

Applying System Readiness Levels to Cost Estimates – A Case Study

May 17 - 19, 2022

Patrick Malone

Professional Development & Training Workshop May 17-19, 2022 I@EAA Pittsburgh, PA

Originally presented at the IEEE Aerospace Conference March 2018 EEEE AEROSPACE CONFERENCE YELLOWSTONE CONFERENCE CENTER, BIG SKY, MONTANA MAR 3 - MAR 10, 2018
 IEEE AEBS ØAAA % DAMACON

© 2022 MCR, LLC

Topics

- Introduction
- Tools and Techniques
- Implementing and Forecasting SRLs
- Cost and Time to Mature
- Integrated Framework
- Application Example
- Conclusions and Future Study

GAO	United States Governme Report to Cong	nt Accountability Office gressional Committees					
Galo							
December 2014	JAMES SPACE	WEBB TELESCOPE	GAO	United States Government Accountability Report to Congressional C			
		d Schedule n Significant	March 2016	DEFENSE ACQUISITIONS Assessments of			
	GAO	United States Government Accoun Report to Congression		Selected Weapon Programs			
GAO-15-100	December 2015	JAMES WEE SPACE TEL Project on Tr May Benefit Improved Co Data to Bette	ESCOPE rack but from ontractor er				
		Understand		mment Accountability Office			
		GAO December 2016	JAMES	B WEBB TELESCOPE			
	GA0-16-112		and Sc Commi Continu	itments but ues to Use ves to Address			
		GAO-17-71					

Agenda

Introduction

- Tools and Techniques
- Implementing and Forecasting SRLs
- Cost and Time to Mature
- Integrated Framework
- Application Example
- Conclusions and Future Study

Applying System Readiness Levels to Cost Estimates - A Case Study

Patrick K. Malone MCR, LLC 550 Continental Suite 185 El Serundo, CA 90245 310-540-0005 pmalone@mcri.com

Abstract- Accurately estimating cost, schedules and expected technical performance of large complex systems and systems of systems (SoS) pre-development is difficult. As programs mature and begin execution, they often plague of cost growth and schedule delays due to unexpected deviations from initial assumptions or complexity. For example, Government Accountability Office's (GAOs) 2016 review of selected weapons systems found that twelve of the 43 programs in the report had cost growth from 4% to 45% as well as schedule delays averaging thirty months. Similarly, the James Webb Space Telescope (JWST) has had multiple over runs from inception.[1,2] As the program continued cost growth and schedule delays due in part to technical maturity and complexity were apparent resulting in a 2011 re-baseline. The launch, now planned for 2018, has jeopardized the science community's ability to collect timely and relevant deep space scientific data requiring the Hubble Space Telescope (HST) to perform significantly beyond its already extended design life. Using System Readiness Levels (SRLs), an emerging technique, in concert with heuristic cost and schedule analysis may provide enhanced capabilities for pre-development cost estimates and schedule completions within the acquisition lifecycle. Up to now, theoretical and analytical approaches are in the literature. This paper investigates actual program cost and schedule history through program development, then comparing it to SRL forecasting techniques to demonstrate its validity. The resulting approach will support future estimating accuracy through higher fidelity information for early decision-making. We research and collect actual program development cost, schedule and technical history for Major Defense Acquisition Programs (MDAPS) and NASA flagship programs; then compare the actual growth metrics to the SRL forecasts. This empirical cross-referencing applied to the SRL framework can support more realistic cost and schedule forecasting early in program development. Evaluation of the data to support a null hypothesis demonstrating a statistically significant approach can provide significant cost and schedule estimating process improvement; with a goal of implementing a validated process early into forecast models. The method can isolate specific areas for Technology Maturity and Risk Reduction (TMRR) focus and actions for specific sub-systems within the system or SoS pre-milestone B for DoD and Phase B for NASA. Moreover, cost and schedule realism, and credibility at the start of "Program of Record" with high confidence realized. The data analyses will provide demonstrated confidence using these methods. A follow up example to demonstrate the method will be shown. Future research will include the addition of more program data points to enhance the robustness of the method, and model enhancements to define cost and schedule drivers within the systems and SoSa,

TABLE OF CONTENTS

1. INTRODUCTION	1
2. TOOLS AND TECHNIQUES	2
3. IMPLEMENTING AND FORECASTING SRLs	
4. COST AND TIME TO MATURE	
5. INTEGRATED FRAMEWORK	9
6. APPLICATION EXAMPLE	
7. CONCLUSION AND FUTURE STUDY	14
APPENDICES	
A. JWST HISTORICAL METRICS	
B. JWST MATURITY VS COST OVER TIME	16
C. SRLS FOR DIFFERENT ORGANIZATIONS	
ACKNOWLEDGEMENTS	
REFERENCES	
BIOGRAPHY	

1. INTRODUCTION

Figure 1 - Complex Systems such as JWST can incur significant cost growth and schedule delays if System Readiness Level is lower than forecast.

