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Abstract— Through the years, the science of cost estimating has 
matured. From the Pre-Modern to Meta-Modern periods, cost 
analysis advances were progressive. Point estimates were 
developed, and cost estimating relationships were common. 
Probability distributions and estimating to the mean added risk 
insight. With the ongoing explosion of data being generated in 
the digital space, the Internet of Things, and related 
advancements, we can integrate robust historical methods and 
tools developed by philosophers, mathematicians, scientists and 
the clergy to process this ocean of information leading into the 
Meta-Modern environment of decision making in real-time. We 
look at Post-Modern tools and methods like data analytics, 
machine learning, artificial intelligence and natural language 
processing, and how to apply them to enhance forecasting, 
exploiting and organizing data. These additional capabilities 
help estimators become more effective at incorporating 
obtainable knowledge into high-fidelity cost models and 
illuminate new ways of implementing legacy methods with more 
recent applications for advancing the science of cost estimating 
and decision making in the Meta-Modern period and beyond. 
Last, we discuss future research and trends. 
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a The Internet of things (IoT) describes physical objects (or groups of such 
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other technologies that connect and exchange data with other devices and 

 
1. INTRODUCTION 

The science of cost estimating and analysis has matured from 
pre-modern to Meta-Modern (present) and multiple industrial 
revolutions. Many estimating strategies were driven by one 
of two types of reasoning, deductive and inductive (Figure 1). 
At present, these strategies are still utilized to solve complex 
problems; however, with the ongoing explosion of data being 
generated in the digital space, the Internet of Things, and 
related advancements, we can integrate robust historical 
methods and tools developed by philosophers, 
mathematicians, scientists and the clergy to process this 
ocean of information leading into the Meta-Modern 
environment of decision making in real-time.  

We provide a brief history of method maturity, tool 
development and the people behind them through multiple 
eras and industrial revolutions, then introduce a vision for the 
future using advanced methods to embrace the exponential 
expansion of data and methods such as machine learning, 
artificial intelligence and natural language processing as they 
are applied in new ways within the Internet of Things (IoT)a 
framework and enhance the cost estimating community’s 
capability to generate high quality and timely decision-
making information. 

The paper is organized into five main sections, 1) pre-
modern, 2) early modern, 3) modern analysis, 4) Post-
Modern and 5) Meta-Modern. Each period is also tied to 
technology, knowledge attainment, industrial revolutions, 

systems over the Internet or other communications. 

 
Figure 1 – Deductive and Inductive reasoning are still the basis 

of complex problem solving 
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and data growth through the years. As time elapsed and 
industrial revolutions migrated forward implementing new 
technologies, new methods and tools have been developed 
out of need. 

For example, early cost estimating relationships (CERs) 
were developed in sync with the first industrial revolution 
where entrepreneurs and war fighters needed to exploit the 
sudden availability of new technologies in ship building, 
bridge construction and railroad competition. 

Figure 2 depicts the evolution of tools, technology and data 
across progressive periods and industrial revolutions. For 
another example, in 2020 Seagate and IDC stated that over 
42 zettabytes of digital data were generated with a forecast of 
175 zettabytes to be generated by 2025.1 

2. PRE-MODERN AND PRE-INDUSTRIAL 
ESTIMATING 

Overview 

Early contributions to our estimating profession, while 
seemingly isolated solutions to immediate challenges, 
contributed to a unified and productive body of knowledge 
which is growing even today. 

Early estimators and cost model builders weren’t just 
accountants or pay masters; their occupations typically were 
in the military, politics, or civil engineering/logistics which 
thrived during the first industrial revolution, with widespread 
applications of mechanical production plus use of water and 
steam for power Some early estimators were entrepreneurs. 2 
Most were motivated to develop focused estimating 

principles and methods because they had something more-
immediate at stake – selling cargo ships, for example.3 

Many medieval and later estimators typically had education 
and experience in mathematics and applied science (statistics, 
engineering, economics, et al). While they lacked our modern 
tools (computers) they used the tools at hand (mechanical or 
electric calculators, precise measuring devices, physical 
laboratories, etc.). They created a framework for similar 
techniques we apply today (learning curve, weight-driven 
cost relationships, mathematical simulation models, 
cost/benefit analyses, and probability analysis). Their 
approach, depending on their place in history, sometimes 
relied on the cost of standard units, standard ratios, or as 
derived from an algorithm typically based on size. 

Note that early proposal estimating methods were driven by 
1) outside civil and military requirements, including 
medieval church politics and modern US DoD standards, 
including the DoD “Green Book” of estimating standards, 
which introduced early discipline to estimating and 2) outside 
technological advantages from the first industrial revolution.4 

The common goal was to satisfy immediate business 
applications – not scientific research; early cost models were 
typically unique to single products (ships, bridges, railroads), 
using mathematics and applied science. Estimators were 
likely classed as Logisticians (who typically were the project 
paymasters) and they were paid the same as an assistant 
architect. It is known that logisticians were educated at the 
Roman Lyceum. 

 

 
Figure 2 – Cost estimating maturity, method development, knowledge and data growth over the years 
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Who Were the Pre-Modern Estimators? 

Archimedes (287-212 BC) was a Greek mathematician, 
physicist, engineer, astronomer, and inventor from the 
ancient city of Syracuse in Sicily.   He developed the concept 
of quantitative measurement, weight, and distance. 
Archimedes anticipated modern calculus and analysis by 
applying the concept of the infinitely small and the method 
of exhaustion to derive and rigorously prove a range of 
geometrical theorems, including: the area of a circle, the 
surface area and volume of a sphere, the area of an ellipse, 
the area under a parabola, and volume of an irregular shape; 
all were relevant to the later development of CERs based on 
size. 

Diophantus (circ 275 BC), known as the father of algebra, 
published his Arithmetica comprised of numerical solutions 
of both determinate and indeterminate equations – the most 
prominent work on algebra in Greek mathematics. Algebra 
plays a critical role in the modern development of cost 
estimating models. 

Leonardo da Vinci (1452-
1519) exploited the science-
driven inventions of 
quantitative analysis and 
early algebra to develop a 
sales-price CER in the first 
industrial revolution for 
contemporary Italian cargo 
ships based on their size, and 
capacity (Figure 3), and 
current methods of 
production. City-State 
Genoa derived its wealth 
from shipping; the citizens owned and operated shipyards – 
actually ship production assembly lines. They measured the 
actual labor and material costs at each station where planking, 
decking, deck houses, internal fittings, masts, and external 
rigging were added. da Vici, engineer and mathematician, 
established a process for developing a competitive sales 
price for each vessel. These early CERs are exhibited in the 
Vatican Museum. 

Isaac Newton (1642-1727) developed the binomial theorem, 
enhanced calculus, and laws of motion. The binomial 
theorem (or binomial expansion) describes the algebraic 
expansion of powers of a binomial, according to the theorem, 
it is possible to expand the polynomial (x + y)n into a linear 
combination involving terms of the form xbyn-b. 

