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Abstract 

Since the topic of improving data quality has not been addressed for the U.S. defense cost 

estimating discipline beyond changes in public policy, the goal of the study was to close 

this gap and provide empirical evidence that supports expanding options to improve 

software cost estimation data matrices for U.S. defense cost estimators. The purpose of 

this quantitative study was to test and measure the level of predictive accuracy of missing 

data theory techniques that were referenced as traditional approaches in the literature, 

compare each theories’ results to a complete data matrix used in support of the U.S. 

defense cost estimation discipline, and determine which theories rendered incomplete and 

missing data sets in a single data matrix most reliable and complete under eight missing 

value percentages. A quantitative pre-experimental research design, a one group pretest-

posttest no control group design, empirically tested and measured the predictive accuracy 

of traditional missing data theory techniques typically used in non-cost estimating 

disciplines. The results from the pre-experiments on a representative U.S. defense 

software cost estimation data matrix obtained, a nonproprietary set of historical software 

effort, size, and schedule numerical data used at Defense Acquisition University revealed 

that single and multiple imputation techniques were two viable options to improve data 

quality since calculations fell within 20% of the original data value 16.4% and 18.6%, 

respectively. This study supports positive social change by investigating how cost 

estimators, engineering economists, and engineering managers could improve the 

reliability of their estimate forecasts, provide better estimate predictions, and ultimately 

reduce taxpayer funds that are spent to fund defense acquisition cost overruns. 
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Chapter 1: Introduction to the Study 

From the perspective of U.S. public policy statutes and regulations, the U.S. 

defense cost estimating discipline, and the current Business—Cost Estimating curriculum 

at Defense Acquisition University (DAU), there is a lack of instruction in which cost 

estimators, engineering economists, and engineering managers can apply to handle the 

unreliable and incomplete engineering project data matrix problem they face (DAU, 

2018a; GAO, 2009, 2020; International Cost Estimation and Analysis Association 

[ICEAA], 2019). According to a U.S. defense based Joint Agency Cost Estimating 

Relationship (CER) Handbook (2018), “data sets with missing and incomplete data” is a 

data analysis challenge and states that the “best course of action is to first attempt to 

remedy the problem by collecting more data, finding the information from the collected 

data set, and determining the cause of the unusual observations, respectively” (p. 221). 

This government document also acknowledges that it is “not always possible to correct 

such errors” and that it is important for estimators to understand the implications of these 

challenges, and to proceed with their analysis under caution (Joint CER Handbook, 2018, 

p. 221). The literature does not inform how cost estimators who leverage the defense 

Business—Cost Estimating curriculum at DAU directly handles the unreliable and 

incomplete engineering project data matrix problem other than through recognizing the 

problem through defense government documents and making changes to public policy 

(GAO, 2020). Because the topic of improving data quality as it relates to data 

incompleteness has never been addressed for U.S. defense cost estimators and the cost 

estimating discipline beyond describing the problem or making changes in its public 
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policies, research was needed to fill the gap in the literature to investigate if the use of 

hands-on-treatment-options could improve software cost estimation of data matrices for 

this population in the society (10 U.S. Code § 1746, 2012; 10 U.S. Code § 2334, 2017; 

Morin, 2017). Hands-on-treatment-options could provide the ability to use missing data 

theory techniques to teach cost estimators ways in which they could directly handle 

unreliable and incomplete data within the cost estimation discipline. This includes but is 

not limited to applying missing data theory techniques such as complete case analysis 

(listwise delete), direct imputation (single or multiple), model-based imputation (full 

information maximum likelihood), and machine learning methods (García-Laencina et 

al., 2010). 

My research specifically honed-in on the area of software cost estimation because 

it was the cost estimation topic most commonly found in scholarly peer-reviewed journal 

articles, conference proceedings, and academic books in respect to this discipline (see 

Boehm, 1981; Idri et al., 2016b; Jing et al., 2016; Jones, 2007; Strike et al., 2001). 

Software cost estimation is the process taken to quantify the cost of expected labor effort, 

lines of code, and calendar time required to develop a software engineering project (Wani 

et al., 2019). 

This gap-mitigating research was needed and can be used to inform ways in 

which U.S. defense cost estimators could have empirical evidence that supports 

expanding options for them as individuals to single-handedly address the unreliable and 

incomplete data problem beyond the sole dependence of public policy changes as 

referenced in Morin’s (2017) and the Department of Defense (DoD) cost analysis data 
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improvement plan. These hands-on-treatment-options will model and simulate the 

conditions which cost estimators face when they are sitting in front of their computers 

attempting to create an estimate with imperfect data. Beyond public policy changes, cost 

estimators could have additional hands-on-treatment-options to use missing data theory 

techniques within this discipline for the first time. This original research could change 

how estimators are taught to conduct software cost estimation activities when the 

unreliable and incomplete data problems create imperfect data sets to use, a real-world 

data quality issue (see Morin, 2017). A quantitative research design, specifically a one 

group pretest-posttest no control group/pre-experimental design, measured the level of 

predictive accuracy of traditional missing data theory techniques treatments applied to 28 

data sets from a single group data matrix (Thyer, 2012; see Campbell & Stanley, 1963; 

Cook & Campbell, 1979; Reichardt, 2019; Shadish et al., 2002). Predictive accuracy is 

the operational term used to describe how close the error approximation is between the 

ground truth data sets, the a priori value, as compared to its posteriori value after 

applying missing data theory technique treatments (Little & Rubin, 2020; Twala et al., 

2006). 

This study provided an opportunity for societal change by investigating how cost 

estimators, engineering economists, and engineering managers could benefit from 

additional options that directly improve data incompleteness, create better estimate 

predictions, and ultimately reduce taxpayer funds that are spent on defense acquisition 

cost overruns (Schwartz & O’Connor, 2016). Missing data theory techniques have been 

applied and used by many professionals in other disciplines since missing data theory 
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was introduced in 1987 (Little & Rubin, 1987). It continues to maintain its relevance to 

improve data quality by making data sets complete in a multitude of disciplines (Little & 

Rubin, 2020). The results of this research’s one group pretest-posttest no control 

group/pre-experimental design treatment results report out to what degree does missing 

data theory techniques accurately impute data values compared to their original true and 

complete values. The level of predictive accuracy measured by my calculations displayed 

the delta between the pretest and posttest values, focusing on approximation error 

expressed as both a number and a percentage. The difference between the pretest and 

posttest numerical values informs other researchers of the Business—Cost Estimating 

discipline and helps them better understand to what degree could missing data theory 

render data sets complete. The dependent variables of absolute error and relative error are 

the two measures of predictive accuracy used in this study. There were three independent 

variables used: the different percentage levels of missingness created, the categorical 

name of data set type chosen, and the missing data theory techniques chosen and applied 

to a synthetic, representative U.S. defense cost estimation matrix for which all data values 

were initially completely in place and known (i.e., a nonproprietary set of software effort 

and size estimation complete numerical data). In addition to measuring the level of 

predictive accuracy, I measured the main effects and interactions between the 

independent variables to test for significance by conducting ANOVA testing. The pre-

experimental findings and results demonstrated that missing data theory techniques could 

be a viable option to correct imperfect data that is unreliable or incomplete with a data 

value that is closer to the ground truth of the original numerical values. The purpose of 
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this quantitative study was to test and measure the level of predictive accuracy of missing 

data theory techniques that are referenced as traditional approaches in the literature, 

compare each theories’ results to a complete data matrix used in support of the U.S. 

defense cost estimation discipline and determine which theories render incomplete and 

missing data sets in a single data matrix most reliable and complete under several missing 

value percentages. 

Chapter 1 includes the problem and purpose statement of this empirical study and 

addresses the gap in the DoD cost estimation discipline literature to support future 

improvements in both the engineering economics and management fields of study. This 

chapter also contains the specific research goal, objectives, and the scope of this research. 

Moreover, this chapter describes the motivation of this research project to improve the 

state of practice and bring about social change (Govinfo, 2020).  

Background of the Study 

When the GAO (1972) studied the problem that cost estimates were not reliable, 

they commented that, “historical cost data used for computing estimates were sometimes 

invalid, unreliable, or unrepresentative” (p. 1). Thirty-seven years later, GAO (2009) 

stated the same problem and attempted to provide additional guidance and structure for 

cost estimators to use more reliable data matrices as a fix. Unfortunately, the guidance 

from this government document was not comprehensive and did not address what a U.S. 

cost estimator could do, in a hands-on manner, to handle data matrices that are unreliable 

or incomplete. Furthermore, it did not address what options cost estimators have available 
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to them to handle the unreliability and incompleteness of their data matrices for different 

types of engineering-based acquisition projects and programs. 

Forty-eight years since 1972, GAO (2020) published an update to its 2009 

government document titled, GAO Cost Estimating and Assessment Guide: Best 

Practices for Developing and Managing Capital Program Costs (Report No. GAO-09-

3SP) and acknowledged that “developing reliable cost estimates is crucial for realistic 

program planning, budgeting, and management” (p. 3). This government document was 

developed to close the gap in the field by documenting “generally accepted best practices 

for ensuring reliable cost estimates (applicable across government and industry)” and 

represents what has been done at the U.S. government level in respect to “processes, 

procedures, and practices” that have been used in the defense cost estimation body of 

knowledge (GAO, 2020, p. 3). This government document supports the claim that 

improvements are still desired, a gap needs to be closed, and there remains a lack of 

scholarly research in the Business—Cost Estimating discipline that addresses what 

additional options U.S. defense cost estimators must handle data matrices that may be 

unreliable or incomplete (GAO, 2020). 

In the government publication for DoD cost analysis data improvement, Morin 

(2017) stated that several cost estimating oversite organizations that collect and store 

software cost estimating data, such as the Office of the Secretary of Defense for Cost 

Analysis and Program Evaluation (OSD CAPE), could benefit by improving the data 

quality problem by “closing data gaps” (p.1). In the literature, others who leverage and 

assess software effort data in non-U.S. defense sectors agree that effort estimation is an 
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important step in software projects, acknowledging that missing data occurs in real world 

data collection, and have found imputation strategies to be helpful to improve their 

software effort estimation performance (Jing et al., 2016; Qi et al., 2017). Unfortunately, 

it is common for many U.S. defense data matrices to not have complete data sets to 

support the development of credible cost estimates, thus the drive by Morin (2017), the 

former OSD CAPE director, to “provide cost, acquisition, and resource allocation 

organizations with data required for better analysis and decision-making” (p. 1). All too 

often, even if organizations obtain all project data, the data are typically incomplete (Jing 

et al., 2016). Within the context of the defense cost estimating body of knowledge, and 

current U.S. federal curriculum at DAU, how to handle an incomplete physical project 

data matrix has never been addressed and is needed to support the public policy 

requirement for reliable and complete cost data to produce credible cost estimates (DAU, 

2018a; GAO, 1972, 2009, 2020; ICEAA, 2019; Morin, 2017). 

Problem Statement 

There are over 50 federal public policies, statutes, and regulations in place today 

that apply to the Business—Cost Estimating discipline that is required to produce reliable 

cost estimates (DAU, 2018b; GAO, 2009, 2020). The general management problem is 

that despite this, cost estimators do not always have reliable and complete data sets to use 

when they attempt to forecast life-cycle costs for a myriad of engineering-based 

acquisition projects and programs and may sometimes forecast costs inaccurately that 

engineering managers depend on (GAO, 2009, 2020; Jorgensen, 2006; Morin, 2017). 

Consequently, in 2015, cost estimate growth was reported as cost overruns within DoD’s 
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Major Defense Acquisition Programs at $468 billion, up from $295 billion in 2008 

(Deloitte, 2016). Other studies declared that individual DoD engineering-based 

acquisition projects and programs experienced cost overruns as high as 40% and were 

projected to overrun closer to 51% by the year 2020 (Christensen, 1993; Dabkowski & 

Valerdi, 2016; Deloitte, 2016; Valerdi et al., 2015). These costs overrun statistics support 

the currency and relevancy that the lack of tools to handle incomplete and faulty data is a 

current, real-world problem so severe that a DoD cost analysis data improvement effort 

was started (Morin, 2017). According to Morin (2017), "reliable and comprehensive cost 

data is essential to produce credible cost estimates as required in both statute and 

regulation" (p. 1). This supports the U.S. defense cost estimator’s need for cost data 

improvements (Morin, 2017). Multiple credible sources have noted how important it is to 

have reliable and comprehensive cost data for the multi-discipline of cost estimation 

which spans the business, engineering economics, software, and systems engineering 

disciplines (DAU, 2018a; Farr & Faber, 2018; Fraser & Jewkes, 2013; Jorgensen, 2006; 

Morin, 2017; Newnan et al., 2004; Parnell, 2017). 

The specific management problem is that there is a lack of research into the 

techniques to handle the unreliable and incomplete data problem. Consequently, the 

research problem is that there is a lack of knowledge and understanding among cost 

estimators about what options they have to improve the data quality of data sets with 

limited, incomplete, or unreliable data, which prevents them from forecasting accurately 

the life-cycle costs for a myriad of engineering-based acquisition projects and programs 

(DAU, 2018a; GAO, 2009, 2020; Morin, 2017). Morin (2017) stated that research into 
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data improvements were needed and specifically called out the need to “improve analyst 

productivity”, “close data gaps”, and ultimately incorporate data quality procedures 

through policy or guidance to make cost analysis data more reliable and complete (p.1). 

In other disciplines, there are various data improvements used by researchers and analysts 

to handle data matrices that include unreliable, incomplete, and missing data values 

(Allison, 2002; Enders, 2010; Graham, 2012; Little & Rubin, 2002, 2020). Though there 

is literature on ways to handle missing values using missing data theory in other 

disciplines, there is a gap that needs to be addressed within the current research related to 

the U.S. defense cost estimation body of knowledge that describes how defense cost 

estimators could handle the unreliable and incomplete data quality problem (Brown & 

White, 2017; DAU, 2018a; Farr & Faber, 2018; Fraser & Jewkes, 2013; GAO, 2009, 

2020; Mislick & Nussbaum, 2015). 

Purpose of the Study 

The purpose of this quantitative study was to test and measure the level of 

predictive accuracy of missing data theory techniques that are referenced as traditional 

approaches in the literature, compare each theories’ results to a complete data matrix used 

in support of the U.S. defense cost estimation discipline and determine which theories 

render incomplete and missing data sets in a single data matrix most reliable and 

complete under several missing value percentages. The three independent variables used 

for this study were the different percentage levels of missingness created (independent 

variable 1), the category title of the data set type (independent variable 2), and the 

traditional missing data theory techniques (independent variable 3). The two dependent 
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variables used for this study were the absolute errors and relative errors calculated from 

the pre-experimental treatments derived from the data sets’ pretest and posttest numerical 

values. Differences revealed from the absolute error and relative error groups were 

assessed by ANOVA testing. I used eight different percentages for missing values 

(diminished completeness) with three treatments on the randomly selected subset of a 

purposive sample of 30 out of 50 analogous and synthetic software development 

programs. Each program was characterized across 28 numerical data sets. Due to the 

removed-at-random value selection to test and measure at eight different levels of 

missingness, each of the data sets had missing data theory treatments applied to fill in 

incomplete data 56 times, resulting in a total of 4,704 (3*56*28) pre-experimental 

treatments.   

By conducting this research, I closed a gap in the U.S. cost estimation discipline 

and added to the research, knowledge, and understanding which serve as rationale for 

employing additional options for cost estimators to perform more reliable and complete 

cost estimation products for major DoD engineering-based acquisition projects and 

programs. The results of this test provide U.S. defense cost estimators with an evaluation 

of which additional set of options can handle the unreliable and incomplete data problem 

when building a cost estimate (see DAU, 2018a; GAO, 2009, 2020; Morin, 2017). 

Two levels of measurement, absolute error and relative error, were used to 

measure the predictive accuracy of missing data approaches. Each of the 28 data set types 

(independent variable 2) used in this study had data values removed-at-random and at 

various percentages (independent variable 1) to create a simulation of the missing data 
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problem applied to a representative defense cost estimating data. The removed-at-

random-data-values from the data matrix were operationally named the “Original 

Numerical Value” (pretest value) (Research Randomizer, 2020).  The predicted value 

created because of applying the missing data theory technique (independent variable 3) 

were operationally named the “Predicted Numerical Value” (posttest value) for each run 

of the experiment. The absolute error and relative error outcome variable were the delta 

values calculated, the error approximation values, between the “Original Numerical 

Value” (pre-experiment’s pretest value) and the “Predicted Numerical Value” (pre-

experiment’s posttest value) to determine each missing data theory technique’s predictive 

accuracy (Idri et al., 2015a, 2015b, 2016a, 2016b, 2016c; Twala et al., 2006). Figure 1 

provides a graphical depiction of the study.  
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Figure 1 

 

Statistical Method to Perform this One Group Pretest-Posttest Design 

  

 

Research Question and Hypotheses 

The research question (RQ) for this study was intended to investigate what the 

predictive accuracy was from various missing data theory techniques when applied to a 

defense cost estimating data matrix: To what degree can traditional missing data theory 

techniques accurately solve cost estimators’ and engineering managers' unreliable and 

incomplete data problem when data values are missing from a representative U.S. defense 

cost estimation data matrix? The null and alternative hypotheses that used to answer the 

RQ were derived from the results of the sole data matrix using the one group pretest-

posttest (no control group/pre-experimental) design. The calculated measure of predictive 

accuracy (e.g., error approximation value) provided a table of before and after average 

absolute and average relative error values because of the applied three treatments of 
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missing data theory techniques. There were 28 data set types tested, each comprised of 

only 30 out of 50 analogous and synthetic software development programs as the 

foundation for this pre-experiment. After which, analysis of variance (ANOVA) test was 

conducted to explain the interaction of this study’s two dependent variables using the 

following null and alternate hypotheses: 

H01: There are no significant differences evident between the data sets’ mean 

absolute and mean relative error of actual values “Original Numerical Values” in 

comparison to those that are computed “Predicted Numerical Values” using 

missing data theory 1, the Complete Case Analysis/ Listwise Delete approach? 

Ha1: There are significant differences evident between the data sets’ mean 

absolute and mean relative error of actual values “Original Numerical Values” in 

comparison to those that are computed “Predicted Numerical Values” using 

missing data theory 1, Complete Case Analysis/ Listwise Delete approach? The 

means are not equal. 

H02: There are no significant differences evident between the data set’s mean 

absolute and mean relative error of actual values “Original Numerical Values” in 

comparison to those that are computed “Predicted Numerical Values” using 

missing data theory 2, a Single Imputation approach? 

Ha2: There are significant differences evident between the data sets’ mean 

absolute and mean relative error of actual values “Original Numerical Values” in 

comparison to those that are computed “Predicted Numerical Values” using 

missing data theory 2, a Single Imputation approach? The means are not equal. 
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H03: There are no significant differences evident in the data sets’ mean absolute 

error and mean relative error of actual values “Original Numerical Values” in 

comparison to those that are computed “Predicted Numerical Values” using 

missing data theory 3, the Multiple Imputation approach? 

Ha3: There are significant differences evident between the data sets’ mean 

absolute error and mean relative error of actual values “Original Numerical 

Values” in comparison to those that are computed “Predicted Numerical Values” 

using missing data theory 3, the Multiple Imputation approach? The means are 

not equal. 

Theoretical Foundation 

The theoretical framework that grounded this pre-experimental study was missing 

data theory (see Allison, 2002; Graham, 2012; Little & Rubin, 1987, 2002, 2020; Rubin, 

1976). The intent of this study was to ascertain how effective the missing data 

techniques’ measure of predictive accuracy was when applied to the defense cost 

estimating discipline’s variant of the missing data problem, each technique based on 

missing data theory. Since this theory addressed data completeness, it was most 

appropriate to use since several years of research have validated that the theory provides 

effective techniques to fill data gaps in many non-U.S. defense cost estimation disciplines 

(see Allison, 2002; Enders, 2010; Graham, 2012; Little & Rubin, 2002, 2020).  

Disciplines that have leveraged missing data theory can be found in the social sciences, 

health, pharmaceutical industry and practically any industry that requires an assessment 
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of data to inform decision-makers (see Allison, 2002; Blankers et al., 2010; Little & 

Rubin, 2002, 2020).  

This theory was a starting point to determine which missing data theory technique 

(independent variable 3) could improve the state of the U.S. defense cost estimating data 

reliability and completeness problem and is discussed further in Chapter 2. This 

framework allowed me to look at missing data through a narrower lens by testing various 

traditional missing data theory techniques (e.g., complete case analysis/listwise delete, 

single imputation, and multiple imputation) to inform and update how cost estimators 

could handle and treat areas of missing data. The theoretical framework provided a basis 

for answering the RQ: To what degree can traditional missing data theory techniques 

accurately solve cost estimator’s and engineering manager’s unreliable and incomplete 

data problem when data values are missing from a representative U.S. defense cost 

estimation data matrix? This research can inform the U.S. defense cost estimation 

discipline about additional options to improve data quality beyond policy incorporation 

and could offer these options as a new topic to include in future courses and curriculum. 

Furthermore, this research could inform how this topic is addressed within other 

academic books and journals involving engineering economics/management, software 

engineering economics, machine learning data preprocessing, cost analysis, financial 

decision sciences, data preparation (e.g., data inclusion/exclusion and data cleansing), 

data mining, and of course Business—Cost Estimating at DAU (see Boehm, 1981,1984, 

2002; DAU, 2018a; Farr & Faber, 2018; Fraser & Jewkes, 2013; Gautam & Ravi, 2015; 

Nagashima & Kato, 2019; Van Hulse & Khoshgoftaar, 2014; Williams & Barber, 2011). 
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Nature of the Study 

The nature of this study was a quantitative method approach to inquiry using a 

pre-experimental study design. Various experimental study designs (pre-, quasi, or true 

experiments) are a proven approach to comparatively test and measure the predictive 

accuracy of missing data theory techniques using a pretest-posttest no control group 

design (Campbell & Stanley, 1963; Cook & Campbell, 1979; Crammer, 2018; Kirk, 

2013; Reichardt, 2019; Shadish et al., 2002 Shek & Zhu, 2018; Singleton & Strait, 2010). 

To elucidate how effective each missing data theory technique was, a publicly sourced 

nonproprietary data matrix was obtained and manipulated to experiment on 28 out of 34 

ratio scale/numerical software cost estimation data set types (independent variable 2) 

used within the U.S. defense cost estimating discipline from a representative data matrix. 

In addition, eight levels of missing data percentages (independent variable 1) were 

assessed across each data set type to compare the measures of predictive accuracy, for 

each of the three missing data theory techniques (independent variable 3). Once the data 

sets were exported to a flat file in Microsoft Excel, the experiment followed a four-step 

process, like the research conducted by Idri et al. (2016c). The actual known data values 

(pretest values) provided the pretest baseline that was used to compare how accurately 

each missing data theory techniques produced its respective “Predicted Numerical Value” 

(posttest value). The “Original Numerical Values” (pretest /priori values) were removed-

at-random to create missing values within the data matrix by using a random number 

generator (Idri et al., 2015a, 2015b, 2016b, 2016c; Research Randomizer, 2020). Next, 

the complete data set generation occurred in which the missing data theory technique 
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(independent variable 3) treatment variables were then calculated and applied to make 

each of the 28 data sets complete again. After which, the measurement of predictive 

accuracy evaluation began, and measured the outcome variables, the error approximation 

values, by calculating the absolute error and relative error values between the pretest and 

posttest values from the pre-experiment. ANOVA was used to test the study’s null and 

alternative hypotheses, and to determine if there was a significant interaction between 

independent variables. This research could mitigate the current gap in literature because it 

tested if missing data theory techniques improve the reliability and completeness of 

defense historical data when missing and incomplete values are present in a physical data 

matrix of a cost estimator using an empirical pre-experimental design. 

To further the application of missing data theory to the U.S. defense cost 

estimation discipline, I modeled the missing data problem by simulating the conditions 

that defense industry cost estimators, engineering economists, engineering managers, and 

defense cost estimating repository database administrators experience when they receive 

a data matrix with missing values. With this pre-experimental study design, I applied 

three types of missing data theory techniques by administering complete case analysis 

treatments, single imputation treatments, and multiple imputation treatments on the same 

group of randomly selected data from a complete U.S. represented cost estimation data 

matrix. The data matrix contained an appropriate required sample size of DoD software 

cost estimation programs (see Idri et al., 2015a, 2015b, 2016b, 2016c). The “Predicted 

Numerical Value”, as determined by each missing data theory technique, served as the 

posttest value in this experiment to help calculate the study’s dependent variables, which 
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were measures of predictive accuracy. Stated differently, the two dependent variables that 

captured the predictive accuracy for this study were absolute error and relative error. The 

absolute errors and relative errors were calculated from pretest and posttest values. The 

study design leveraged a complete data set to allow for the “Predicted Numerical 

Value(s)” from each data matrix to be assessed against each original “Original Numerical 

Value(s)” as provided from a nonproprietary data matrix. The data matrix held data sets 

that were representative of what could be found in databases used by cost estimators, 

engineering economists, and engineering managers within the defense cost estimating 

discipline (e.g., from the Functional Academic Cost Analysis Database Environment 

[FACADE], USASpending.gov [2021], IT Dashboarddata.gov [2021], etc.). This allowed 

for an empirical examination as to how well missing data theory techniques corrected 

missing data sets that had missing values. To answer the RQ, I used the pre-experimental 

research design of the one group pretest-posttest no control group design (Campbell & 

Stanley, 1963; Cook & Campbell, 1979; Crammer, 2018,  Reichardt, 2019; Shadish et al., 

2002; Shek & Zhu, 2018; Singleton & Strait, 2010; Thyer, 2012). Significance testing 

was performed by conducting a two-way repeated measures ANOVA. The F ratio was 

used to test the main effects and interaction between the variables. 

This quantitative research method of inquiry was chosen to help determine how 

well defense cost estimators could handle historical data sets with the use of missing data 

theory techniques (see Crammer, 2018; Kirk, 2013; Shek & Zhu, 2018; Thyer, 2012). By 

randomly removing data values from a complete data set, an empirical examination of 

new data values was quantitatively created and introduced to assess each missing data 
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theory’s ability to improve data quality (see Kirk, 2013). Further details are discussed in 

Chapter 3, the Methodology section. 

Definitions 

There are several operational definitions and terms that are unique to both the cost 

estimation discipline, as well as the missing data theoretical framework. The following 

terms may have different meanings in other taxonomies and must be defined to 

understand this research. 

Analysis of Variance (ANOVA): “A parametric inferential statistic that examines 

differences between the means of three more groups in a study, groups exposed to 

different independent variables (e.g., treatment 1 vs. treatment 2 vs. treatment 3), or 

longitudinally at least three times for a single group (e.g., pretest, posttest, and at follow-

up)” (Thyer, 2012, p. 179). 

Business—Cost Estimating: The career field and discipline for the area of 

business in which “engineering judgment and experience are utilized in the application of 

scientific principles and techniques to the problems of cost estimation, cost control, and 

profitability” (Spruill, 2021, p. 2). This U.S. defense career field includes positions that 

“manage, supervise, lead, or perform scientific work that involves designing, developing, 

and adapting mathematical, statistical, econometric, and other scientific methods and 

techniques” (Spruill, 2021, p. 2). In addition, the type of work in this discipline includes 

“analyzing management problems and providing advice and insight about the probable 

effects of alternative solutions to these problems” (Spruill, 2021, p. 2). 
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Cost: Cost is a driving consideration in decisions that determine how systems are 

developed, produced, and sustained (Garvey et al., 2016). 

Cost Analysis: A method of estimating the economic performance of a 

commodity over its life period (Desai et al., 2016).  It is also known as “whole cost 

accounting” and “total cost of ownership includes estimating all cost from the initial 

stage through the divestment stage of an investment (Desai et al., 2016, p. 390). Cost 

analysis is a term that is broadly used to include not only the process of estimating 

(measuring) the cost of a project but also the process of discovering, understanding, 

modeling, and evaluating the relevant information necessary to estimate the cost as well 

as the cost uncertainty and risk (Melese et al., 2015). 

Cost estimates: An end-product from cost estimating. It is a critical document 

needed to request the right amount of budget authority from Congress to fund future 

investments (Iqbal et al., 2017; Mislick & Nussbaum, 2015). 

Cost estimating: Taken from Mislick & Nussbaum (2015, p. 11), “Cost estimating 

is the process of collecting and analyzing historical data and applying quantitative 

models, techniques, tools, and databases in order to predict an estimate of the future cost 

of an item, product, program or task.” 

Cost estimation: “The application of the art and the technology of approximating 

the probable worth (or cost), extent, or character of something based on information 

available at the time” (Mislick & Nussbaum, 2015, p. 11). Fundamentally, it is a 

computational process used to predict final project costs (De la Garza & Rouhana, 1995). 
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It is a specialized function of cost engineers that are concerned with the economic results 

of an engineering design and modeling (Grimstad et al., 2006; Ostwald, 1974).  

Cost estimators/Cost engineers: Practitioners who are cost estimators or system 

cost engineers who forecast engineering economic requirements. They are responsible for 

determining the engineering project requirements and resources needed for defense 

engineering systems and must have access to reliable and complete data sets from 

historical database repositories or other ad hoc data sources they collect in order to 

develop accurate engineering economic requirements. Business students, practicing 

accountants, and economists are closely identified with cost estimating and cost 

engineering activities (Ostwald, 1974). 

Data matrix(singular)/Data matrices(plural): All rows and columns comprised of 

two or more data sets from different cases (Little & Rubin, 2020). 

Data sets: The rectangular column of a data matrix that describes a common set 

of data from different cases (Little & Rubin, 2020). 

Engineering economics: Previously known as engineering economy, engineering 

economics is the application of economic techniques to the evaluation of design and 

engineering alternatives. The role of engineering economics is to assess the 

appropriateness of a given project, estimate its value, and justify it from an engineering 

standpoint (Farr & Faber, 2018; Fraser & Jewkes, 2013; Newnan et al., 2004).  