Accurately estimating cost, schedules and expected technical performance of large complex systems and systems of systems (SoS) pre-development is difficult. As programs mature and begin execution, they have cost growth schedule delays and requirement changes due to unexpected deviations from initial assumptions or complexity. Many Government organizations recognize this and plan for incremental development to mature these complex systems. Unfortunately, this adversely affects programs has to other factors such as finding and programming. For example, in 2003, the Air Force originally planned to field the enhanced F-22A capabilities in three development increments for complexion in 2010.

978-1-5386-2014-4/18/531.00 C2018 IEEE

Introduction

- GAO 2016 review of Selected Defense Systems reveals
 - 53% of programs had cost growth, median of 42% growth*
 - Schedule delays averaged **30 months** (2.5 yrs) or more to IOC
 - Lack of knowledge at Milestone B impacts program performance
- NASA Single-Project Program Addressed
 - 10 fold cost growth, 15 year delay
- Acquisition requirements
 - DoD
 - Should Cost and Affordability Goals required at Milestone A
 - Knowledge Assessment throughout the lifecycle
 - NASA
 - Requirements defined
 - Knowledge Assessment similar to DoD guidelines

Problem

- Developing an objective assessment
- Over confidence in maturity assessment
- Optimistic estimates of cost and time to mature before Milestone B
- Lack of a repeatable process

© 2022 MCR, LLC. All rights reserved.

* 7 of the top 10 programs reviewed for the 2016 report

Top 10 DoD Programs Reviewed

		Years since first full		Total uisition cost	tal acquisition cost growth since initial	Growth
ltem	Program	estimate	(F`	Y 2016, \$B)	estimates	Percent
1	F-35 Joint Strike Fighter	14	\$	340	\$ 111	33%
	DDG 51 Arleigh Burke Class Guided					
2	Missile Destroyer	33	\$	115	\$ 99	86%
3	SSN 774 Virginia Class Submarine	21	\$	91	\$ 26	29%
	V-22 Osprey Joint Services					
4	Advanced Vertical Lift Aircraft	33	\$	62	\$ 19	31%
5	Evolved Expendable Launch Vehicle	19	\$	61	\$ 42	69%
6	Trident II Missile	38	\$	58	\$ 2	3%
	KC-46 Tanker Modernization					
7	Program	4.9	\$	44	\$ (4)	-9%
	Gerald R. Ford Class Nuclear					
8	Aircraft Carrier	11.7	\$	36	\$ (2)	-6%
	P-8A Poseidon Multi-Mission					
9	Maritime Aircraft	15.8	\$	33	\$ 0	0%
10	UH-60M Black Hawk Helicopter	14.7	\$	26	\$ 12	46%

Source: GAO-16-0329SP – Assessments of Major Weapons Programs

Many MDAPs continue to experience cost and schedule growth

© 2022 MCR, LLC. All rights reserved.

Background

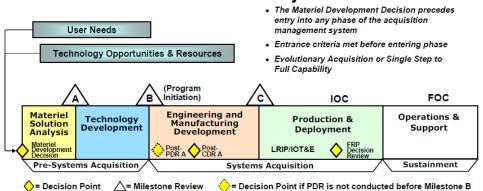
- Programs begin with limited information
 - Technical maturity may be lacking
 - Cost and schedules are often optimistic
- Less detailed knowledge leads to
 - Unexpected capability gaps
 - Cost and schedule growth
 - Nunn-McCurdy breaches

: U.S. Air Force.	GPS III
Procurement	Cost Growth
Program Unit	Cost Growth

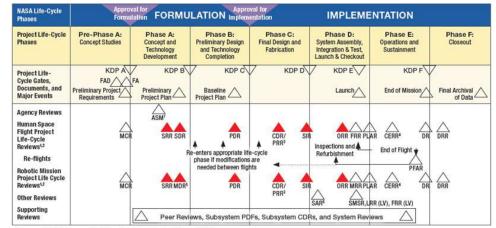
Source

14.3%	
16.3%	

	Significant	Critical
	Breach	Breach
Current Baseline		
Estimate	≥15%	≥25%
Original Baseline		
Estimate	≥30%	≥ 50%
Source: 10 U.S.C. § 2433.		

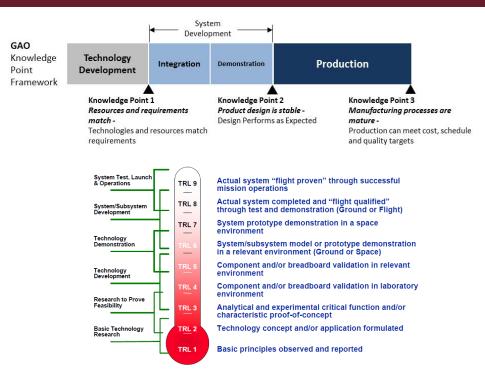

Growth in Procurement Acquisition Cost or Procurement Unit Cost Thresholds require a report to congress

Agenda



DoD 5000 Lifecycle

- Introduction
- Tools and Techniques
- Implementing and Forecasting SRLs
- Cost and Time to Mature
- Integrated Framework
- Application Example
- Conclusions and Future Study



NASA Lifecycle

Source: NASA System Engineering Handbook, Figure 3.0-1

Tools and Techniques

SRL = IRL X TRL

SRL1	SRL ₂	SRL₃	=	IRL ₁₁ IRL ₁₂	IRL ₁₂ IRL ₂₂ IRL ₂₃	IRL ₁₃ IRL ₂₃	x	TRL ₁ TRL ₂	
(-	9		IRL ₁₃	IRL ₂₃	IRL ₃₃		TRL ₃	
					+ SRL 2				

- GAO Knowledge point Framework reduces risk
- Technology Readiness Levels serve as a guide
- System Readiness Levels
 - TRL & Integrations add fidelity
- Metrics to Support
 - Cost
 - Schedule
 - Technical Performance

Knowledge Points and SRLs support robust cost and schedule forecasting

© 2022 MCR, LLC. All rights reserved.

