𝐸𝐸𝑇𝑇𝑎𝑎𝑆𝑆 𝐻𝐻𝐸𝐸𝑆𝑆𝑆𝑆𝐻𝐻 =  −7,924.07 + 111 ∗ 𝑆𝑆𝑆𝑆 + 1,345.49 ∗ 𝐷𝐷𝑆𝑆𝑆𝑆𝑎𝑎𝑇𝑇𝐷𝐷𝐸𝐸𝑎𝑎 

This model is identical to the model produced with the other two regularization 
techniques. Table 4 presents the fit statistics for the Elastic-net regression model. 
Again, the R2adj is significantly less for the test set than the training set. There is no 
improvement realized using any of the regularization techniques. 

Table 4: Elastic-Net Regression Goodness-of-Fit Statistics 

Metric Training Test 
𝑹𝑹𝒂𝒂𝒂𝒂𝒂𝒂𝟐𝟐  75% 36% 
Root Mean Squared Error (RMSE) 26,930 48,056 



 
In summary, regularization methods, which adds a penalty term to constrain the 
slope parameters to zero did not improve the original OLS model regression results. 
In our sustainment software program dataset, linear regression prevails as the best 
method to determine a model that predicts hours as a function of software 
changes and duration.  
 
Gradient Descent 
An additional method that can be used to optimize a line fit to data is gradient 
descent. Gradient descent finds the optimal values for both the intercept and 
slope(s) of a linear regression line. 

Recall from the discussion of regularization, the loss function was defined as: 

𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑀𝑀𝑎𝑎 𝐸𝐸𝑆𝑆𝑆𝑆𝐸𝐸𝑆𝑆 =  
1
𝑎𝑎
� (𝑦𝑦𝑖𝑖 − 𝛽𝛽1𝑥𝑥𝑖𝑖 − 𝛽𝛽0)2

𝑛𝑛

𝑖𝑖=1
 

The goal of gradient descent is also to minimize the loss function. 

This method works by progressing through the following steps: 

1. Take the derivative of the loss function with respect to the intercept 
a. The derivative is used to determine where the sum of the squared 

residuals is the lowest 
2. Begin with an initial guess or a base line fit to the data 
3. Gradient descent finds the minimum value by taking steps from the initial 

guess until it reaches the best value 
4. The algorithm determines the step size by multiplying the slope by the 

learning rate 
a. The learning rate, alpha, must be chosen. The learning rate is a 

hyperparameter that needs to be tuned and can be done so by 
using a variety of methods. This process will not be discussed at length 
in this paper, but the authors suggest analysts explore this topic in 
detail. Some rules of thumb to keep in mind when selecting the 
learning rate is that if the rate is too small, it will take a long time for 
the algorithm to find a minimum value of the loss function. Choosing 
a learning rate that is too large is also problematic as the minimum 
value of the loss function might be skipped over and an optimal 
solution never reached. For this paper, we chose a fixed learning rate 
of 0.00000000025. 

b. Step Size = Slope (from the starting model) * Learning Rate 
5. Calculate the new intercept 

a. New Intercept = Old Intercept (from the starting model) – Step Size 



6. Plug the new intercept into the derivative formula and continues to repeat 
the steps above until the Step Size is close to zero 

7. When the Step Size converges to zero, the slope should also be very small 
and be approaching zero 

Gradient descent was applied to the software sustainment dataset. Alpha was 
set to 0.00000000025. We obtained the optimum model of: 

𝑇𝑇𝐸𝐸𝑇𝑇𝑎𝑎𝑆𝑆 𝐻𝐻𝐸𝐸𝑆𝑆𝑆𝑆𝐻𝐻 =  0.04 + 46.07 ∗ 𝑆𝑆𝑆𝑆 + 1.23 ∗ 𝐷𝐷𝑆𝑆𝑆𝑆𝑎𝑎𝑇𝑇𝐷𝐷𝐸𝐸𝑎𝑎 

This model differs from the models produced using regularization significantly. 
Table 5 presents the fit statistics for the gradient descent model. Again, the R2adj is 
significantly less for the test set than the training set. There is no improvement 
realized using this technique compared to the linear model. 