Experimental design: “A research study in which one or more independent 

variables are systematically varied by the researcher to determine their effects on 
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dependent variables” (Thyer, 2012, p. 181).  Randomized experiments randomly assign 

participants to various (a) treatments, (b) control or (c) comparison groups.   

Hands-on-treatment-options: The ability to use missing data theory techniques as 

techniques for the cost estimation discipline to teach cost estimators ways in which they 

can directly handle unreliable and incomplete data. This includes but is not limited to 

potential applying missing data theory techniques such as complete case analysis 

(listwise delete), direct imputation (single or multiple), model-based imputation (full 

information maximum likelihood), and machine learning methods (García-Laencina et 

al., 2010). 

Interrupted time series (ITS) design: “Longitudinal research in which ongoing 

repeated measurements of the outcome are made and treatment is introduced at some 

point, while measurements continue as before” (Thyer, 2012, p. 182). 

Missing at random (MAR): Missingness has systematic relationship to observed 

values, but not missing values (Rubin, 1976). 

Missing completely at random (MCAR): Missingness has no systematic 

relationship to observed or missing values of any variables (Rubin, 1976). 

Missing data theory techniques: The different ways in which missing data can be 

handled. This includes but is not limited to complete case analysis techniques such as the 

complete case analysis (listwise delete) treatment, direct imputation techniques such as 

single imputation and multiple imputation, model-based imputation techniques such as 

full information maximum likelihood and the expectation-maximation (EM) algorithm, 

and machine learning methods such as ensemble methods, support vectors, and gradient 
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boosters (García-Laencina., 2010). According to IBM SPSS 25 you can also use the EM 

algorithm as a single imputation technique as well (IBM knowledge center, 2021). 

Missing not at random / Non-ignorable: Missingness has systematic relationship 

to missing values (Rubin, 1976). 

One group pretest-posttest design: “A pre-experimental design involving one 

group that is pretested, exposed to a form of treatment, and then posttested” (Thyer, 

2012, p. 184). 

Percentage of missingness: The various percentages in which missing values 

appear in this study, generally accepted that missing data theory techniques work well at 

percentages of 40% or lower (Strike et al., 2001). 

Predictive accuracy: How close the error approximation is between a data set’s 

“Original Numerical Value” (pretest/ priori value) as compared to its “Predicted 

Numerical Value” (posttest/ posteriori value) imputed based on the applied missing data 

theory technique treatment (Little & Rubin, 2020; Twala et al., 2006). 

Pre-experimental design: “A research design that involves studying only a single 

group of participants, either posttreatment only, or pre- and posttreatment” (Thyer, 2012, 

p. 184). No control or comparison groups are used (Thyer, 2012).  

Quasi-experimental design: “A type of research design in which the treatment and 

control or comparison groups are not created using random assignment procedures” 

(Thyer, 2012, p. 185). “It does involve the manipulation of an independent variable and 

the specification of a test hypothesis” (Thyer, 2012, p. 185). 
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Removed-at-random-data-values: Values that have been removed at random by 

using a random number generator (Research Randomizer, 2020). 

Software cost estimation: The summation of what is required to build software 

which includes labor effort, lines of code, and calendar time required to develop, deliver, 

and maintain any software-based engineering project (Wani et al., 2019).   

Assumptions 

I assumed that the accuracy of the data used from FACADE was representative of 

data found in U.S. defense cost estimation discipline based on it being the database used 

to teach and certify DoD cost estimators and engineers who attend DAU courses. In 

addition, historical data used from U.S. defense federal public domain databases are 

assumed to be accurate, and representative of ad hoc data sources that are used by DoD 

cost estimators and engineers who are practitioners in the Business—Cost Estimating, as 

well as the engineering economics field of study. Moreover, this pre-experimental study 

supports the missing data theory mechanism assumption that all data values removed are 

MCAR and concludes that the missingness of each variable has no correlation to the 

values of other variables, or to its own known real or ground truth value (Enders, 2010; 

Rubin, 1976). Lastly, this study supports the assumption that the repository of work 

breakdown structures and all other historical project documentation used in this study 

have been collected at the appropriate levels and stored carefully to reflect how actual 

resources were used to complete past engineering projects. All assumptions were 

necessary to establish and document prior to empirically testing and measuring each 
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missing data theory technique on a U.S. defense cost estimation data sets from a data 

matrix to answer this study’s RQ. 

Scope and Delimitations 

This study was bounded to a pre-experimental design from a public domain data 

source. The data source is a representative data matrix in which federal U.S. defense cost 

estimators use as model inputs for software effort estimation to determine what it may 

cost. All public domain sources for a data matrix below were considered. I was able to 

have the first item in the list approved for this study. The data matrix used within the 

DAU BCF 250 Course, a nonproprietary data matrix, received institutional review board 

(IRB) approval for me to use for my empirical research via IRB approval number 11-13-

20-0127578 (Walden University, 2020). A list of all data options that were considered to 

use were the following, in priority order, to connect with positive social change 

influence:   

1.  Functional Academic Cost Assessment Data Enterprise (FACADE) 

Demonstration and Training Site from the OSD CAPE, as well as the data matrix 

used in the DAU BCF 250 Course, Software Cost Estimation 

2. Software Resources Data Report (SRDR) flat files from Cost Assessment Data 

Enterprise (CADE) Database 

3. Public domain data from IT Dashboard.gov (IT Dashboarddata.gov, 2021) 

4. Public domain data on actual DoD spending sites from past years 

(USAspending.gov, 2021; Federal Procurement Data System – Next Generation, 

2021) 
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The IRB request and approval supported the most valuable social change contribution, 

the use of the FACADE data matrix that was incorporated into the BCF 250 Software 

Cost Estimation course was and still is a representative U.S. defense cost estimating data 

matrix that has been presented to train U.S. defense Business—Cost Estimating students 

at DAU. Under U.S. copyright law (17 USC§ 105), works created by all federal 

employees, including DAU, as part of their official duties are in the public domain and 

may not be copyrighted (2010). This applies not only to printed materials, audiovisual 

materials, sound recordings, and so forth, but also to content created for the DAU 

affiliated websites. As a result, this research’s findings and results could influence how 

the discipline’ curriculum is taught at the university, closes the gap in literature, and thus 

incorporates its significance to both contributing to the discipline’s practice and social 

change contribution to improve cost estimators, engineering economists, and engineering 

managers techniques in software estimation. The missing data theory techniques were 

tested and applied to nonproprietary U.S. defense cost estimating data, which is the focus 

of this study’s RQ. As a result, general findings and conclusions can be made from this 

body of work that has a specific focus, and bounded scope. 

Limitations 

The research design of this study was limited based on the instrumentation 

selected to test predictive accuracy. I used IBM SPSS 25 as the instrumentation to 

conduct a pre-experimental design to test the predictive accuracy of missing data theory 

techniques on a representative U.S. defense cost estimating data matrix. SPSS is 

recognized in the academic community and has the statistical capability and processing 
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power to assess data that has incomplete and missing values (Enders, 2010). I leveraged 

the statistical analysis capability that is provided in the Missing Value Analysis module, a 

Multiple Imputation functionality of IBM SPSS 25. The Mission Value Analysis module 

and Multiple Imputation functionality in IBM SPSS 25 has the computational ability to 

compute traditional missing data theory algorithms. As a result of this functionality, IBM 

SPSS 25 was applied as the instrumentation for this inaugural study that tested missing 

data theoretical techniques’ predictive accuracy when applied to the U.S. defense cost 

estimation domain. Despite this being a limitation of this study, treatments were 

replicated and assessed as a one group pretest-posttest no control group/pre-experimental 

design intervention. 

Not having a control group for the one group pretest-posttest pre-experimental 

research design was a weakness; however, it was not pertinent for the RQ based on the 

nature of the group being data vice human beings. For example, in social work, human 

beings under intervention studies make it difficult to control for outside influences and 

can skew their responses that may not be isolated, and thus require a control group to 

compare results (Thyer, 2012). The use of data as the subject in this intervention under a 

one group pretest-posttest design enabled me to minimize potential threats to internal and 

external validity because each independent variable completely controlled how I 

manipulated the pre-experiments in isolation. I controlled the experiments for each data 

set to only receive three types of treatments, and evaluated them within the confines of 

this intervention study’s independent variables. As a result, I was able to mitigate any 

confounding or extraneous variables from entering the intervention study, each dependent 
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variable was instantly evaluated within a short time-box to answer this study’s RQ after 

the intervention. 

In addition, the construct of this study remained strong because of its well-defined 

and focused scope to test and measure the level of predictive accuracy of missing data 

theory as it pertains to (a) Listwise Deletion (LD) or Complete Case Analysis, (b) Single 

Imputation and (c) Multiple Imputation on an IRB approved and representative U.S. 

defense cost estimation data matrix. This narrowed focus is not biased, but it is 

intentional to address the specific RQ of this study that takes a first look at applying 

traditional missing data theory to the U.S. defense cost estimation domain, something that 

has never been done before this intervention study. Further studies can extend the scope 

of this study and add to the literature to expand outcomes of this analysis. 

Significance of the Study 

This study is important because “reliable and comprehensive cost data is essential 

to produce credible cost estimates as required in both (policy) statute and regulation” 

(Morin, 2017, p. 1). Brown and White (2017) agreed with Morin and reported that the 

federal defense department lacked the data, both in volume and quality, needed to 

conduct effective cost estimates. Together, these authors acknowledged that cost estimate 

realism is essential and needed to support engineering and program managers with the 

authority to proceed in the development and contractual procurement of critical 

engineering systems. This study may offer a different perspective on an established 

problem that historical databases contain substantial amounts of missing data (Strike et 

al., 2001). Conducting research to “improve analyst productivity, quality of cost 
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estimates, close data gaps, and provide the cost acquisition, and resource allocation 

organizations with data required for better analysis and decision-making” could be 

significant (Morin, 2017, p. 1).  The results from this research can be adopted as an 

option to improve data quality, improve analyst productivity, and minimize the unreliable 

and incomplete data problem experienced by cost estimators, engineering economists, 

and the engineering managers that rely on what is taught within the Business—Cost 

Estimating body of knowledge. 

Significance to Theory 

  The outcome of this study may offer defense industry cost estimators, 

engineering economists, engineering managers, defense cost estimating repository 

database administrators, and possibly data scientists with an objective option in how to 

deal with missing, incomplete, or unreliable data values when they appear within a data 

matrix. Applying and testing missing data theory on an actual complete data set that is 

relevant to the problem could provide the empirical evidence needed to prove or disprove 

how well various missing data theories are able to fill missing data value gaps. 

Contingent on the outcomes observed after randomly removing variables to simulate a 

missing data problem, this could improve the missing, incomplete, and unreliable data 

problem that is experienced within the U.S. defense cost estimation discipline. In 

addition, U.S. defense cost estimators tend to build models with small data matrices, N 

less than or equal to 30, in which an empirical study that tested the performance of small 

sample size data sets, and how well missing data theories’ predictive accuracy levels 

were explored. 
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Significance to Practice 

Cost estimators of defense weapon systems must have access to reliable and 

complete data sets from the historical database repositories and other sources they access 

to develop accurate engineering economic requirements. Cost estimates, the end-product 

from cost estimating, is a critical document needed to request the right amount of budget 

authority from Congress to fund any future investments (Mislick & Nussbaum, 2015). 

When databases have null values, obvious errors, and blank cells because of various 

systemic data problems, it is up to the cost estimator to make the decision as to how to 

use this type of data value within a data matrix to feed a cost estimate element. In 

layman’s terms, there is no standard approach taught to defense cost estimators in what 

data values to use or not use in their physical data matrix when the missing, incomplete, 

or unreliable data values appears (DAU, 2018a). With over 250 defense cost estimators 

within the Business—Cost Estimating career field, there is no established standard as to 

how to handle this problem within the defense cost estimating discipline (DAU, 2018a, 

2018b). Offering engineering managers and cost estimators within the discipline 

additional options to determine how to handle missing, incomplete, or unreliable data 

values, could reduce the number of flawed cost estimates that lead to program cost 

overruns and unplanned additional federal budget request (Schwartz & O’Connor, 2016). 

Significance to Social Change 

Accurately forecasting estimates for engineering requirements could save projects 

and programs from growing cost overruns and improve U.S. federal planning decisions 

(Christensen, 1993; Christensen & Gordon, 1998; Deloitte, 2016; Saeed et al., 2018). In 
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addition, positive social change could be realized by improving the current techniques 

cost estimators and engineering managers use to produce and provide more accurate, 

reliable, and credible cost estimates to federal decision makers (Govinfo, 2020). 

Moreover, research that could advance cost data quality and improvement efforts could 

also increase the amount of historical DoD cost data that can be used in analyses. Overall, 

a new way of doing business may save cost estimator’s, engineering economists’, 

engineering manager’s and database administrator’s valuable time by using a newly 

proven technique to improve data in a shorter amount of time. In turn, this contribution to 

the cost estimation discipline has the potential to reduce the cost of an estimator’s 

research time and reduce the cost required to collect additional data. 

Summary and Transition 

As a starting point, Chapter 1 contains the problem and purpose statement of this 

empirical study and addresses the gap in the DoD cost estimation discipline current 

literature to support future improvements in both the engineering economics and 

engineering management fields of study. This chapter also contains the specific research 

goal and objectives, and the scope of this research. Furthermore, this chapter also 

describes the motivation of this research project to improve the state of practice and bring 

about social change. 

Chapter 2 contains the theoretical framework of missing data theory that grounds 

this body of research, followed by the literature research strategy. I provide an overview 

of data quality requirements that has been levied on the Business—Cost Estimating 

discipline through U.S. policy statutes and regulations for reliable and complete cost 
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estimation and cost analysis data. After which, I describe the issues experienced by cost 

estimators, engineering economists, and engineering managers in DoD cost estimation 

and analysis fields and highlights the gap that this research addresses by discussing a 

topic that has been silent within the U.S. defense cost estimation discipline since its 

inception, circa 1972. Next, I introduce how other disciplines have empirically researched 

and used the missing data theoretical framework and its techniques as a tool to handle 

their unreliable and incomplete data problems and needs. Finally, I describe the 

contribution of this body of work: conducting empirical research to determine which 

missing data theory technique(s) best lends itself to improving predictive accuracy when 

applied to a U.S. defense cost estimating matrix. Stated comprehensively, the full purpose 

of this quantitative study was to test and measure the level of predictive accuracy of 

missing data theory techniques that are referenced as traditional approaches in the 

literature, compare each theories’ results to a complete data matrix used in support of the 

U.S. defense cost estimation discipline and determine which theories render incomplete 

and missing data sets in a single data matrix most reliable and complete under several 

missing value percentages. This research specifically narrows in on the area of software 

cost estimation which is predominately discussed and supported in the literature as an 

area that cost overruns frequently exist, as well as has more conversations occurring in 

scholarly peer reviewed journal articles, conference proceedings, and academic well-

renowned books in cost estimation (see Boehm, 1981; Idri et al., 2016c; Jones, 2007; Jing 

et al., 2016; Strike et al., 2001). 
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Chapter 3 contains the general view and detailed view of the empirical research 

methodology to answer this study’s RQ. This chapter fully describes the pre-experimental 

design selected to investigate a representative U.S. defense cost estimation data matrix in 

the public domain in order to empirically deal with missing values and outliers when used 

to build cost estimation relationships and other forecast that require reliable and complete 

data for cost analysis. Chapter 3 includes the research design method, theoretical method 

of inquiry, justification of the research method, the justification of the intended sample 

and sample size, method of data collection and procedures, data management, data 

analysis technique and research method, issues of ethical considerations, reliability and 

validity, and instrumentation. 

Chapter 4 contains the results of the final study. It includes describing the data 

collection that occurred and highlights new discoveries identified because of executing 

the three applied missing data theory techniques. Most importantly, all pre-experimental 

study results from this one group pretest-posttest no control group/pre-experimental 

design for 4,704 (3*56*28) treatments were recorded and can be found in the Appendix 

A.  Summary tables provide descriptive statistics that appropriately characterize the 

starting purposive sample of 30 out of 50 analogous and synthetic software development 

programs that were then randomly sampled to create the artificially induced missing data 

problem that required 56 missing data treatments per data set. Chapter 4 includes 

interesting findings and results which includes the statistical assumptions used to answer 

this study’s RQ and hypotheses, including exact statistics and associated probability 

values and post-hoc analyses of statistical tests referred to that can be found in Appendix 
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C. All results are accurately presented and are aligned to the RQ and study’s hypotheses, 

design, and analysis. 

Lastly, the study results and outcomes from Chapter 4 are interpreted into the 

conclusion drawn in Chapter 5. Chapter 5 also includes the recommendations and further 

studies that could be continued because of this research.  The conclusions, limitations, 

and recommendations are clearly described for the scope of this study and can now be 

integrated into the state of knowledge described in the literature review to close a gap in 

the Business–Cost Estimating discipline.   
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Chapter 2: Literature Review 

With DoD cost overruns rising, U.S. defense cost estimators need more options 

available to them to know how to handle the unreliable and incomplete data they use to 

build estimates, which allows them to forecast life-cycle cost analysis for a myriad of 

engineering-based acquisition projects and programs (DAU, 2018a, 2018b; GAO, 2009, 

2020; Morin, 2017). The specific management problem is that there is a lack of research 

into the techniques to handle the unreliable and incomplete data problem. Consequently, 

the research problem is that there is a lack of knowledge and understanding among cost 

estimators about what options they have to improve the data quality of data sets with 

limited, incomplete, or unreliable data, which prevents them from forecasting accurately 

the life-cycle costs for a myriad of engineering-based acquisition projects and programs 

(DAU, 2018a, 2018b; GAO, 2009, 2020; Morin, 2017). In a government publication 

memo, Morin’s (2017) approach to the problem was to start a data collection effort 

through updating eight topics within two major policies to improve data quality and 

estimation conditions (Department of Defense Instruction [DoDI], 2017; Department of 

Defense Manual [DoDM], 2011; Morin, 2017).  This approach supports that research into 

cost analysis data quality is significant, and that improvements are still needed. 

Unfortunately, changing policy to create better data collection efforts only looks at one 

aspect of the problem but fails to address how cost estimators could handle the missing 

data problem when they have physical historical data sets in front of them that are 

missing and incomplete. Through the lens of missing data theory, several empirical 

researchers have addressed the needs of both social and natural scientists across many 
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disciplines with options to deal with handling their data matrices that may have 

unreliable, incomplete, or even completely missing values (see Aittokallio, 2009, Baraldi 

& Enders, 2010; DeLeeuw, 2001; García-Laencina et al., 2010, 2013; Tsikriktsis, 2005). 

Moreover, many empirical researchers have assessed predictive accuracy on data 

matrices and have conducted experimental designs using missing data theory (Lin & 

Tsai, 2019). Unfortunately, none have been applied to any U.S. defense software cost 

estimation data matrices (Khoshgoftaar & Van Hulse, 2008; Song et al. 2008; Van Hulse 

& Khoshgoftaar, 2014). Currently, there is a gap that needs to be addressed within the 

literature of the U.S. defense cost estimation discipline that describes how defense cost 

estimators could handle its physical unreliable and incomplete data problem when 

historical data sets have missing values (Brown & White, 2017; DAU, 2018a; Farr & 

Faber, 2018; Fraser & Jewkes, 2013; GAO, 1972, 2009, 2020; Mislick & Nussbaum, 

2015). The purpose of this quantitative study was to test and measure the level of 

predictive accuracy of missing data theory techniques that are referenced as traditional 

approaches in the literature, compare each theories’ results to a complete data matrix used 

in support of the U.S. defense cost estimation discipline and determine which theories 

render incomplete and missing data sets in a single data matrix most reliable and 

complete under several missing value percentages.  

Chapter 2 contains the theoretical framework of missing data theory that grounds 

this body of research, followed by the literature research strategy. I then provide an 

overview of data quality requirements that have been levied on the Business—Cost 

Estimating discipline through U.S. policy statutes and regulations for reliable and 
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complete cost estimation and cost analysis data. After which, I describe the issues 

experienced by cost estimators, engineering economists, and engineering managers in 

DoD cost estimation and analysis fields. Within this section, I highlight the gap that this 

research study addresses by discussing a topic that has been silent within the U.S. defense 

cost estimation discipline or curriculum since its inception circa 1972 (see 10 U.S. Code 

§ 1746, 2012; GAO, 1972, 2009). In addition, this topic has not been included in 

Business—Cost Estimating curriculum at DAU which began in the 1990s (10 U.S. Code 

§ 1746, 2012). Next, I introduce how other disciplines have empirically researched and 

used the missing data theoretical framework and its statistical and machine learning 

techniques as a tool to handle their unreliable and incomplete data problems (see 

Ghorbani, & Desmarais, 2017). Finally, I describe the gap in the literature: the lack and 

need for empirical research that could determine which missing data theory technique(s) 

best lends itself to determine what the predictive accuracy of missing data theory 

techniques are when applied to U.S. defense cost estimating matrices. This research 

specifically focuses on the area of software cost estimation which is predominately 

discussed and supported in the literature as an area that cost overruns frequently (see 

Jones, 2007; Strike et al., 2001). 

Literature Search Strategy 

The following section is a review of the literature for the research study and 

question: To what degree can traditional missing data theory techniques accurately solve 

cost estimators' and engineering managers' unreliable and incomplete data problem when 

data values are missing from a representative U.S. defense cost estimation data matrix? 



38 

 

This review of the literature provides a scholarly analysis of government documents, 

government websites, conference proceedings, scholarly peer-reviewed articles, and 

books within the systems engineering and engineering economics subdiscipline of 

defense agency software cost estimation training practices. Furthermore, the search 

supports why applying the theoretical framework of missing data theory should be tested 

on U.S. defense cost estimation data to fulfil this current gap in the literature.  With the 

cost estimation discipline being faced with data reliability and completeness challenges 

within the DoD, this study is narrowly focused on how unreliable and incomplete data 

matrices are handled in U.S. defense cost estimation data matrices that are software lines 

of code and effort hour based. 

 Literature found specifically between 2015-2020 was used to describe the current 

environment and scholarly review around the U.S. defense software cost estimation, 

unreliable data, and incomplete data problem. Literature surrounding the seminal theory 

of missing data and various statistical and machine learning techniques is also referenced 

from the literature and covers the 1976-2020 timeframe. The total number of references 

in the literature review is 142, of which 10% are from seminal theorists, 67% are from 

scholarly peer-reviewed sources and 60% were published within 6 years of my expected 

graduation. References include a full range collection of materials for this capstone topic 

that cites seminal theorists, government documents, government websites, conference 

proceedings, scholarly peer-reviewed articles, books, and one technical report. 
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In starting this research, I began by determining what key words were tied to this 

capstone research. The following key words and Boolean Strings were initially used to 

search my topic of interest: 

1. missing data OR unreliable data 

2. predictab* OR imputation OR theor* OR experimental 

3. (Miss* OR incomplet*) AND (value OR attribute OR data* OR input OR 

variable OR feature) AND (experiment* OR metric OR measur* OR assess* 

OR evaluat* OR predict*) AND (software OR application OR program OR 

system) AND (Engineering OR maintenance OR science OR develop* OR 

test* OR construct* OR design* OR project OR effort OR cost OR 

requirement OR quality OR process) AND (imput* OR deal*OR handl*) 

4. “unreliable data” OR “incomplete data” AND “software cost estimation” 

5. "software cost estimation" AND "missing data" AND "empirical" 

6. "software cost estimation" AND "missing value" AND "empirical" 

7. "software cost estimation" AND "missing value" AND "experimental" 

8. "software cost estimation" AND "missing value" AND "experimental design" 

Based on the articles that have informed me on this area of research, the 

constructs of why this study was pursued was indeed informed via this literature review. 

Since this is the first body of research in respect to empirically testing U.S. defense cost 

estimation data, I focused on the traditional missing data theory as a logical entry point, 

vice charting into advanced missing data techniques to evaluate to support the U.S. 

defense cost estimation discipline’s unreliable data problem. I also chose to address this 
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body of work with a narrower focus on software cost estimation because the majority of 

scholarly literature discussed falls into the software project and measurement subcategory 

when discussing the topic of cost estimation (see Abnan & Idri, 2018; Huang et al., 

2015a, 2015b, 2017; Idri et al., 2016a, 2016c; Soltanveis & Alizadeh, 2016; Strike et al., 

2001; Twala, 2017).   

Theoretical Foundation 

Beginning in the mid-1970s, seminal works in missing data theory began to 

appear, and established principles that have been applied to the missing data problems in 

respect to survey and observed data housed in databases (Little & Rubin, 1976; Rubin, 

1976). The main premise behind Rubin’s (1976) theory work was that missingness was a 

variable that had a probability distribution around it which brought a new construct to 

think about missing data. Applied missing data theory, to include its statistical and 

machine learning techniques, are commonly used within the literature of various fields as 

an option to replace missing data values with substitution values (Aittokallio, 2009; 

Garciarena, & Santana, 2017). Standard statistical methods are used to assess and analyze 

rectangular data matrices in which rows of the data matrix represent units, and the 

columns represent characteristics of each unit (Little & Rubin, 2020). The entries are 

typically numerical, and are continuous variables such as age or income, or categorical 

variables such as grade or gender (Little & Rubin, 2020). The major theoretical 

proposition is that through statistical analysis with missing data, an analyst could 

effectively predict or impute an unobserved value can add meaning to a data matrix 

(Little & Rubin, 2020).  With a theoretical construct that proposes to effectively predict 
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unobserved value, testing and measuring its predictive accuracy through an evidenced-

based approach would be useful. 

To apply the theory into practice appropriately, one must make assumptions on 

the missing data mechanism (Little & Rubin, 2020). Rubin’s (1976) principle to define 

the missing data mechanism as MAR, MCAR, or MNAR/NI is important to understand 

because it allows a researcher to perform a proper treatment to address a data matrices’ 

missingness. The mechanisms describe the bias the missing data exerts on a missing data 

analysis in which the true goal is to minimize bias with unbiased parameter estimates 

(Rubin, 1987). Rubin’s (1976) missing data mechanisms are essentially the assumption 

that govern the performance of the analytic technique based on the property of the 

missing data. The properties of missing data inform analysts on the relationship between 

the propensity of the data that is missing, and the following (Rubin, 1987): 

• The variable with the missing data 

• The other variables of fully observed data 

• The hypothetical mechanism chosen based on the underlying missing data as 

MAR, MCAR, or MNAR/NI. 

Properly applying this theory requires an analyst or researcher to understand how their 

data was acquired in order to make the right assumptions, and select the mechanism that 

can support the data matrix that has missing values. 

Pre-2015 literature was comprised of roughly four key bodies of work that 

provided evidence that data quality issues in software estimation historical sets were 

leveraging missing data theory techniques. Research by Strike et al. (2001) discussed the 
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difficulties in historical databases used for software cost estimation and tested the 

performance of listwise deletion, mean imputation, and eight different hot deck 

imputation methods. In addition, Myrtveit et al. (2001) compared four missing data 

techniques (MDT) in the context of ERP software cost modeling and evaluated list wise 

deletion (LD), mean imputation (MI), similar response pattern imputation (SRPI), and 

full information maximum likelihood (FIML) using the International Software 

Benchmarking Standards Group (ISBSG) database. Applying missing data theory to 

improve data reliability and completeness was found within the literature and other 

researchers evaluated techniques to improve software estimation data quality issues. 

Moreover, Cartwright et al. (2003) examined the quality of fit of effort models 

derived by stepwise regression by comparing raw data sets with values that were imputed 

by various techniques. From the comparison, Cartwright et al. (2003) found that k-nearest 

neighbor (k-NN) and sample mean imputation (SMI) significantly improved the model 

fit, with k-NN giving the best results in the data sets. In addition, research by Sentas and 

Angelis (2006) investigated and suggested imputation using multinomial logistic 

regression (MLR) and applied it to projects in the ISBSG software database. This study 

also compared MLR to other techniques of handling missing data to include listwise 

deletion (LD), mean imputation (MI), expectation maximization (EM) and regression 

imputation (RI) under different patterns. In summary, several non-U.S. defense cost 

estimating disciplines dealt with trying to solve its unreliable, incomplete, and missing 

data problems, akin to the interest of this research. 
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The conversation in the literature on studying missing data theory took a pause 

but started to resurface in software engineering and estimation. Idri et al. (2015a; 2015b) 

conducted a systematic mapping study of missing values techniques in software 

engineering data to explore how research was conducted within the discipline. The 

following year, Idri et al. (2016c) determined that missing data is a widespread problem 

based on their earlier work, and investigated specifically analogy-based software 

development estimation and evaluated the predictive performance power of toleration, 

deletion, and k-nearest neighbor (KNN) imputation using Euclidean distance and 

Manhattan distance techniques by conducting 1,512 experiments on seven data sets. Jing 

et al. (2016) conducted seven experiments and proposed the use of low-rank recovery 

semisupervised regression (LRSR) imputation as a better method than other imputation 

methods they compared. Moreover, research by Twala (2017) investigated a new 

probabilistic supervised learning approach that incorporates missingness to improve 

software effort development predictive accuracy. Abanane and Idri (2018) evaluated four 

missing data theory techniques using four mixed data sets. Lastly, research from Majeed 

(2018) investigated how to develop model-based estimation approaches and applied them 

to the missing data problem as well. With these more recent research efforts surrounding 

experimenting with data to better understand missing data theory techniques and their 

utility, extending this type of research through inquiry can extend the overall state of 

knowledge for this area. 