Tools and Techniques (cont.)

- Cross Referencing tools and techniques by program lifecycle guides analysis
 - Program Formulation
 - Development
 - Flight
 - Operations
- Lack of knowledge can impact performance metrics

TRL/ IRL	TRL/IRL Normalized to SRL	SRL	GAO Knowledge Point	Acquisition Milestones
	0.9	0.1		
1	1			Material Decision
2	2			Milestone A Alternatives
	3	16785/1951/02/0		SRR
	3.5	0.39		
3	3.6	0.4		
4	4			SFR
	5			PDR Milestone B
	5.3	0.59	KP 1	
5	5.4	0.6		
6	6	-		CDR
	7			TRR
	7.1	0.79	KP 2	Milestone C
7	7.2	0.8		
6855	8	0.89	КР З	IOC
8	8.1	0.9		
9	9	1		FOC

© 2022 MCR, LLC. All rights reserved.

Typical Hi Com

Agenda

- Introduction
- Tools and Techniques
- Implementing and Forecasting SRLs
- Cost and Time to Mature
- Integrated Framework
- Application Example
- Conclusions and Future Study

0.	1 0.2	Syste		ead ₀.₄		ess L o.		/el	for o.e		fer o.		Org o.		ati o.		0
Typical High-Tech Commercial System Integrator	User Requirements Definition Phase	Concept Definition Phase	sį	System pecification Phase		Acq Prep Phase	Sour Sele Pha	et.		opment Iase	v	erification Phase	De	ployment Phase		Operations and Maintenance Phase	Deactivation Phase
ISO 15288		Concept	Stage						lopm tage	ent		oduction Stage		Utiliza Supp	_	-	Retirement Stage
US Department of Defense (DoD) 5000.2	Con	Pre-Syste				ent		Mo		Syst ineerin evelop	g		uctio	on and ment		Sustain Operations a (Including	and Support
National Aeronautics And Space Administration	Pre-Phase A Concept Studies	Concept a	Pha nd Techn		evelo	pment		Phase I relim De Tech ompetit	sign	Phas Final an Fabric	Des d	Phase Syst, A Integ &	isy		erati	ase E ions and nment	Phase F Closeout
			TRL No 0.9	rmalize 3.5		SRL 0.10 - 0.3				Phase opment		De initial conc n/technolog		levelop			
			3.6	5.3		0.40 - 0.59	9		chnolo elopm	BY ent	approp	e technolog priate set of nte into a fu	tech		nine		
	5.4 7.1 0.60 - 0.79 Engineering Model Development (formerly SDD) Develop system capability or (increments reduce integration and manufacturing risk; ensure logistics footprint; implement human systems integration; design for production; ensure affordability and protection of critical program integration, interoperability, safety and utility.																
		_	7.2	8.0		0.80 - 0.89	ə	Pro	oductio		Achiev			oability that			
		_	8.1	9.0		0.90 - 1.00	0		ations	and t	operat require the mo	ional suppo ements and	rt pe susta	ram that me rformance iins the syste manner ove	em ir	n	

System Readiness Levels - Method

SRL: f(TRL, IRL)

SRL = IRL X TRL

$$\begin{pmatrix} SRL_1 & SRL_2 & SRL_3 \end{pmatrix} = \begin{pmatrix} IRL_{11} & IRL_{12} & IRL_{13} \\ IRL_{12} & IRL_{22} & IRL_{23} \\ IRL_{13} & IRL_{23} & IRL_{33} \end{pmatrix} X \begin{pmatrix} TRL_1 \\ TRL_2 \\ TRL_3 \end{pmatrix}$$

$$Composite SRL = 1/n(SRL_1/n + SRL_2/n + SRL_3/n)$$

SRL approach highlights strengths and weaknesses in trade space

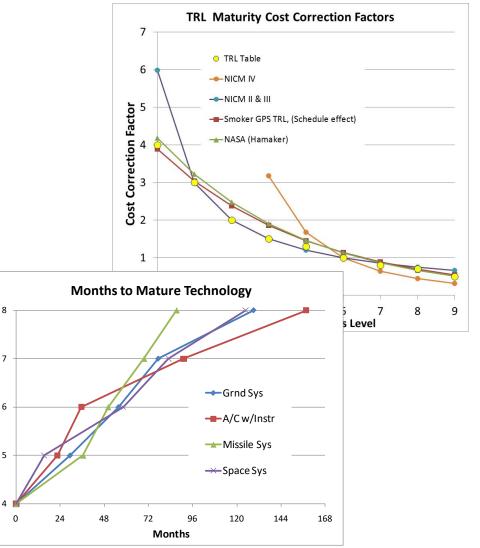
 $= 1/n^{2}(SRL_{1} + SRL_{2} + SRL_{3})$

© 2022 MCR, LLC. All rights reserved.