Calculus underpins optimization, which led to curve fitting 
and eventually artificial neural networks (which can utilize 
derivatives to update weights via backpropagation). 

Thomas Bayes (1702-1761) (Figure 4) was founder of the 
Bayesian School of Statistics and had much in common with 
the estimators of today. He prepared a treatise for the Royal 
Academy on parametric analysis. An earlier manuscript 
read, in part, “, “I am convinced that the Universe functions 
in obedience to some Divine Model…I am constrained to 
believe that among men of affairs, whose paths lie in fields of 
business and commerce, a means is needed whereby the units 
of monetary systems can be related to the products in the 
marketplace.…It should be possible to contrive a model by 
which money, skill, time spent in labor, and the fineness of 
the article crafted might be related.” 

A key contribution of Bayes was to codify how to honestly 
comingle objective and subjective information. Under a 
Bayesian framework, Subject 
Matter Expert (SME) 
judgement probabilistically sets 
the distribution of prior beliefs, 
data is collected and evaluated 
against the likelihood of 
observing such a sample, and 
then prior beliefs are updated 
based on the data to form 
posterior beliefs. Bayesian 
approaches force you to 
translate subjectivity into a 
probability distribution (e.g., a prior mean and variance) and 
provides a principled framework to incorporate subjectivity 
into your analysis. Moreover, Bayes’ contributions seep into 
Machine Learning through Bayesian Networks, Naïve Bayes 
Classifiers, and Bayesian Optimization, among others. 

J. Carl Gauss (1777-1855) A German mathematician, 
developed the “least squares” or best fit method of CER 
development from cost and technical databases for economic 
models, in the form Y = A + Bx, in 1795. Adrien-Marie 
Legendre (1752-1833) expanded and published a similar 
work in 1805.  

Charles Babbage (1792-1871) A mathematician, 
philosopher, inventor and mechanical engineer developed the 
first digital programmable computer which complex CERs 
could be developed and applied. Babbage originated the 
concept of the Analytical Engine, programmed using a 
principle openly borrowed from the Jacquard loom. 

 
Figure 3 – Italian cargo 

ships were built in Genoa 

 

 
Figure 4 - Thomas Bayes 
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Isambard Kingdom Brunel (1806-1859), Bristol bridge 
builder (Clifton Bridge), ship builder (SS Great Britain), 
railroad builder (Great Western Railroad), and applied 
mathematician. Brunel was a pioneer parametrician, who 
evolved an elaborate series of cost estimating relationships 
(CERs) dealing with railroad car footprint, tractive power per 
unit of consumed fuel, and a custom parameter for rail 
“striction.” Brunel ran a cost/benefit analysis based on cost 
per ton-mile and demonstrated a more cost-effective 

operation for the Great Western Railway (GWR) based on a 
new track width. Brunel declared that anything manufactured 
could be expressed in monetary metrics per unit of weight 
or size. (Figure 5) He later provided his railroad CERs to 
Cyrus W. Field (1819-1892) who was planning to lay the 
first submarine cable between Newfoundland and Ireland – a 
debatable idea at the time that CERs based on locomotive and 
railroad car weights from his limited railroad dataset from 
one product could be applied to another product altogether. 

What Were Their Methods and Tools? 

French cathedral builders 
(1300s), developed a “standard 
unit” building method of 
estimating, defined by James 5 
as a small section of a cathedral 
based on that portion which 
could be laid in ten man-days, 
including material. Chartres 
Cathedral, (Figure 6) for 
example, consists of 7,448 such 
units where one unit would cost 
$81,500 in 2018 US dollars. By 
this method Chartres Cathedral 
(begun in 1145 as a flamboyant 
gothic style cathedral with 
mismatched spires) would have 
cost $607M to build (in 2018 

dollars) with limestone. By comparison, the 83,000 square 
foot Washington Cathedral (1907-1990) cost $65M in TY$. 
This included a $34M underground garage and two full sets 
of bells (carillons).  Converting this then-year (TY) cost to 
fixed year (FY) 2018 cost would be $665M, or a cost today 
per square foot to approximately $8,010/sq ft.6 

This early approach provides an example of analogy 
estimating for the building trade, using ratios and factors. 

3. EARLY MODERN ESTIMATING (INDUSTRIAL 
REVOLUTIONS 1 AND 2) 

Overview 

The previous section described how early pioneers applied 
evolving math and statistical tools to meet specialized and 
immediate estimating requirements - how to predict 
production and deployment cost for specific applications 
(railroads, bridges, cathedrals, and ships) based on 
specialized data and experiences). These accomplishments 
were realizable as a consequence of the second industrial 
revolution which realized the benefits of electrical-driven 
production. 

The following section describes what has been called the 
Golden Age of Estimating, with a modern focus on generic 
applications, implementing a wider range of data and 
experiences to deliver general-purpose models and databases 
which could then be calibrated to each user’s specific 
products – during the fourth industrial revolution. Estimating 
concepts (based on small databases and logical relationships) 
were ripe for expansion with product complexity, 
digitalization of tools and techniques (computer), and the 
sudden availability of vast cost, schedule, and technical 
databases (probably as a result of WW2 technology). 

This section describes generic applications in parametric 
estimating methods, the application of statistical estimating, 
general acceptance of parametric estimating methods, and the 
role played by professional societies in the development and 
acceptance of modern estimating methods. 

Who were the early estimating pioneers? What were their 

goals? 

Frank Freiman an RCA cost estimator, statistician, 
industrial engineer, and WW2 logistics officer was seeking a 
generic (but disciplined) parametric approach to engineering 
estimating of a universe of defense and commercial products 
(1962-present).  He developed a set of general-purpose, non-

 
Figure 5 - Early Brunel locomotive for GWR and basis for early 

railroad CERs. 

 

 
Figure 7 - Frank Freiman receives Honorary Director Certificate 

from Bryant Barnes, first ISPA President, at close of Charter 
Meeting in Washington DC (1979). 