Disciplines that have leveraged missing data theory can be found in the social 

sciences and the physical science for both research, surveys, databases, and other applied 
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purposes (Allison, 2000, 2002, 2010; Blankers et al., 2010; Enders, 2010; Little & Rubin, 

2014). In addition, experimental designs to test and measure predictive accuracy, similar 

to this study, have also been conducted on both simulated and historical software data 

matrices derived from the ISBSG, China Software Benchmarking Standards Group, and 

University of California at Irvine database repositories (azzahra Amazal et al., 2014; 

González-Ladrón-de-Guevara et al., 2016; Jeffery et al., 2000; Khoshgoftaar & Van 

Hulse, 2008; Song et al., 2008; Van Hulse & Khoshgoftaar, 2014; Zhang et al., 2011).  

This study extends this knowledge by testing and measuring 30 out of 50 analogous and 

synthetic software development programs from the U.S. defense cost estimation 

discipline. 

Missing data theory was chosen because literature has shown it to be a feasible 

alternative to improve data quality in many examples from the literature (Allison, 2002; 

Graham, 2012; Horton & Kleinman, 2007; Jadhav et al., 2019; Myrtveit et al., 2001; 

Schafer, 1997; Schafer & Graham, 2002). The missing data theoretical framework relates 

to the present study since it is the RQ that is being challenged by testing its predictive 

accuracy when applied to U.S. defense cost estimating nonproprietary software program 

data. This study will challenge as well as build upon the existing theory in respect to this 

study’s evaluation and results to test and determine if missing data theory serves as a 

feasible alternative to improve the data quality of the U.S. defense cost estimation 

unreliable and incomplete data matrix problem. The intent of this study was to ascertain 

how effective missing data theory’s predictive accuracy is when applied to the defense 

cost estimating discipline’s variant of software effort missing values when data 
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preprocessing for estimation. Since this theory addresses data completeness, it was most 

appropriate to use since several years of research have validated that the theory provides 

effective techniques to predict and fill in data gaps in many disciplines (Graham, 2009, 

2012; Strike et al., 2001).  

This theory is a starting point to determine which missing data theory technique 

could improve the state of the defense cost estimating data reliability and completeness 

problem. This framework allowed me to look at missing data through a narrower lens by 

testing various traditional missing data theory techniques (e.g., complete case analysis, 

imputation, single imputation, and multiple imputation) to inform and update how one 

could handle and treat areas of missing data within the defense cost estimation discipline 

(Idri er al., 2016b; Myrtveit et al., 2001a; Strike et al., 2001). Furthermore, this research 

could inform how this topic will be addressed within academic books and journals 

involving engineering economics/management, software engineering economics, 

financial decision sciences, and business analytics, and cost estimation (Boehm, 1981; 

DAU, 2018a; Farr & Faber, 2018; Fraser & Jewkes, 2013). 

Literature Review 

From the perspective of U.S. public policy statutes and regulations, the U.S. 

defense cost estimating discipline, and the current Business—Cost Estimating curriculum 

at Defense Acquisition University (DAU), there is a lack of instruction in which cost 

estimators, engineering economists, and engineering managers can apply to handle the 

unreliable and incomplete engineering project data matrix problem they face (DAU, 

2018a; GAO, 2009, 2020; ICEAA, 2019). According to a U.S. defense based Joint 
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Agency CER Handbook (2018), “data sets with missing and incomplete data” is a data 

analysis challenge and states that the “best course of action is to first attempt to remedy 

the problem by collecting more data, finding the information from the collected data set, 

and determining the cause of the unusual observations, respectively” (p. 221). This 

government document also acknowledges that it is “not always possible to correct such 

errors” and that it is important for estimators to understand the implications of these 

challenges, and to proceed with their analysis under caution (Joint CER Handbook, 2018, 

p. 221). The literature does not inform how cost estimators who leverage the defense 

Business—Cost Estimating curriculum at DAU directly handle the unreliable and 

incomplete engineering project data matrix problem other than through recognizing the 

problem through defense government documents and making changes to public policy 

(GAO, 2020). 

U.S. Public Policy Requires Data Reliability/Completeness in Cost Estimation 

There are over 50 federal public policy documents that apply today to the 

Business—Cost Estimating discipline and requires the production of reliable cost 

estimates (DAU, 2018b). Salient laws, statutes, regulations, policies, guidance, directives, 

and even manuals are sources of criteria that are currently available to U.S. defense cost 

estimators that inform how they develop their cost estimates. Most notably, Title 10 U.S. 

Code § 2334 (2017) is very clear in its expectations and provides the following law that 

states the U.S. DoD Armed Forces must: 

“ensure that cost estimates are developed, to the extent practicable, based on 

historical actual cost information that is based on demonstrated contractor and 
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Government performance and that such estimates provide a high degree of 

confidence that the program or subprogram can be completed without the need for 

significant adjustment to program budgets”. 

This General Military Law under Chapter 137, Part IV, Service, Supply and Procurement, 

acknowledges that cost estimates forecast engineering project and program budgets. This 

law acknowledges that historical actual cost information is expected as a matter of law 

for cost estimation developments but recognizes that this is not always practical. 

U.S. public policy continuously gets updated within various government 

documents in order to provide the Business-Cost Estimating discipline and the U.S. cost 

estimator population with the “processes, procedures, and tools”, as well as legal backing 

to support the requirement to produce reliable and complete estimates (GAO, 2009, 2020, 

p. 3; Morin, 2017). These public policy documents are vital and inform the discipline 

about the “criteria” cost estimators must follow as they go about forecasting life-cycle 

cost for a myriad of engineering-based acquisition projects and programs (DoD, 2020; 

GAO, 2009, p. 25). Table 1 below provides a select list of federal and DoD public policy 

in order to highlight the breadth of government documents that currently supports U.S. 

defense cost estimator’s data reliability and completeness requirement in cost estimation 

(DAU, 2018b; GAO, 2009, p. 26-29, GAO, 2020).   
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Table 1 

 

Select U.S. Public Policy Criteria and Requirements to Produce Reliable and Complete 

Cost Estimates 

Id Business—Cost Estimating 

policy   

Type Current 

publication  

Original 

publication  

1 DoDI 5000.73 Cost Analysis 

Guidance and Procedures 

Guidance 2020 2006 

2 DoDI 5000.02 Operation of the 

Adaptive Acquisition 

Framework (AAF) 

Guidance 2020  

3 Army Cost Analysis Manual Manual 2020  

4 DoDI 5000.74, “Defense 

Acquisition of Services 

Policy 2020  

5 OMB Circular A-11, Part 7 - 

Preparation, Submission, and 

Execution of the Budget 

Policy 2019 2006 

6 10 U.S. Code § 2334 - 

Independent cost estimation and 

cost analysis 

Legislation 2019 2017 

7 SECNAVIST 7110.12, 

Department of the Navy 

Policy 2019  
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Acquisition Program Cost 

Analysis 

8 MIL-STD-881-D Work 

Breakdown Structure 

Standards 2018  

9 Joint Agency Cost Estimation 

Relationships (CER) Handbook 

Handbook 2018  

10 DoDI 5000.02T Operation of the 

Defense Acquisition System 

Policy 2017 2015 

11 DoDD 7041.03 CE-01 

Economic Analysis for 

Decision-making 

Policy 2017 1995 

12 DoDD 7045.14, The Planning, 

Programming, Budgeting, and 

Execution (PPBE) Process 

Directive 2017 2013 

13 DoDI 5000.75 “Business 

Systems Requirements and 

Acquisitions” 

Policy 2017  

14  Directive-type Memorandum 

(DTM) 17-001:  Cybersecurity 

in the Defense Acquisition 

System 

Directive 2017  
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15 SECNAVINST 5000.42 

Department of the Navy 

Accelerated Acquisition for the 

Rapid Development, 

Demonstration and Fielding of 

Capability 

Policy 2016  

16 National Defense Authorization 

Act (NDAA), Section 804, 

“Middle-tier Acquisition for 

Rapid Prototyping and Rapid 

Fielding” 

Legislation 2016  

17 Office of the Secretary of 

Defense (OSD) Cost 

Assessment and Program 

Evaluation (CAPE), “Inflation 

and Escalation Best Practices for 

Cost Analysis”  

Guidance 2016  

18 Implementation Directive for 

Better Buying Power 3.0 - 

Achieving Dominant 

Capabilities through Technical 

Excellence and Innovation 

Directive 2015  
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19 Defense Federal Acquisition 

Regulation Supplement, 

234.7101 Cost and Software 

Data Reporting (CSDR) 

Regulation 2014  

20 DoDI 7600.02, Audit Policies Policy 2014  

21 Office of the Secretary of 

Defense (OSD) Cost 

Assessment and Program 

Evaluation (CAPE), Operating 

and Support Cost Estimating 

Guide 

Guidance 2014  

22 Office of Management and 

Budget (OMB), “Improving 

Information Technology (IT) 

Project Planning and 

Execution,” Memorandum for 

Chief Information Officers  

Policy 2014  

23 Joint Agency Cost Schedule 

Risk and Uncertainty Handbook 

Handbook 2014  

24 AF Policy Directive 65-5, Cost 

and Economics 

Policy 2013  
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25  DoDI 5010.40 Managers' 

Internal Control Program 

Procedures 

 Policy 2013  

26 DoDD 2140.02, Recoupment of 

Nonrecurring Costs (NCs) on 

Sales of U.S. Items 

 Directive 2013  

27 Implementation Directive for 

Better Buying Power 2.0 - 

Achieving Greater Efficiency 

and Productivity in Defense 

Spending 

Directive 2013  

28 Independent Cost Estimates; 

Operational Manpower 

Requirements, 10 U.S.C. § 2434 

Legislation 2012  

29 DoD Directive 5105.84, 

“Director of Cost Assessment 

and Program Evaluation 

(DCAPE)”  

Directive 2012  

30 DoDM 5000.04-M-1, Cost and 

Software Data Reporting 

(CSDR) Manual 

Manual 2011  
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31 Government Performance and 

Results Act (GPRA) 

Modernization Act of 2010, Pub. 

L. No. 111-325, 124 Stat. 3866 

Legislation 2011 2010 

32 Better Buying Power:  Guidance 

for Obtaining Greater Efficiency 

and Productivity in Defense 

Spending 

Guidance 

Memo 

2010  

33 Interim Acquisition Guidance 

for Defense Business Systems 

(DBS) 

Guidance 2010  

34 Weapon Systems Acquisition 

Reform Act of 2009, as 

amended 

Legislation 2009  

35 National Security Space 

Acquisition Policy DoD Interim 

Guidance 

Guidance 2009 2004 

36 SAR: Selected Acquisition 

Reports, 10 U.S.C. § 2432 

Legislation 2006 1968 

37 Unit Cost Reports (“Nunn-

McCurdy”), 10 U.S.C. § 2433 

Legislation 2006 1982 
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38 Major Automated Information 

System Programs, 10 U.S.C. §§ 

2445a–2445d  

Legislation 2006  

39 Clinger-Cohen Act of 1996, 40 

U.S.C. §§ 11101–11704 

Legislation 1996  

 

In a government publication memorandum entitled DoD Cost Analysis Data 

Improvement, Morin’s approach to the problem was to start a data collection effort 

through updating two policies to improve eight topic areas to include data quality and 

estimation conditions (Morin, 2017). This approach supports that research into cost 

analysis data quality is significant, and that improvements are still needed. There is a 

current gap that needs to be addressed within the literature of the U.S. defense cost 

estimation body of knowledge that describes how defense cost estimators should handle 

its unreliable and incomplete data problem when historical data sets have missing values 

(DAU, 2018a; GAO, 1972, 2009, 2020; Mislick & Nussbaum, 2015;). In the past, GAO 

reported that the federal defense department lacked the data, both in volume and quality, 

needed to conduct effective cost estimates (Brown & White, 2017). Chapter 2, DoD 

5000.4-M identifies four major analytical methods or cost estimating techniques used to 

develop cost estimates for engineering and acquisition programs: a) analogy, b) 

parametric (statistical), c) engineering (bottoms up) and d) actual costs (DoDI, 2017; 

DoDM, 2011; Williams & Barber, 2011). With over 250 defense cost estimators within 
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the Business—Cost Estimating career field, there is no established standard as to how to 

handle this problem within the defense cost estimating discipline (DAU, 2018a). 

The ability to generate reliable cost estimates is a critical function that supports 

the Office of Management and Budget’s (OMB) capital planning process that cannot be 

ignored when major engineering projects and programs are needed to support the U.S. 

DoD (GAO, 2009, p. i). The capital planning process, prescribed through the OMB 

Circular A-11 regulation, is required for all U.S. defense and federal agencies to adhere 

to as they forecast cost in their annual budget justification and submissions that supports 

the creation of the U.S. annual federal budget (GAO, 2009, p. i).  

Effect of U.S. Public Policy on Cost Estimation Data Reliability/Completeness  

A longstanding problem in the U.S. defense cost estimating discipline is that 

many cost estimators cannot generate reliable cost estimates to support the U.S. defense 

and federal budgets because the underlying and historical data available to them to 

generate accurate estimates is incomplete or missing (Morin, 2017; GAO, 2020). As far 

back as 1972, a Government Accountability Office (GAO) reported a damaging finding 

in an assessment of U.S. defense cost estimates that “known costs had been excluded 

without adequate or valid justification” (p. 1). Within the same assessment, the GAO 

(1972) also commented that, “historical cost data used for computing estimates were 

sometimes invalid, unreliable, or unrepresentative” (p. 1). Thirty-seven years later, 

another GAO report stated the same problem, and attempted to provide additional 

guidance and structure for cost estimators to use more reliable data (2009) as a fix. 
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The lack of reliable and comprehensive data available in the defense industry has 

contributed greatly to the fact that managers and engineers are unable to estimate project 

and program requirements accurately, thus producing inaccurate economic forecast for a 

very long time (GAO, 1972, 2009; Jorgensen, 2006, Morin, 2017). To better understand 

the impact of inaccurate economic forecasting, one needs to understand what a cost 

underrun or overrun is. Cost underruns and overruns are a metric that measures 

forecasted cost estimates of schedule, budget, and manpower requirements compared to 

what is ultimately spent on an engineering project or program (Saeed et al., 2018). 

Unfortunately, reported cost overruns within the DoD major defense acquisition 

program (MDAP) portfolio programs in 2015 was $468 billion, up from $295 billion in 

2008 (Deloitte, 2016). Other studies have suggested that individual DoD programs have 

cost overruns as high as 40% and are projected to overrun closer to 51% by the year 2020 

(Christensen, 1993; Deloitte, 2016). In 2020, the U.S. Treasury Department reported that 

total defense budget plans will cost the country over $718 billion dollars, a $33 billion or 

5% increase from 2019 enacted levels (U.S. Government, 2020). At such high spending 

levels, solving any potential cost overruns and mishaps due to unreliable and incomplete 

data is needed. Currently, there is a gap within the literature of U.S. federal defense cost 

estimating body of knowledge as to how cost estimators should handle its unreliable data 

problem which can include having missing, incomplete, and erroneous data (Brown & 

White, 2017; GAO, 1972, 2009, 2020). 

The general management problem is that despite this, cost estimators do not 

always have reliable and complete data sets to use when they attempt to forecast life-
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cycle costs for a myriad of engineering-based acquisition projects and programs and may 

sometimes forecast costs inaccurately that engineering managers depend on (GAO, 2009, 

2020; Jorgensen, 2006; Morin, 2017). In 2015, cost estimate growth was reported as cost 

overruns within the DoD’s Major Defense Acquisition Programs at $468 billion, up from 

$295 billion in 2008 (Deloitte, 2015). Other studies state that individual DoD 

engineering-based acquisition projects and programs experienced cost overruns as high as 

40% and were projected to overrun closer to 51% by the year 2020 (Christensen, 1993; 

Deloitte, 2015). These costs overrun statistics support the currency and relevancy that this 

problem must be addressed. This problem is significant to the multi-disciplines of cost 

estimation which spans business, engineering economics, and systems engineering 

disciplines (DAU, 2018a; Farr & Faber, 2018; Fraser & Jewkes, 2013; Parnell, 2017). 

Gap: Expanding Options to Handle the Estimator’s Unreliable/Incomplete Data 

Problem 

A cost estimate is an evaluation and analysis of future costs of hardware, software 

and/or services (Mislick & Nussbaum, 2015; Williams & Barber, 2011). Cost estimates 

are generally derived from historical cost, performance, schedule, and technical data 

associated with similar items or services (Mislick & Nussbaum, 2015). In general, the 

cost estimating technique used by cost estimators to forecast future life cycle cost for an 

acquisition program progresses from the analogy to actual cost method as that program 

becomes more mature and more information is known (Williams & Barber, 2011). The 

analogy method is most appropriate early in the program life cycle when the system is 

not yet fully defined. (DoDI, 2017; DoDM, 2011; Williams & Barber, 2011). This 
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assumes there are analogous systems available for comparative evaluation (Williams & 

Barber, 2011). As systems begin to be more defined when the program enters a more 

mature phase of engineering & manufacturing development (EMD) (DoDI, 2017;  

DoDM, 2011; Williams & Barber, 2011). Estimators are then able to apply parametric 

once physical manufacturing occurs and actual data is produced for an estimator to use in 

cost estimation (Williams & Barber, 2011). Estimating via engineering build-up tends to 

begin in the latter stages of EMD and low-rate initial production (LRIP) when the design 

is fixed, and more detailed technical and cost data are available (DoDI, 2017; DoDM, 

2011; Williams & Barber, 2011). Once the system is being produced or constructed (i.e., 

LRIP and Full Rate Production), the actual cost method can be applied as a cost 

estimation technique (Williams & Barber, 2011). 

In April 2016, a government document was issued that stated that the Business –

Cost Estimating career field had competency gaps that were identified in a consolidated 

survey and assessment comprised of formal representatives from all U.S. Defense 

Military Services and the DoD 4th Estate (Burke & Spruill, 2016). Their assessment 

concluded that a “training gap exists in software cost estimating”, and stated that a new 

course would be developed, and thus added this course as a new certification requirement 

(Burke & Spruill, 2016). This same government document also acknowledged that 

addressing this gap aligned to improving the professionalism of the U.S. defense 

acquisition workforce, to include cost estimators (Burke & Spruill, 2016). Even more so, 

assessing the Business—Cost Estimating competency and mitigating a newfound gap by 

incorporating software cost estimation training supported the Under Secretary of Defense 
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(Acquisition, Technology, and Logistics) (USD (AT&L) Ashton Carter’s (2010) and 

Frank Kendall’s (2013) Better Buying Power initiatives to “obtain greater efficiency and 

productivity in defense spending” (p. 1; Burke & Spruill, 2016; Carter, 2010; Kendall, 

2013, 2015). Ironically, historical data sets used in software cost estimation are known to 

have missing values and have been stated by several authors on this topic (Brown & 

White, 2017; Jing et al., 2016; Strike et al., 2001). Table 2 below provides a summary of 

what historical software cost estimation data fields were included in the BCF 250 

Software Cost Estimation course for student to use as a synthetic U.S. representative 

software cost estimation data matrix. (DAU, 2018b).  

Table 2 

 

Summary from Data Used within a Synthetic and Complete U.S. Representative Software 

Cost Estimation Data Matrix Used at Defense Acquisition University (DAU) 

Id Data Sets in Matrix Data Type Description Number of 

Cases 

1 Software Intensive Program Nominal (Synthetic DoD MAIS 

Program Unique Names) 

50 

2 Mapped Application Type Nominal (Dummy Numerical 

Variables 0,1,2, etc.) 

50 

3 Operating Environment Nominal (Dummy Numerical 

Variables 0,1,2, etc.) 

50 

4 Primary Programming 

Language 

Nominal (Dummy Numerical 

Variables 0,1,2, etc.) 

50 
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5 Development Paradigm Nominal (Dummy Numerical 

Variables 0,1,2, etc.) 

50 

6 Upgrade/New Nominal (Dummy Numerical 

Variables 0,1,2, etc.) 

50 

7 Number of External 

Interface Requirements 

Numerical 50 

8 Initial SLOC – New Numerical 50 

9 Initial SLOC – Modified Numerical 50 

10 Initial SLOC – Reused Numerical 50 

11 Final SLOC – New Numerical 50 

12 Final SLOC – Modified Numerical 50 

13 Final SLOC – Reused Numerical 50 

14 DM % - Modified* Numerical 50 

15 CM % - Modified* Numerical 50 

16 IM % - Modified* Numerical 50 

17 DM % - Reused* Numerical 50 

18 CM % - Reused* Numerical 50 

19 IM % - Reused* Numerical 50 

20 Final Software 

Requirements Analysis 

Effort Hours 

Numerical 50 
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21 Final Software 

Architectural Design Effort 

Hours 

Numerical 50 

22 Final Software Detailed 

Design Effort Hours 

Numerical 50 

23 Final Software Construction 

Effort Hours 

Numerical 50 

24 Final Software Integration 

Effort Hours 

Numerical 50 

25 Final Software 

Qualification Testing Effort 

Hours 

Numerical 50 

26 Final Software 

Documentation 

Management Effort Hours 

Numerical 50 

27 Final Software 

Configuration Management 

Effort Hours 

Numerical 50 

28 Final Software Quality 

Assurance Effort Hours 

Numerical 50 

29 Final Software Verification 

Effort Hours 

Numerical 50 



62 

 

30 Final Software Validation 

Effort Hours 

Numerical 50 

31 Final Software Review 

Effort Hours 

Numerical 50 

32 Final Software Audit Effort 

Hours 

Numerical 50 

33 Final Software Problem 

Resolution Effort Hours 

Numerical 50 

34 Final Cybersecurity Effort 

Hours 

Numerical 50 

 

In layman’s terms, there is no standard approach taught to defense cost estimators 

in what data values to use or not use in their data matrix when the missing, incomplete, or 

unreliable data values appear (DAU, 2018a). By offering the engineering managers and 

cost estimators within the discipline a standard approach to determine how to handle 

missing, incomplete, or unreliable data values, this could reduce the number of flawed 

cost estimates that lead to program cost overruns and unplanned additional federal budget 

request. Moreover DAU, the corporate university that was established to train and certify 

the Defense Acquisition Workforce (DAW) Business—Cost Estimating career field, does 

not train their students as to how to handle data sets when data is missing (DAU, 2018a). 

There is indeed a gap that needs to be addressed within the literature of the U.S. defense 

cost estimation body of knowledge that describes how defense cost estimators should 



63 

 

handle its unreliable and incomplete data problem when historical data sets have missing 

values (DAU, 2018a; GAO, 1972, 2009; Mislick & Nussbaum, 2015). 

According to a U.S. defense based Joint Agency Cost Estimating Relationship 

(CER) Handbook (2018), it acknowledges that “data sets with missing and incomplete 

data” is a data analysis challenge and states that the “best course of action is to first 

attempt to remedy the problem by collecting more data, finding the information from the 

collected data set, and determining the cause of the unusual observations, respectively” 

(p. 221). This government document also acknowledges that it is “not always possible to 

correct such errors” and that it is important for estimators to understand the implications 

of these challenges, and to proceed with their analysis under caution (Joint CER 

Handbook, 2018, p. 221). The literature does not inform how cost estimators who 

leverage the defense Business—Cost Estimating curriculum at DAU directly handle the 

unreliable and incomplete engineering project data matrix problem other than through 

recognizing the problem through defense government documents and making changes to 

public policy (GAO, 2020). 

The specific management problem is that there is a lack of research into the 

techniques to handle the unreliable and incomplete data problem. Consequently, U.S. 

defense cost estimators do not have an optimal set of options available to them when they 

must handle the unreliable and incomplete data problem when building a cost estimate, 

which allows them to forecast life-cycle cost analysis for a myriad of engineering-based 

acquisition projects and programs (DAU, 2018a; GAO, 2009, 2020; Morin, 2017). In a 

government publication memo entitled DoD Cost Analysis Data Improvement, Morin’s 
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approach to the problem was to start a data collection effort through updating eight topics 

withing two policies to improve data quality and estimation conditions (Morin, 2017). 

This approach supports that research into cost analysis data quality is significant, and that 

improvements are still needed. There is a gap that needs to be addressed within the 

literature of the U.S. defense cost estimation body of knowledge that describes how 

defense cost estimators should handle its unreliable and incomplete data problem when 

historical data sets have missing values (DAU, 2018a; GAO, 1972, 2009; Mislick & 

Nussbaum, 2015).  

How Other Disciplines Handle Unreliable/ Incomplete Data Problems  

Through the lens of missing data theory, several empirical researchers have 

addressed the needs of both social and natural scientists across many disciplines with 

options to deal with handling their data matrices that may have unreliable, incomplete, or 

even completely missing values (Aittokallio, 2009; Baraldi & Enders, 2010; de Leeuw, 

2001; García-Laencina et al., 2010, 2013; Tsrikitis, 2005). Moreover, many empirical 

researchers have assessed predictive accuracy on data matrices and have conducted 

experimental designs using missing data theory (Lin & Tsai, 2019). Unfortunately, none 

have been applied to any U.S. defense cost estimation data matrices and only a handful 

have used an experimental design to test missing data theory within in the software 

domain (Khoshgoftaar & Van Hulse, 2008; Song et al., 2008; Van Hulse & 

Khoshgoftaar, 2014). Currently, there is a gap that needs to be addressed within the 

literature of the U.S. defense cost estimation discipline that describes how defense cost 

estimators could handle its physical unreliable and incomplete data problem when 
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historical data sets have missing values (Brown & White, 2017; DAU, 2018a; GAO, 

1972, 2009; Mislick & Nussbaum, 2015).   

Could Missing Data Theory Improve Data Reliability/Completeness? 

Addressing the problem of dealing with the problem of missing values in a 

representative DoD cost estimation when a physical data set has missing values has been 

ignored within the U.S. defense cost estimation discipline. A reliable and complete data 

matrix is a fundamental requirement to build a cost estimate, or even a cost estimation 

relationship (CER) model based on software effort hours and estimated software lines of 

code (ESLOC). When data values are not there, DoD cost estimators should have 

actionable techniques in which they could handle dealing with missing values vice 

relying on policies, statutes, and regulations of the environment to be the sole addressor 

of the specific problem (DAU, 2019a; DAU 2019b; Morin, 2017). Since cost estimation 

models’ most important attribute is their forecasting accuracy, could applying missing 

data theory to missing values improve the disciplines’ unreliable and incomplete data 

problem?  

As a result of this literature review, the purpose of this quantitative study was to 

test and measure the level of predictive accuracy of missing data theory techniques that 

are referenced as traditional approaches in the literature, compare each theories’ results to 

a complete data matrix used in support of the U.S. defense cost estimation discipline and 

determine which theories render incomplete and missing data sets in a single data matrix 

most reliable and complete under several missing value percentages. At least two 

evaluative measures were used to test the impact of missing data theory techniques. Each 
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data set used in this study will have data values removed-at-random and at various 

percentages to create a simulation of the missing data problem applied to representative 

defense cost estimating data. The relationship between the removed-at-random-data-

values from each data matrix group were operationally named the “Original Numerical 

Value” (pretest value) and the predicted value created as a result of applying a missing 

data theory technique were operationally named the “Predicted Numerical Value” 

(posttest value) for each data set’s experiments. The pretest and posttest value were 

compared by determining the average absolute error and relative error calculation to 

determine each missing data theory’s level of predictive accuracy. 

Summary and Conclusions 

A study to test if missing data theory techniques can solve the estimator’s 

unreliable and incomplete data problem was supported in the literature. In the first main 

section of this literature review, I provided the background surrounding the general data 

quality problem and U.S. public policy requirements that have been levied on the systems 

engineering economics subdiscipline of the Business—Cost Estimating discipline (GAO, 

2009; Jorgenson, 2006, Morin, 2017). In the next section of my review of the literature, I  

narrowly focused and described the ineffectiveness of U.S. policy requirements that have 

been put in place to resolve the data reliability and completeness problem.  This led me to 

the identification of the specific management problem that there is a lack of research into 

the techniques to handle the unreliable and incomplete data problem. Consequently, I 

described the U.S. defense cost estimators, engineering economists, and engineering 

managers problems they face in not having any options prescribed to them that can 
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address their data quality challenges beyond depending on policy enactments (Morin, 

2017; 10 U.S. Code § 2334, 2017; 10 U.S. Code § 1746, 2012). I then assessed the 

literature and  described common approaches to handling missing data that is used in 

other disciplines that have also faced a similar unreliable and incomplete data problem by 

using a theoretical approach. In the final main section, I described the gap in the literature 

and a need for U.S. defense cost estimators, engineering economists, and engineering 

managers to have options beyond policy to improve their data quality problem when they 

work with and assess physical data sets that are unreliable and incomplete for them to use 

for estimation. Lastly, I concluded the literature review’s final section with why this 

capstone study to empirically test and measure the predictive accuracy of missing data 

theory techniques by applying it to the Business—Cost Estimating discipline is needed.  

This research can help determine which theoretically based technique(s) renders U.S. 

defense cost estimation data matrices and data sets most reliable and complete. Since 

non-defense software project and measurement data as it relates to cost estimation is 

written about in the literature, this study can extend knowledge in this area by applying 

empirical pre-experimental research to test and measure missing data theory techniques 

with representative U.S. defense cost estimation data. 

Based on the gap discovered in this literature review, this study was necessary 

because “reliable and comprehensive cost data is essential to produce credible cost 

estimates as required in both (policy) statute and regulation” (Morin, 2017, p.1). In the 

past, GAO reported that the federal defense department lacked the data, both in volume 

and quality, needed to conduct effective cost estimates (Brown & White, 2017). As a 
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result, cost estimate realism to support future engineering systems’ (e.g., developed 

software, aircraft, ships, business systems, autonomous systems, artificial intelligent 

systems etc.) success is threatened. This study provided a different perspective on an 

established problem that historical databases contain substantial amounts of missing data 

(Strike et al., 2001). By helping cost estimators, engineering economists, engineering 

managers, and even database administrators in the federal defense department “improve 

analyst productivity, quality of cost estimates, close data gaps, and provide the cost, 

acquisition, and resource allocation organizations with data required for better analysis 

and decision-making”, an improvement to fund programs to an improved accurate 

estimated planned amount to complete an engineering project would be significant for 

these types of individuals (Morin, 2017, p. 1). 