SRL – TRL and IRL Definitions

TRL/		
IRL	TRL Definition	IRL Definition An Interface between technologies has been identified
		with sufficient detail to allow characterization of a
1	Basic principles observed and reported	relationship
<u> </u>	basic principles observed and reported	There is some level of specificity to characterize the
	Technology concept and/or application	Interaction (i.e. ability to influence) between
2	formulated	technologies through their interface.
		There is Compatibility (i.e. common language) between
	Analytical and experimental critical function	technologies to orderly and efficiently integrate and
3	and/or characteristic proof of concept	interact.
	Component and/or breadboard validation in a	There is sufficient detail in the Quality and Assurance
4	laboratory environment	of the integration between technologies.
		There is sufficient Control between technologies
	Component and/or breadboard validation in a	necessary to establish, manage, and terminate the
5	relevant environment	integration.
		-
	System/subsystem model or prototype	The integrating technologies can Accept, Translate,
6	demonstration in a relevant environment	and Structure Information for its intended application.
		The integration of technologies has been Verified and
	System prototype demonstration in an	Validated and an acquisition/insertion decision can be
7	operational environment	made.
		Actual integration completed and Mission Qualified
	Actual system completed and qualified	through test and demonstration, in the system
8	through test and demonstration	environment
	Actual system proven through successful	Integration is Mission Proven through successful
9	mission operations.	mission operations.

© 2022 MCR, LLC. All rights reserved.

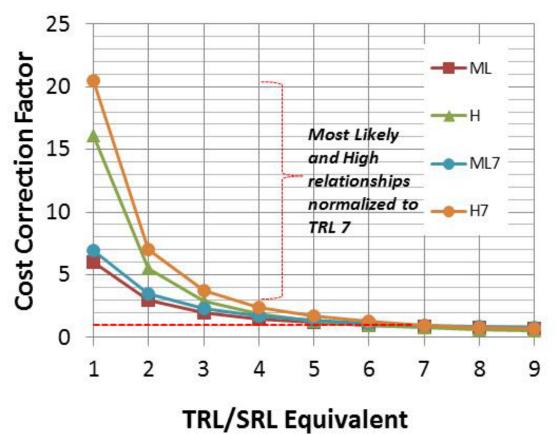

SRL Maturity Compare and Contrast

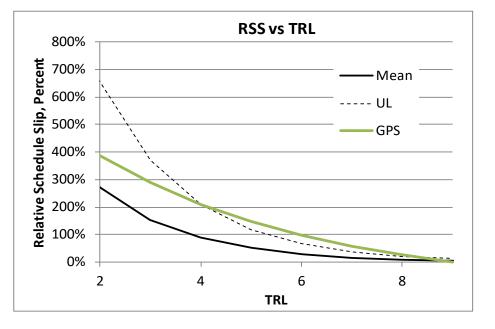
TRL	Normalized	SRL	Acquisition Phase	Definitions
0.9	3.5	0.10 - 0.39	Concept Development	Refine initial concept; develop system/technology strategy.
3.6	5.3	0.40 - 0.59	Technology Development	Reduce technology risks and determine appropriate set of technologies to integrate into a full system.
5.4	7.1	0.60 - 0.79	Engineering Model Development (formerly SDD)	Develop system capability or (increments thereof); reduce integration and manufacturing risk; ensure operational supportability; reduce logistics footprint; implement human systems integration; design for production; ensure affordability and protection of critical program information; and demonstrate system integration, interoperability, safety and utility.
7.2	8.0	0.80 - 0.89	Production	Achieve operational capability that satisfies mission needs.
8.1	9.0	0.90 - 1.00	Operations and Support	Execute a support program that meets operational support performance requirements and sustains the system in the most cost-effective manner over its total lifecycle.

Fechnology Readiness Level

Agenda

- Introduction
- Tools and Techniques
- Implementing and Forecasting SRLs
- Cost and Time to Mature
- Integrated Framework
- Application Example
- Conclusions and Future Study


Cost to Mature


Cost Correction Factor for our Case Study is normalized to TRL7

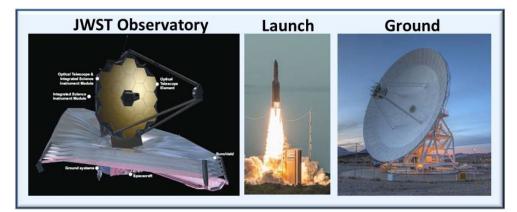
 Used as a basis for the analysis

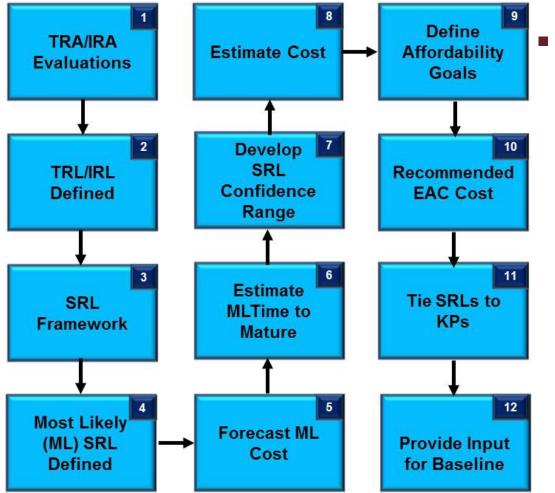
Cost Correction Factor vs TRL

Time to Mature

- Work done by Dubos et al provide a range of time to mature
- Analysis of SAR data (Smoker) falls between the mean and upper limits
- Supports uncertainty boundary's
- Integrated with our analysis