 

 
Figure 6 – Chartres 

Cathedral begun in 1145 
estimated with standard 

units 

 

https://www.google.com/imgres?imgurl=https://www.mediastorehouse.com/p/658/great-western-railway-locomotive-chart-lalla-11301281.jpg&imgrefurl=https://www.mediastorehouse.com/topfoto/golden-age-trains/great-western-railway-locomotive-chart-lalla-11301281.html&docid=I78sv4UUzJRHgM&tbnid=U9z3TfI7DStagM:&vet=12ahUKEwiGla2O5-vfAhVUFjQIHZTTBT04ZBAzKE4wTnoECAEQUA..i&w=600&h=326&itg=1&bih=771&biw=1679&q=great%20western%20railway%20locomotives&ved=2ahUKEwiGla2O5-vfAhVUFjQIHZTTBT04ZBAzKE4wTnoECAEQUA&iact=mrc&uact=8
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proprietary CERs (typically relating development, 
production, and logistics cost to size, complexity, percent (%) 
new/reuse, production quantity, and elapsed time) which 
could then be calibrated to a specific user’s own products and 
processes.  Originally developed for RCA internal use, but 
later applied by DoD, PRICE H for hardware products (1975) 
and PRICE S for software products (1977) were released 
commercially. Frank encouraged the expanded and 
disciplined development of recently-available cost, schedule 
and technical user databases for calibrating the generic 
models for special-purpose applications. Other commercial 
general-purpose models were developed by Dan Galorath 
(SEER), Capers Jones (software productivity), Randy Jensen 
(SEM), Larry Putnam (SLIM), David Novick (Aircraft 
production), and Barry Boehm/USC (COCOMO). At this 
time new parameters came into use including: function points 
and equivalent software lines of code (ESLOC).7 

RCA PRICE Systems unified international parametricians 
with their PRICE Model Users Group, which morphed into 
the first independent professional society (1979) devoted to 
the acceptance of parametric estimating methods by DoD - 
the International Society of Parametric Analysts (ISPA). For 
his active role in ISPA’s development, Frank Freiman was 
honored by ISPA as its Honorary Director, as shown in 
Figure 7.8 

David Novick (1930s-1960s) of RAND Corp, used statistical 
estimating post WWII, along with NASA and USAF where 
they studied multiple scenarios concerning how the US 
should proceed into the age of jet aircraft, missiles, and 
rockets. The military saw a need for a stable, highly skilled, 
cadre of operations researchers (OR).9 

In 1950, the RAND Corporation established its Cost 
Analysis Department for the purpose of analyzing weapons 
system costs using OR methods developed during WW2. An 
early challenge was to identify the “elements of cost,” later 
to become the DoD standard work breakdown structure 
(WBS).10 

Once cost elements became common across multiple models, 
cost drivers could be defined, and cost risk methods were 
accepted, (Figure 8) the RAND analysts focused on 
developing mostly-aircraft generic cost estimating 
relationships (CERs); the term parametric cost estimating 
became common by 1952. Novick developed the concept of 
“cost considerations in systems analysis.” And cost 
estimators, searching for identity and status in an increasingly 
complex technical world, instantly became systems 
engineers. Subsequently, RAND found it necessary to 

 
Figure 8 – OR methods support cost risk analysis based on 

historical experience. This curve explains the cumulative 
probability (estimating confidence) or each possible cost 

estimate. 

 

 
Figure 9 - Parametric Reinvention Laboratory Teams were located across the United States (1994). 
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differentiate between one-time outlays - non-recurring 
expenses for investments (development), recurring expenses 
for procurement (manufacturing) and maintenance expenses 
for logistics (operations). David Novick retired in 1971; Their 
work was expanded under other estimating scholars, 
including Steve Book of The Aerospace Corporation and 
later of MCR. 

Monte Carlo Statistical Estimating Predictions were 
originated by Los Alamos National Laboratory (LANL) 
while estimating nuclear bomb yields. Monte Carlo 
simulations are used to model the probability of different 
outcomes in a process that cannot easily be predicted due to 
the intervention of random variables. It is a technique used to 
understand the impact of risk and uncertainty in prediction 
and forecasting cost estimating models. 

The first known reference for using Monte Carlo methods to 
solve particle transport problems on computers was reported 
by LANL in 1947. 

Parametric Cost Estimating Initiative (PCEI - 1994): a 
joint government-industry endeavor to sanction and 
encourage parametric (top-down) estimating methods for 
federal proposal estimating, the Defense Contract Audit 
agency (DCAA) issued new top-down estimating guidelines 
based on already-accepted bottoms-up government 
estimating rules.  Figure 9 is a mapping of the United States 
Parametric Reinvention Laboratory Teams (circa 1994). 

Professional Estimating Societies (1960 – present): were 
dedicated to the development of cost estimating tools and 
methods, as well as the practice of free and open discourse 
(papers and workshops) by learned government and 
commercial estimators. Some professional societies created 

 
b Society abbreviations:  
IESSD – Industrial Estimating Soc of San Diego 
NES – National Estimating Society 
SCEA – Society of Cost Estimating and Analysis 
ICA – Institute of Cost Analysis 

discussion platforms for development of focused WBSs 
which were eventually adopted and integrated as government 
standards, i.e., MIL-STD-881. Figure 10 illustrates the 
expansion and consolidation of professional societies over 
the recent decades as cost analysis changed to meet industry 
and government needs.b 

What Were Their Methods and Tools? 

Government cost estimating centers (1980s to present): 
The Air Force Center for Cost Analysis (AFCCA), Naval 
Center for Cost Analysis (NCCA), Army Cost and Economic 
Analysis Center (CEAC), DoD Cost Assessment and 
Program Evaluation (CAPE), and their role in standardizing 
the government-environment has enhanced cost estimating 
discipline.  These centers have also developed and provided 
non-proprietary versions of very large cost/technical 
databases such as the Unmanned Spacecraft Cost Model 
(USCM), the NASA/Air Force Cost Model (NAFCOM), and 
Air Force Space and Missile Systems Center (SMC) Software 
Database which have proven useful in applying general 
purpose models. 

Spreadsheet tools (1980-present): they were developed to 
satisfy the immediate need for a mathematical framework for 
estimating the labor hours of project development for the 
newly available personal computer and the expansion of 
general-purpose estimating models and widely available cost 
estimating relationships (CERs). Spreadsheet programs such 
as VisiCalc, SuperCalc, Multiplan and Lotus 1-2-3 were 
advanced enough; they just lacked the user-friendly nature 
like many operating systems at the time. But, they promoted 
growth in general purpose estimating tools. 

4. MODERN ANALYSIS (INDUSTRIAL 
REVOLUTION 3) 

Overview 

Over 100 years ago H.G. Wells observed that “The great 
body of physical science, a great deal of the essential fact of 
financial science, and endless social and political problems 
are only accessible and only thinkable to those who have had 
a sound training in mathematical analysis, and the time may 
not be very remote when…for [the] complete initiation as an 
efficient citizen…it is as necessary to be able to compute, to 
think in averages and maxima and minima, as it is now to be 
able to read and write.” While not explicitly mentioning 
statistics, Wells’ often misquoted observation clearly stresses 
the importance of statistical thinking and procedures in 
various financial and business situations, and in fact, many of 
the emerging techniques during this period are routinely used 
now. 
 

ICEAA – Institute of Cost Estimating and Analysis Association 
ISPA – International Society of Parametric Analysts  
SSCAG – Space Systems Cost Analysis Group (working group) 

 
Figure 10 - Consolidation of estimating societies in America 
reflects the evolving methods employed by cost estimators. 