In conclusion, this capstone research sought to determine which missing data 

theory technique best lends itself to this inaugural body of research for the U.S. defense 

cost estimating discipline, with a high potential to influence future curriculum.  I 

empirically determined what the predictive accuracy of traditional missing data theory 

techniques were when applied to a nonproprietary software measurement and engineering 

project data used in the U.S. defense cost estimating discipline. The purpose of this 

quantitative study was to test and measure the level of predictive accuracy of missing 

data theory techniques that are referenced as traditional approaches in the literature, 

compare each theories’ results to a complete data matrix used in support of the U.S. 

defense cost estimation discipline and determine which theories render incomplete and 

missing data sets in a single data matrix most reliable and complete under several missing 
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value percentages. The positive social change outcome of this research was that it helped 

determine that missing data theory techniques could provide options beyond public 

policy to address data quality problems and improve the state of the U.S. defense cost 

estimation discipline, discussed further in Chapter 3. 
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Chapter 3: Research Method 

I structured this study for me to look at differences in the predictive accuracy 

measurements of three traditional missing data theory techniques within a pre-

experimental design. Due to the specificity of the RQ, I used a purposive sampling of 

U.S. defense cost estimating representative data, in which the selected sample size of 

software programs was later randomly selected to receive an intervention. Found 

literature within engineering economics, software engineering economics, and cost 

estimation has not tested this theory or its applied techniques on U.S. defense cost 

estimation data. In addition, the U.S. defense cost estimation discipline had not addressed 

its current problem with any applied missing data theory techniques as an option to 

address its unreliable and incomplete data problem beyond changing its policies. The 

comprehensive purpose of this quantitative study was to test and measure the level of 

predictive accuracy of missing data theory techniques that are referenced as traditional 

approaches in the literature, compare each theories’ results to a complete data matrix used 

in support of the U.S. defense cost estimation discipline and determine which theories 

render incomplete and missing data sets in a single data matrix most reliable and 

complete under several missing value percentages. The positive social change outcome 

was to ultimately fill the gap in the literature regarding testing missing data theory’s 

predictive accuracy applied to the U.S. defense cost estimator’s unreliable and 

incomplete data problem. This study provided a quantitative analysis, and an 

understanding of the impact missing data theory could have in solving U.S. defense cost 



71 

 

estimator’s current and longstanding problem that was recognized as early as 1972 (see 

GAO, 1972). 

Chapter 3 includes the research design method, theoretical method of inquiry, 

justification of the research method, the justification of the intended sample and sample 

size, method of data collection and procedures, data management, data analysis technique 

and research method, issues of ethical considerations, reliability and validity, and 

instrumentation. As stated in Chapter 1, the RQ that grounds this study was: To what 

degree can traditional missing data theory techniques accurately solve cost estimators’ 

and engineering managers’ unreliable and incomplete data problem when data values are 

missing from a representative U.S. defense cost estimation data matrix?  Being able to 

respond to this question from this research is important to provide the knowledge and 

understanding of missing data theory’s potential to improve the data matrices used in cost 

estimation, especially in the U.S. defense industry’s state of cost overruns and budget 

constraints. 

Research Design and Rationale 

The pretest value was operationally named the “Original Numerical Value” and 

represents the removed-at random-data-values that were obtained from the Walden 

University IRB approved purposive sample data that was used for empirical testing. The 

posttest value was operationally named the “Predicted Numerical Value” and represented 

the result of the treatment, the applied missing data theory technique, in which I was able 

to empirically evaluate and measure the predictive accuracy of the treatment’s outcomes 

on a representative U.S. defense cost estimation data set by measuring its absolute error 
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and relative error values. The independent variables that were used to manipulate this 

quantitative pre-experimental research design of 30 out of 50 analogous and synthetic 

software development programs from the purposive data sample were the percentage of 

missing data (independent variable 1), the missing data theory technique (independent 

variable 2), and the 28 types of numerical data sets available within the one group data 

matrix. This study did not have a covariate, mediating, or moderating variable to account 

for as the subjects within the intervention are data values and not human beings. 

The research design of this pre-experimental design was the best option to use for 

this empirical intervention study that tested theory and measured its results because it 

provided a controlled environment and provided pure construct validity to unequivocally 

answer the RQ effectively. In addition, like studies like this one that tested missing data 

theory, this research design provided the right amount of control to operationalize each 

independent and dependent variable, and yielded the data needed to evaluate the 

hypotheses, and answer the study’s RQ (see Conte et al., 1986; Briand et al., 2000; 

Jeffery et al., 2000, 2001; MacDonell & Shepperd, 2003; Mittas & Angelis, 2008). 

Moreover, the pre-experiment introduced minimal time and resource constraint that 

allowed the ability to answer the RQ by conducting pre-experimental interventions at 

various missing data percentages, and allowed me to (a) test the predictive accuracy of 

missing data theory techniques that are referenced as traditional approaches in the 

literature, (b) compare them to complete data matrices used in the U.S. defense cost 

estimation discipline, and (c) determine which theories render incomplete and missing 

data matrices most reliable and complete. Each purposive data set from the one group 
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data matrix used in this study had data values removed-at-random to test the theory at 

various missing value percentages to create a simulation of the missing data problem 

applied to a representative U.S. defense cost estimating data. 

There were two evaluative measures used to test the impact of missing data theory 

techniques by comparing pretest and posttest values. The first evaluative measure, the 

measure of predictive accuracy in the 28 treated data set were computed based on the 

delta change between the pretest and posttest values found before and after the treatment. 

This calculation determined the two dependent variables numerical values, the absolute 

error and relative error, that helped to compare the pretreatment and posttreatment data 

sets to measure each missing data theory’s technique predictive accuracy, an aggregate 

needed to conduct ANOVA testing to determine if the study’s results were significant. 

The second evaluative measure, significance testing, was performed by conducting a two-

way ANOVA with an assumption of normality for a repeated measures ANOVA (see 

Field, 2018). The two-way ANOVA determined if there is an interaction between the 

missing data theory technique chosen, the multiple data set types from a representative 

U.S. defense cost estimation data matrix, and the various percentage levels of missing 

data (i.e., this pre-experimental study’s three independent categorical variables) to 

explain the measures of predictive accuracy (i.e., the two dependent/outcome numerical 

variables) using absolute error and relative error calculations once all experiments have 

been completed (see Field, 2018).  Furthermore, this significance testing used a two-way 

(within-subject variables) and three between-subjects factors analysis of variance 
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(ANOVA) to measure the effects and interactions that existed between the independent 

variables and dependent variables (see Field, 2018). 

The pre-experimental design, chosen because of the need to experiment on a 

purposive sample of a representative U.S. defense cost estimation data, leveraged a 

complete as well as logical data matrix, and measured the accuracy of applied missing 

data theory techniques results after the artificial missing data problem was created 

(Trochim & Donnelly, 2008). Artificially inducing the missing values into the data matrix 

had been chosen because it is an approach that had been adopted in several missing data 

experimental studies, and allowed me the aptitude to apply several missing data theory 

technique treatments to a sample, and test for predictive accuracy of this intervention 

while adding knowledge and understanding to the gap in the literature (see Brown & 

White, 2017; DAU, 2018a; GAO, 1972, 2009; Hill, 2011; Mislick & Nussbaum, 2015). 

By empirically evaluating missing data theory techniques’ predictive accuracy, a new 

method to handle missing data problems for DoD cost estimators, engineering 

managers/economists, database administrators, data scientists, as well as other 

researchers could be a welcomed addition to the Defense Acquisition University’s 

(DAU’s) Business—Cost Estimating current curriculum, as well as adds to the 

engineering economics scholarly conversation. 

Methodology 

I have just described the research design method and have defined the theoretical 

method of inquiry and justification for this research method.  In the next section, I 

describe the intended population, as well as the justification for the intended sample.  In 
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addition, I justify the sample size based on the unique population of interest.  In addition, 

I provide the sampling procedures that I conducted for this intervention study. Lastly, the 

details about the use of archival data, and procedures to take once the data collection 

occurs will be described in more detail. 

Population 

Each year, the DoD captures its list of Major Automated Information Systems, all 

high visibility and high dollar information system programs. As of October 1, 2018, the 

Office of the Under Secretary of Defense for Acquisition, Technology and Logistics, 

Acquisition Resources and Analysis (ARA) Directorate published its annual 2019 MDAP 

and Major Automated Information Systems (MAIS) list. To properly focus this study on 

software effort-based cost estimation, the population in which the pre-experimental 

design is in support of is the current 30 DoD software systems identified, and any future 

MAIS systems identified in later years (Undersecretary of Defense for Acquisition and 

Sustainment, 2019). Table 2 captures the targeted population in which this quantitative 

study is in support of. The Category (Cat) describes if the acquisition program has 

oversight at the Component Level (IAC) or at the DoD Level (IAM) based on its 

budgetary significance and risk (Undersecretary of Defense for Acquisition and 

Sustainment, 2019). 

Table 3 

 

DoD Major Automated Information Systems (MAIS) List 

Id Short Name Long Name Component (Cat) 

1 ACWS Army Contract Writing System Army (IAC) 
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2 AFIPPS Inc 1 Air Force Integrated Personnel and Pay System 

Increment 1 

Air Force (IAC) 

3 BEC Inc 1 Biometrics Enabling Capability Increment 1 Army (IAC) 

4 CAC2S Inc 1 Common Aviation Command and Control System 

Increment 1 

Navy (IAC) 

5 CANES Consolidated Afloat Networks and Enterprise 

Services 

Navy (IAC) 

6 DAI Inc 2 Defense Agencies Initiatives Increment 2 DLA (IAM) 

7 DAI Inc 3 Defense Agencies Initiatives Increment 3 DLA (IAM) 

8 DCAPES Inc 2B Deliberate and Crisis Action Planning and 

Execution Segments Increment 2B 

Air Force (IAM) 

9 DCGS-A Inc 1 Distributed Common Ground System -Army 

Increment 1 

Army (IAC) 

10 DCGS-A Inc 2 Distributed Common Ground System -Army 

Increment 2 

Army (IAC) 

11 DCGS-N Inc 2 Distributed Common Ground System -Navy 

Increment 2 

Navy (IAC) 

12 DEAMS Inc 1 Defense Enterprise Accounting and Management 

System - Increment 2 

Air Force (IAM) 

13 DEOS Defense Enterprise Office System DISA (IAM) 

14 DHMSM Department of Defense Healthcare Management 

System Modernization 

DHA (IAM) 

15 ESBMC2 Enterprise Space Battle Management Command 

and Control 

Air Force (IAM) 

16 GCSS-A Inc 1 Global Combat Support System -Army Increment 

1 

Army (IAC) 
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17 GCSS-A Inc 2 Global Combat Support System -Army Increment 

2 

Army (IAC) 

18 GCSS-J Inc 8 Global Combat Support System -Joint Increment 

8 

DISA (IAC) 

19 IPPS-A Inc 2 Integrated and Personal Pay System -Army 

Increment 2 

Army (IAC) 

20 ISPAN Inc 4 Integrated Strategic Planning and Analysis 

Network Increment 4 

Air Force (IAC) 

21 ISPAN Inc 5 Integrated Strategic Planning and Analysis 

Network Increment 5 

Air Force (IAC) 

22 JMS Inc 2 Joint Space Operations Center (JSpOC) Nissin 

System Increment 2 

Air Force (IAM) 

23 JOMIS Joint Operational Medicine Information Systems DHA (IAM) 

24 KMI Inc 2 Key Management Infrastructure Increment 2 NSA/CSS (IAC) 

25 KMI Inc 3 Key Management Infrastructure Increment 2 NSA/CSS (IAM) 

26 MPS Inc 5 Mission Planning System Increment 5 Air Force (IAC) 

27 MROi Maintenance Repair and Overhaul Initiative Air Force (IAC) 

28 PKI Incr II Public Key Infrastructure Increment 2 NSA/CSS (IAC) 

29 Teleport Gen 3 Teleport Generation 3 DISA (IAC) 

30 TMC Tactical Mission Command Army (IAC) 

 

Sampling and Sampling Procedures 

Sampling is the process of selecting a representative group from a population to 

be studied. With the population of 30 major DoD MAIS programs’ cost estimating data 

being contractor and acquisition sensitive, as well as requires signed non-disclosure 
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agreements (NDAs) from anyone who sees this data, I used nonproprietary synthetic data 

for this study that was and is a representative sample of what U.S. defense cost estimators 

work with to estimate cost (Undersecretary of Defense for Acquisition and Sustainment, 

2019). With IRB approval, I used a purposive sample taken from a DAU course, BCF 

250 Software Cost Estimation, that extracts data for its classroom exercises from the 

FACADE database repository (Trochim & Donnelly, 2008). In being a synthetic 

nonproprietary data matrix that is currently used to teach U.S. defense cost estimators, 

this sample was ideal for research that can be shared within the academic and scholarly 

literature. DAU data is within the public domain and captured under the IRB form 

category as data that is found within “public records or documents” (17 U.S. Code § 105, 

2010). By using a data matrix used by professors to teach students, as well as one that is 

representative of the type of data in which many U.S. defense cost estimators are exposed 

to while seeking certification in the discipline, this purposive sample of nonproprietary, 

synthetic, and software effort estimation synthetic data from the FACADE database 

repository was used. Since purposive sampling, a nonprobability sampling procedure, 

was used in this study to test missing data theory techniques on a niche population, a 

power analysis to determine sample size and effect size was not prudent (see Trochim & 

Donnelly, 2008; UCSF, 2019). The sample size for this pre-experimental research was 

comprised of 30 out of 50 analogous and synthetic software development programs and 

was able to inform the population of 30 DoD MAIS programs shown in Table 3. Stated 

differently, one group of 30 software development programs, comprised of 28 numerical 

data sets in a data matrix was used to simulate the U.S. defense cost estimator’s missing 
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data problem and to make inferences about how this population may respond to missing 

data theory treatments.    

Procedures for Data Collection (Purposive Sample of Archival Data) 

In narrowing this research study to have positive social change impact, I 

contacted the director of academic program at DAU. This university is the corporate 

university for U.S. DoD cost estimators as established under 10 U.S. Code § 1746 (2012). 

This law states that “The Secretary of Defense… shall establish and maintain a defense 

acquisition university structure to provide for the professional educational development 

and training of the acquisition workforce” (10 U.S. Code § 1746, 2012, ¶.. 1). With this 

university serving as the Defense Acquisition Workforce Improvement Act Level I, II, 

and III Acquisition Professional and Development Program certifying agent for the 

Business—Cost Estimating discipline, experimenting on its curriculum’s archival 

datasets with an intervention of applied statistical missing data theory techniques is ideal 

for this pre-experimental pretest-posttest design. The archival data, also termed synthetic 

data, represents U.S. defense cost estimation data that is not contract or acquisition 

sensitive, is used in curriculum to educate and train U.S. defense cost estimators in 

courses, and taken from the FACADE database repository (DAU, 2018b). 

Intervention (One Group Pretest-Posttest Design/Pre-experimental)  

For this study, the intervention was on a synthetic data, not a human, by providing 

three missing data theory techniques on a U.S. defense cost estimation representative data 

matrix to test the predictive accuracy of each data set found within the data matrix 

empirically. The one group pretest-posttest no control group/pre-experimental design 
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included 4,704 treatments in which I measured the outcome of each “Original Numerical 

Value” and calculated the delta values as a result of the missing data theory technique’s 

treatment resulting “Predicted Numerical Value” to measure the treatment’s level of 

predictive accuracy. Since the sample of software development programs within each of 

the 28 data sets did not fall below the DoD MAIS Program population size of N=30, this 

study’s use of a purposive sample of n =30 fictitious yet representative U.S. defense 

software development programs is robust.  

I tested and measured missing data theory techniques level of predictive accuracy 

by empirically applying three techniques as an intervention on 28 artificially missing data 

sets comprised of 30 fictitious software development programs. I used traditional 

statistical approaches of missing data theory to establish the foundation of its utility to the 

Business—Cost Estimating discipline. In this study, I conducted an intervention on a 

synthetic missing value data matrix problem applied to a representative U.S. defense cost 

estimation data. I applied a post positivist worldview in which I tested and assessed three 

missing data theory techniques based on a quantitative pre-experimental design. The 

research used concepts from the traditional survey, one group pretest-posttest no control 

group/pre-experimental research design by taking the following approach (see Thyer, 

2012): 

1. Take a synthetic complete data set made up of at least 30 software 

development programs and 28 numerical (quantitative) software data set types 

(independent variable 2) in which, for example, are the software effort hours 
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that have been collected and represent a U.S. defense cost estimation data 

matrix. 

2. Document the “Original Numerical Value”, the original data set, that 

represents the software effort attribute that has been collected in a database as 

a pretest measurement point for all 30 programs in the complete data set. 

3. Calculate univariate descriptive statistics, to include the mean, for each data 

set in the data matrix (e.g., to describe Data Set Type 14 Final Software 

Requirements Analysis Effort Hours for the 30 software development 

programs that were used in this study). 

4. Assuming the mechanism of MCAR, simulate the missing data problem by 

beginning the random removal of programs to create an arbitrary missing 

value pattern within each complete data set at 8 percentage levels of 

missingness. Begin by randomly removing only 5% of the data values by 

utilizing a random number generator to remove values based on where the 

data value was originally placed within the complete data set (Research 

Randomizer, 2020). 

5. Examine the pattern of the artificially induced missing data set, document the 

data set type (independent variable 2) and document the missing data 

percentage (independent variable 1). 

6. Apply the respective missing data theory techniques (independent variable 3) 

to the artificially induced data set and impute values that were missing 

utilizing the IBM SPSS 25 statistical package. The application of the 
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following missing data theory technique will serve as the intervention to test 

this study’s null and alternative hypotheses with applying the following 

treatments: 

• Complete Case Analysis (Toleration)/ Listwise Delete Methods; 

• Single Imputation Methods (Direct) Methods (García-Laencina et al., 

2010); 

• Multiple Imputation (Direct) Methods (Enders, 2006). 

7. Calculate the absolute error and relative error to compare the pretest value 

(“Original Numerical Value” = A) and posttest value (“Predicted Numerical 

Value” = B) results after the application of the missing data theory technique 

treatment that was artificial simulated to have 5% of the data set to contain 

missing values. 

8. Calculate univariate descriptive statistics based on the post-treatment data set 

that has been made 100% complete with new “Predicted Numerical Values” 

as a result of the applied missing data theory technique that predicted and 

replaced 5% of the numerical values that were artificially missing from the 

original data set. 

9. Compare calculate univariate descriptive statistics between the pre- and the 

post- treated data set that has been made complete from the application of 

missing data theory to measure the predictive accuracy of missing data theory 

technique applied. 
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10.  Repeat steps 2-9 for each of the missing data value percentages seven more 

times (e.g., 10%, 15%, 20%, 25%, 30%, 35%, 40%) to test predictive 

accuracy at various levels as tested in the literature for 28 data sets from a 

representative U.S. defense cost estimation data matrix. 

Archival Data 

The archival data set used for this one group pretest-posttest no control group/pre-

experimental design to test the RQ was an IRB approved data matrix made available via a 

webpage from the DAU’s BCF 250 Software Cost Estimation course. The data matrix 

used was an excerpt from an in-classroom exercise to analyze the FACADE historical 

database for completed software efforts and is in the public domain. With a significant 

amount of the scholarly literature looking at software effort estimation data, testing the 

RQ and hypotheses on a U.S. defense software effort cost estimation data matrix allowed 

this body of work to enter the larger scholarly conversation on the topic. The targeted 

archival complete data matrix was comprised of 30 out of 50 analogous and synthetic 

software development programs with 28 data sets related to software effort, size and 

schedule data used in software cost estimation. Each of the 30 synthetic software 

programs have observations on 15 software effort attributes, 12 software size attributes, 

and one external software interface requirement attributes that make up 28 data sets out 

of the single data matrix. 

Instrumentation and Operationalization of Constructs (IBM SPSS 25) 

The instrumentation used to answer the RQ by testing and measuring the 

associated hypotheses was IBM SPSS 25 licensed software. Due to the statistical 
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functionality of IBM SPSS 25 software, its instrumentation was used to administer 

missing data theory techniques as a treatment and measure its effects on U.S. defense cost 

estimating data within a pre-experimental design. Missing data theory techniques require 

computational power that is provided in statistical and machine learning software tools, 

in which IBM SPSS 25 includes. As a foundational study for U.S. defense cost 

estimators, testing traditional missing data theory techniques that is supported within the 

Missing Value Analysis module and Multiple Imputation functionality within IBM SPSS 

25 were used. SPSS is recognized in the academic community as reliable and valid and 

has the processing power to assess data that has incomplete and missing values (Enders, 

2010). The Mission Value Analysis module and Multiple Imputation functionality in 

IBM SPSS 25 has the computational and algorithmic ability to compute traditional 

missing data theory techniques that can be applied to the first study that applies these 

techniques to the U.S. defense cost estimation domain. This study tested and measured 

the level of predictive accuracy of traditional missing data theory techniques that include 

a a) Complete Case Analysis or Listwise Deletion (LD), b) Single Imputation using the 

Mean (SI-Mean), and c) Multiple Imputation using Linear Regression (MI-LR) 

techniques on an IRB approved and representative U.S. defense cost estimation data 

matrix. 

Intervention Studies or Those Involving Manipulation of Independent Variables  

For this intervention on the pretest value, the “Original Numerical Value”, the 

following parameters were manipulated to simulate the U.S. defense cost estimation 

missing data problem (Aljuaid & Sasi, 2016; Strike et al., 2001): 
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• The data set type from a data matrix (independent variable 1). 

• The percentage of missingness of the observations/programs with missing 

data (independent variable 2), based on the assumption that any missing 

observations are MCAR. 

• The missing data theory technique (independent variable 3). 

Eight different percentages of missing values were simulated per each of the 

missing data theory techniques applied (e.g., 5%, 10%, 15%, 20%, 25%, 30%, 35%, 

40%). It is generally accepted that data sets with more than 40% missing data are not 

useful for detailed analysis (Strike et al., 2001). Twelve experimental studies considered 

missing data percentages above 50% in which they all had very large data sets of several 

hundreds to 12,000 (Chen et al., 2017; Eirola et al., 2013; Graham et al., 2007; Janssen et 

al., 2010; Kapelner & Bleich, 2015; Kiasari et al., 2017; Li et al., 2014; Li & Parker, 

2014; Mesquite et al., 2017; Purwar & Singh, 2015; Qin et al., 2009; Zhu et al., 2010). 

Since U.S. defense cost estimation data levels of analogous systems are not large data 

sets, this study will not exceed a missing data percentage rate beyond 40%. Figure 2 is a 

full schematic of this study in which it defines the independent and dependent variable 

definitions, and as well as depicts how pretest and posttest approximation errors were 

calculated. 
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Figure 2  

 

Statistical Method to Perform this One Group Pretest-Posttest Design 

  

Data Analysis Plan 

Data was analyzed from the results of 4.704 pre-experimental treatments in this 

one group pretest-posttest no control group/pre-experimental design. All numerical 

values generated from the pretest and posttest numerical values used the ratio/scale of 

measurement. I used absolute error and relative error calculations, approximation error 

terms, to measure the predictive accuracy of each application of traditional missing data 

theory techniques (Kreinovich, 2012). Seo et al. (2009) used Magnitude of Relative Error 

(MRE) and Magnitude of Error Relative (MER) calculation of each to measure the 

software effort estimation predictive accuracy in their study as follows (p. 3): 
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These calculations are consistent with the logic needed to measure missing data 

predictive accuracy, using approximation error as the type of calculation to use. 

Likewise, many other researchers have used approximation error as an evaluation criteria 

to measure the predictive accuracy of their effort estimation models as well (see Conte et 

al., 1986; Briand et al., 2006, 2000; Jeffery et al., 2000, 2001;MacDonell & Shepperd, 

2003; Mittas & Angelis, 2008). 

To answer the RQ and test and measure this study’s hypotheses, using 

approximation error-based equations, I measured the delta of the single group’s pretest 

and posttest values based on the intervention of each missing data theory technique 

treatment, which represents the most critical step in this pre-experimental study’s 

analysis. The absolute error and relative error calculations captured the outcome variables 

needed to assess the findings from 4,704 treatments and served as the study’s two 

dependent variables (absolute error and relative error) to measure the level of predictive 

accuracy as it interacts with the independent/predictor variables that have been 

manipulated in order to answer the RQ. This data analysis plan will support answering 

the RQ: To what degree can traditional missing data techniques accurately solve cost 

estimators’ and engineering manager’s unreliable and incomplete data problem when data 

values are missing from a representative U.S. defense cost estimation data matrix?    
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IBM SPSS 25 and Microsoft Excel were the software used to analyze and 

evaluate the results of this one group pretest-posttest/pre-experimental design in a 

systematic and consistent manner to calculate the level of predictive accuracy per each 

data set type at each percentage level of missingness. Significance testing was then 

performed by conducting a two-way repeated measures ANOVA. A repeated measures 

ANOVA “is a term used when the same cases participate in all conditions of an 

experiment” in which at least two or more variables manipulate the experiment (Fields, 

2018, p. 651). The F ratio from this analysis will explain the main effects and interaction 

between all the independent variables and dependent variables. Covariate variables were 

not used considering the single group of software program characteristics was data and 

not human beings who may have outside variables to impact experimental results. The 

data sets from the data matrix used for all the pre-experiments were kept constant. This 

quantitative research method of inquiry has been chosen to help determine how well 

defense cost estimators could handle historical data sets with the use of missing data 

theory techniques (Kirk, 2013). 

Furthermore, the RQ for this study was to determine what the predictive accuracy 

is from various missing data theory techniques when applied to defense cost estimating 

data matrices. The RQ is as follows: To what degree can traditional missing data theory 

techniques accurately solve cost estimators' and engineering managers' unreliable and 

incomplete data problem when data values are missing from a representative U.S. defense 

cost estimation data matrix? The null and alternative hypotheses that was used to answer 

the RQ was derived from the results of the sole data matrix using a one group pretest-
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posttest no control group/pre-experimental design. The calculated measure of predictive 

accuracy (e.g., error approximation) provided a table of before and after average absolute 

and relative error values because of the applied three treatments of missing data theory 

techniques. There were 28 data sets each comprised of 30 analogous and synthetic 

software development programs as the foundation for this pre-experiment predictive 

accuracy evaluation. After which, an ANOVA was conducted to explain the interaction 

of this study’s variables using the following null and alternate hypotheses: 

H01: There are no significant differences evident between the data sets’ mean 

absolute and mean relative error of actual values “Original Numerical Values” in 

comparison to those that are computed “Predicted Numerical Values” using 

missing data theory 1, the Complete Case Analysis/ Listwise Delete approach? 

Ha1: There are significant differences evident between the data sets’ mean 

absolute and mean relative error of actual values “Original Numerical Values” in 

comparison to those that are computed “Predicted Numerical Values” using 

missing data theory 1, Complete Case Analysis/ Listwise Delete approach? The 

means are not equal. 

H02: There are no significant differences evident between the data set’s mean 

absolute and mean relative error of actual values “Original Numerical Values” in 

comparison to those that are computed “Predicted Numerical Values” using 

missing data theory 2, a Single Imputation approach? 

Ha2: There are significant differences evident between the data sets’ mean 

absolute and mean relative error of actual values “Original Numerical Values” in 
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comparison to those that are computed “Predicted Numerical Values” using 

missing data theory 2, a Single Imputation approach? The means are not equal. 

H03: There are no significant differences evident in the data sets’ mean absolute 

error and mean relative error of actual values “Original Numerical Values” in 

comparison to those that are computed “Predicted Numerical Values” using 

missing data theory 3, the Multiple Imputation approach? 

Ha3: There are significant differences evident between the data sets’ mean 

absolute error and mean relative error of actual values “Original Numerical 

Values” in comparison to those that are computed “Predicted Numerical Values” 

using missing data theory 3, the Multiple Imputation approach? The means are 

not equal. 

Threats to Validity 

The research design of this pre-experimental design was carefully chosen to 

address external validity, internal validity, construct validity, and ethical challenges.  I 

pursued an experimental design since it provided the structure needed to  plan and 

manage my approach to academic inquiry.  Since an experimental controlled environment 

could unequivocally help me to answer the RQ effectively, I assessed what could be done 

to ensure the integrity of my study was sound.  The next sections will describe how I  

leveraged literature and designed an experiment  to mitigate threats to this study’s 

validity. 
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External Validity 

In order to ensure that the most relevant primary studies were being included 

keywords related to missing values as well as terms related to experimental designs and 

software cost estimation were used in the search string to discover a wide range of papers 

covering empirical studies in respect to applied missing data theory. However, some 

terms may have been missed in the search string which could have affected the results of 

this paper, and the study undertaken. This issue would only have a minor influence since 

I used different libraries and scanned references of relevant papers in order to minimize 

the risk of missing any relevant materials to exhaust the literature search. 

In order to present relevant results that can be exploited by other researchers, the 

search string, the databases and the inclusion/exclusion criteria and every step performed 

to focus the research was presented in the Literature Search Strategy in Chapter 2.  

Internal Validity 

Internal validity was established by selecting instrumentation that was leveraged 

by many practitioners in the social sciences for statistical purposes. Even though using it 

as instrumentation to test and measure the techniques of missing data theory, its longevity 

and annual updates on both the IBM Missing Value Analysis and Missing Data Analysis 

modules in IBM SPSS 25 are up to date and meet the needs of internal validity. 