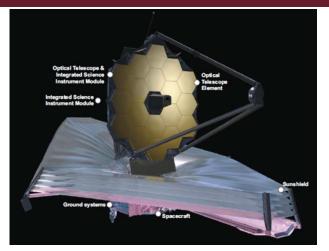
Agenda

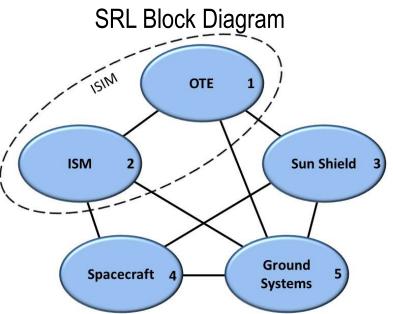

- Introduction
- Tools and Techniques
- Implementing and Forecasting SRLs
- Cost and Time to Mature
- Integrated Framework
- Application Example
- Conclusions and Future Study



Webb will orbit the sun 1.5 million kilometers (1 million miles) away from the Earth at what is called the second Lagrange point or L2. (Note that these graphics are not to scale.)

Source: https://jwst.nasa.gov/orbit.html

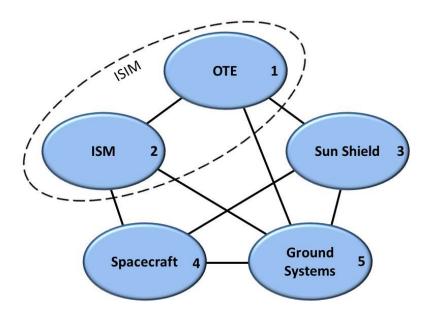

Integrated Framework



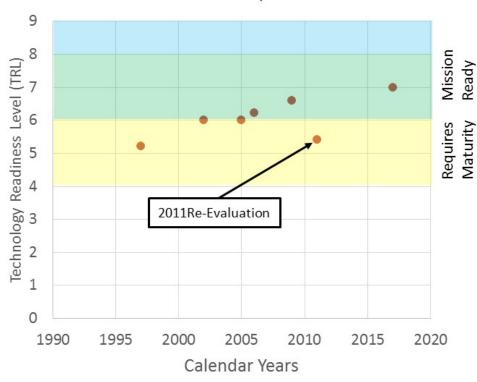
- 12 Step process
 - 1 2 TRA/IRA, TRL/IRL
 - 3-4 SRL Framework
 - 5 6 Cost/Schedule
 - 7 Confidence
 - 8 9 Cost/ Afforability
 - 10 -12
 Recommendations

Agenda

- Introduction
- Tools and Techniques
- Implementing and Forecasting SRLs
- Cost and Time to Mature
- Integrated Framework
- Application Example (Case Study)
- Conclusions and Future Study



Case Study Framework


- System Comprised of:
 - Integrated Science
 Instrument Module
 - Optical Telescope
 Element
 - Integrated Science Module
 - Sun Shield
 - Spacecraft
 - Ground Systems
- Technology and integration linkages

© 2022 MCR, LLC. All rights reserved.

			Integrating	
System	Technology	TRL	Technologies	IRL
OTE	1	3	1,2;1,3; 1,4	3,1,2
ISM	2	3	1,2;2,4;2,5	3,4,3
Sun Shield	3	2	1,3;3,4;3,5	1,1,1
Spacecraft	4	4	2,4;3,4;4,5	4,1,1
Grnd Sys	5	4	1,5;2,5;3,5;4,5	2,3,1,4

Case Study Initial Conditions (TRL method)