Table 5: Gradient Descent Goodness-of-Fit Statistics 

Metric Training Test 
𝑹𝑹𝒂𝒂𝒂𝒂𝒂𝒂𝟐𝟐  70% 21% 
Root Mean Squared Error (RMSE) 42,995 59,239 

 
Bayesian Methods 
Historically, parametric methods have been based on frequentist techniques. 
Frequentist statistics is the classical method that uses a sample of data as inputs. 
If you have taken Statistics 101 in college, most, if not all the class was oriented 
towards this approach. For example, traditional linear and nonlinear regression 
analysis is a frequentist approach. The challenge with frequentist statistics is that it 
requires a large amount of data. Statisticians have conducted numerous studies 
using random data and have concluded that you need 50 data points for a 
regression analysis with 10 additional data points for every independent variable 
you want to include. For example, if you want to include three independent 
variables in your analysis, you need 80 data points. The number of highly 
specialized systems used in the Department of Defense and NASA means that we 
typically have nowhere near that much data. For example, the Missile Defense 
Agency has only developed a handful of different kill vehicles, and NASA has only 
developed a few crewed launch vehicles. When looking at truly applicable data, 
the sample size shrinks even further – when considering launch vehicles, the 
primary systems that NASA has completed have been those for the Apollo and 
Shuttle programs. The Apollo program began in the 1960s, and the Shuttle 
program began in the 1970s. Thus, there are no directly applicable historical data 
points within the last 40 years. Considering the changes that have taken place in 
the realm of technology since then, there really is no applicable historical data at 
all for these systems. 



 
For small data sets like these, Bayesian methods can help provide more accurate 
estimates. Bayesian methods leverage all your experience, making them less 
subject to being overwhelmed by noise. This prior experience can be subjective 
or objective. The objective data could involve the use of similar data. 
 

This approach has proven to be successful in a multitude of applications. Bayesian 
techniques were used in World War II to help crack the Enigma code used by the 
Germans, thus helping to shorten the war. John Nash’s equilibrium for games with 
incomplete or imperfect information is a form of Bayesian analysis (John Nash’s 
life was portrayed in the film, A Beautiful Mind). Actuaries have used Bayesian 
methods for over 100 years to set insurance premiums. Bayesian voice recognition 
researchers applied their skills as leaders of the portfolio and technical trading 
team for the Medallion Fund, a $5 billion hedge fund which has averaged annual 
returns of 35% after fees since 1989. 

For the application of Bayesian regression, we will write the linear equation in 
mean deviation form: 

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 = 𝜶𝜶𝒙𝒙� + 𝜷𝜷(𝑿𝑿− 𝑿𝑿�) + 𝜺𝜺 
 
where Cost is in 2022$ million. This form makes it easier to establish prior inputs, 
since it is easier to think of an average value for prior cost than it is for the intercept 
of the least-squares equation. 

What is needed to apply Bayesian regression is two estimates. They could both be 
based on objective data. Another possibility is that you would have some prior 
idea about the cost or some element of the cost and that could be combined 
with objective data using Bayes’ Theorem. 

Consider as an example, the problem of estimating a spacecraft data processing 
unit (DPU). A linear cost estimating relationship (CER) based on 14 data points has 
the form: 

Cost = 8.33+0.42*(Power-19.4) 

where Cost is the effort required in 2022$ to develop and build the data 
processing unit and Power is the average beginning of life instrument power in 
watts. Ten data points is a very small sample. To avoid being fooled by 
randomness, a typical rule of thumb for regression equation development is at 
least 50 data points. 



However, in this case, you also believe that the DPU you are estimating is very 
similar to one that flew on a previous mission which we will call Mission X. You 
believe that if the instrument power requirements were the same that the cost 
would also be the same. However, the average power for Mission X’s instruments 
was 69 watts, while for the system you are estimating, the same parameter is 30 
watts. The actual cost for the Mission X DPU was $24 million. Your CER predicts a 
cost equal to $12.8 million. The CER is superior in some respects because it 
accounts for the difference in power, while the analogy does not. Is there a way 
to combine both pieces of information to get a better estimate? 