Common threats to pretest-posttest designs typically come from what has been 

found during social science experiments that consist of human being subjects. Typically, 

threats such as history, statistical regression, subject fatigue all distort the results and the 

internal validity in a study of this kind (Shek & Zhu, 2018). In the case of having data 
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serve as the subject, internal validity is less threatened. In general, the pretest–posttest 

design is useful in intervention studies and program evaluations when it is well conducted 

and when the researcher is cautious in drawing causal inferences from its results. There 

are two common ways to strengthen the pretest-posttest design. First, if all measures 

consistently change in a predicted direction after an intervention, using several instead of 

just one valid and reliable outcome measure can make conclusions more convincing 

about a study. Secondly, multiple pretests and multiple posttests can provide more 

credible evidence regarding the participating human being or thing (e.g., software 

programs’ estimation attribute) before and after an intervention (e.g., the treatment of 

missing data theory techniques) to inform results that are both immediate and long-term 

outcomes. In fact, if a series of pretests and posttests are employed over a longer 

timeframe, a one group pretest–posttest/ pre-experimental design would change into a 

quasi-experimental scheme known as the interrupted time series (ITS) design which is 

considered a stronger study (Thyer, 2012). My execution of this pre-experimental design 

looks at multiple pretests and posttests outcome variables and repeats the intervention 

treatment 4,704 times as a means to strengthen this study’s internal validity beyond the 

instrumentation used. 

Construct Validity 

This pre-experiment measured what it purported based on leveraging approaches 

in the literature to evaluate the level of predictive accuracy of missing data theory 

technique treatment results on a representative U.S. defense cost estimation data matrix. 

Specific to this intervention study, missing data theory techniques (independent variable 
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3), representative data sets (independent variable 1), and artificially inducing the missing 

data problem at eight different percentages (independent variable 2) of missing data to 

evaluate the RQ: To what degree can traditional missing data theory techniques 

accurately solve cost estimators’ and engineering manager’s unreliable and incomplete 

data problem when data values are missing from a representative U.S. defense cost 

estimation data matrix? Constructing the research to ultimately measure predictive 

accuracy by controlling the research design after acquiring a representative U.S. defense 

cost estimation complete data matrix was a requirement.  In addition, using a random 

number generator to remove values, applying and measuring each missing data theory 

technique’s treatment and posttest value, and running statistical tests to fully evaluate the 

results will fill the gap in the current literature of the U.S. defense cost estimation 

discipline. The measure of predictive accuracy and leveraging approximation error was 

used to evaluate accurate software effort estimation in other studies and was used to 

directly answer the RQ for this study (see Conte et al., 1986; Briand et al., 2000; Jeffery 

et al., 2000, 2001;MacDonell & Shepperd, 2003; Mittas & Angelis, 2008).  

Ethical Procedures 

The research study’s participants were limited to a U.S. defense cost estimation 

data matrix and has zero impact on human subjects. The research was ethical and socially 

sound since it used data that was nonproprietary to any defense contractor and does not 

violate any acquisition sensitive laws. The archival data matrix is held by DAU, per Title 

17 U.S. Code § 105 (2010) and is in the public domain for use. The pre-experimental one 

group pretest-posttest design procedures are well within ethical standards to test the RQ 
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that states: To what degree can traditional missing data theory techniques accurately 

solve cost estimators’ and engineering manager’s unreliable and incomplete data problem 

when data values are missing from a representative U.S. defense cost estimation data 

matrix? The proposal for this dissertation and appropriate documentation was submitted 

and approved by the IRB to proceed to final study (Walden University, 2020).  

Summary 

Missing data theory provides promising techniques that could be incorporated into 

the defense cost estimation discipline for practitioners. A one group pretest-posttest no 

control group/pre-experimental research design using a representative U.S. defense cost 

data matrix was exposed to intervention techniques that were grounded in missing data 

theory. Experimental as well as pre-experimental design is the backbone of good research 

and was found within the literature as an approach to continue this academic conversation 

with other scholars who are engaged in empirical software engineering and cost 

estimation research and findings. Pre-experimental designs do not require a controlled 

environment but does require an isolation of variables. As a result, this type of 

experimental design is as an applicable design for the analysis of applied missing data 

theory. 

Chapter 4 contains the results after 4,704 treatments were conducted using this 

type of experimental research design that compared pretest and posttest numerical values 

that detail the level of predictive accuracy of applied missing data theory techniques. This 

study’s findings as a measurement of predictive accuracy can later become a quasi-

experimental if an interrupted time series/longitudinal study is continued for this exact 
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study (Campbell & Stanley, 1963; Cook & Campbell, 1979; Reichardt, 2019; Shadish et 

al., 2002; Thyer, 2012). This pre-experimental study answers the RQ and tests the 

hypotheses that helps determine if missing data theory is a viable approach to handling 

the missing data problem within the U.S. defense cost estimation Business—Cost 

Estimating discipline.  
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Chapter 4: Results  

The purpose of this quantitative study was to test and measure the level of 

predictive accuracy of missing data theory techniques that are referenced as traditional 

approaches in the literature, compare each theories’ results to a complete data matrix used 

in support of the U.S. defense cost estimation discipline and determine which theories 

render incomplete and missing data sets in a single data matrix most reliable and 

complete under several missing value percentages. The three independent variables used 

for this study were the different percentage levels of missingness created (independent 

variable 1), the category title of the data set type (independent variable 2), and the 

traditional missing data theory techniques (independent variable 3). The two dependent 

variables used for this study were the absolute errors and relative errors calculated from 

the pre-experimental treatments derived from the data sets’ pretest and posttest numerical 

values. Differences in the absolute error and relative error groups were assessed by a two-

way repeated measures ANOVA testing on the pretest and posttest values. I used eight 

different percentages for missing values (diminished completeness) with three missing 

data theory techniques. For the individual treatments, I randomly selected a subset from 

my purposive sample down to 30 software programs that were analogous to each other. 

Stated differently, these 30 software programs were similar to each other in that they all 

were (a) air vehicle software applications for a sensor control and signal processing 

operational environment, (b) were a part of an air vehicle system, (c) leveraged the 

waterfall software development paradigm, and (d) were all software upgrades to current 

software on its host air vehicle. Each selected software program had 28 numerical data 
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sets either related to the software effort, size, and number of software interfaces is used in 

the Business—Cost Estimating discipline to infer what a future analogous software 

development engineering project may cost.   

The RQ for this study was designed to investigate what the predictive accuracy 

was from various missing data theory techniques when applied to a defense cost 

estimating data matrix. The null and alternative hypotheses that was used to answer the 

RQ was derived from the results of the sole data matrix using the one group pretest-

posttest no control group/pre-experimental design. The calculated measure of predictive 

accuracy (e.g., error approximation value) provided a table of before and after average 

absolute and average relative error values because of the applied three treatments of 

missing data theory techniques.  There were 28 data sets tested for each of the 30 out of 

50 analogous and synthetic software programs found within the data matrix.  After 

which, a two-way repeated measures ANOVA was conducted to explain the interaction 

of this study’s two dependent variables using the following null and alternate hypotheses:     

RQ: To what degree can traditional missing data theory techniques accurately 

solve cost estimators’ and engineering managers' unreliable and incomplete data problem 

when data values are missing from a representative U.S. defense cost estimation data 

matrix? 

H01: There are no significant differences evident between the data sets’ mean 

absolute and mean relative error of actual values “Original Numerical Values” in 

comparison to those that are computed “Predicted Numerical Values” using 

missing data theory 1, the Complete Case Analysis/ Listwise Delete approach? 
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Ha1: There are significant differences evident between the data sets’ mean 

absolute and mean relative error of actual values “Original Numerical Values” in 

comparison to those that are computed “Predicted Numerical Values” using 

missing data theory 1, Complete Case Analysis/ Listwise Delete approach? The 

means are not equal. 

H02: There are no significant differences evident between the data set’s mean 

absolute and mean relative error of actual values “Original Numerical Values” in 

comparison to those that are computed “Predicted Numerical Values” using 

missing data theory 2, a Single Imputation approach? 

Ha2: There are significant differences evident between the data sets’ mean 

absolute and mean relative error of actual values “Original Numerical Values” in 

comparison to those that are computed “Predicted Numerical Values” using 

missing data theory 2, a Single Imputation approach? The means are not equal. 

H03: There are no significant differences evident in the data sets’ mean absolute 

error and mean relative error of actual values “Original Numerical Values” in 

comparison to those that are computed “Predicted Numerical Values” using 

missing data theory 3, the Multiple Imputation approach? 

Ha3: There are significant differences evident between the data sets’ mean 

absolute error and mean relative error of actual values “Original Numerical 

Values” in comparison to those that are computed “Predicted Numerical Values” 

using missing data theory 3, the Multiple Imputation approach? The means are 

not equal. 
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Chapter 4 contains the details about the data collection effort, treatment fidelity, 

results, and summary tables from the 4,704 treatments from the empirical research 

methodology implemented to answer this study’s RQ.  This chapter describes the 

execution of this empirical research through the one group pretest-posttest no control 

group/pre-experimental design used to investigate a representative U.S. defense cost 

estimation data matrix in the public domain.    

Data Collection 

As planned, I was able to obtain a representative U.S. defense cost estimating data 

matrix from the public domain made available through a DAU registered account and 

login once it was approved by the IRB at Walden University for this empirical research. 

In addition, I was able to gain immediate access to the BCF 250 Software Cost 

Estimation course materials and the Paired SRDR Database data matrix, in which 

contained software effort estimation data on 50 synthetic DoD MAIS programs. At that 

point, I simulated the cost estimator’s variant of the missing data problem and made the 

data matrix representative of what was needed to develop a U.S. defense cost estimate. 

As a result, I down selected the number of 50 software programs to 30 software programs 

to have a single set of programs that were similar to each other. After analyzing the data, 

I was able to determine that 30 software programs shared the same operational 

environment, development paradigm, and software development phase. Table 4 displays 

which of the 30 programs were selected and display what the specific same 

characteristics were that the single group of analogous software programs had in common 

to be used in this quantitative study. The 30 out of 50 analogous and synthetic software 
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development programs became the single group for the one group pretest-posttest no 

control group/pre-experimental design. 

Table 4 

 

Selected Analogous Programs from DAU Data Matrix Based on Application Type (e.g., 

Operational Environment, Development Paradigm and Phase) 

Program 

No. in 

Data 

Matrix 

Sequence 

Assigned 

New ID for 

Experiment 

Order 

Same Software 

Application 

Type (Sensor 

Control & 

Signal 

Processing) 

Same Operating 

Environment (Air 

Vehicle) 

Same Develop-

ment Paradigm 

(Waterfall) 

Same 

Develop-

ment Phase 

(Upgrade to 

Current 

Software) 

1 N/A Yes No No No 

2 N/A Yes No No No 

3 P1 Yes Yes Yes Yes 

4 N/A Yes No No No 

5 P2 Yes Yes Yes Yes 

6 P3 Yes Yes Yes Yes 

7 N/A No No No Yes 

8 N/A No No Yes No 

9 P4 Yes Yes Yes Yes 

10 P5 Yes Yes Yes Yes 

11 P6 Yes Yes Yes Yes 

12 N/A Yes Yes No Yes 

13 N/A Yes Yes No No 

14 P7 Yes Yes Yes Yes 

15 N/A No Yes No No 
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16 N/A Yes No Yes No 

17 P8 Yes Yes Yes Yes 

18 P9 Yes Yes Yes Yes 

19 N/A No No No Yes 

20 N/A Yes Yes Yes No 

21 P10 Yes Yes Yes Yes 

22 P11 Yes Yes Yes Yes 

23 P12 Yes Yes Yes Yes 

24 N/A Yes No No No 

25 P13 Yes Yes Yes Yes 

26 P14 Yes Yes Yes Yes 

27 P15 Yes Yes Yes Yes 

28 P16 Yes Yes Yes Yes 

29 P17 Yes Yes Yes Yes 

30 P18 Yes Yes Yes Yes 

31 P19 Yes Yes Yes Yes 

32 P20 Yes Yes Yes Yes 

33 P21 Yes Yes Yes Yes 

34 P22 Yes Yes Yes Yes 

35 P23 Yes Yes Yes Yes 

36 P24 Yes Yes Yes Yes 

37 P25 Yes Yes Yes Yes 

38 N/A No Yes No Yes 

39 N/A Yes Yes No Yes 

40 N/A Yes Yes No No 

41 N/A Yes Yes Yes No 
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42 P26 Yes Yes Yes Yes 

43 P27 Yes Yes Yes Yes 

44 P28 Yes Yes Yes Yes 

45 N/A Yes Yes Yes No 

46 P29 Yes Yes Yes Yes 

47 P30 Yes Yes Yes Yes 

48 N/A Yes Yes No Yes 

49 N/A Yes No Yes Yes 

50 N/A Yes No Yes Yes 

 

 

Similarly, the data collected from the data matrix also had a total of 34 data sets in 

which provided characteristics about the 30 synthetic DoD MAIS programs that were 

used for this study. Only 28 of the 34 data sets were selected for this study due to them 

being numerical data that could be removed-at-random to treat with various missing data 

theory techniques. Table 5 shows which of the 28 data sets were selected due to being 

numerical values for this one-group pretest-posttest no control group/pre-experimental 

design. The 30 out of 50 synthetic and analogous software develop programs and their 

corresponding 28 data sets used were representative of the population, the annual DoD 

MAIS list of all high visibility and high dollar information system programs. Not only 

did this study’s sample size represent the population, but the data set came from course 

material used to certify cost estimators on ways to estimate software programs. This 

sample appropriately supports this intervention study in respect to software effort-based 

cost estimation, and the population in which the pre-experimental design is in support of. 

Based on the results and summary of the pre-experiments, current DoD software systems, 
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and any future DoD MAIS systems identified in later years could have more reliable and 

complete data available for cost estimators to use while estimating software program 

costs with better predictive accuracy. 

Table 5 

 

Selected Numerical Data Sets from DAU Data Matrix 

Data Set in 

Data 

Matrix 

Sequence 

New Id for Pre-

Experimental 

Treatment 

Data Set Type Nominal or 

Numerical? 

Select-ed 

for 

Experi-

ment? 

 

1 N/A Software Intensive Program Nominal  No  

2 N/A Mapped Application Type Nominal  No  

3 N/A Operating Environment Nominal  No  

4 N/A Primary Programming Language Nominal No  

5 N/A Development Paradigm Nominal No  

6 N/A Upgrade/New Nominal No  

7 DataSet1 Number of External Interface 

Requirements 

Numerical Yes  

8 DataSet2 Initial SLOC – New Numerical Yes  

9 DataSet3 Initial SLOC – Modified Numerical Yes  

10 DataSet4 Initial SLOC – Reused Numerical Yes  

11 DataSet5 Final SLOC – New Numerical Yes  

12 DataSet6 Final SLOC – Modified Numerical Yes  

13 DataSet7 Final SLOC – Reused Numerical Yes  
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14 DataSet8 DM % - Modified* Numerical Yes  

15 DataSet9 CM % - Modified* Numerical Yes  

16 DataSet10 IM % - Modified* Numerical Yes  

17 DataSet11 DM % - Reused* Numerical Yes  

18 DataSet12 CM % - Reused* Numerical Yes  

19 DataSet13 IM % - Reused* Numerical Yes  

20 DataSet14 Final Software Requirements Analysis 

Effort Hours 

Numerical Yes  

21 DataSet15 Final Software Architectural Design 

Effort Hours 

Numerical Yes  

22 DataSet16 Final Software Detailed Design Effort 

Hours 

Numerical Yes  

23 DataSet17 Final Software Construction Effort Hours Numerical Yes  

24 DataSet18 Final Software Integration Effort Hours Numerical Yes  

25 DataSet19 Final Software Qualification Testing 

Effort Hours 

Numerical Yes  

26 DataSet20 Final Software Documentation 

Management Effort Hours 

Numerical Yes  

27 DataSet21 Final Software Configuration 

Management Effort Hours 

Numerical Yes  

28 DataSet22 Final Software Quality Assurance Effort 

Hours 

Numerical Yes  

29 DataSet23 Final Software Verification Effort Hours Numerical Yes  

30 DataSet24 Final Software Validation Effort Hours Numerical Yes  
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31 DataSet25 Final Software Review Effort Hours Numerical Yes  

32 DataSet26 Final Software Audit Effort Hours Numerical Yes  

33 DataSet27 Final Software Problem Resolution 

Effort Hours 

Numerical Yes  

34 DataSet28 Final Cybersecurity Effort Hours Numerical Yes  

 

 

Since purposive sampling, a nonprobability sampling procedure, was used in this 

study to test missing data theory techniques on a niche population, a power analysis to 

determine sample size and effect size was not prudent (Trochim & Donnelly, 2008). The 

sample size for this pre-experimental research was comprised of 30 out of 50 analogous 

and synthetic software development programs and was able to inform the population of 

30 DoD MAIS programs of a generalized solution based on the testing and measurement 

of predictive accuracy. From an external validity perspective, randomly selecting the 

programs treated with three missing data theory techniques across the purposive sample 

added a probabilistic element to this pre-experimental design and strengthened the ability 

to make a stronger inference as to what missing data theory techniques offer the 

Business—Cost Estimating discipline the highest level of predictive accuracy. 

Treatment and Intervention Fidelity 

The intervention to apply missing data theory techniques to data sets from a data 

matrix went as planned. Some additional concepts were noted that do serve as a 

requirement to use missing data theory techniques. First, univariate time series data must 

be accompanied by a time-series data variable since two variables are required to execute 
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missing data theory techniques. Secondly, I noted that some techniques require the use of 

random number generators to utilize the multiple imputation-based techniques, such as 

multiple imputation using linear regression (MI-LR) in IBM SPSS 25. In addition, using 

the EM algorithm as a missing data theory technique or utilizing it to conduct Little’s 

(2020) MCAR test to confirm the assumption that the data was missing completely at 

random required the use of a random number generator in IBM SPSS 25 (IBM 

knowledge center, 2021). As a result, I activated the Merzenne Twister random number 

generator with a random seed when it was required to go through the various portions of 

the intervention process.  

For this intervention to occur at the missing value location, where the pretest 

value described as the “Original Numerical Value” was positioned in the data set, the 

following parameters were able to be manipulated to simulate the U.S. defense cost 

estimation missing data as planned in Chapter 3 for the pre-experiment (Aljuaid & Sasi, 

2016; Strike et al., 2001): 

• The data set type selected from within the data matrix (independent variable 

1). 

• The percentage of missingness of the observations/programs with missing 

data (independent variable 2), based on the assumption that all missing 

software program observations were MCAR. 

• The missing data theory technique (independent variable 3).  

Eight different percentages of missing values were simulated per each of the 

missing data theory techniques applied (e.g., 5%, 10%, 15%, 20%, 25%, 30%, 35%, 
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40%). Since U.S. defense cost estimation data levels of analogous systems are generally 

not large data sets, this study did not exceed a missing data percentage rate beyond 40%. 

Figure 3 below is a full schematic of this study in which it defines the independent and 

dependent variable definitions, and as well as depicts how pretest and posttest 

approximation errors were calculated. 

Figure 3 

 

Statistical Method to Perform this One Group Pretest-Posttest Design 

  

Each data set required three missing data theory treatments to be applied to fill in 

incomplete data 56 times, resulting in 4,704 (3*56*28) treatments in order to execute this 

study. Fifty-six treatments were derived because of randomly selecting which of the 30 

programs would receive a treatment, as well as would be constrained to the percentage of 

missing programs needed at the eight levels of missingness (5%, 10%, 15%, 20%, 25%, 

30%, 
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35%, and 40%) per data set. Figure 4 shows how software programs’ data values were 

removed-at random based on their order in the data matrix.
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Figure 4 

Removed-at-Random-Data-Value Positions to Create the Artificially Induced Missing Data Problem at Eight Percentage Levels 

of Missingness 
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Figure 5 shows how the methodology was applied to provide missing data theory 

treatments. As a result, each individual missing data theory treatments occur a total of 

1,568 (56*28) each in this research study design. 
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Figure 5 

 

Systematic Approach to Artificially Induce the Missing Data Problem at Eight Levels of 

Missingness for Three Missing Data Theory (MDT) Technique Treatments 
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Study Results 

Overall, my results support rejecting the null hypothesis for this research. 

Traditional missing data theory techniques could mitigate the current gap in literature 

because it tested the level of predictive accuracy of three types of missing data theory 

techniques to improve the reliability and completeness of defense historical data. The 

empirical results from this data-driven research supports that missing data theory 

techniques can be taught in the Business—Cost Estimating discipline. In addition, it can 

be used whenever missing and incomplete values are present in a physical data matrix 

that a cost estimator is using to develop a cost estimate. The evaluative measures used to 

evaluate the study in more detail will be covered in the next two sections. 

First Evaluation Measure to Determine Predictive Accuracy 

The sample size for this pre-experimental research was comprised of 30 out of 50 

analogous and synthetic software development programs and was able to inform the 

population of 30 DoD MAIS programs. As a generalized solution based on the testing 

and measurement of predictive accuracy, applying missing data theory treatments to DoD 

MAIS programs could be considered when needed. All 30 analogous synthetic software 

development programs had 28 software cost estimation types of data in which I was able 

to measure the predictive accuracy randomly across the same projects using eight 

percentage levels of missingness per data set type. Appendix A is where the results of 

each pre-experimental trial(run) per data set (Tables A1-A28) list each individual trial 

result for which missing data theory technique’s calculated’ “Predicted Numerical Value” 

came in closest to the “Original Numerical Value”. Table 6 summarizes the 28 results by 
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showing which missing data theory technique had the closest predictive accuracy per 

each data set type. 

Table 6 

 

Summary of Closest Missing Data Theory (MDT) Technique Predictive Accuracy Results 

for Twenty-Eight Empirically Tested U.S. Defense Software Cost Estimating Data Types 

Id Experiment 

Per Data Set 

Data Set Type Closest MDT 

Technique for 

Predictive Accuracy 

Closest MDT 

Technique Score out of 

56 Experiments Per 

Data Set/ (By 

Percentage-Lowest 

Absolute and Relative 

Error Occurred) 

 

1 DataSet1 Number of External 

Interface Requirements 

MI-LR 46 (82%)  

2 DataSet2 Initial SLOC – New MI-LR 37 (66%)  

3 DataSet3 Initial SLOC – Modified SI-Mean 31 (55%)  

4 DataSet4 Initial SLOC – Reused SI -Mean 30 (54%)  

5 DataSet5 Final SLOC – New MI-LR 31 (55%)  

6 DataSet6 Final SLOC – Modified SI-Mean 29 (52%)  

7 DataSet7 Final SLOC – Reused SI -Mean 34 (61%)  

8 DataSet8 DM % - Modified* MI-LR 29 (52%)  

9 DataSet9 CM % - Modified* SI-Mean 31 (55%)  

10 DataSet10 IM % - Modified* SI -Mean 31 (55%)  

11 DataSet11 DM % - Reused* Both Perfect 56 (100%)  
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12 DataSet12 CM % - Reused* Both Perfect 56 (100%)  

13 DataSet13 IM % - Reused* MI-LR 33 (59%)  

14 DataSet14 Final Software 

Requirements Analysis 

Effort Hours 

SI -Mean 30 (54%)  

15 DataSet15 Final Software 

Architectural Design 

Effort Hours 

MI-LR 33 (59%)  

16 DataSet16 Final Software Detailed 

Design Effort Hours 

SI -Mean 32 (57%)  

17 DataSet17 Final Software 

Construction Effort Hours 

SI-Mean 32 (57%)  

18 DataSet18 Final Software Integration 

Effort Hours 

SI -Mean 34 (61%)  

19 DataSet19 Final Software 

Qualification Testing 

Effort Hours 

SI -Mean 29 (52%)  

20 DataSet20 Final Software 

Documentation 

Management Effort Hours 

SI -Mean 32 (57%)  

21 DataSet21 Final Software 

Configuration 

Management Effort Hours 

SI -Mean 32 (57%)  

22 DataSet22 Final Software Quality 

Assurance Effort Hours 

SI -Mean 31 (55%)  
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23 DataSet23 Final Software 

Verification Effort Hours 

MI-LR 33 (41%)  

24 DataSet24 Final Software Validation 

Effort Hours 

SI -Mean 35 (63%)  

25 DataSet25 Final Software Review 

Effort Hours 

SI -Mean 34 (61%)  

26 DataSet26 Final Software Audit 

Effort Hours 

Equal Predictive 

Accuracy 

N/A  

27 DataSet27 Final Software Problem 

Resolution Effort Hours 

MI-LR 31 (45%)  

28 DataSet28 Final Cybersecurity Effort 

Hours 

SI -Mean 54 (96%)  

 

The results show that out of the three missing data theories applied SI-Mean had 

the strongest level of predictive accuracy when experimental results were assessed at the 

individual data set level. Out of the 28 data sets results in Appendix A (Tables A1-A28), 

SI-Mean had a lower absolute and relative error in 16 data sets compared to only eight 

having the least amount of approximation error in MI-LR techniques.  

When aggregating all summary results together, MI-LR produced “Predicted 

Values” that were within 20% of the “Original Numerical Value” 18.6% (292 out of 

1,568) of the time when it was tested. Ironically, single imputation using the mean (SI-

Mean) produced “Predicted Numerical Values” that were within 20% of the “Original 

Numerical Value” 16.4% (257 out of 1,568) of the time at the aggregate level. With this 

finding, at the aggregate level, MI-LR’s measure of predictive accuracy gets closer to the 
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“ground truth” or “Original Numerical Value” out of the three missing data theory 

techniques applied in this empirical study. Table 7 shows what degree the predictive 

accuracy of each missing data theory technique came close to the “Original Numerical 

Value”. Table 7 also answers this pre-experimental design’s answer to the RQ: To what 

degree can traditional missing data theory techniques accurately solve cost estimators’ 

and engineering managers' unreliable and incomplete data problem when data values are 

missing from a representative U.S. defense cost estimation data matrix? 

Table 7 

Degree to Which Missing Data Theory Techniques Can Solve the U.S. Cost Estimators’ 

Unreliable and Incomplete Data Problem Based on Approximation Error 

Predictive Accuracy Results (Error) MDT 1 

LD 

MDT 2 

SI-Mean 

MDT 3 

MI-LR 

Above 100% of Original Value N/A 47.5% 48.7% 

Within 80% or Less of Original Value N/A 10.1% 8.9% 

Within 60% or Less of Original Value N/A 11.8% 10.9% 

Within 40% or Less of Original Value N/A 14.2% 12.9% 

Within 20% or Less of Original Value N/A 16.4% 18.6% 

 

Second Evaluation Measure to Test Main Effects & Interactions 

In addition to measuring the level of predictive accuracy, I measured the main 

effects and interactions between the independent and dependent variables by conducting 

ANOVA testing.  A two-way repeated measures ANOVA was conducted to explain the 

interaction of this study’s two dependent variables using the following null and alternate 

hypotheses: 

H01: There are no significant differences evident between the data sets’ mean 

absolute and mean relative error of actual values “Original Numerical Values” in 
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comparison to those that are computed “Predicted Numerical Values” using 

missing data theory 1, the Complete Case Analysis/ Listwise Delete approach? 

Ha1: There are significant differences evident between the data sets’ mean 

absolute and mean relative error of actual values “Original Numerical Values” in 

comparison to those that are computed “Predicted Numerical Values” using 

missing data theory 1, Complete Case Analysis/ Listwise Delete approach? The 

means are not equal. 

H02: There are no significant differences evident between the data set’s mean 

absolute and mean relative error of actual values “Original Numerical Values” in 

comparison to those that are computed “Predicted Numerical Values” using 

missing data theory 2, a Single Imputation approach? 

Ha2: There are significant differences evident between the data sets’ mean 

absolute and mean relative error of actual values “Original Numerical Values” in 

comparison to those that are computed “Predicted Numerical Values” using 

missing data theory 2, a Single Imputation approach? The means are not equal. 

H03: There are no significant differences evident in the data sets’ mean absolute 

error and mean relative error of actual values “Original Numerical Values” in 

comparison to those that are computed “Predicted Numerical Values” using 

missing data theory 3, the Multiple Imputation approach? 

Ha3: There are significant differences evident between the data sets’ mean 

absolute error and mean relative error of actual values “Original Numerical 

Values” in comparison to those that are computed “Predicted Numerical Values” 
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using missing data theory 3, the Multiple Imputation approach? The means are 

not equal. 

Each null and alternate hypothesis was the same for all three hypotheses to 

determine if the means are equal between the actual values “Original Numerical Values” 

and the computed “Predicted Numerical Values”. For missing data theory 1, Complete 

Case Analysis/ Listwise Delete (LD), the results from the treatment required the 

incomplete variable to be dropped. As a result, a statistical analysis was unable to be ran 

with data not present. Unfortunately, the first hypothesis could not be assessed. 

The results for missing data theory 2, Simple Imputation (SI-Mean) and missing 

data theory 3, Multiple Imputation (MI-LR) were analyzed in IBM SPSS 25 to better 

understand the variable behavior and to test for significance. The estimated marginal 

means chart provides a graphical illustration that the means are not equal. Figure 6 would 

depict if an interaction between the different means across the experiment under both SI-

Mean as the horizontal blue, and MI-LR as the horizontal red line.  No interaction 

occurred between the two dependent variables. 
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Figure 6 

 

Plot of the Results to Assess Interaction Between Approximation Error (Dependent 

Variables) of the Actual/Pretest (1) and Computed Posttest (2) Value Means 

 

Continuing with the second evaluative measure, I then assessed the three independent 

variables for an interaction as well. Figure 7 depicted that for the F statistic, only the data 

set type (IV1), was significant using a p value of < .05. This means that there were no 

statistically significant outputs to determine if there was an interaction between the three 

independent variables. Figure 7 shows the between-subject effects results which provide 

the visibility to determine if there was an interaction between the independent variables 

used within this study’s pre-experimental design. 
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Figure 7 

 

Interaction Analysis for the Two-Way Repeated Measures ANOVA 

 

Lastly, to confirm if there were main effects, I assessed the within subjects effects, and 

determined that there were significant effects on three sources due to using a p < .05 for 

the following: 

• Pretest_Posttest (for the “Original Value” and “Predicted Value”) 

• Pretest_Posttest * Program Treatment/Missingness (IV1) 

• Pretest_Posttest * Program Treatment/Missingness (IV1) * DataSetAllTypes 

(IV2) 

Figure 8 displays where the F statistics demonstrated to me that a main effect does exist 

with an effect of one independent variable on the dependent variable, in this case the 
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outcome variables for this pre-experiment. More importantly, this test also revealed to me 

that there were statistically significant differences in mean absolute error and relative 

error of the pretest and posttest value in this pre-experimental design since the p value < 

.05. With .016 being less than .05 we reject the null. If there is less than a 5% chance of a 

result as extreme as this sample and the null hypothesis were true, the null hypothesis is 

rejected. Figure 8 depicts that the means are not equal, and that we should reject the null 

hypothesis for this research. 
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Figure 8 

 

Statistical Significance and Main Effect from the Two-Way Repeated Measures ANOVA 

 
 

Post hoc tests were not performed for missing data theory techniques (independent 

variable 3) because there are fewer than three groups that made it into my IBM SPSS 25 
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analysis. Mauchly’s test for sphericity was not required because there were less than three 

dependent variables that could be ran for the repeated measures ANOVA. 