7 
 

Descriptive Statistics and Statistical Inference 

Descriptive statistics provides a concise and efficient means 
to summarize and communicate data. Commonly providing a 
measure of central tendency (e.g., a mean of median) and 
dispersion (e.g., a standard deviation), descriptive statistics 
often serve as the foundation for inferential statistics. 
Whereas descriptive statistics seek to merely describe a 
sample, inferential statistics seek to describe an underlying 
population from a sample. Drawing from a pre-existing body 
of knowledge (e.g., prior research, literature, etc.) or 
subjective beliefs, a null hypothesis can be formulated to test 
its compatibility with newly observed data. After finding 
sufficient evidence of incompatibility between the data and 
our null hypothesis, we can reject our status quo assumption 
in favor of its logical complement. Univariate prediction 
intervals provide a basic example of applying inferential 
statistics to determine ranges of likely outcomes for future 
events. 

Regression Models 

Expanding on descriptive statistics, regression models use 
organized raw data to develop relationships between two or 
more variables using linear or nonlinear equations.11 With a 
pedigree tracing back to Da Vinci CERs, regression models 
explicitly quantify the relationship between variables and 
provide a statistical framework to assess the statistical 
significance the observed relationship (i.e., whether the 
observed relationship would be expected to occur by random 
chance, or not). Historically, linear least squares has served 
as the starting point to investigate the relationships between 
historical data. This is primarily due to the fact that there is a 
closed form solution to the linear least squares estimator 
(meaning we do not need a computer to numerically 
minimize the sum of square errors) and the widely held 
notion that linear models provide a reasonable approximation 
(at least locally) to complex or non-linear phenomena. A rich 
statistical literature (e.g., the Gauss-Markov theorem) has 
firmly established the assumptions and conditions (e.g., 
additive errors) for linear least squares regression models to 
serve with minimal sampling variance and how to 
probabilistically model predictive uncertainty. In many cost 
estimating problems, errors follow a multiplicative pattern, 
wherein the errors are proportional to the magnitude of the 
predictive variables. In such cases the variables are 
transformed (typically with natural logarithms) to convert 
multiplicative errors into additive errors and preserve the 
benefits of the linear least squares estimator; however, such 
transformations introduce bias when converting the 
transformed equations into unit-space. 

More recently, alternative regression techniques have been 
developed to eliminate the bias introduced from variable 
transformations, which include the Minimum Unbiased 
Percentage Error (MUPE) and Minimum Percentage Error 
under Zero Percentage Bias (ZMPE) techniques. Whereas 
MUPE eliminates bias from applying iteratively reweighted 
least squares, ZMPE eliminates bias through a constrained 

optimization process. All regression models are driven using 
existing data support a deductive reasoning approach and are 
commonly utilized to solve forecasting problems in business 
applications.12 

Factor Analysis 

Factor analysis is a multivariate statistical method that 
utilizes the covariance structure of observed variables to 
model the data in terms of a smaller set of unobserved (i.e., 
latent) variables called factors that originated with “early-
20th-century attempts of Karl Pearson, Charles Spearman, 
and others to define and measure intelligence.”13 The basic 
idea behind factor analysis is that variables can be grouped in 
a manner such that correlation is high between variables 
within a group and low between variables in another group; 
in such cases, there is a latent “factor” that causes the 
observed values. Factor analysis is closely related to Principal 
Components Analysis (PCA). Whereas PCA seeks to find 
linear combinations of the observed variables that maximize 
variation while remaining orthogonal, factor analysis seeks to 
find uncorrelated factors whose linear combinations best 
explain the observed data. In both cases, the dimensionality 
of the data is reduced; however, factor analysis provides 
rotation techniques that help elucidate latent factor 
interpretation. Notwithstanding factor rotation, factor 
analysis is generally an exploratory or descriptive procedure 
that requires subjectivity in the interpretation of factors. 

For example, El-Choum developed a Factor Analysis Model 
(FAM) to identify key factors that influence a cost estimate 
at a project’s bid phase.14 The first step in the development 
of a model was identification of all possible parameters that 
contribute to cost overruns. By examining the correlation 
matrix, 8 variables were identified that contributed to cost 
overruns. The intent was to enhance and improve the quality 
of budgeting for cost estimates in general and is to facilitate 
the decision-making process in providing a more realistic and 
practical representation of the construction industry. Based 
on model results, it was found there are key parameters that 
significantly affect cost overruns. They are: 1) lack of 
supervision; 2) scope changes; 3) inexperienced 
management; 4) design changes; 5) improper supervision; 
and 6) feedback procedure. The model can be used to 
investigate the effect of potential variables prior to award, so 
that corrective action can be taken to adjust the cost estimates 
for a particular project. 

Canonical Correlation Analysis 

Canonical Correlation Analysis (CCA) is used to quantify the 
degree of association between two sets of multivariate data 
(not necessarily with the same dimensionality) and originated 
with Harold Hotelling’s desire to relate measures for 
arithmetic and reading abilities in the first half of the 20th 
century.15 CCA identifies linear combinations from each set 
of data that achieve the largest degree of correlation to each 
other. From another perspective, CCA represents a means for 
supervised dimensionality reduction; effectively, we 
compress the multivariate data into linear combinations while 
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ensuring a high degree of association with the outcome 
variables of interest. 

For example, CCA lets us relate a set of technical 
requirements (e.g., cost drivers) to measures of performance 
(e.g., cost and schedule). The linear combinations of 
technical requirements derived from CCA can be thought of 
as complexity measures, since they are designed to scale 
linearly with linear combinations of performance outcomes.  

Discriminant analysis 

Discriminant analysis, or linear discriminant analysis, (LDA) 
is a statistical technique used to classify observations into 
non-overlapping groups, based on scores of one or more 
quantitative predictor variables.  

This technique has been here for quite a long time. First, in 
1936 Fisher formulated linear discriminant for two classes, 
and later on, in 1948 C.R Rao generalized it for multiple 
classes. LDA finds linear combinations of the quantitative 
predictor variables that best separate observations into pre-
defined groups or classes. In this sense, LDA can also provide 
supervised dimensionality reduction that results in a set of 
variables that best separate between classes. 

Discriminant analysis is a valuable tool and has gained 
widespread popularity in areas from marketing and finance to 
facial recognition. There several reasons for this; when its 
underlying assumptions are met, LDA is more accurate than 
logistic regression16 and can operate well with small sample 
sizes.17 

Similar to it is archetypical application in predicting firm 
bankruptcy, LDA can be applied to predict whether 
commonly experienced risks are likely to be realized and 
impact cost or schedule. While classification techniques such 
as LDA have not been commonly utilized in the cost 
estimating field, we see ripe application in risk analysis.  

Time Series 

Time series has also been around for many years and is still 
a popular analytical method. It is a specific way of analyzing 
a sequence of data points collected at regular time intervals 
that are serially correlated. The use of time series analysis 
provides analysts consistent data over a set period of time18. 
The benefit to using this method is that the periodic data can 
show how key elements change over time; it shows the 
direction data is trending and supports statistically rigorous 
forecasting. Although time series analysis requires a 
significant number of observations, the large set of 
observations provide additional insights including: patterns, 
trends, seasonality and unusual trending. Classically. variants 
to the simple Autoregressive Integrated Moving Average 
(ARIMA) or Vector Autoregression (VARs) models are 
applied to account for the correlation between observations 
across time and the interaction between endogenous and 
exogenous predictors. For example, using time series data for 
a project using earned value management provides 

performance trending, early warning, and areas for corrective 
action. 