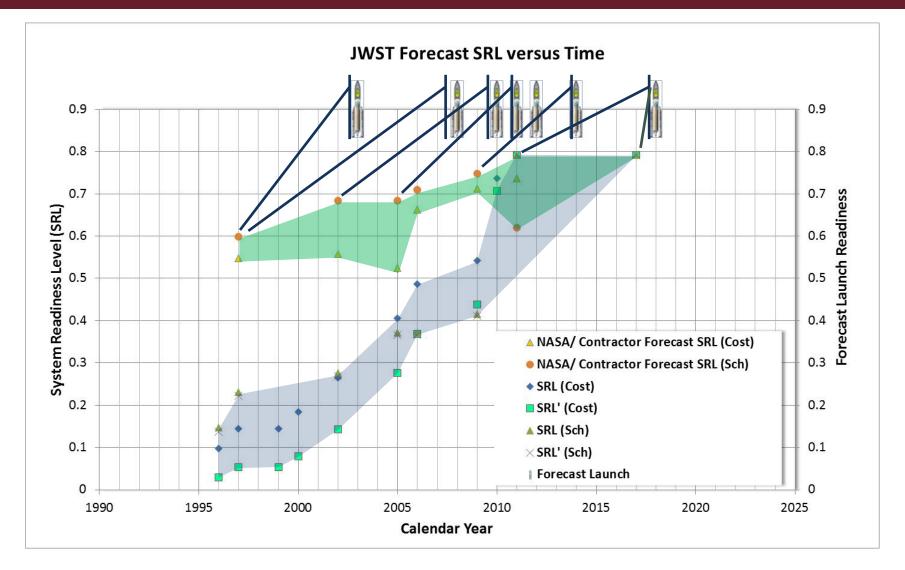
JWST TRL Maturity vs Time

TRL assessment early in program showed

- Some Maturity needed
- Continued development
- TRL Assessment midprogram
 - Showed progress
 - Re-eval less progress

Case Study SRL Method (Initial)

- SRL framework initial assessment
 - TRL Equivalent
 - 1.3
- Additional Requirements
- Less demonstrated maturity
- Enhance development program


1997	Initial Asses	sment		IRL					
	Technology	TRL		1	2	3	4	5	
OTE	1	3	1	9	3	1	0	2	
ISM	2	3	2	3	9	0	4	2	
Sun Shield	3	2	3	1	0	9	1	1	
Spacecraft	4	4	4	0	4	1	9	4	
Grnd Sys	5	4	5	2	2	1	4	9	
	Average	3.2							
	Normalized								
	Technology			1	2	3	4	5	
OTE	1	0.33	1	1.00	0.33	0.11	-	0.22	
ISM	2	0.33	2	0.33	1.00	-	0.44	0.22	
Sun Shield	3	0.22	3	0.11	-	1.00	0.11	0.11	
Spacecraft	4	0.44	4	-	0.44	0.11	1.00	0.44	
Grnd Sys	5	0.44	5	0.22	0.22	0.11	0.44	1.00	
	N	o. of Intera	ctions	4	4	4	4	5	2
		Matr	ix Det.	0.57	0.74	0.36	0.81	0.81	3.3
		S	RL Avg	0.1420	0.1852	0.0895	0.2037	0.1630	0.1
		TRL Equi	valent						1.

Case Study SRL Method (Near Final)

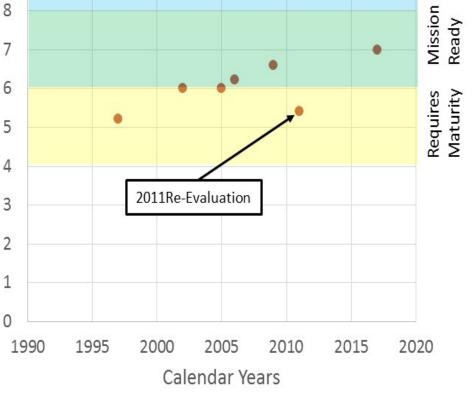
- SRL framework near final assessment (2017)
 - TRL Equivalent– 6.7
- Following 2011 reevaluation
- Enhanced development
- Limited budget

2017	Updated Ass	sessment		IRL					
	Technology	TRL		1	2	3	4	5	
OTE	1	7	1	9	8	6	0	7	
ISM	2	8	2	8	9	0	8	8	
Sun Shield	3	7	3	6	0	9	6	7	
Spacecraft	4	9	4	0	8	6	9	8	
Grnd Sys	5	9	5	7	8	7	8	9	
	Average	8							
	Normalized								
	Technology			1	2	3	4	5	
OTE	1	0.78	1	1.00	0.89	0.67	-	0.78	
ISM	2	0.89	2	0.89	1.00	-	0.89	0.89	
Sun Shield	3	0.78	3	0.67	-	1.00	0.67	0.78	
Spacecraft	4	1.00	4	-	0.89	0.67	1.00	0.89	
Grnd Sys	5	1.00	5	0.78	0.89	0.78	0.89	1.00	
	No	o. of Intera	ctions	4	4	4	4	5	21
		Matri	x Det.	2.86	3.36	2.74	3.20	3.89	16.05
		SF	RL Avg	0.7160	0.8395	0.6852	0.7994	0.7778	0.76
		TRL Equiv	valent						6.70

Case Study – Historical Survey

Case Study – Cost and Schedule

© 2022 MCR, LLC. All rights reserved.


Readiness Level (TRL)

Technology

Agenda

- Introduction
- Tools and Techniques
- Implementing and Forecasting SRLs
- Cost and Time to Mature
- Integrated Framework
- Application Example
- Conclusions and Future Study

JWST TRL Maturity vs Time

Conclusions

JWST TRL Maturity vs Time 9 Technology Readiness Level (TRL) Mission Ready Requires Maturity 2011Re-Evaluation 1 0 2015 1990 1995 2000 2005 2010 2020 Calendar Vears JWST TRL Growth vs Time NASA/ Contractor Forecast TRL NASA/ Contractor Forecast SML ♦ Independent Forecast System TRL ▲ Independent Forecast System TR Independent TRL no IRL Considered 9 8 7 Equivalent TRL w b G 0 2