To reiterate, the purpose of this quantitative study was to test and measure the 

level of predictive accuracy of missing data theory techniques that are referenced as 

traditional approaches in the literature, compare each theories’ results to a complete data 

matrix used in support of the U.S. defense cost estimation discipline and determine which 

theories render incomplete and missing data sets in a single data matrix most reliable and 

complete under several missing value percentages. In summary, the pre-experimental 

findings and results empirically demonstrate that missing data theory techniques could be 

a viable option to correct imperfect data that is unreliable or incomplete with a data value 

that is closer to the ground truth of the original numerical values. 

Summary 

Based on the results from the 4,704 treatments, I was able to empirically measure 

the predictive accuracy of three missing data theory techniques: complete case analysis 

using listwise delete (LD), single imputation using the mean (SI-Mean), and multiple 

imputation using linear regression (MI-LR). To answer the study’s RQ, the results from 

using various percentages levels of missingness and 28 different data set types supported 

that at least two out of the three missing data theory techniques can render a 

representative U.S. cost estimation data matrix more complete when data values are 

missing. Specifically, missing data theory technique 2, single imputation’s “Predicted 

Numerical Value” rendered a forecasted value that was closest to the “Original 

Numerical Value” when tallying results of all experimental runs at the data set level of 
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only 56 cases each to assess. Single imputation using the mean (SI-Mean) had the lowest 

absolute and relative error 52.3% of the time and multiple imputation using linear 

regression (MI-LR) had the next lowest absolute and relative error of 47.7% when 

analyzing which missing data theory technique had the closest predictive accuracy within 

each data set; limited to only 56 treatments.  

At the aggregate level, when comparing 1,568 (56*28) empirical results for all 28 

data sets combined per each missing data theory technique treatment, multiple imputation 

using linear regression (MI-LR) had the closest predictive accuracy when compared to 

single imputation using the mean (SI-Mean) and listwise delete (LD). Multiple 

imputation (MI-LR) produced “Predicted Values” that were within 20% of the “Original 

Value” 18.6% of the time when it was used as a treatment. Ironically, single imputation 

using the mean (SI-Mean) only produced “Predicted Values” that were within 20% of the 

“Original Value” 16.4% of this time at the aggregate level. With this finding, it appears 

that at the aggregate level, Multiple Imputation measure of predictive accuracy to actual 

values gets closer to the “ground truth” true value. 

Unfortunately, the complete case analysis using listwise delete (LD) did not 

produce any forecasted “Predicted Numerical Value” to assess its predictive accuracy 

since the execution of this traditional approach is to drop values that do not have any 

data. As a result, this technique did not render a “Predictive Value” to measure listwise 

delete’s predictive accuracy on a representative U.S. defense cost estimation data matrix. 

As an observation of the treatment, it does not forecast any value and thus is not a 
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feasible method to make unreliable and incomplete data in Business—Cost Estimating 

complete. 

Chapter 5 will provide the conclusions from this final study. It will also include 

recommendations and further studies that could be continued as a result of this research. 

The conclusions, limitations, and recommendations are clearly described for the scope of 

this study, and describe how the integration of this study fits into the state of knowledge 

described in the researched literature review in order to close a gap for the Business—

Cost Estimating discipline. 
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Chapter 5: Discussion, Conclusions, and Recommendations 

The purpose of this quantitative study was to test and measure the level of 

predictive accuracy of missing data theory techniques that are referenced as traditional 

approaches in the literature, compare each theories’ results to a complete data matrix used 

in support of the U.S. defense cost estimation discipline and determine which theories 

render incomplete and missing data sets in a single data matrix most reliable and 

complete under several missing value percentages. The nature of this study was a 

quantitative method approach to inquiry using a pre-experimental study design. Various 

experimental study designs (pre-, quasi-, or true experiments) are a proven approach to 

comparatively test and measure the predictive accuracy of missing data theory techniques 

using a pretest-posttest no control group design (Campbell & Stanley, 1963; Cook & 

Campbell, 1979; Crammer, 2018; Kirk, 2013; Reichardt, 2019; Shadish et al., 2002; Shek 

& Zhu, 2018; Singleton & Strait, 2010). To elucidate how effective each missing data 

theory technique was, a publicly sourced nonproprietary data matrix was obtained and 

manipulated to experiment on 28 out of 34 ratio scale/numerical software cost estimation 

data set types (independent variable 2) used within the U.S. defense cost estimating 

discipline from the representative data matrix. In addition, eight levels of missing data 

percentages (independent variable 1) were assessed across each data set type to compare 

the measures of predictive accuracy, for each of the three missing data theory techniques 

(independent variable 3). Once the data sets were exported to a flat file in Microsoft 

Excel, the experiment followed a four-step process, like the research conducted by Idri et 

al. (2016b). The actual known data values (pretest values), provided the pretest baseline, 
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was used to compare how accurately each missing data theory techniques produced its 

respective “Predicted Numerical Value” (posttest value). The “Original Numerical 

Values” (pretest /priori values) were removed-at-random to create missing values within 

the data matrix by using a random number generator (Idri et al., 2015a, 2016a, 2016b; 

Idri et al., 2015b, 2016c; Research Randomizer, 2020). Next, the complete data set 

generation occurred in which the missing data theory technique (independent variable 3) 

treatment variables were then calculated and applied to make each of the 28 data sets 

complete again. After which, the measurement of predictive accuracy evaluation began, 

and measured the outcome variables, the error approximation values, by calculating the 

absolute error and relative error values between the pretest and posttest values from the 

pre-experiment. A two-way repeated measures ANOVA was used to test the study’s null 

and alternative hypotheses, and to determine if there was a significant interaction 

between independent variables.   

Interpretation of Findings 

The key finding was that out of the three missing data theories applied SI-Mean 

had the strongest level of predictive accuracy when experimental results were assessed at 

the individual data set level. Out of the 28 data sets results (Tables A1-A28), SI-Mean 

had a lower absolute and relative error in 16 data sets compared to only eight having the 

least amount of approximation error in MI-LR techniques. Considering many studies 

before me have acknowledged that multiple imputation has better prediction accuracy. 

Both techniques performed equally well on data sets 11, 12, and 26. 
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When looking at each technique in isolation of each other, the key finding showed 

that multiple imputation results had a closer prediction accuracy than simple imputation 

when it was closer to the “Original Numerical Value”.  Multiple imputation was also able 

to calculate a value that was within 20% of the “Original Numerical Value(s)” across all 

data sets 18.6% of the time (292 out of 1,568 multiple imputation treatments). In 

comparison, single imputation was able to predict within 20% of the “Original Values” 

16.7% of the time (257 out of 1,568 single imputation treatments). This tells us that 

whenever multiple imputation had the closest predictive accuracy, even though not as 

many times at the data set level, it tended to be within 20% of the “Original Value” when 

it was close. 

Overall, these results support rejecting the null hypothesis for this research. 

Traditional missing data theory techniques could mitigate the current gap in literature 

because it tested the level of predictive accuracy of three types of missing data theory 

techniques to improve the reliability and completeness of defense historical data. The 

empirical results from this data-driven research support that missing data theory 

techniques could be taught in the Business—Cost Estimating discipline. In addition, it 

could be used whenever missing and incomplete values are present in a physical data 

matrix that a cost estimator is using to develop a cost estimate.  

Limitations of the Study 

The research design of this study was limited based on the instrumentation 

selected to test predictive accuracy. I used IBM SPSS 25 as the instrumentation to 

conduct a pre-experimental design to test the predictive accuracy of missing data theory 
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techniques on a representative U.S. defense cost estimating data matrix. SPSS is 

recognized in the academic community and has the statistical capability and processing 

power to assess data that has incomplete and missing values (Enders, 2010). I leveraged 

the statistical analysis capability that is provided in the Missing Value Analysis module, 

Multiple Imputation functionality of IBM SPSS 25. The Mission Value Analysis module 

and Multiple Imputation functionality in IBM SPSS 25 has the computational ability to 

compute traditional missing data theory algorithms. As a result of this functionality, IBM 

SPSS 25 was applied as the instrumentation for this inaugural study that tested missing 

data theoretical techniques’ predictive accuracy when applied to the U.S. defense cost 

estimation domain. Despite this being a limitation of this study, treatments were 

replicated and assessed as a one group pretest-posttest no control group/pre-experimental 

design intervention. 

Not having a control group for the one group pretest-posttest pre-experimental 

research design was a weakness. However, it was not pertinent to have a control group to 

answer this RQ because it focused on “Original Numerical Values” as a test group, vice 

testing groups that could have been comprised of human subjects that are exposed to 

outside experimental factors that may skew results. In social work, for example, human 

subjects under intervention studies make it difficult to control for outside influences that 

often skew responses that may not be isolated, and thus require a control group to 

compare results (Thyer, 2012). The use of data as the subject in this intervention using a 

one group pretest-posttest design enabled me to minimize potential threats to internal and 

external validity. Each independent variable completely controlled how I manipulated the 
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pre-experiments for each data set to only receive three types of treatments and were 

evaluated within the confines of this intervention study’s independent variables. I was 

able to mitigate any confounding or extraneous variables from entering the intervention 

study, each dependent variable was instantly evaluated within a short time-box to answer 

this study’s RQ after the intervention.    

In addition, the construct of this study remained strong because of its well-defined 

and focused scope to test and measure the level of predictive accuracy of missing data 

theory as it pertains to (a) listwise deletion (LD) or complete case analysis, (b) single 

imputation, and (c) multiple imputation on an IRB approved and representative U.S. 

defense cost estimation data matrix. This narrowed focus was not biased but was 

intentional in order to address the specific research questions of this study that took a first 

look at applying traditional missing data theory to the U.S. defense cost estimation 

domain, something that, according to found literature, has not previously been done. 

Further studies can extend the scope of this study and add to the literature to expand 

outcomes of this analysis. 

Recommendations 

Artificially inducing the missing values into the data matrix was chosen because it 

was an approach that has been adopted in several missing data experimental studies, and 

allowed me the aptitude to apply several missing data theory technique treatments to a 

sample, and test for predictive accuracy of this intervention while adding knowledge and 

understanding to the gap in the literature (Brown & White, 2017; DAU, 2018a; GAO, 

1972, 2009; Hill, 2011; Idri et al., 2015a, 2016a, 2016b; Idri et al., 2015b, 2016c; Mislick 
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& Nussbaum, 2015; Twala et al., 2006). In being able to apply missing data theory 

techniques to the current challenges of not having reliable and complete data always 

available, feeling in this gap by incorporating the techniques empirically presented is 

strongly recommended to the discipline as an additional option to improve data quality 

and mitigating the unreliable and incomplete data problem in the Business—Cost 

Estimating discipline. 

Since this study only empirically tested traditional missing data theory techniques, 

additional statistical learning, machine learning, and other imputation and model-based 

techniques should be tested to further explore this gap that has been untapped since 1972 

(DAU, 2018a; GAO, 1972, 2009, 2020; Mislick & Nussbaum, 2015).  In addition, this 

study design leveraged a complete data set to allow for the “Predicted Numerical 

Value(s)” from each data matrix to be assessed against each “Original Numerical 

Value(s)” as provided from a nonproprietary data matrix. The data matrix contained data 

sets that were representative of what could be found in databases used by cost estimators, 

engineering economists, and engineering managers within the defense cost estimating 

discipline (e.g., from FACADE, USASpending.gov (2021), IT Dashboarddata.gov 

(2021), etc.). In future studies, additional other representative cost data matrices and data 

set types could be explored that extend beyond the United States., as well as beyond 

software cost estimation. 

Implications  

This study was important to conduct because “reliable and comprehensive cost 

data is essential to produce credible cost estimates as required in both (policy) statute and 
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regulation” (Morin, 2017, p. 1). Brown and White (2017) agreed with Morin and reported 

that the federal defense department lacked the data, both in volume and quality, needed to 

conduct effective cost estimates. Together, these authors acknowledged that cost estimate 

realism was and still is essential and needed to support engineering and program 

managers to gain the authority and approvals needed to proceed into the development and 

contractual procurement of critical engineering systems. This study offered a different 

perspective on an established problem on what hands-on-treatment-options can be used 

when historical databases or other data resources contain substantial amounts of missing 

data (Strike et al., 2001). Conducting research to “improve analyst productivity, quality 

of cost estimates, close data gaps, and provide the cost acquisition, and resource 

allocation organizations with data required for better analysis and decision-making” is 

significant (Morin, 2017, p. 1). 

Significance to Theory 

  The outcome of this study may offer defense industry cost estimators, 

engineering economists, engineering managers, defense cost estimating repository 

database administrators, and possibly data scientists with an objective option in how to 

deal with missing, incomplete, or unreliable data values when they appear within a data 

matrix. Applying and continuing to test missing data theory on actual complete data sets 

that are relevant to the problem could provide the empirical evidence needed to prove or 

disprove how well various missing data theories are able to fill missing data value gaps. 

Contingent on the outcomes observed after randomly removing variables to simulate a 

missing data problem, this could improve the missing, incomplete, and unreliable data 
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problem that is experienced within the U.S. defense cost estimation discipline. In 

addition, U.S. defense cost estimators tend to build models with small data matrices, n 

less than or equal to 30, in which this empirical study that tested the performance of small 

sample size data sets, and how well missing data theories’ predictive accuracy levels 

were explored could be incorporated into future government documents and textbooks. 

Significance to Practice 

Cost estimators of defense weapon systems must have access to reliable and 

complete data sets from the historical database repositories and other sources they access 

to develop accurate engineering economic requirements. Cost estimates, the end-product 

from cost estimating, is a critical document needed to request the right amount of budget 

authority from Congress to fund any future investments (Mislick & Nussbaum, 2015). 

When databases have null values, obvious errors, and blank cells because of various 

systemic data problems, it is up to the cost estimator to make the decision as to how to 

use this type of data value within a data matrix to feed a cost estimate element. In 

layman’s terms, there is no disciplined approach taught to defense cost estimators in what 

data values to use or not use in their physical data matrix when missing, incomplete, or 

unreliable data values appears (DAU, 2018a). With over 250 defense cost estimators 

within the Business—Cost Estimating career field, there is no established standard as to 

how to handle this problem within the defense cost estimating discipline (DAU, 2018a; 

DAU, 2018b). Because of this study’s empirical results, teaching engineering managers 

and cost estimators within the discipline about single and multiple imputation as feasible 

options to handle missing, incomplete, or unreliable data values, could reduce the number 
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of flawed cost estimates that lead to program cost overruns and unplanned additional 

federal budget request. 

Significance to Social Change 

Accurately forecasting estimates for engineering requirements could save projects 

and programs from growing cost overruns and improve U.S. federal planning decisions 

(Christensen, 1993; Christensen & Gordon, 1998; Deloitte, 2016; Saeed et al., 2018). In 

addition, positive social change could be realized by improving the current techniques 

cost estimators and engineering managers use to produce and provide more accurate, 

reliable, and credible cost estimates to federal decision-makers. Moreover, research that 

could advance cost data quality and improvement efforts could also increase the amount 

of historical DoD cost data that can be used in analyses. Overall, a new way of doing 

business to use single and multiple imputation may save cost estimator’s, engineering 

economists’, engineering manager’s and database administrator’s valuable time by using 

a newly proven technique to improve data in a shorter amount of time. In turn, this 

contribution to the cost estimation discipline has the potential to reduce the cost of an 

estimator’s research time and reduce the cost required to collect additional data. 

Conclusions 

To further the application of missing data theory to the U.S. defense cost 

estimation discipline, I modeled the missing data problem by simulating the conditions 

that defense industry cost estimators, engineering economists, engineering managers, and 

defense cost estimating repository database administrators experience. I used the pre-

experimental study design to apply a missing data theory complete case analysis 
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treatment and two statistical based missing data theory treatments on the same group of 

randomly selected data from a complete U.S. represented cost estimation data matrix. 

Complete case analysis did not render data sets more complete; however, single and 

multiple imputations did restore data sets with values that were within 20% of its 

“Original Numerical Value(s)” 16.4% and 18.6% of the experiments, respectively. The 

data matrix contained an appropriate required sample size of 30 DoD software programs 

and contained 28 data sets to test missing data theory techniques on. The “Predicted 

Numerical Value”, as determined by each missing data theory technique, served as the 

posttest value in this experiment and helped calculate the study’s dependent variables, 

described as its measures of predictive accuracy. Stated differently, the two dependent 

variables that captured the predictive accuracy for this study were absolute error and 

relative error. The absolute errors and relative errors were calculated from pretest and 

posttest values. 

To answer the RQ, I used the pre-experimental research design of the one group 

pretest-posttest no control group design (Campbell & Stanley, 1963; Cook & Campbell, 

1979; Crammer, 2018; Reichardt, 2019; Shadish et al., 2002; Shek & Zhu, 2018; 

Singleton & Strait, 2010; Thyer, 2012). Significance testing was performed by 

conducting a two-way repeated measures ANOVA. The estimated marginal means plot, 

and the F statistic were used to test the main effects and interaction between variables. 

This quantitative research method of inquiry helped determine how well defense 

cost estimators could handle historical data sets with the use of missing data theory 

techniques (Crammer, 2018; Kirk, 2013; Shek & Zhu, 2018; Thyer, 2012). By randomly 
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removing data values from a complete data set, an empirical examination of new data 

values was quantitatively created, assessed, and proved that both single imputation and 

multiple imputation missing data theory techniques have the ability to improve the 

unreliable and incomplete data quality problem that is currently experienced in the U.S. 

defense cost estimation discipline of Business—Cost Estimating. 

By conducting this empirical research, I closed a gap in the U.S. cost estimation 

discipline and added to the research, knowledge, and understanding which serve as 

rationale for employing additional options for cost estimators to perform more reliable 

and complete cost estimation products.  Major DoD engineering-based acquisition 

projects and programs cost estimates require reliable and complete data to forecast cost 

more accurately.  The results of this empirical research could provide U.S. defense cost 

estimators with an evaluation of which one out of three missing data theory techniques 

could serve as a hands-on-treatment-options that could handle the unreliable and 

incomplete data problem when building a cost estimate (DAU, 2018a; GAO, 2009, 2020; 

Morin, 2017). 

Based on the gap discovered in the literature review, this study was necessary 

because it could potentially improve data quality with missing data theory techniques that 

support the need for “reliable and comprehensive cost data …to produce credible cost 

estimates as required in both (policy) statute and regulation” (Morin, 2017, p. 1). In the 

past, GAO (1972) reported that the federal defense department lacked the data, both in 

volume and quality, needed to conduct effective cost estimates (Brown & White, 2017). 

As a result, cost estimate realism to support future engineering systems’ (e.g., developed 
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software, aircraft, ships, business systems, autonomous systems, artificial intelligent 

systems, etc.) success is threatened. This study now provides a different perspective to 

address this established problem that historical databases contain substantial amounts of 

missing data (Strike et al., 2001) and could be potentially mitigated by a hands-on-

treatment. By helping cost estimators, engineering managers, and database administrators 

in the federal defense department “improve analyst productivity, quality of cost 

estimates, close data gaps, and provide the cost, acquisition, and resource allocation 

organizations with data required for better analysis and decision-making”, an 

improvement to fund programs to an improved and more accurate estimated planned 

amount to complete an engineering project could be accomplished by now training cost 

estimators to use missing data theory techniques (Morin, 2017, p. 1). 



141 

 

 

References 

Abnane, I., & Idri, A. (2018). Improved analogy-based effort estimation  

with incomplete mixed data. In M. Ganzha, L. Maciaszek, M. Paprzycki 

(Eds.), Proceedings of the 2018 Federated Conference on Computer Science and 

Information Systems (FedCSIS), Annals of Computer Science and Information 

Systems, 15, 1015-1024. https://www.doi.org/10.15439/2018F95 

Aittokallio, T. (2009). Dealing with missing values in large-scale studies: microarray data  

imputation and beyond. Briefings in Bioinformatics, 11(2), 253-264. 

https://www.doi.org/10.1093/bib/bbp059    

Aljuaid, T., & Sasi, S. (2016, August). Proper imputation techniques for missing values  

in data sets. In 2016 International Conference on Data Science and 

Engineering (pp. 1-5). IEEE. https://www.doi.org/10.1109/ICDSE.2016.7823957 

Allison, P. D. (2000). Multiple imputation for missing data: A cautionary  

tale. Sociological Methods & Research, 28(3), 301-309. 

https://www.doi.org/10.1177/0049124100028003003 

Allison, P. D. (2002). Quantitative applications in the social sciences: missing  

data. Sage. https://www.doi.org/10.4135/9781412985079 

Allison, P. D. (2010). Missing data. Sage. 

azzahra Amazal, F., Idri, A., & Abran, A. (2014). Software development effort  

estimation using classical and fuzzy analogy: a cross-validation comparative 

study. International Journal of Computational Intelligence and 

https://www.doi.org/10.15439/2018F95
https://www.doi.org/10.1093/bib/bbp059
https://www.doi.org/10.1109/ICDSE.2016.7823957
https://www.doi.org/10.1177/0049124100028003003
https://www.doi.org/10.4135/9781412985079


142 

 

 

Applications, 13(03), 1450013.1 – 1450013.19. 

https://www.doi.org/10.1142/S1469026814500138  

Baraldi, A. N., & Enders, C. K. (2010). An introduction to modern missing data analyses.  

Journal of School Psychology, 48(1), 5-37. 

https://www.doi.org/10.1016/j.jsp.2009.10.001        

Blankers, M., Koeter, M. W., & Schippers, G. M. (2010). Missing data approaches in  

eHealth research: simulation study and a tutorial for nonmathematically inclined 

researchers. Journal of Medical Internet Research, 12(5). 

https://www.doi.org/10.2196/jmir.1448 

Boehm, B. W. (1981). Software engineering economics (Vol. 197). Prentice-hall. 

Boehm, B. W. (1984). Software engineering economics. IEEE Transactions on Software 

Engineering, (1), 4-21. 

Boehm, B. W. (2002). Software engineering economics. In M. Broy & E. Denert (Eds.) 

Software pioneers (pp. 641-686). Springer. https://www.doi.org/10.1007/978-3-

642-59412-0_38 

Briand, L. C., Langley, T., & Wieczorek, I. (2000, June). A replicated assessment and 

comparison of common software cost modeling techniques. In Proceedings of the 

22nd international conference on Software engineering (pp. 377-386). ACM. 

https://www.doi.org/0.1145/337180.337223 

Brown, G. E., & White, E. D. (2017). An investigation of nonparametric DATA MINING 

TECHNIQUES for acquisition cost estimating. Defense Acquisition Research 

https://www.doi.org/10.1142/S1469026814500138
https://www.doi.org/10.1016/j.jsp.2009.10.001
https://www.doi.org/10.2196/jmir.1448
https://www.doi.org/10.1007/978-3-642-59412-0_38
https://www.doi.org/10.1007/978-3-642-59412-0_38
https://www.doi.org/0.1145/337180.337223


143 

 

 

Journal: A Publication of The Defense Acquisition University, 24(2), 302-332. 

https://www.doi.org/10.22594/dau.16-756.24.02 

Burke, R. P., & Spruill, N. L. (2016, April 15) Implementation memo to add a core  

certification course for the Business—Cost Estimating career field. 

https://www.dau.edu/training/career-

development/bce/Documents/BCF%20250%20Implementation%20Memo%20-

%20signed%204-15-2016.pdf?listid=789a03cd-2f52-497c-a9c7-

ebb4028426b5&preview=1&itemid=2 

Campbell, D. T., & Stanley, J. C. (1963). Experimental and quasi-experimental designs  

for research. Handbook of Research on Teaching, 171-246. 

http://jwilson.coe.uga.edu/EMAT7050/articles/CampbellStanley.pdf     

Carter, A. (2020). Better buying power: Guidance for obtaining greater efficiency and 

productivity in defense spending. 

https://www.acq.osd.mil/fo/docs/USD_ATL_Guidance_Memo_September_14_20

10_FINAL.PDF 

Cartwright, M. H., Shepperd, M. J., & Song, Q. (2003, September). Dealing with missing 

software project data. In Software Metrics Symposium, 2003. Proceedings. Ninth 

International (pp. 154-165). IEEE. 

https://www.doi.org/10.1109/METRIC.2003.1232464 

Chen, X., Wei, Z., Li, Z., Liang, J., Cai, Y., & Zhang, B. (2017). Ensemble correlation-

based low-rank matrix completion with applications to traffic data 

https://www.doi.org/10.22594/dau.16-756.24.02
https://www.dau.edu/training/career-development/bce/Documents/BCF%20250%20Implementation%20Memo%20-%20signed%204-15-2016.pdf?listid=789a03cd-2f52-497c-a9c7-ebb4028426b5&preview=1&itemid=2
https://www.dau.edu/training/career-development/bce/Documents/BCF%20250%20Implementation%20Memo%20-%20signed%204-15-2016.pdf?listid=789a03cd-2f52-497c-a9c7-ebb4028426b5&preview=1&itemid=2
https://www.dau.edu/training/career-development/bce/Documents/BCF%20250%20Implementation%20Memo%20-%20signed%204-15-2016.pdf?listid=789a03cd-2f52-497c-a9c7-ebb4028426b5&preview=1&itemid=2
https://www.dau.edu/training/career-development/bce/Documents/BCF%20250%20Implementation%20Memo%20-%20signed%204-15-2016.pdf?listid=789a03cd-2f52-497c-a9c7-ebb4028426b5&preview=1&itemid=2
http://jwilson.coe.uga.edu/EMAT7050/articles/CampbellStanley.pdf
https://www.acq.osd.mil/fo/docs/USD_ATL_Guidance_Memo_September_14_2010_FINAL.PDF
https://www.acq.osd.mil/fo/docs/USD_ATL_Guidance_Memo_September_14_2010_FINAL.PDF
https://www.doi.org/10.1109/METRIC.2003.1232464


144 

 

 

imputation. Knowledge-Based Systems, 132, 249-262. 

https://www.doi.org/10.1016/j.knosys.2017.06.010      

Christensen, D. S. (1993). An analysis of cost overruns on defense acquisition contracts. 

Project Management Journal, 24(3), 43–48. 

https://ntrs.nasa.gov/archive/nasa/cami.ntrs.nasa.gov/19950014332.pdf 

Christensen, D. S., & Gordon, J. A. (1998). Does a rubber baseline guarantee cost 

overruns on defense acquisition contracts? Project Management Journal, 29(3), 

43-51. https://www.doi.org/10.1177/875697289802900307 

Conte, S. D., Dunsmore, H. E., & Shen, V. Y. (1986). Software engineering metrics and 

models. Benjamin-Cummings Publishing.  

Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design & analysis issues 

in field settings. Houghton Mifflin. 

Cranmer, G. A. (2018). One-group pretest-posttest design. In The Sage encyclopedia of  

communication research methods (Vols. 1-4) (pp. 1125-1126).  

SAGE Publications. https://www.doi.org/10.4135/9781483381411 

Dabkowski, M., & Valerdi, R. (2016). Blockmodeling and the estimation of evolutionary 

architectural growth in major defense acquisition programs. US Army. 

https://apps.dtic.mil/dtic/tr/fulltext/u2/1016757.pdf 

Defense Acquisition University. (2018a). Business: Cost estimating courses. 

https://www.dau.mil/cop/ce/Pages/Course.aspx       

Defense Acquisition University. (2018b). Policy for business: Cost estimating. 

https://www.dau.mil/policy#Business%20Cost%20Estimating|All|All|All||recent 

https://www.doi.org/10.1016/j.knosys.2017.06.010
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19950014332.pdf
https://www.doi.org/10.1177/875697289802900307
https://www.doi.org/10.4135/9781483381411
https://apps.dtic.mil/dtic/tr/fulltext/u2/1016757.pdf
https://www.dau.mil/cop/ce/Pages/Course.aspx
https://www.dau.mil/policy#Business%20Cost%20Estimating|All|All|All||recent


145 

 

 

Defense Acquisition University. (2020). Course Material Login Account.  

https://myclass.dau.edu/webapps/blackboard/content/listContentEditable.jsp?cont

ent_id=_1282460_1&course_id=_92810881_1   

De la Garza, J. M., & Rouhana, K. G. (1995). Neural networks versus parameter-based 

applications in cost. Cost Engineering, 37(2), 14. 

de Leeuw, E. D. (2001). Reducing missing data in surveys: An overview of 

methods. Quality and Quantity, 35(2), 147-160. 

https://www.doi.org/10.1023/A:1010395805406    

Deloitte. (2016).  Cost overruns persist in major defense programs. 

https://www.prnewswire.com/news-releases/deloitte-study-cost-overruns-persist-

in-major-defense-programs-300349671.html 

Department of Defense Instruction. (2017). Cost Analysis Guidance and  

Procedures.https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/50

0073p.pdf. 