Decision Trees 

 Decision trees represent a series of splitting rules (i.e., 
logical if-then statements) organized into a flow-chart. 
Beginning with the single parent node (or root) and following 
the logical splitting rules (e.g., if TRUE go Left, else go 
Right), will results in a single terminal node (or leaf) that 
captures the predicted value or class for an observation. 
(Figure 11) To learn these splitting rules, we find the optimal 
segmenting criteria that partitions the predictor space into 
regions and simply forecast the average (or mode) of the 
response variable for the predictors within each region. 

Decision Trees are a non-
parametric supervised 
learning method used for 
classification and 
regression. The goal is to 
create a model that 
predicts the value of a 
target variable by 
learning simple decision 
rules inferred from the 
data features. This is very 
popular and highly 
interpretable learning 
algorithm. While it often 
underperforms against 
other machine learning 
methods it is still useful 
for obtaining first order 
decisions. 

Other benefits of using decision trees are: domain knowledge 
is not required; they are easy to comprehend; the 
classification steps of a decision tree are very simple and fast. 
However, without rigorous cross-validation to prune away 
unnecessary splitting rules, decision trees will tend to overfit 
their training data will not generalize well. A well-pruned 
(i.e., simple) decision tree model will generally under-
perform relative to other machine learning or regression 
approaches but is makes up for the lack of accuracy in terms 
of a higher degree of interpretability. 

5. POST-MODERN (INDUSTRIAL REVOLUTION 3) 
Overview 

In this era of processing and memory intensive methods, data 
science begins to flourish. With cheap memory and 
computing costs and an explosion of data in the digital 
environment, we apply more greedy, computationally 
intensive algorithms that have been out of reach such as K-
Nearest Neighbors, K-Means, Neural Networks, Fuzzy 
Logic, and Evolutionary Programming. Historically, with 
limited computing power, we were forced into simplified 

 
Figure 11 – Decision trees 
provide a straightforward 

method of decision making 
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solutions. Now however, with advanced computers and 
processing power, almost any type of analyses is possible. 

Cross-Validation 

With advances in 
computing power, comes 
the ability to apply 
resampling methods to 
assess out-of-sample 
predictive performance. 
While there are many 
variants of Cross-Validation 
(CV), k-fold CV remains 
one of the most popular. k-
Fold CV begins with 
randomly partitioning the 
training data into k non-
overlapping sets (called 
“folds”). Sequentially, each 
fold is held back as an 
unobserved test set, while 
the remaining (k-1) folds are 
used to train a model and 
predict the held back set. 
Performance metrics are 
then calculated for each held 
back set. (Figure 12) The 

CV performance of a model against each of the k-folds 
represents a how the model would have predicted those data 
points had they been unobserved at the time the model was 
generated. Comparing CV performance statistics (e.g., Root 
Mean Square Error (RMSE)) to those calculated on a model 
learned from the entire training data (i.e., the classical 
approach to model development) yields insight into 
overfitting and give an indication to how well the model will 
generalize to predict new data. As an added benefit, CV can 
be utilized to perform principled feature selection and 
hyperparameter tuning for machine learning models.  

Clustering 

Cluster analysis is an unsupervised statistical method for 
processing data. It is unsupervised in the sense that there is 
no response variable (e.g., cost) that needs to be specified or 
collected. It works by organizing items into groups, or 
clusters, on the basis of how closely associated they are under 
a variety of (dis)similarity criteria. The objective of cluster 
analysis is to find similar groups of objects, where 
“similarity” between each pair of objects is defined by some 
global measure over the whole set of characteristics. This is 
a key analytical method for data mining. 

While the number of clusters is not usually known, a priori, 
there are a number of techniques to determine the optimal 
number of clusters for a given dataset (e.g., the Elbow 
Method, Silhouette Distance, or Cross-Validation). Once the 
analysis is performed, it provides information about where 
associations and patterns in data exist, but not what those 
might be or what they mean.19 As a result it is an initial step 

in the analytical chain. For example, we want to know what 
transponder to choose for an upcoming spacecraft design. 
Comparing the data from a list of manufacturers, we want to 
know the best reliability versus cost. We might compare the 
number of space flights, quantity of parts within the unit, 
historical failure modes, etc. These are some of the clusters 
that could be configured to perform the trade. 

One of the most commonly used algorithms in machine 
learning is k-Means clustering. While sometimes confused 
with k-Nearest Neighbors (kNN) due to the presence of the k 
letter, they are different methods k-Means clustering is a 
centroid based unsupervised algorithm where distances 
between points in a specific cluster(s) are used to determine 
the multivariate “center” or centroid mean of the cluster. In 
contrast, KNN is a supervised learning algorithm used for 
classification or regression of data which needs labelled data 
to train on. Figure 13 shows examples of these methods. kNN 
makes predictions based on the most common class 
membership or average of the response variable of the k 
nearest neighbors to a new data point. Similar to 
unsupervised clustering algorithms, kNN, defines nearness 
with a variety of (dis)similarity measures (e.g., Euclidean, 
Manhattan or Minkowski distance). 

Neural Networks 

Artificial Neural Networks (ANNs), often just called a 
“neural network” (NN), are a subset of machine learning and 
present a brain metaphor for information processing. These 
models are biologically inspired computational models 
(algorithms) and consist of interconnected groups of artificial 
neurons. As a result, they quickly process information and 
have the unique ability to extract meaning from imprecise or 
complex data to find patterns and detect trends that are too 
convoluted for the human brain or for other computer 
techniques (Figure 14).20,21 

 
Figure 13 - Clustering, K-means and KNN provide flexibility in 

machine learning and AI 

 

 
Figure 12 – Clustering, K-
means and KNN provide 

flexibility in machine learning 
and AI 
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ANNs can be made 
to be arbitrarily 
flexible and serve as 
a class of universal 

function 
approximators. To 
achieve this 
flexibility, they 
require learning a 
large number of 
weights, which in 
turn, requires a large 
amount of data. The 
example in Figure 14 
begins with 10 input 
variables and maps 
them to an initial 

hidden layer of 8 neurons that requires learning 80 weights. 
These 8 neurons then map into a second hidden layer of 6 
neurons (requiring 48 weights) which maps into a third layer 
of 4 neuron (which requires 24 weights) which maps into a 
fourth layer of 2 neurons (which require 8 weights) which 
finally map into a single layer (requiring 2 weights). In total, 
this ANN needs to learn 162 weights which requires 
substantially more than 162 data points for meaningful 
results.  While there are no clear-cut choices for the number 
of hidden layers, nor the number of neurons per hidden layer, 
cross-validation can assess whether ANNs overfit their data 
and provide a principled mechanism for selecting the ANN 
structure from a grid of plausible choices. 