The answer is yes. One method would be to assume that the analogy imparts 
useful information about an adjustment to the a-value of the CER, but not to the 
b-value. If the b-value 0.42 applies, then the implied a-value can be found by 
solving the equation  

A+0.42*(69-19.4) = 24 

which yields A = 3.17. 

To apply Bayes’ Theorem to combine the two a-values, we need a standard 
deviation for the implied a-value from the analogy. One way to think about this is 
estimate your confidence and express it in those terms. For example, if you are 
highly confident in your estimate of the intercept parameter you may decide that 
means you are 90% confident that the actual value will be within 5% of your 
estimate. For a normal distribution with mean μ and standard deviation σ, the 
upper limit of a symmetric two-tailed 90% confidence interval is 20% higher than 
the mean, that is,  

μ+1.645σ=1.20μ 

from which it follows that 

σ= (0.20)/(1.645) μ≈0.12μ 

Thus, the coefficient of variation, which is the ratio of the standard deviation to 
the mean, is 12% in this case. See Table 6 for a list of suggested values for the 
coefficient of variation based on the true mean being within 20% of the estimate 
with the stated confidence level.  



Table 6: Coefficient of Variations for the Confidence That the True Mean is Within 20% of the Estimated 
Mean 

 

Suppose for this estimate that I am 70% confident that the true a-value is within 
20% of the implied a-value 3.17. Then with a coefficient of variation equal to 12%, 
the standard deviation is equal to 3.17*0.19 = 0.60.  

To combine the intercepts, we use a weighted average of the two intercepts. The 
weights are determined by the inverses of the variances (Smart 2014). The 
variance about the intercept from the regression is 2.17 and the variance based 
on subjective judgment is 0.36. It is straightforward to calculate that the implied 
a-value from the analogy has weight equal to 86% while the regression-based 
intercept gets weight equal to 14%. The combined intercept is thus 3.89.  

We have no information from the analogy about the slope, so we only use the 
slope from the regression (you can think of the slope coefficient from the analogy 
having infinite variance, which means it gets a zero weight in the weighted 
average). The combined CER is thus 3.89+0.42*(Power – 19.4). The estimate 
applied to the input of 30 watts is $8.3 million. This is one way to combine objective 
and subjective data in a rigorous and proven framework. 

When Linear Regression Works Best 
Although we have introduced alternative techniques to potentially improve 
simple linear regression, there are still characteristics of a dataset that gravitates 
toward linear regression as the best method to derive the most statistically 
significant regression equation.  

Characteristics of a linear dataset typically occurs when there is a relatively 
limited range in either the dependent variable, the independent variable, or both 
the dependent and independent variables. This can occur when estimating at 
the system and subsystem level, when all the data points are very similar, such as 
ships within a specific class, robotic spacecraft with a similar application (e.g., 
Martian missions), or wheeled and tracked vehicles. A limited range of data is also 
likely to occur when estimating at the component level, since the various data 



points tend to be approximately the same size. Examples include batteries and 
data processing units. A good rule of thumb is that when the cost and the 
independent variable data points being modeled are all within an order of 
magnitude of one another, the relationship between cost and the independent 
variables is likely to be linear. When the spread is several orders of magnitude, the 
relationship is likely to be nonlinear. 

Conclusion 
Linear regression remains one of the most powerful algorithms in machine 
learning. With the emergence of new machine learning techniques and modern 
data science techniques within powerful tools like R and Python, it may be easy 
to overlook a simple linear relationship that may be the best fit for predicting a 
relationship in a dataset.  When a linear relationship is determined, seeking ways 
to improve the regression statistics for a stronger relationship should be explored 
such as regularization, gradient decent, and Bayesian methods. When testing if 
these methods improve your regression line, sometimes the conclusion is there is 
no improvement and OLS remains the best regression method. When evaluating 
relationships in a dataset, oftentimes, the simplest model is not only preferred but 
represents the best relationship.  
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