2011Re-Evaluation

2020

2010

2005

- TRL alone may not provide the clearest maturity snapshot of a complex system
- SRL approach can highlight lower maturity areas including interfaces
- A knowledge based framework supports realistic cost and schedule forecasting
- Future program can benefit from early multi-tiered maturity growth

SRL Method is consistent with 2011 maturity evaluation

1995

1

1990

Future Study

- Additional cases to support further validation of the method
- Review of lessons learned and application within the GAO knowledge point framework

	Ma	turity	Cost	/CCF	Dubo	os et al		Smoke	r
			ML	High	ML	High	Low	ML	High
	SRL	TRL (equ)	CCFml	CCFh	Sch	edule		Schedul	e
Initial SRL	0.16	1.33	5.26	13.21	3.95	9.61			
Desired SRL	0.76	6.70	1.05	1.07	0.19	0.45			
Delta Increase in									
Funding			5.50	14.14					
Delta Increase in	1								
Schedule					375%	916%			
Cost \$B (BY2011)	\$0.59		\$ 3.8	\$ 8.9					
Schedule Months	132				495.1	1,341.7	277.3	522.6	1,430.3
Years	11				41.3	111.8	23.1	43.5	119.2

References

- GAO-17-71"JWST Project Meeting Cost and Schedule Commitments but Continues to Use Reserves to Address Challenges", 2017
- GAO-16-112, "JWST Project on Track but may Benefit from Improved Contractor Data to Better Understand Costs", 2016
- GAO-08-467SP Assessments of Major Weapon Programs, F22A, pg 85.
- NM 7120-81 (also NPR 7120.5D) NASA Space Flight Programs & Project Management Requirements, 2.1 "Programs and Projects"
- USC 10, 2433 Unit Cost Report.
- Sauser, B., Verma, D., Ramirez-Marquez, J., and Grove, R., "From TRL to SRL: The Concept of Systems Readiness Levels", Conference on Systems Engineering Research, 2006.
- Sauser, B., Ramirez-Marquez, J., "System (of Systems) Acquisition Maturity Models and Management Tools", Stevens Institute of Technology School of Systems and Enterprise, 2009.
- Malone, P.K., "Enhancing Weapon System Initial Cost Estimate Credibility with Advanced Tools", IEEE Aerospace Conference, Big Sky, MT, 2017
- Sadin, S. Wikipedia credits NASA's Stan Sadin, NASA HQ with inventing the original (7 level) TRL scale in 1974
- Mankins, J., "Research & Development Degree of Difficulty" Advanced Projects Office of Space Flight NASA Headquarters, 1998.
- Bilbro, J. "Systematic Assessment of the Program/Project Impacts of Technological Advancement and Insertion", George C. Marshall Space Flight Center, 2006.
- Valerdi, R. and Boehm, B., "COSYSMO: A Systems Engineering Cost Model", USC Center Systems and Software Engineering, 2010.
- Nolte, W. Technology Readiness Calculator, http://www.dtic.mil/ndia/2003systems/nolte2.pdf.
- Buede, D. "The Engineering Design of Systems", John Wiley & Sons, New York, 2000.
- Malone, Smoker, Apgar, and Wolfarth, "The Application of TRL Metrics to Existing Cost Prediction Models", IEEE Aerospace Conference, Big Sky, MT, 2011.
- Smoker, R. and Smith, S. "System Cost Growth Associated with Technology-Readiness Level" published in the Journal of Parametrics, Volume XXV, Issue No. 1, Spring 2007, pg. 8.
- Peisen, J.; Schulz, L.; Golaszewski, S.; Ballard, D.; and Smith, J. "CASE STUDIES: TIME REQUIRED TO MATURE AERONAUTIC TECHNOLOGIES TO OPERATIONAL READINESS" 1999; www.aeronautics.nasa.gov/docs/study/221/finalrpt.pdf.
- Dubos, G, Saleh, J. and Braun, R.; "Technology Readiness Level, Schedule Risk, and Slippage in Spacecraft Design", Journal of Spacecraft and Rockets, Vol 45, No 4, July August 2008.
- Lee, T., and Thomas, L. D., "Cost Growth Models for NASA's Programs," Journal of Probability and Statistical Science, Vol. 1, No. 2, Aug. 2003, pp. 265–279.
- Browning, T. R., "Sources of Schedule Risk in Complex System Development," Systems Engineering, Vol. 2, No. 3, 1999, pp. 129–142.
- GAO-13-4 James Webb Space Telescope Actions Needed to Improve Cost Estimate and Oversight of Test and Integration, 2013.
- JWST Design, http://www.stsci.edu/jwst/overview