The application of neural networks in data mining is very 
broad. With sufficiently large data sets, they have a high 
acceptance ability for noisy data while delivering a high 
degree of accuracy. Neural networks according to Ramos, 
have been shown to be very promising systems in many 
forecasting and business classification applications.22 

Fuzzy Logic 

Fuzzy logic is related to probability theory, it is a technique 
for representing and manipulating select information by 
attaching numeric values between 0 and 1 to each proposition 
in order to represent uncertainty. Once assigned, the data is 
manipulated in a way to measure how likely a proposition is 
to be correct and fuzzy logic measures the degree to which 
the proposition is correct. For example, the proposition 
'President Obama is young' may have a degree of correctness 
0.8 23 Fuzzy logic methods are a key ingredient of artificial 
intelligence. Another example where, Chiang and Jyh-Shing 
implemented fuzzy logic algorithms on the Cassini 
Spacecraft attitude control system in the 1990’s the result was 
an optimized solution to minimize fuel use.24 

Evolutionary Programming 

Evolutionary programming is a stochastic optimization 
strategy similar to genetic algorithms with an emphasis on 
behavioral linkages.25 It was first used by Dr. Lawrence J. 

Fogel in 1960 in order to use simulated evolution as a 
learning process aiming to generate artificial intelligence. 

This method is typically used to provide good approximate 
solutions to problems that cannot be solved easily using other 
techniques (as previously discussed). Many optimization 
problems fall into this category. For instance, it may be too 
computationally-intensive to find an exact solution but 
sometimes a near-optimal solution is sufficient. 

NASA is using evolutionary programming to conceptualize 
and optimize communication solutions.  For example, they 
may want to know how to get the best signal return from an 
antenna on Mars back to earth. Using evolutionary 
programming, the spacecraft lander will search to optimize 
the signal. 

In another example, Moraglio set up a programming problem 
to using polygons and wheels to run on a terrain. Using 
evolutionary programming, Figure 15 provides the 
evolutionary solution.26 In these situations, evolutionary 
techniques can be effective. Due to their random nature, 
evolutionary algorithms are never guaranteed to find an 
optimal solution for any problem, but they will often find a 
good solution if one exists. 

6. META-MODERNISM, (INDUSTRIAL 
REVOLUTION 4 AND BEYOND) 

Overview 

Meta-Modernism and the fourth industrial revolution are 
centered in a digital transformation shaping how researchers, 
technologists and business operations are transforming and 
adapting to the environment. It is the era of connectivity (of 
everything) using high fidelity sensors that get fed back to 
users through the data ocean. Big data analytics is growing in 
lock step with data growth. This section provides maturing 
tools and methods to leap into the future. Under many names, 
data science had been around for decades.  Within it is 
artificial intelligence, machine learning, natural language 
processing as well as the classical descriptive statistics and 
regression. The use of deductive and inductive reasoning 
support complex problem solving. The difference now is the 
rate or velocity data is being generated and analyzed across 
sectors and industries. The methods in this section are the 
steppingstones into the future and the next step for cost 
estimating and analysis.  

 
Figure 15 – Evolutionary programming accelerates solutions to 
complex problems using abstract constructs 

 

 
Figure 14 – Neural networks provide 

an efficient approach to pattern 
recognition 
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Data Science 

Data science is the continuous process of collecting large data 
sets to observe, form and test models (or assumptions). This 
mix of programs, statistics, domain expertise, calculations 
and visualizations help identify hidden patterns and trends in 
data to support informed decision making and predictive 
modeling activities.27  

It is “The ability to take data — to be able to understand it, to 
process it, to extract value from it, to visualize it, to 
communicate it. That’s going to be a hugely important skill 
in the next decades…”28 

Artificial Intelligence and Machine Learning 

Artificial intelligence (AI) and AI systems are used to 
perform complex tasks in a way that is similar to how humans 
solve problems. Machine learning (ML) is a subfield of 
artificial intelligence, which is broadly defined as the 
capability of a machine to imitate intelligent human behavior. 

AI is a collection of programs and algorithms that uses ML 
and deep learning to simulate human intelligence. AI 
algorithms can learn, reason and self-correct to perform 
autonomous actions to solve problems as they continue to 
capture more data. AI can translate, understand speech, and 
make decisions self-sufficiently to automate repetitive tasks 
or strategically support product and service advancements. 

ML is a method consisting of algorithms to look at data sets 
and identify patterns, then, using those insights better 
understand and complete its assigned task. While there are 
two major types of ML, supervised and unsupervised, that 
have particular relevance to cost estimation, reinforcement 
learning offers many applications for real-time decision 
support (e.g., self-driving cars).  Supervised learning 
involves learning a mapping between training data and 
labeled outputs, whereas unsupervised learning discovers 
relationships based solely on the data itself. With 
reinforcement learning, algorithms learn what actions to take 

within an environment that maximize a reward function over 
time and that alter its state within the environment (which 
potentially change what actions are available). 

Table 1 provides some key attributes of the primary ML 
methods. 

Supervised learning is performed with a labeled set of data 
(labeled meaning it includes a dependent, or response 
variable). It can be used to address regression (i.e., where the 
output is a numeric value – e.g., cost) and classification (i.e., 
where the output is a category – e.g., “successful”) problems. 
When applying supervised learning algorithms, the primary 
goal is to infer a mapping from the predictor variables to the 
response variable that will perform well (i.e., generalize) for 
new, unobserved data. The key to achieving this goal is 
finding a balance between the bias-variance (i.e., complexity 
vs accuracy) tradeoff. As ML models become more complex, 
they tend to overfit (i.e., essentially memorize) the training 
data and are unable to predict well against new observations 
(e.g., fitting a high-degree polynomial to a small dataset); 
conversely, insufficiently complex ML models will tend to 
underfit the training data (e.g., fitting a simple average to data 
that clearly follows a linear trend). Luckily, cross-validation 
offers a principled and effective means to find the optimal 
tradeoff between complexity and accuracy. During CV, 
overly complex model will tend to overfit the training data in 
each fold, and poorly predict with the held back test set; 
similarly, insufficiently complex models will poorly predict 
both the training and held back test set in each fold.  Simply 
selecting the ML model (or parameterization) with the best 
CV performance is usually effective at optimizing this 
tradeoff. Figure 16 shows a number of methods trading 
accuracy with interpretability. For example, Decision trees 
are typically easier to interpret while neural nets are more 
accurate. 

As our community considers adopting highly accurate, yet 
uninterpretable methods, we can temper our historical 
distrust of “black-box” models with techniques that explain 

Table 1 - Two Fundamental Machine Learning Methods and key attributes. 