Department of Defense Manual. (2011). Cost and Software Data Reporting Manual. 

https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodm/500004m1.p

df 

Desai, D. J., Jain, T. S., Dwivedi, A. A., & Attar, A. D. (2016). Engineering economics 

and life cycle cost analysis.. International Journal of Research in Engineering 

and Technology, 5(03), 390-394 http://tiny.mitre.org/A0F8 

Eirola, E., Doquire, G., Verleysen, M., & Lendasse, A. (2013). Distance estimation in 

numerical data sets with missing values. Information Sciences, 240, 115-128. 

https://myclass.dau.edu/webapps/blackboard/content/listContentEditable.jsp?content_id=_1282460_1&course_id=_92810881_1
https://myclass.dau.edu/webapps/blackboard/content/listContentEditable.jsp?content_id=_1282460_1&course_id=_92810881_1
https://www.doi.org/10.1023/A:1010395805406
https://www.prnewswire.com/news-releases/deloitte-study-cost-overruns-persist-in-major-defense-programs-300349671.html
https://www.prnewswire.com/news-releases/deloitte-study-cost-overruns-persist-in-major-defense-programs-300349671.html
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500073p.pdf
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500073p.pdf
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodm/500004m1.pdf
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodm/500004m1.pdf
http://tiny.mitre.org/A0F8


146 

 

 

Enders, C. K. (2010). Applied Missing Data Analysis. Guilford Press. 

https://www.doi.org/10.1016/j.neucom.2013.07.050 

Farr, J. V., & Faber, I. (2018). Engineering Economics of Life Cycle Cost Analysis. CRC 

Press. https://www.doi.org/10.1201/9780429466304 

Federal Procurement Data System – Next Generation (FPDS-NG). (2018). 

https://www.fpds.gov/fpdsng_cms/index.php/en/          

Field, A. (2018). Discovering Statistics Using IBM SPSS Statistics (5th ed.). Sage 

Publication. 

Fraser, N. M. & Jewkes, E. M. (2013). Engineering economics:  Financial decision 

making for engineers (5th ed.)  Pearson Canada. 

García-Laencina, P. J., Sancho-Gómez, J. L., & Figueiras-Vidal, A. R. (2010). Pattern 

classification with missing data: a review. Neural Computing and 

Applications, 19(2), 263-282. https://www.doi.org/10.1007/s00521-009-0295-6         

García-Laencina, P. J., Sancho-Gómez, J. L., & Figueiras-Vidal, A. R. (2013). 

Classifying patterns with missing values using multi-task learning 

perceptrons. Expert Systems with Applications, 40(4), 1333-1341. 

https://www.doi.org/10.1016/j.eswa.2012.08.057  

Garciarena, U., & Santana, R. (2017). An extensive analysis of the interaction between 

missing data types, imputation methods, and supervised classifiers. Expert 

Systems with Applications, 89, 52-65. 

https://www.doi.org/10.1016/j.eswa.2017.07.026            

https://www.doi.org/10.1016/j.neucom.2013.07.050
https://www.doi.org/10.1201/9780429466304
https://www.fpds.gov/fpdsng_cms/index.php/en/
https://www.doi.org/10.1007/s00521-009-0295-6
https://www.doi.org/10.1016/j.eswa.2012.08.057
https://www.doi.org/10.1016/j.eswa.2017.07.026


147 

 

 

Garvey, P. R., Book, S. A., & Covert, R. P. (2016). Probability methods for cost 

uncertainty analysis: A systems engineering perspective. Chapman and Hall/CRC.  

Gautam, C., & Ravi, V. (2015). Data imputation via evolutionary computation, clustering  

and a neural network. Neurocomputing, 156, 134-142. 

https://www.doi.org/10.1016/j.neucom.2014.12.073 

Ghorbani, S., & Desmarais, M. C. (2017). Performance comparison of recent imputation 

methods for classification tasks over binary data. Applied Artificial 

Intelligence, 31(1), 1-22. https://www.doi.org/10.1080/08839514.2017.1279046 

González-Ladrón-de-Guevara, F., Fernández-Diego, M., & Lokan, C. (2016). The usage 

of ISBSG data fields in software effort estimation: A systematic mapping 

study. Journal of Systems and Software, 113, 188-215. 

https://www.doi.org/10.1016/j.jss.2015.11.040 

Government Accountability Office. (1972).  Theory and Practice of Cost Estimating for  

Major Acquisitions (Report No. B-163508). U.S. Government Printing Office.  

http://www.gao.gov/assets/210/200036.pdf        

Government Accountability Office. (2009).  GAO Cost Estimating and Assessment 

Guide:  Best Practices for Developing and Managing Capital Program Costs 

(Report No. GAO-09-3SP).  U.S. Government Printing Office. 

https://www.gao.gov/new.items/d093sp.pdf        

Government Accountability Office. (2020).  GAO Cost Estimating and Assessment 

Guide:  Best Practices for Developing and Managing Program Costs (Report No. 

https://www.doi.org/10.1016/j.neucom.2014.12.073
https://www.doi.org/10.1080/08839514.2017.1279046
https://www.doi.org/10.1016/j.jss.2015.11.040
http://www.gao.gov/assets/210/200036.pdf
https://www.gao.gov/new.items/d093sp.pdf


148 

 

 

GAO-20-195G).  U.S. Government Printing Office. 

https://www.gao.gov/assets/710/705312.pdf 

Govinfo. (2020). A budget for a better America: Promises kept, taxpayers first. U.S. 

Government Publishing Office. https://www.govinfo.gov/content/pkg/BUDGET-

2020-BUD/pdf/BUDGET-2020-BUD.pdf 

Graham, J. W., Olchowski, A. E., & Gilreath, T. D. (2007). How many imputations are 

really needed? Some practical clarifications of multiple imputation 

theory. Prevention science, 8(3), 206-213. https://www.doi.org/10.1007/s11121-

007-0070-9 

Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual 

review of psychology, 60, 549-576. 

https://www.doi.org/10.1146/annurev.psych.58.110405.085530 

Graham, J. W. (2012). Missing data theory. In Missing Data (pp. 3-46). Springer. 

https://doi.org/10.1007/978-1-4614-4018-5_1 

Grimstad, S., Jorgensen, M., & Molokken-Ostvold, K. (2006). Software effort estimation 

terminology: The tower of Babel. Information and Software Technology, 48(4), 

302-310. https://www.doi.org/10.1016/j.infsof.2005.04.004 

Horton, N. J., & Kleinman, K. P. (2007). Much ado about nothing: A comparison of 

missing data methods and software to fit incomplete  data regression models. The 

American Statistician, 61(1), 79-90. https://doi.org/10.1198/000313007X172556 

 

 

https://www.gao.gov/assets/710/705312.pdf
https://www.govinfo.gov/content/pkg/BUDGET-2020-BUD/pdf/BUDGET-2020-BUD.pdf
https://www.govinfo.gov/content/pkg/BUDGET-2020-BUD/pdf/BUDGET-2020-BUD.pdf
https://www.doi.org/10.1007/s11121-007-0070-9
https://www.doi.org/10.1007/s11121-007-0070-9
https://www.doi.org/10.1146/annurev.psych.58.110405.085530
https://doi.org/10.1007/978-1-4614-4018-5_1
https://www.doi.org/10.1016/j.infsof.2005.04.004
https://doi.org/10.1198/000313007X172556


149 

 

 

Huang, J., Li, Y. F., Keung, J. W., Yu, Y. T., & Chan, W. K. (2017, July). An empirical 

analysis of three-stage data-preprocessing for analogy-based software effort 

estimation on the ISBSG data. In Software Quality, Reliability and Security 

(QRS), 2017 IEEE International Conference on (pp. 442-449). IEEE. 

https://www.doi.org/10.1109/QRS.2017.54 

Huang, J., Li, Y. F., & Xie, M. (2015a). An empirical analysis of data preprocessing for  

machine learning-based software cost estimation. Information and software 

Technology, 67, 108-127. https://www.doi.org/10.1016/j.infsof.2015.07.004 

Huang, J., Sun, H., Li, Y. F., & Xie, M. (2015b, August). An empirical study of dynamic  

incomplete-case nearest neighbor imputation in software quality data. In 2015 

IEEE International Conference on Software Quality, Reliability and Security (pp. 

37-42). IEEE. https://www.doi.org/10.1109/QRS.2015.16 

IBM knowledge center. (2021). IBM - United States. 

https://www.ibm.com/support/knowledgecenter/SSLVMB_sub/statistics_mainhel

p_ddita/spss/mva/idh_miss_em.html 

Idri, A., Abnane, I., & Abran, A. (2015a, June). Systematic mapping study of missing 

values techniques in software engineering data. In Software Engineering, 

Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), 

2015 16th IEEE/ACIS International Conference on (pp. 1-8). IEEE. 

https://www.doi.org/10.1109/SNPD.2015.7176280 

Idri, A., Abnane, I., & Abran, A. (2016a). Dealing with missing values in software 

project datasets: A systematic mapping study. In Software Engineering, Artificial 

https://www.doi.org/10.1109/QRS.2017.54
https://www.doi.org/10.1016/j.infsof.2015.07.004
https://www.doi.org/10.1109/QRS.2015.16
https://www.ibm.com/support/knowledgecenter/SSLVMB_sub/statistics_mainhelp_ddita/spss/mva/idh_miss_em.html
https://www.ibm.com/support/knowledgecenter/SSLVMB_sub/statistics_mainhelp_ddita/spss/mva/idh_miss_em.html
https://www.doi.org/10.1109/SNPD.2015.7176280


150 

 

 

Intelligence, Networking and Parallel/Distributed Computing (pp. 1-16). Springer  

https://www.doi.org/10.1007/978-3-319-33810-1_1   

Idri, A., Abnane, I., & Abran, A. (2016b). Missing data techniques in analogy-based 

software development effort estimation. The Journal of Systems & Software, 117, 

595-611. https://www.doi.org/10.1016/j.jss.2016.04.058 

Idri, A., azzahra Amazal, F., & Abran, A. (2015b). Analogy-based software development 

effort estimation: A systematic mapping and review. Information and Software 

Technology, 58, 206-230. https://www.doi.org/10.1016/j.infsof.2014.07.013 

Idri, A., azzahra Amazal, F., & Abran, A. (2016c). Accuracy comparison of analogy-

based software development effort estimation techniques. International Journal of 

Intelligent Systems, 31(2), 128-152. https://www.doi.org/10.1002/int.21748 

Iqbal, S. Z., Idrees, M., Sana, A. B., & Khan, N. (2017). Comparative analysis of 

common software cost estimation modelling techniques. Mathematical Modelling 

and Applications, 2(3), 33. https://www.doi.org/10.11648/j.mma.20170203.12 

International Cost Estimation and Analysis Association. (2019). International Cost 

Estimation and Analysis Association Testable Topics List. 

http://www.iceaaonline.com/ready/wpcontent/uploads/2014/02/testableTopicsList

.pdf 

IT Dashboarddata.gov (2021).  Archived 2013-2017 IT agency data sets. 

https://itdashboard.gov/drupal/archived-data 

https://www.doi.org/10.1007/978-3-319-33810-1_1
https://www.doi.org/10.1016/j.jss.2016.04.058
https://www.doi.org/10.1016/j.infsof.2014.07.013
https://www.doi.org/10.1002/int.21748
https://www.doi.org/10.11648/j.mma.20170203.12
http://www.iceaaonline.com/ready/wpcontent/uploads/2014/02/testableTopicsList.pdf
http://www.iceaaonline.com/ready/wpcontent/uploads/2014/02/testableTopicsList.pdf
https://itdashboard.gov/drupal/archived-data


151 

 

 

Jadhav, A., Pramod, D., & Ramanathan, K. (2019). Comparison of performance of data 

imputation methods for numeric dataset. Applied Artificial Intelligence, 33(10), 

913-933. https://www.doi.org/10.1080/08839514.2019.1637138 

Janssen, K. J., Donders, A. R. T., Harrell Jr., F. E., Vergouwe, Y., Chen, Q., Grobbee, D. 

E., & Moons, K. G. (2010). Missing covariate data in medical research: To 

impute is better than to ignore. Journal of Clinical Epidemiology, 63(7), 721-727. 

https://www.doi.org/10.1016/j.jclinepi.2009.12.008 

Jeffery, R., Ruhe, M., & Wieczorek, I. (2000). A comparative study of cost modelling 

techniques using public domain multi-organizational and company-specific data. 

In Proc. of the European Software Control and Metrics Conference (ESCOM) 

(Vol. 2000). 

https://www.researchgate.net/profile/I_Wieczorek/publication/242385779_A_co

mparative_Study_of_Cost_Modelling_Techniques_using_Public_Domain_multi-

organisational_and_company-

specific_Data/links/0a85e52d6af2e756c4000000.pdf 

Jeffery, R., Ruhe, M., & Wieczorek, I. (2001, April). Using public domain metrics to 

estimate software development effort. In Proceedings Seventh International 

Software Metrics Symposium (pp. 16-27). IEEE. 

https://www.doi.org/10.1109/METRIC.2001.915512 

Jing, X. Y., Qi, F., Wu, F, and Xiu, B. (2016). Missing data imputation based on low-

rank recovery and semi-supervised regression for software effort estimation. 2016 

IEEE/ACM 38th International Conference on Software Engineering (ICSE), 

https://www.doi.org/10.1080/08839514.2019.1637138
https://www.doi.org/10.1016/j.jclinepi.2009.12.008
https://www.researchgate.net/profile/I_Wieczorek/publication/242385779_A_comparative_Study_of_Cost_Modelling_Techniques_using_Public_Domain_multi-organisational_and_company-specific_Data/links/0a85e52d6af2e756c4000000.pdf
https://www.researchgate.net/profile/I_Wieczorek/publication/242385779_A_comparative_Study_of_Cost_Modelling_Techniques_using_Public_Domain_multi-organisational_and_company-specific_Data/links/0a85e52d6af2e756c4000000.pdf
https://www.researchgate.net/profile/I_Wieczorek/publication/242385779_A_comparative_Study_of_Cost_Modelling_Techniques_using_Public_Domain_multi-organisational_and_company-specific_Data/links/0a85e52d6af2e756c4000000.pdf
https://www.researchgate.net/profile/I_Wieczorek/publication/242385779_A_comparative_Study_of_Cost_Modelling_Techniques_using_Public_Domain_multi-organisational_and_company-specific_Data/links/0a85e52d6af2e756c4000000.pdf
https://www.doi.org/10.1109/METRIC.2001.915512


152 

 

 

Software Engineering (ICSE), 2016 IEEE/ACM 38th International Conference on, 

ICSE, 607. https://www.doi.org/10.1145/2884781.2884827 

Joint Agency Cost Estimating Relationship (CER) Development Handbook. (2018,  

February 9). 

https://www.asafm.army.mil/Portals/72/Documents/Offices/CE/CER%20Develop

ement%20Handbook.pdf 

Jones, C. (2007).  Estimating software costs: Bringing realism to estimating. McGraw- 

Hill Companies.  

Jorgensen, M. (2006). How large are software cost overruns? A review of the 1994  

CHAOS report. Information and Software Technology, 48(4), 297-301. 

https://www.doi.org/10.1016/j.infsof.2005.07.002 

Kapelner, A., & Bleich, J. (2015). Prediction with missing data via Bayesian additive  

regression trees. Canadian Journal of Statistics, 43(2), 224-239. 

https://www.doi.org/10.1002/cjs.11248 

Kendall, F. (2013). Implementation directive for better buying power 3.0 – Achieving  

greater efficiency and productivity in defense spending 

https://business.defense.gov/Portals/57/Documents/Attachment%209_BBP%202

%20Implementation%20Directive.pdf 

Kendall, F. (2015). Implementation directive for better buying power 3.0 – Achieving  

dominant capabilities through technical excellence and innovation. 

https://www.acq.osd.mil/fo/docs/betterBuyingPower3.0(9Apr15).pdf 

 

https://www.doi.org/10.1145/2884781.2884827
https://www.asafm.army.mil/Portals/72/Documents/Offices/CE/CER%20Developement%20Handbook.pdf
https://www.asafm.army.mil/Portals/72/Documents/Offices/CE/CER%20Developement%20Handbook.pdf
https://www.doi.org/10.1016/j.infsof.2005.07.002
https://www.doi.org/10.1002/cjs.11248
https://business.defense.gov/Portals/57/Documents/Attachment%209_BBP%202%20Implementation%20Directive.pdf
https://business.defense.gov/Portals/57/Documents/Attachment%209_BBP%202%20Implementation%20Directive.pdf
https://www.acq.osd.mil/fo/docs/betterBuyingPower3.0(9Apr15).pdf


153 

 

 

Khoshgoftaar, T. M., & Van Hulse, J. (2008). Imputation techniques for multivariate  

missingness in software measurement data. Software Quality Journal, 16(4), 563-

600. https://www.doi.org/10.1007/s11219-008-9054-7      

Kiasari, M. A., Jang, G. J., & Lee, M. (2017). Novel iterative approach using generative  

and discriminative models for classification with missing 

features. Neurocomputing, 225, 23-30. 

https://www.doi.org/10.1016/j.neucom.2016.11.015 

Kirk, R. E. (2013). Chapter 5 Multiple Comparison Tests.  In R.E. Kirk (Ed.),  

Experimental design: Procedures for the behavioral sciences (pp. 154-208) 

Sage Publications. https://www.doi.org/10.4135/9781483384733 

Kreinovich, V. (2012). How to define relative approximation error of an interval  

estimate: a proposal. 

http://www.cs.utep.edu/vladik/2012/tr12-37.pdf 

Li, Y., & Parker, L. E. (2014). Nearest neighbor imputation using spatial–temporal  

correlations in wireless sensor networks. Information Fusion, 15, 64-79.  

https://www.doi.org/10.1016/j.inffus.2012.08.007 

Li, Z., Sharaf, M. A., Sitbon, L., Sadiq, S., Indulska, M., & Zhou, X. (2014). A web- 

based approach to data imputation. World Wide Web, 17(5), 873-897. 

https://www.doi.org/10.1007/s11280-013-0263-z 

Lin, W. C., & Tsai, C. F. (2019). Missing value imputation: A review and analysis of the  

literature (2006–2017). Artificial Intelligence Review, 1-23. 

https://www.doi.org/10.1007/s10462-019-09709-4 

https://www.doi.org/10.1007/s11219-008-9054-7
https://www.doi.org/10.1016/j.neucom.2016.11.015
https://www.doi.org/10.4135/9781483384733
http://www.cs.utep.edu/vladik/2012/tr12-37.pdf
https://www.doi.org/10.1016/j.inffus.2012.08.007
https://www.doi.org/10.1007/s11280-013-0263-z
https://www.doi.org/10.1007/s10462-019-09709-4


154 

 

 

Little, R. J., & Rubin, D. B. (1987). Statistical analysis with missing data (Vol. 793).  

John Wiley & Sons.  

Little, R. J., & Rubin, D. B. (2002). Statistical analysis with missing data (Vol.  

2). John Wiley & Sons. 

Little, R. J., & Rubin, D. B. (2020). Statistical analysis with missing data (Vol.  

3). John Wiley & Sons.  

MacDonell, S. G., & Shepperd, M. J. (2003). Combining techniques to optimize effort 

predictions in software project management. Journal of Systems and 

Software, 66(2), 91-98. https://www.doi.org/10.1016/S0164-1212(02)00067-5   

Majeed, F. (2018, February). Model based estimation approach to the missing data 

problem. In Advances in Science and Engineering Technology International 

Conferences (ASET), 2018 (pp. 1-6). IEEE. 

https://www.doi.org/10.1109/ICASET.2018.8376847   

Melese, F., Richter, A., & Solomon, B. (Eds.). (2015). Military cost–benefit analysis: 

Theory and practice. Routledge.  

Mesquite, D. P., Gomes, J. P., Junior, A. H. S., & Nobre, J. S. (2017). Euclidean distance  

estimation in incomplete datasets. Neurocomputing, 248 (2017), 11-18. 

https://www.doi.org/10.1016/j.neucom.2016.12.081      

Mislick, G. K., & Nussbaum, D. A. (2015). Cost estimation: Methods and tools.  

John Wiley & Sons. 

Mittas, N., & Angelis, L. (2008, October). Combining regression and estimation by  

https://www.doi.org/10.1016/S0164-1212(02)00067-5
https://www.doi.org/10.1109/ICASET.2018.8376847
https://www.doi.org/10.1016/j.neucom.2016.12.081


155 

 

 

analogy in a semi-parametric model for software cost estimation. In Proceedings 

of the Second ACM-IEEE international symposium on Empirical software 

engineering and measurement (pp. 70-79). ACM. 

https://www.doi.org/10.1145/1414004.1414017 

Morin, J. M. (2017, January 9). DOD cost analysis data improvement. 

http://www.acqnotes.com/wp-content/uploads/2014/09/DoD-Cost-Analysis-Data-

Improvement-Memo-Signed-by-Dr-Morin-2017-01-09-002.pdf 

Myrtveit, I., Stensrud, E., & Olsson, U. H. (2001). Analyzing data sets with missing data: 

An empirical evaluation of imputation methods and likelihood-based 

methods. IEEE Transactions on Software Engineering, 27(11), pp. 999-1013. 

https://www.doi.org/10.1109/32.965340 

Myrtveit, I., Stensrud, E., & Olsson, U. (2001). Assessing the benefits of imputing ERP 

projects with missing data. In Proceedings Seventh International Software Metrics 

Symposium (pp. 78-84). IEEE. 

https://www.doi.org/10.1109/METRIC.2001.915517 

Nagashima, H., & Kato, Y. (2019, March). APREP-DM: A Framework for Automating 

the Pre-Processing of a Sensor Data Analysis based on CRISP-DM. In 2019 IEEE 

International Conference on Pervasive Computing and Communications 

Workshops (PerCom Workshops) (pp. 555-560). IEEE. 

https://www.doi.org/10.1109/PERCOMW.2019.8730785 

Newnan, D. G., Eschenbach, T., & Lavelle, J. P. (2004). Study Guide for Engineering 

Economic Analysis. Oxford University Press.       

https://www.doi.org/10.1145/1414004.1414017
http://www.acqnotes.com/wp-content/uploads/2014/09/DoD-Cost-Analysis-Data-Improvement-Memo-Signed-by-Dr-Morin-2017-01-09-002.pdf
http://www.acqnotes.com/wp-content/uploads/2014/09/DoD-Cost-Analysis-Data-Improvement-Memo-Signed-by-Dr-Morin-2017-01-09-002.pdf
https://www.doi.org/10.1109/32.965340
https://www.doi.org/10.1109/METRIC.2001.915517
https://www.doi.org/10.1109/PERCOMW.2019.8730785


156 

 

 

Office of the Under Secretary of Defense (OUSD) for Acquisition, Technology and 

Logistics (AT&L). (2019). Acquisition resources and analysis (ARA) directorate 

MDAP and MAIS list. 

https://www.acq.osd.mil/ara/documents/mdap_mais_program_list.pdf  

Ostwald, P. F. (1974). Cost estimating for engineering and management. Prentice-Hall.    

Parnell, G. S. (2017). Trade-off analytics: creating and exploring the system trade space. 

John Wiley & Sons. 

Purwar, A., & Singh, S. K. (2015). Hybrid prediction model with missing value  

imputation for medical data. Expert Systems with Applications, 42(13), 5621-

5631.  https://www.doi.org/10.1016/j.eswa.2015.02.050  

Qi, F., Jing, X. Y., Zhu, X., Xie, X., Xu, B., & Ying, S. (2017). Software effort  

estimation based on open-source projects: Case study of Github. Information and 

Software Technology, 92, 145-157. 

https://www.doi.org/10.1016/j.infsof.2017.07.015 

Qin, Y., Zhang, S., Zhu, X., Zhang, J., & Zhang, C. (2009). POP algorithm: Kernel-based  

imputation to treat missing values in knowledge discovery from databases. Expert 

systems with applications, 36(2), 2794-2804. 

Research Randomizer. (2020). https://randomizer.org 

Reichardt, C. S. (2019). Quasi-experimentation: A guide to design and analysis.   

Guilford Publications. 

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3), 581-592.  

https://www.doi.org/10.1093/biomet/63.3.581   

https://www.acq.osd.mil/ara/documents/mdap_mais_program_list.pdf
https://www.doi.org/10.1016/j.eswa.2015.02.050
https://www.doi.org/10.1016/j.infsof.2017.07.015
https://randomizer.org/
https://www.doi.org/10.1093/biomet/63.3.581


157 

 

 

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys (Vol. 1).  

John Wiley & Sons. 

Saeed, A., Butt, W. H., Kazmi, F., & Arif, M. (2018, February). Survey of software  

development effort estimation techniques. In Proceedings of the 2018 7th 

International Conference on Software and Computer Applications (pp. 82-86). 

ACM. https://www.doi.org/10.1145/3185089.3185140 

Sentas, P., & Angelis, L. (2006). Categorical missing data imputation for software cost  

estimation by multinomial logistic regression. The Journal of Systems & 

Software, 79 (3), 404-414. https://www.doi.org/10.1016/j.jss.2005.02.026 

Seo, Y. S., Yoon, K. A., & Bae, D. H. (2009, December). Improving the accuracy of  

software effort estimation based on multiple least square regression models by 

estimation error-based data partitioning. In 2009 16th Asia-Pacific Software 

Engineering Conference (pp. 3-10). IEEE. 

https://www.doi.org/10.1109/APSEC.2009.57 

Schafer, J. L. (1997). Analysis of incomplete multivariate data. Chapman and  

Hall/CRC. 

Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the  

art. Psychological methods, 7(2), 147-177.  

https://www.doi.org/10.1037//1082989X.7.2.147 

Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi- 

experimental designs for generalized causal inference. Houghton Mifflin. 

Shek D. T. & Zhu, X. (2018). Pretest-posttest designs. In The SAGE encyclopedia of  

https://www.doi.org/10.1145/3185089.3185140
https://www.doi.org/10.1016/j.jss.2005.02.026
https://www.doi.org/10.1109/APSEC.2009.57
https://www.doi.org/10.1037/1082989X.7.2.147


158 

 

 

educational research, measurement, and evaluation. (pp. 1293-1295). SAGE 

Publications. https://www.doi.org/10.4135/9781506326139 

Schwartz, M., & O’Connor, C. V. (2016). The Nunn-McCurdy Act: Background, 

analysis, and issues for Congress (Report No. R41293). Congressional Research 

Service. 

https://www.everycrsreport.com/files/20160512_R41293_98924a507e8ec5a0bfe6

dac75c6c5dac3ad38b1f.pdf 

Singleton, R. A., & Straits, B. C. 2010. Approaches to Social Research.  

Oxford University Press. 

Spruill, N. (2021).  Business—Cost Estimating and financial management functional  

communities. https://www.dau.edu/training/career-development/bce/p/Business-

Cost-Estimating-and-Financial-Management-Functional-Communities 

Soltanveis, F., & Alizadeh, S. H. (2016, April). Using parametric regression and KNN  

algorithm with missing handling for software effort prediction. In 2016 Artificial  

Intelligence and Robotics (IRANOPEN) (pp. 77-84). IEEE. 

https://www.doi.org/10.1109/RIOS.2016.7529494 

Song, Q., Shepperd, M., Chen, X., & Liu, J. (2008). Can k-NN imputation improve the  

performance of C4. 5 with small software project data sets? A comparative 

evaluation. Journal of Systems and Software, 81(12), 2361-2370. 

https://www.doi.org/10.1016/j.jss.2008.05.008              

Strike, K., El Emam, K., & Madhavji, N. (2001). Software cost estimation with  

https://www.doi.org/10.4135/9781506326139
https://www.everycrsreport.com/files/20160512_R41293_98924a507e8ec5a0bfe6dac75c6c5dac3ad38b1f.pdf
https://www.everycrsreport.com/files/20160512_R41293_98924a507e8ec5a0bfe6dac75c6c5dac3ad38b1f.pdf
https://www.dau.edu/training/career-development/bce/p/Business-Cost-Estimating-and-Financial-Management-Functional-Communities
https://www.dau.edu/training/career-development/bce/p/Business-Cost-Estimating-and-Financial-Management-Functional-Communities
https://www.doi.org/10.1109/RIOS.2016.7529494
https://www.doi.org/10.1016/j.jss.2008.05.008


159 

 

 

incomplete data. IEEE Transactions on Software Engineering, 27(10), 890-908. 

https://www.doi.org/10.1109/32.962560      

Thyer, B. A. (2012). Quasi-experimental research designs. Oxford University Press. 

Trochim, W. M., & Donnelly, J. P. (2008). The research methods knowledge base.  

  Atomic Dog/Cenage Learning. 

Trochim, W. M., Donnelly, J. P., & Arora, K. (2016). The essential research methods  

knowledge base. Cengage Learning. 