	Presente	d at the 2022 IC	EAA Professional Deve	lopment & T	raining Workshop: www.iceaad	onlin	e.com/pit20	22
TRL/ IRL	TRL/IRL Normalized to SRL	TRL Definition	IRL Definition	DOD Program Lifecycle Phase	SRL Definition	SRL	GAO Knowledge Point	Acquisition Milestones
	0.9					0.1		
1	1	Basic principles observed and reported	An Interface between technologies has been identified with sufficient detail to allow characterization of a relationship					Material Decision
2	2	Technology concept and/or application formulated	There is some level of specificity to characterize the Interaction (i.e. ability to influence) between technologies through their interface.	Concept Development	ept Development Refine initial concept; develop system/technology strategy.			Milestone A Alternatives
3	3	Analytical and experimental critical function and/or characteristic proof of concept	There is Compatibility (i.e. common language) between technologies to orderly and efficiently integrate and interact.					SRR
	3.5					0.39		
	3.6					0.4		
4	4	Component and/or breadboard validation in a laboratory environment	There is sufficient detail in the Quality and Assurance of the integration between technologies.	Technology	Reduce technology risks and determine appropriate set of			SFR
5	5	Component and/or breadboard validation in a relevant environment	There is sufficient Control between technologies necessary to establish, manage, and terminate the integration.	Development	technologies to integrate into a full system.			PDR Milestone B
	5.3					0.59	KP 1	
	5.4					0.6	KF 1	
6	6	System/subsystem model or prototype demonstration in a relevant environment	The integrating technologies can Accept, Translate, and Structure Information for its intended application.	Engineering Manufacturing	Develop system capability or (increments thereof); reduce integration and manufacturing risk; ensure operational supportability; reduce logistics footprint; implement human systems integration; design for			CDR
7	7	System prototype demonstration in an operational environment	The integration of technologies has been Verified and Validated and an acquisition/insertion decision can be made.	Development	production; ensure affordability and protection of critical program information; and demonstrate system integration, interoperability, safety and utility.			TRR
	7.1					0.79	KP 2	Milestone C
	7.2	Actual system completed	Actual integration completed and Mission			0.8		
8	8	and qualified through test and demonstration	Qualified through test and demonstration, in the system environment	Production and Deployment	Achieve operational capability that satisfies mission needs.	0.89	КР 3	IOC
	8.1					0.9		
9	9	Actual system proven through successful mission operations.	Integration is Mission Proven through successful mission operations.	Operations and Support	Execute a support program that meets operational support performance requirements and sustains the system in the most cost-effective manner over its total lifecycle.	1		FOC

Presented at the 2022 ICEAA

	ha 2022 I	CEAA Profession	1 Davel	lanma	t & Two	lning T	Vorksho			
at ti	Calendar	CEAA Professiona	Estimate	lopmer	Fest Normalized	Mirror Size	V OTKSNO Forecast Years to	Planned Launch	.1ceaa	
Year	Year	Activity	Cost \$M	BY	to 2011 \$M	Meters	Launch	Date	Phase	Orbit
1	1989	Concept Studies				4			Pre-A	
2	1990					4			Pre-A	
3	1991					4			Pre-A	
4	1992					4			Pre-A	
5	1993					4			Pre-A	
6	1994	Program HI-Z				4			Pre-A	1-3AU
7	1995					4			Pre-A	
8	1996		\$ 500.0	1996	\$ 322.97	8	7	2003	Pre-A	L2, 3AU
9	1997	NGST	\$ 900.0	1997	\$ 589.35	8	11	2008	Pre-A	L2
10	1998	NGST				8			Pre-A	L2
11	1999	NGST	\$ 900.0	1997	\$ 589.35	8	9	2008	A	L2
12	2000	NGST	\$ 1,200.0	2000	\$ 859.05	8	8	2008	A	L2
13	2001	NGST				8			A	L2
		Re-named JWST,								
		Responsibilities transferred								
14	2002	to TRW	\$ 2,000.0	2002	\$ 1,524.97	6.1	8	2010	в	L2
15	2003					6.5			в	L2
16	2004					6.5	7	2011	в	L2
17	2005	2 - 3.58 change in cost not fully explained	\$ 3,500.0	2005	\$ 2,979.47	6.5	8	2013	в	L2
		System Design Review								
18	2006	Completed	\$ 4,500.0	2006	\$ 3,990.57	6.5	7	2013	в	L2
19	2007					6.5			C/D	L2
20	2008					6.5			C/D	L2
21	2009		\$ 4,964.0	2009	\$ 4,754.64	6.5	5	2014	C/D	L2
22	2010		\$ 8,000.0	2010	\$ 7,840.18	6.5			C/D	L2
		Congress Capped program at \$88, with a rebaseline of								
23	2011	\$8.835B	\$ 8,835.0	2011	\$ 8,835.00	6.5	7	2018	C/D	L2
24	2012				\$ 8,835.00	6.5			C/D	L2
25	2013				\$ 8,835.00	6.5			C/D	L2
26	2014				\$ 8,835.00	6.5	4	2018	C/D	L2
27	2015				\$ 8,835.00	6.5			C/D	L2
28	2016	Integration and Test, 22 deployment events, more than typical			\$ 8,835.00	6.5			C/D	12
29	2017	Integration and Test, total of 5 integration events, 3 not started. OTE and ISIM Integration took longer than planned.	\$ 8,835.0	2011	\$ 8,835.00	6.5	1	2018	C/D	12
30		Planned Launch								
31	2019									
32	2020									

© 2022 MCR, LLC. All rights reserved.

NCR CRITICAL THINKING. SOLUTIONS DELIVERED.

INTEGRATED PROGRAM MANAGEMENT

Defense Energy Information Management National Security Space Transportation