Types Supervised Unsupervised 

What does it do? Learn a mapping from inputs to outputs (i.e., how to 
predicts outcomes) 

Identify clusters, association or anomalous data and 
reduce dimensionality 

What kinds of data 
does it require? 

Labeled training data (i.e., a response variable in 
addition to predictors) 

Training data (a response variable is not required)  

What kinds of 
Algorithms can be 
applied? 

Linear, non-linear and logistic regression, LDA, 
Decision Trees, Random Forests and Gradient 
Boosted Trees, Support Vector Machines, and 
ANNs 

K-Means and Hierarchical Clustering, Gaussian 
Mixture Models, Principal Components Analysis (PCA) 
and Autoencoders 

What are the key 
limitations? 

Needing to balance the Bias-Variance tradeoff 
(Underfitting and Overfitting) 

Interpreting clusters requires human intervention and 
no guarantee of meaning 
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the predictions and provide human intelligible reasons for 
what drives individual predictions. For example, Locally 
Interpretable Model-Agnostics Explanations (LIME) make 
small perturbations to the inputs for a single data point and 
records how those perturbations change predicted output. 
Applying linear regression to the set of perturbated inputs and 
corresponding outputs yields a highly interpretable summary 
of how the inputs variables influence a particular prediction.  

Unsupervised learning is performed with unlabeled data. The 
algorithms extract patterns and relationships. While there are 
numerous ways to implement unsupervised learning, there 
are several common methods; 1) Clustering, in which the 
algorithms are programmed to find similar data points within 
a data set and group them accordingly (as previously 
discussed, 2) density estimation, this method uses algorithms 
to look at how a data set is distributed and any associated 
patterns, 3) anomaly detection, where the algorithms search 
for data points within a data set that are significantly different 
from the rest of the data, and 4) principal component analysis 
(PCA), which can be utilized to reduce the dimensionality of 
the data.29 

Natural Language Processing 

Natural Language Processing (NLP) is a branch of AI whose 
purpose is to understand human generated text and spoken 
words. It is a set of techniques and algorithms that combine 
approaches from statistics, ML and others to enable models 
to process and find meaning within unstructured text. A 
possible future tool for cost estimating is one that can 
translate written requirements into a set of WBS -oriented 
cost drivers that ultimately can support a complete cost 
estimate. 

NLP techniques can be used to extract and exploit volumes 
of narrative data associated with cost estimation. For 
example, applying NLP techniques for tokenization 
(converting every word or character in a sentence into 
“tokens” or variables) and part-of-speech tagging (labeling 
nouns, verbs, etc.), analysts could extract action verbs from a 

set of functional requirements for a software development 
effort and then apply simple function point counting to 
automatically generate an early cost estimate for the effort. 
Moreover, utilizing other NLP techniques for creating 
document term matrices or “word2vec”, an analyst could 
quickly identify similar or redundant requirements. 

Digital Twins 

A digital twin is a virtual model designed to accurately reflect 
a physical object. The object being is outfitted with various 
sensors related key areas of functionality to provide input to 
a virtual model that can then be used to run simulations for 
studying actual performance and synthesize possible 
improvements or troubleshoot issues, leading directly back to 
the physical specimen.30 The idea of digital twins was 
conceptualized in the early 1990’s and further developed 
coined by NASA in 201031 

The benefits are boundless and support better research and 
development, higher efficiency products and product 
disposal strategies. Today the use of digital twins is 
expensive with limited use on large scale products or 
projects. Industries currently engaged in this technology 
include: systems engineering, auto manufacturing, 
production aircraft and others. 

However, the future is limitless for this technology. 
Researchers foresees a digital reinvention that will disrupt 
operating models with artificial intelligence and other 
enabling technology to increase the cognitive ability of the 
models and then implement it into the physical asset.  

7. A VISION FOR THE FUTURE  
Key Points 

The data ocean is growing at an exponential rate. As a result, 
evolutionary and advanced methods, tools and techniques 
will continue to advance and mature to keep pace to allow for 
sorting, characterization and pattern recognition. The 
resulting data lakes can then be evaluated based on industry 
specific criteria allowing analysts and subject matter experts 
(SME) to select the appropriate analytical frameworks to set 
up models and perform complex analyses that will result in 
providing actionable information for stakeholders. 

Methods Summary 

We discussed numerous methods to perform data analysis. 
Today many of these methods are still used, some for general 
applications others for specific purposes. As the newer 
methods are implemented in the big digital data ocean, more 
capable models will be developed to provide disruptive 
methods to problem solving. 

Key drivers to this disruption are the five tenets of big data to 
support value added solutions32: 

Volume – The amount of data produced is increasing (Figure 
2), At smaller scales it is now measured on a petabyte scale 

 
Figure 16 – Notional Machine Learning Algorithmic Trade-Offs 

using different statistical methods 
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(1,000,000 gigabytes) for data lakes. Whereas “big Data” is 
on a Zettabyte scale (1,000,000 petabytes) for data oceans. 
Refer to Appendix B for data volume measurements. 

Variety – Is the form in which data can be stored or processed 
(e.g., structured or unstructured data). Variety is useful for 
inductive reasoning and unearthing previously hidden 
insights (Figure 1). Most often structured data is used in cost 
estimating and analysis due to many specialty data models 
with their own unique data characteristics and specific 
analyses. 

Velocity –As the speed at which data is created increases, 
consideration should be to how it is captured, organized and 
stored for quick recall and use. This is likely a game changer 
in the future as it will enable real-time decision support. 

Veracity –Good quality is the cornerstone of reliable analysis 
and results. Using effective data cleansing and validation is 
needed early. It often requires a disproportionate amount of 
time to get it right. Typical issues include input errors, 
fragmented or missing data labels, missing values and 
consistent units. 

Value – Providing data to preserve history and support 
forecasting and trending to add value for decision makers. Its 
intrinsic characteristics include solving problems, 
identification of cost drivers (e.g., cutting costs, increasing 
revenue, etc.), providing transparency and insight into 
resources and efficiency, and others. 

These five tenets provide a basis of effective analysis from 
pulling data out of the data ocean, performing data sorting 
and characterization into application specific data lakes that 

can then be used to define the modeling framework for 
performing insightful analysis resulting in robust, defendable 
recommendations. Figure 17 provide an illustration of the 
data science process lifecycle. 

Impact to Cost Estimating 

The cost estimating community must prepare for the 
emerging and critical disruptive change in the way cost 
analysis and forecasting is performed. As more cost related 
data is fused with technical and programmatic information 
the ability to perform real-time analysis with many 
organizations is becoming a reality.  

The advanced tools and analysis must keep pace. In the future 
as AI, ML and NLP matures further, the day will come to 
apply experience, utilize existing tools in new ways, even 
speak to a computer to generate real time a cost estimating 
relationship. For example, someday a person may be able to 
just speak into a microphone and say: “Computer – generate 
- a - cost estimating - relationship - for - a – satellite – system 
– with a weather payload – based – on – mass – power – IR 
-frequency – and LEO – polar - orbit”. Almost like asking 
“Alexa” to tell you a joke of the day. The data will then be 
generated and displayed on the tablet you are holding via the 
cloud. This may be a little farfetched today. 

A more realistic step is the ability to apply NLP to directly 
cost requirements without intermediary measures (e.g., 
weight, ESLOC, function points, etc.). We imagine applying 
NLP techniques to the requirements of the system (e.g., direct 
inject GEO at a zero-degree inclination, with a given delta-V 
requirement for on-orbit maneuvers, that performs remote 
sensing in these band ranges, etc.) and then learning a 

 
Figure 17 -Big data tenets provide the foundation for robust analytical solutions 
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mapping to between these requirements and cost or schedule. 
This would require access to lots of data in addition to the 
computing power to perform the machine learning and 
natural language processing tasks. Moving forward, we 
expect this kind of shift in the “inputs” to our cost models 
(i.e., going from measures that have historically been 
correlated with cost but don’t have a clear causal relationship 
(e.g., weight or lines of code) to the requirement sets that 
have clear causal impacts). 

To enable this, as a community, we need to embrace, teach 
and advocate for data science-based approaches to cost 
estimation (e.g., cross-validation). While there is still a way 
to go, enhancing estimator familiarity and proficiency with 
free and open-source computational tools (e.g., R or Python) 
could help a great deal with advancing the state of our 
community.  

An immediate step is illustrated in the Technical Baseline 
Assessment Tool (TBAT) with a snapshot in Figure 18 
showing a baseline set of parameters and charts showing 
optimal solutions across various sub systems and class 
spacecraft with error bands. This illustrates future 
possibilities to quickly provide optimal solutions to 
spacecraft design and development. The tool applies 
multivariate statistical techniques and sequential quadratic 
programming to determine optimal sub systems that work 
with the mission requirements. 

 

 

 

Last Word 

Disruptive change is coming, current tools and methods are 
maturing. Preparing for the future of analysis will provide 
estimators a significant capability for timely decision 
making. 

8. FUTURE RESEARCH AND TRENDS 
We have provided a brief survey of tools and methods 
showing how the big data ocean is changing the way decision 
making is done and how it might change in the future. Future 
research will include delving deeper into AI, ML and NLP 
specific to the cost estimating community to provide 
advanced tools that enable robust analysis at light speed to 
decision makers. 

Thinking about the future of our profession, based on a better 
understanding of the evolutionary development of estimating 
tools and estimates, makes us better prepared for that future. 

Theodore Roosevelt once said, “I believe that the more you 
know about the past, the better you are prepared for the 
future.” 

We have provided a history and maturity of the cost 
estimating methods and tools that are used today by 
estimators and those in the community. Next, we discussed 
more advanced techniques with advanced tools like 
computers. Using these advancements will cause changes in 
how solutions are provided to decision makers in the future. 

 
Figure 18 – The visionary Technical Baseline Assessment Tool provides optimal solutions to complex problems. 
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To facilitate this more training in information design (à la 
Edward Tufte)c can enable engineering-based graphics (using 
software tools such as those discussed in this paper (e.g., R 
and Python) that are beautiful publication level 
visualizations.33 A near term recommendation will be to add 
a ICEAA track/award for information design. This will 
provide forward looking opportunities and get people 
thinking about using different plot types (e.g., 
https://datavizproject.com/) and understanding which is best 
to communicate information in what contexts. 

  

 
c Edward Tufte was a pioneer in data visualization and representation 
methods. Professor Emeritus at Yale University 
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APPENDICES  
A. ACRONYMS 

AACEI American Association of Cost Engineering 
International 

AFCAA Air Force Cost Analysis Agency 
AI Artificial Intelligence 
ANN Artificial Neural Network 
ARIMA Autoregressive Integrated Moving Average 
CAPE Cost Assessment and Program Evaluation 
CCA Canonical Correlation Analysis 
CEAC Cost and Economic Analysis Center (Army) 
CER Cost Estimating Relationship 
COCOMO Constructive Cost Model 
CV Cross-Validation 
DCAA Defense Contract Audit Agency 
DoD Department of Defense 
EP Evolutionary Programming 
ESLOC Equivalent Software Lines of Code 
ICA Institute of Cost Analysis 
ICEAA Institute of Cost Estimating and Analysis 

Association 
IESSD Industrial Estimating Society of San Diego 
IoT Internet of Things 
IQR Interquartile Range 
ISPA International Society of Parametric Analysts 
KNN K-Nearest Neighbor 
LDA Linear Discernment Analysis 
LIME Locally Interpretable Model-Agnostics 

Explanations 
MAD Median Absolute Deviation 
ML Machine Learning 
MUPE Minimum Unbiased Percent Error 
NAFCOM NASA/Air Force Cost Model 
NASA National Aeronautics and Space 

Administration 
NCCA Navy Center for Cost Analysis 
NES National Estimating Society 
NLP Natural Language Processing 
NN Neural Network 
OR Operations Research 
PCA Principal Component Analysis 
PCEI Parametric Cost Estimating Initiative  
PRICE Parametric Review of Information for Costing 

and Evaluation (PRICE Systems) 
PRL Parametric Reinvention Laboratory 
RMSE Root Mean Square Error 
SCEA Society of Cost Estimating and Analysis 
SEER Software Evaluation and Estimation of 

Resources (Galorath) 
SEM Software Estimating Model 
SLIM Software Lifecycle Management 
SMC Space and Missile Systems Center (now SSC) 
SME Subject Matter Expert 
SSC Space Systems Command (formerly SMC) 
SSCAG Space Systems Cost Analysis Group 
TBAT Technical Baseline Assessment Tool 
US United States 

USAF United States Air Force 
USCM Unmanned Space Vehicle Cost Model 
VAR Vector Autoregression 
WBS Work Breakdown Structure 
ZMPE Zero Percentage Bias Methods 
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B.  DATA VOLUMES 
 

Data Volumes: The volume of data in a single file or file system can be described by a unit called a byte. However, data 
volumes can become very large when dealing with Earth satellite data. Below is a table to explain data volume units (credit 
Roy Williams, Center for Advanced Computing Research at the California Institute of Technology). Kilo - means 1,000; a 
Kilobyte is one thousand bytes. 
Mega- means 1,000,000; a Megabyte is a million bytes. 
Giga- means 1,000,000,000; a Gigabyte is a billion bytes. 
Tera- means 1,000,000,000,000; a Terabyte is a trillion bytes. 
Peta- means 1,000,000,000,000,000; a Petabyte is 1,000 Terabytes. 
Exa- means 1,000,000,000,000,000,000; an Exabyte is 1,000 Petabytes. 
Zetta- means 1,000,000,000,000,000,000,000; a Zettabyte is 1,000 Exabytes. 
Yotta- means 1,000,000,000,000,000,000,000,000; a Yottabyte is 1,000 Zettabytes. 
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