Tsikriktsis, N. (2005). A review of techniques for treating missing data in OM survey  

research. Journal of operations management, 24(1), 53-62. 

https://www.doi.org/10.1016/j.jom.2005.03.001 

Twala, B. (2017). When partly missing data matters in software effort development  

prediction. Journal of advanced computational intelligence and intelligent 

informatics, 21(5), 803-812. https://www.doi.org/10.20965/jaciii.2017.p0803 

Twala, B., Cartwright, M., & Shepperd, M. (2006, May). Ensemble of missing data  

techniques to improve software prediction accuracy. In Proceedings of the 28th 

international conference on Software engineering (pp. 909-912). 

https://www.doi.org/10.1145/1134285.1134449 

10 U.S. Code § 1746 – Defense Acquisition University. (2012). 

https://www.govinfo.gov/content/pkg/USCODE-2011-title10/html/USCODE-

2011-title10-subtitleA-partII-chap87-subchapIV-sec1746.htm 

10 U.S. Code § 2334 – Independent cost estimation and cost analysis. (2017). 

https://www.doi.org/10.1109/32.962560
https://www.doi.org/10.1016/j.jom.2005.03.001
https://www.doi.org/10.20965/jaciii.2017.p0803
https://www.govinfo.gov/content/pkg/USCODE-2011-title10/html/USCODE-2011-title10-subtitleA-partII-chap87-subchapIV-sec1746.htm
https://www.govinfo.gov/content/pkg/USCODE-2011-title10/html/USCODE-2011-title10-subtitleA-partII-chap87-subchapIV-sec1746.htm


160 

 

 

https://www.govinfo.gov/app/details/USCODE-2017-title10/USCODE-2017-

title10-subtitleA-partIV-chap137-sec2334           

17 U.S. Code § 105 – Subject matter of copyright:  United States Government works.  

(2010). https://www.govinfo.gov/app/details/USCODE-2010-title17/USCODE-

2010-title17-chap1-sec105 

Undersecretary of Defense for Acquisition and Sustainment (2019).  DoD Major Defense 

Acquisition Program and Major Automated Information Systems (MAIS) List. 

https://www.acq.osd.mil/ara/documents/mdap_mais_program_list.pdf      

University of California at San Francisco (UCSF). (2019).  Sample size calculators:  

Effect size for before-after-study (Paired T-test). http://www.sample-

size.net/effect-size-study-paired-t-test/ 

USASpending.gov. (2021).  https://www.usaspending.gov/#/ 

Valerdi, R., Dabkowski, M., & Dixit, I. (2015). Reliability improvement of major defense 

acquisition program cost estimates—Mapping DoDAF to COSYSMO. Systems 

Engineering, 18(5), 530-547. https://www.doi.org/10.1002/sys.21327   

Van Hulse, J., & Khoshgoftaar, T. M. (2014). Incomplete-case nearest neighbor 

imputation in software measurement data. Information Sciences, 259, 596-610. 

https://www.doi.org/10.1016/j.ins.2010.12.017  

Walden University. (2020).  Form A: First step of ethics review (2019).  

https://www.emailmeform.com/builder/form/Kel0pm0Cf9e2D4GAI18e 

Wani, Z. H., Giri, K. J., & Bashir, R. (2019). A generic data mining model for software 

cost estimation based on novel input selection procedure. International Journal of 

https://www.govinfo.gov/app/details/USCODE-2017-title10/USCODE-2017-title10-subtitleA-partIV-chap137-sec2334
https://www.govinfo.gov/app/details/USCODE-2017-title10/USCODE-2017-title10-subtitleA-partIV-chap137-sec2334
https://www.govinfo.gov/app/details/USCODE-2010-title17/USCODE-2010-title17-chap1-sec105
https://www.govinfo.gov/app/details/USCODE-2010-title17/USCODE-2010-title17-chap1-sec105
https://www.acq.osd.mil/ara/documents/mdap_mais_program_list.pdf
http://www.sample-size.net/effect-size-study-paired-t-test/
http://www.sample-size.net/effect-size-study-paired-t-test/
https://www.usaspending.gov/#/
https://www.doi.org/10.1002/sys.21327
https://www.doi.org/10.1016/j.ins.2010.12.017
https://www.emailmeform.com/builder/form/Kel0pm0Cf9e2D4GAI18e


161 

 

 

Information Retrieval Research (IJIRR), 9(1), 16-32 

Williams, T., & Barber, E. (2011).  Cost Estimation Methodologies.  

https://www.dau.mil/cop/ce/DAU%20Sponsored%20Documents/B4%20CE%20

Methodologies%20Feb%2011%20V3.pdf    

Zhang, W., Yang, Y., & Wang, Q. (2011, September). Handling missing data in software 

effort prediction with naive Bayes and EM algorithm. In 7th International 

Conference on Predictive Models in Software Engineering, PROMISE 2011, Co-

located with ESEM 2011 (1-10). https://www.doi.org/10.1145/2020390.2020394 

Zhu, X., Zhang, S., Jin, Z., Zhang, Z., & Xu, Z. (2010). Missing value estimation for 

mixed-attribute data sets. IEEE Transactions on Knowledge and Data 

Engineering, 23(1), 110-121. https://www.doi.org/10.1109/TKDE.2010.99 

 

 

 

https://www.dau.mil/cop/ce/DAU%20Sponsored%20Documents/B4%20CE%20Methodologies%20Feb%2011%20V3.pdf
https://www.dau.mil/cop/ce/DAU%20Sponsored%20Documents/B4%20CE%20Methodologies%20Feb%2011%20V3.pdf
https://www.doi.org/10.1145/2020390.2020394
https://www.doi.org/10.1109/TKDE.2010.99


162 

 

 

Appendix A: Closest Predictive Accuracy Results Per Data Set 

Appendix A presents the results of each pre-experimental run per data set.   Tables A1-

A28 list the individual results per each “Experiment Run Case No.” within a data set and 

notate which missing data theory techniques calculated’ “Predicted Value” came in 

closest to the “Original Numerical Value”. The “1” in each column denotes which 

technique had the lowest absolute error and relative error compared to each individual 

unique synthetic software program’s data value that was removed-at-random and 

replaced with a new value based on the applied missing data theory technique’s 

“Predicted Value”.  Summary totals are captured in the headers on each table for listwise 

delete (LD), single imputation using the mean (SI-Mean), and multiple imputation using 

linear regression (MI-LR). 

Table A1 

 

Closest Missing Data Theory Predictive Accuracy in Data Set 1 (DS1) Experiments for    

Number of External Interfaces Types of Data 

Id Experiment 

Run Case No. 

LD 

(0) 

SI-Mean 

(10) 

MI-LR 

(46) 

1 0.05P31    1 

2 0.05P91  1   

3 0.10P21    1 

4 0.10P91   1   

5 0.10P181   1 

6 0.15P31   1 

7 0.15P61   1 

8 0.15P71   1 

9 0.15P241   1 

10 0.15P301   1 

11 0.20P21   1 

12 0.20P31   1 

13 0.20P91  1  

14 0.20P121  1  
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15 0.20P181   1 

16 0.20P291   1 

17 0.25P61   1 

18 0.25P81  1  

19 0.25P111  1  

20 0.25P121  1  

21 0.25P141  1  

22 0.25P171  1  

23 0.25P251   1 

24 0.25P271   1 

25 0.30P11   1 

26 0.30P21   1 

27 0.30P161   1 

28 0.30P181   1 

29 0.30P191   1 

30 0.30P211   1 

31 0.30P241   1 

32 0.30P251   1 

33 0.30P301   1 

34 0.35P11   1 

35 0.35P21   1 

36 0.35P31   1 

37 0.35P71   1 

38 0.35P81   1 

39 0.35P151  1  

40 0.35P181   1 

41 0.35P191   1 

42 0.35P251   1 

43 0.35P281   1 

44 0.35P291   1 

45 0.40P11   1 

46 0.40P21   1 

47 0.40P31   1 

48 0.40P151   1 

49 0.40P161   1 

50 0.40P171   1 

51 0.40P181   1 

52 0.40P191   1 

53 0.40P201   1 

54 0.40P251   1 

55 0.40P291   1 

56 0.40P301    1 
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Table A2 

 

Closest Missing Data Theory Predictive Accuracy in Data Set 2 (DS2) Experiments for    

Initial Software Lines of Code (SLOC)-New Types of Data 

Id Experiment 

Run Case No. 

LD 

(0) 

SI-Mean 

(19) 

MI-LR 

(37) 

1 0.05P32   1 

2 0.05P92   1 

3 0.10P22   1 

4 0.10P92     1 

5 0.10P182  1  

6 0.15P32   1 

7 0.15P62   1 

8 0.15P72  1   

9 0.15P242   1 

10 0.15P302  1  

11 0.20P22   1 

12 0.20P32  1  

13 0.20P92    1 

14 0.20P122  1  

15 0.20P182  1  

16 0.20P292   1 

17 0.25P62   1 

18 0.25P82  1  

19 0.25P112   1 

20 0.25P122  1  

21 0.25P142  1  

22 0.25P172  1  

23 0.25P252   1 

24 0.25P272   1 

25 0.30P12   1 

26 0.30P22   1 

27 0.30P162   1 

28 0.30P182  1  

29 0.30P192   1 

30 0.30P212  1  

31 0.30P242   1 

32 0.30P252   1 

33 0.30P302  1  

34 0.35P12   1 

35 0.35P22   1 
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36 0.35P32   1 

37 0.35P72  1  

38 0.35P82  1  

39 0.35P152   1 

40 0.35P182  1  

41 0.35P192   1 

42 0.35P252   1 

43 0.35P282   1 

44 0.35P292   1 

45 0.40P12   1 

46 0.40P22   1 

47 0.40P32   1 

48 0.40P152   1 

49 0.40P162   1 

50 0.40P172   1 

51 0.40P182  1  

52 0.40P192   1 

53 0.40P202  1  

54 0.40P252   1 

55 0.40P292   1 

56 0.40P302  1  

 

Table A3 

 

Closest Missing Data Theory Predictive Accuracy in Data Set 3 (DS3) Experiments for    

Initial SLOC Modified Types of Data 

Id Experiment 

Run Case No. 

LD 

(0) 

SI-Mean 

(31) 

MI-LR 

(25) 

1 0.05P33  1   

2 0.05P93   1 

3 0.1P23  1   

4 0.1P93  1  

5 0.1P183  1  

6 0.15P33  1  

7 0.15P63   1 

8 0.15P73  1   

9 0.15P243  1   

10 0.15P303    1 

11 0.2P23   1 

12 0.2P33    1 

13 0.2P93  1  
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14 0.2P123    1 

15 0.2P183  1  

16 0.2P293   1 

17 0.25P63   1 

18 0.25P83  1  

19 0.25P113  1  

20 0.25P123  1  

21 0.25P143  1  

22 0.25P173  1  

23 0.25P253    1 

24 0.25P273  1  

25 0.3P13  1  

26 0.3P23  1  

27 0.3P163   1 

28 0.3P183   1 

29 0.3P193  1  

30 0.3P213  1  

31 0.3P243  1   

32 0.3P253  1   

33 0.3P303    1 

34 0.35P13   1 

35 0.35P23   1 

36 0.35P33   1 

37 0.35P73  1  

38 0.35P83    1 

39 0.35P153  1   

40 0.35P183  1  

41 0.35P193  1   

42 0.35P253   1 

43 0.35P283  1   

44 0.35P293   1 

45 0.4P13   1 

46 0.4P23   1 

47 0.4P33   1 

48 0.4P153  1   

49 0.4P163   1 

50 0.4P173  1   

51 0.4P183  1  

52 0.4P193  1   

53 0.4P203  1  

54 0.4P253   1 

55 0.4P293   1 

56 0.4P303    1 
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Table A4 

 

Closest Missing Data Theory Predictive Accuracy in Data Set 4 (DS4) Experiments for    

Initial SLOC Reused Types of Data 

Id Experiment 

Run Case No. 

LD 

(0) 

SI-Mean 

(30) 

MI-LR 

(26) 

1 0.05P34  1   

2 0.05P94  1   

3 0.1P24   1 

4 0.1P94   1 

5 0.1P184  1  

6 0.15P34   1 

7 0.15P64   1 

8 0.15P74   1 

9 0.15P244  1   

10 0.15P304    1 

11 0.2P24  1   

12 0.2P34    1 

13 0.2P94  1  

14 0.2P124  1  

15 0.2P184  1  

16 0.2P294   1 

17 0.25P64   1 

18 0.25P84    1 

19 0.25P114  1  

20 0.25P124  1  

21 0.25P144  1  

22 0.25P174  1  

23 0.25P254  1  

24 0.25P274  1  

25 0.3P14   1 

26 0.3P24   1 

27 0.3P164  1   

28 0.3P184  1  

29 0.3P194  1  

30 0.3P214   1 

31 0.3P244  1   

32 0.3P254  1   

33 0.3P304    1 

34 0.35P14  1  

35 0.35P24   1 

36 0.35P34   1 

37 0.35P74    1 
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38 0.35P84  1   

39 0.35P154  1   

40 0.35P184  1  

41 0.35P194  1   

42 0.35P254  1   

43 0.35P284    1 

44 0.35P294   1 

45 0.4P14   1 

46 0.4P24   1 

47 0.4P34   1 

48 0.4P154  1   

49 0.4P164  1   

50 0.4P174  1   

51 0.4P184  1  

52 0.4P194   1 

53 0.4P204    1 

54 0.4P254  1   

55 0.4P294   1 

56 0.4P304    1 

 

Table A5 

 

Closest Missing Data Theory Predictive Accuracy in Data Set 5 (DS5) Experiments for    

Final SLOC – New Types of Data 

Id Experiment 

Run Case No. 

LD 

(0) 

SI-Mean 

(25) 

MI-LR 

(31) 

1 0.05P35  1   

2 0.05P95   1 

3 0.1P25   1 

4 0.1P95  1  

5 0.1P185  1  

6 0.15P35   1 

7 0.15P65   1 

8 0.15P75   1 

9 0.15P245   1 

10 0.15P305  1   

11 0.2P25  1   

12 0.2P35  1   

13 0.2P95    1 

14 0.2P125    1 

15 0.2P185  1  
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16 0.2P295   1 

17 0.25P65   1 

18 0.25P85  1  

19 0.25P115  1  

20 0.25P125  1  

21 0.25P145  1  

22 0.25P175    1 

23 0.25P255   1 

24 0.25P275  1  

25 0.3P15   1 

26 0.3P25   1 

27 0.3P165  1   

28 0.3P185   1 

29 0.3P195   1 

30 0.3P215  1  

31 0.3P245  1   

32 0.3P255   1 

33 0.3P305  1  

34 0.35P15   1 

35 0.35P25  1   

36 0.35P35  1   

37 0.35P75    1 

38 0.35P85    1 

39 0.35P155  1   

40 0.35P185   1 

41 0.35P195   1 

42 0.35P255   1 

43 0.35P285    1 

44 0.35P295   1 

45 0.4P15   1 

46 0.4P25  1   

47 0.4P35   1 

48 0.4P155    1 

49 0.4P165   1 

50 0.4P175  1   

51 0.4P185  1  

52 0.4P195   1 

53 0.4P205  1  

54 0.4P255  1   

55 0.4P295   1 

56 0.4P305  1  
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Table A6 

 

Closest Missing Data Theory Predictive Accuracy in Data Set 6 (DS6) Experiments for    

Final SLOC – Modified Types of Data 

Id Experiment 

Run Case No. 

LD 

(0) 

SI-Mean 

(29) 

MI-LR 

(27) 

1 0.05P36  1   

2 0.05P96   1 

3 0.1P26   1 

4 0.1P96  1  

5 0.1P186  1  

6 0.15P36  1  

7 0.15P66  1  

8 0.15P76  1   

9 0.15P246  1   

10 0.15P306    1 

11 0.2P26   1 

12 0.2P36    1 

13 0.2P96    1 

14 0.2P126    1 

15 0.2P186  1  

16 0.2P296   1 

17 0.25P66   1 

18 0.25P86  1  

19 0.25P116  1  

20 0.25P126  1  

21 0.25P146  1  

22 0.25P176    1 

23 0.25P256   1 

24 0.25P276    1 

25 0.3P16   1 

26 0.3P26   1 

27 0.3P166   1 

28 0.3P186  1  

29 0.3P196  1  

30 0.3P216  1  

31 0.3P246  1   

32 0.3P256  1   

33 0.3P306    1 

34 0.35P16   1 

35 0.35P26   1 
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36 0.35P36  1   

37 0.35P76    1 

38 0.35P86    1 

39 0.35P156   1 

40 0.35P186  1  

41 0.35P196   1 

42 0.35P256   1 

43 0.35P286  1   

44 0.35P296   1 

45 0.4P16  1  

46 0.4P26  1   

47 0.4P36  1  

48 0.4P156  1   

49 0.4P166   1 

50 0.4P176  1   

51 0.4P186  1  

52 0.4P196  1   

53 0.4P206  1  

54 0.4P256  1   

55 0.4P296   1 

56 0.4P306    1 

 

Table A7 

 

Closest Missing Data Theory Predictive Accuracy in Data Set 7 (DS7) Experiments for    

Final SLOC – Reused Types of Data 

Id Experiment 

Run Case No. 

LD 

(0) 

SI-Mean 

(34) 

MI-LR 

(22) 

1 0.05P37   1 

2 0.05P97   1 

3 0.1P27   1 

4 0.1P97  1  

5 0.1P187  1  

6 0.15P37   1 

7 0.15P67   1 

8 0.15P77   1 

9 0.15P247  1   

10 0.15P307    1 

11 0.2P27  1   

12 0.2P37  1   

13 0.2P97  1  
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14 0.2P127    1 

15 0.2P187  1  

16 0.2P297   1 

17 0.25P67  1  

18 0.25P87  1  

19 0.25P117  1  

20 0.25P127    1 

21 0.25P147  1  

22 0.25P177  1  

23 0.25P257  1  

24 0.25P277  1  

25 0.3P17  1  

26 0.3P27   1 

27 0.3P167   1 

28 0.3P187   1 

29 0.3P197  1  

30 0.3P217   1 

31 0.3P247  1   

32 0.3P257  1   

33 0.3P307    1 

34 0.35P17  1  

35 0.35P27  1   

36 0.35P37  1   

37 0.35P77    1 

38 0.35P87  1   

39 0.35P157  1   

40 0.35P187   1 

41 0.35P197  1   

42 0.35P257  1   

43 0.35P287    1 

44 0.35P297   1 

45 0.4P17  1  

46 0.4P27   1 

47 0.4P37  1   

48 0.4P157  1   

49 0.4P167  1   

50 0.4P177  1   

51 0.4P187  1  

52 0.4P197  1   

53 0.4P207  1  

54 0.4P257  1   

55 0.4P297   1 

56 0.4P307    1 
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Table A8 

 

Closest Missing Data Theory Predictive Accuracy in Data Set 8 (DS8) Experiments for    

Re-Design/ Design Modified Effort (DM) % - Modified Types of Data 

Id Experiment 

Run Case No. 

LD 

(0) 

SI-Mean 

(27) 

MI-LR 

(29) 

1 0.05P38  1  

2 0.05P98   1 

3 0.1P28  1  

4 0.1P98   1 

5 0.1P188   1 

6 0.15P38   1 

7 0.15P68   1 

8 0.15P78   1 

9 0.15P248   1 

10 0.15P308   1 

11 0.2P28   1 

12 0.2P38  1  

13 0.2P98   1 

14 0.2P128   1 

15 0.2P188  1  

16 0.2P298  1  

17 0.25P68  1  

18 0.25P88  1  

19 0.25P118  1  

20 0.25P128   1 

21 0.25P148  1  

22 0.25P178   1 

23 0.25P258   1 

24 0.25P278   1 

25 0.3P18  1  

26 0.3P28  1  

27 0.3P168  1  

28 0.3P188  1  

29 0.3P198   1 

30 0.3P218  1  

31 0.3P248  1  

32 0.3P258  1  

33 0.3P308   1 

34 0.35P18   1 

35 0.35P28  1  

36 0.35P38   1 

37 0.35P78  1  
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38 0.35P88   1 

39 0.35P158  1  

40 0.35P188  1  

41 0.35P198  1  

42 0.35P258  1  

43 0.35P288   1 

44 0.35P298  1  

45 0.4P18  1  

46 0.4P28   1 

47 0.4P38   1 

48 0.4P158  1  

49 0.4P168   1 

50 0.4P178   1 

51 0.4P188   1 

52 0.4P198   1 

53 0.4P208   1 

54 0.4P258  1  

55 0.4P298   1 

56 0.4P308  1  

 

Table A9 

 

Closest Missing Data Theory Predictive Accuracy in Data Set 9 (DS9) Experiments for    

Re-Code/ Code Modified Effort (CM) % - Modified Types of Data 

Id Experiment 

Run Case No. 

LD 

(0) 

SI-Mean 

(31) 

MI-LR 

(25) 

1 0.05P39   1 

2 0.05P99  1  

3 0.1P29  1  

4 0.1P99  1  

5 0.1P189  1  

6 0.15P39  1  

7 0.15P69  1  

8 0.15P79  1  

9 0.15P249   1 

10 0.15P309  1  

11 0.2P29   1 

12 0.2P39   1 

13 0.2P99  1  

14 0.2P129   1 

15 0.2P189  1  
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16 0.2P299  1  

17 0.25P69  1  

18 0.25P89   1 

19 0.25P119  1  

20 0.25P129  1  

21 0.25P149  1  

22 0.25P179  1  

23 0.25P259  1  

24 0.25P279  1  

25 0.3P19   1 

26 0.3P29  1  

27 0.3P169  1  

28 0.3P189   1 

29 0.3P199   1 

30 0.3P219   1 

31 0.3P249  1  

32 0.3P259   1 

33 0.3P309  1  

34 0.35P19   1 

35 0.35P29  1  

36 0.35P39   1 

37 0.35P79  1  

38 0.35P89   1 

39 0.35P159   1 

40 0.35P189   1 

41 0.35P199  1  

42 0.35P259  1  

43 0.35P289  1  

44 0.35P299  1  

45 0.4P19   1 

46 0.4P29  1  

47 0.4P39   1 

48 0.4P159   1 

49 0.4P169   1 

50 0.4P179   1 

51 0.4P189   1 

52 0.4P199   1 

53 0.4P209   1 

54 0.4P259  1  

55 0.4P299  1  

56 0.4P309   1 
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Table A10 

 

Closest Missing Data Theory Predictive Accuracy in Data Set 10 (DS10) Experiments for    

Re-Test/ Integration Modified Effort (IM) % - Modified Types of Data 

Id Experiment 

Run Case No. 

LD 

(0) 

SI-Mean 

(31) 

MI-LR 

(25) 

1 0.05P310   1 

2 0.05P910   1 

3 0.1P210  1  

4 0.1P910   1 

5 0.1P1810   1 

6 0.15P310  1  

7 0.15P610   1 

8 0.15P710  1  

9 0.15P2410  1  

10 0.15P3010  1  

11 0.2P210  1  

12 0.2P310  1  

13 0.2P910  1  

14 0.2P1210  1  

15 0.2P1810  1  

16 0.2P2910   1 

17 0.25P610   1 

18 0.25P810   1 

19 0.25P1110   1 

20 0.25P1210  1  

21 0.25P1410   1 

22 0.25P1710  1  

23 0.25P2510   1 

24 0.25P2710  1  

25 0.3P110   1 

26 0.3P210  1  

27 0.3P1610  1  

28 0.3P1810  1  

29 0.3P1910  1  

30 0.3P2110   1 

31 0.3P2410   1 

32 0.3P2510  1  

33 0.3P3010   1 

34 0.35P110   1 

35 0.35P210  1  

36 0.35P310  1  

37 0.35P710   1 
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38 0.35P810  1  

39 0.35P1510  1  

40 0.35P1810  1  

41 0.35P1910   1 

42 0.35P2510   1 

43 0.35P2810  1  

44 0.35P2910  1  

45 0.4P110   1 

46 0.4P210  1  

47 0.4P310  1  

48 0.4P1510   1 

49 0.4P1610  1  

50 0.4P1710  1  

51 0.4P1810  1  

52 0.4P1910   1 

53 0.4P2010  1  

54 0.4P2510   1 

55 0.4P2910   1 

56 0.4P3010   1 

 

Table A11 

 

Closest Missing Data Theory Predictive Accuracy in Data Set 11 (DS11) Experiments for    

Design Modified (DM) % - Reused Types of Data  

Id Experiment 

Run Case No. 

LD 

(0) 

SI-Mean 

(56) 

MI-LR 

(56) 

1 0.05P311  Perfect Perfect 

2 0.05P911  Perfect Perfect 

3 0.1P211  Perfect Perfect 

4 0.1P911  Perfect Perfect 

5 0.1P1811  Perfect Perfect 

6 0.15P311  Perfect Perfect 

7 0.15P611  Perfect Perfect 

8 0.15P711  Perfect Perfect 

9 0.15P2411  Perfect Perfect 

10 0.15P3011  Perfect Perfect 

11 0.2P211  Perfect Perfect 

12 0.2P311  Perfect Perfect 

13 0.2P911  Perfect Perfect 

14 0.2P1211  Perfect Perfect 

15 0.2P1811  Perfect Perfect 

16 0.2P2911  Perfect Perfect 



178 

 

 

17 0.25P611  Perfect Perfect 

18 0.25P811  Perfect Perfect 

19 0.25P1111  Perfect Perfect 

20 0.25P1211  Perfect Perfect 

21 0.25P1411  Perfect Perfect 

22 0.25P1711  Perfect Perfect 

23 0.25P2511  Perfect Perfect 

24 0.25P2711  Perfect Perfect 

25 0.3P111  Perfect Perfect 

26 0.3P211  Perfect Perfect 

27 0.3P1611  Perfect Perfect 

28 0.3P1811  Perfect Perfect 

29 0.3P1911  Perfect Perfect 

30 0.3P2111  Perfect Perfect 

31 0.3P2411  Perfect Perfect 

32 0.3P2511  Perfect Perfect 

33 0.3P3011  Perfect Perfect 

34 0.35P111  Perfect Perfect 

35 0.35P211  Perfect Perfect 

36 0.35P311  Perfect Perfect 

37 0.35P711  Perfect Perfect 

38 0.35P811  Perfect Perfect 

39 0.35P1511  Perfect Perfect 

40 0.35P1811  Perfect Perfect 

41 0.35P1911  Perfect Perfect 

42 0.35P2511  Perfect Perfect 

43 0.35P2811  Perfect Perfect 

44 0.35P2911  Perfect Perfect 

45 0.4P111  Perfect Perfect 

46 0.4P211  Perfect Perfect 

47 0.4P311  Perfect Perfect 

48 0.4P1511  Perfect Perfect 

49 0.4P1611  Perfect Perfect 

50 0.4P1711  Perfect Perfect 

51 0.4P1811  Perfect Perfect 

52 0.4P1911  Perfect Perfect 

53 0.4P2011  Perfect Perfect 

54 0.4P2511  Perfect Perfect 

55 0.4P2911  Perfect Perfect 

56 0.4P3011  Perfect Perfect 
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Table A12 

 

Closest Missing Data Theory Predictive Accuracy in Data Set 12 (DS12) Experiments for    

Code Modified (CM) % - Reused Types of Data 

Id Experiment 

Run Case No. 

LD 

(0) 

SI-Mean 

(56) 

MI-LR 

(56) 

1 0.05P312  Perfect Perfect 

2 0.05P912  Perfect Perfect 

3 0.1P212  Perfect Perfect 

4 0.1P912  Perfect Perfect 

5 0.1P1812  Perfect Perfect 

6 0.15P312  Perfect Perfect 

7 0.15P612  Perfect Perfect 

8 0.15P712  Perfect Perfect 

9 0.15P2412  Perfect Perfect 

10 0.15P3012  Perfect Perfect 

11 0.2P212  Perfect Perfect 

12 0.2P312  Perfect Perfect 

13 0.2P912  Perfect Perfect 

14 0.2P1212  Perfect Perfect 

15 0.2P1812  Perfect Perfect 

16 0.2P2912  Perfect Perfect 

17 0.25P612  Perfect Perfect 

18 0.25P812  Perfect Perfect 

19 0.25P1112  Perfect Perfect 

20 0.25P1212  Perfect Perfect 

21 0.25P1412  Perfect Perfect 

22 0.25P1712  Perfect Perfect 

23 0.25P2512  Perfect Perfect 

24 0.25P2712  Perfect Perfect 

25 0.3P112  Perfect Perfect 

26 0.3P212  Perfect Perfect 

27 0.3P1612  Perfect Perfect 

28 0.3P1812  Perfect Perfect 

29 0.3P1912  Perfect Perfect 

30 0.3P2112  Perfect Perfect 

31 0.3P2412  Perfect Perfect 

32 0.3P2512  Perfect Perfect 

33 0.3P3012  Perfect Perfect 

34 0.35P112  Perfect Perfect 

35 0.35P212  Perfect Perfect 
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36 0.35P312  Perfect Perfect 

37 0.35P712  Perfect Perfect 

38 0.35P812  Perfect Perfect 

39 0.35P1512  Perfect Perfect 

40 0.35P1812  Perfect Perfect 

41 0.35P1912  Perfect Perfect 

42 0.35P2512  Perfect Perfect 

43 0.35P2812  Perfect Perfect 

44 0.35P2912  Perfect Perfect 

45 0.4P112  Perfect Perfect 

46 0.4P212  Perfect Perfect 

47 0.4P312  Perfect Perfect 

48 0.4P1512  Perfect Perfect 

49 0.4P1612  Perfect Perfect 

50 0.4P1712  Perfect Perfect 

51 0.4P1812  Perfect Perfect 

52 0.4P1912  Perfect Perfect 

53 0.4P2012  Perfect Perfect 

54 0.4P2512  Perfect Perfect 

55 0.4P2912  Perfect Perfect 

56 0.4P3012  Perfect Perfect 

 

Table A13 

 

Closest Missing Data Theory Predictive Accuracy in Data Set 13 (DS13) Experiments for    

Integration Effort (IM) % - Reused Types of Data  

Id Experiment 

Run Case No. 

LD 

(0) 

SI-Mean 

(23) 

MI-LR 

(33) 

1 0.05P313   1 

2 0.05P913  1  

3 0.1P213   1 

4 0.1P913  1  

5 0.1P1813   1 

6 0.15P313  1  

7 0.15P613   1 

8 0.15P713  1  

9 0.15P2413  1  

10 0.15P3013  1  

11 0.2P213  1  

12 0.2P313   1 

13 0.2P913  1  

14 0.2P1213  1  
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15 0.2P1813  1  

16 0.2P2913  1  

17 0.25P613   1 

18 0.25P813  1  

19 0.25P1113  1  

20 0.25P1213   1 

21 0.25P1413   1 

22 0.25P1713  1  

23 0.25P2513   1 

24 0.25P2713  1  

25 0.3P113  1  

26 0.3P213  1  

27 0.3P1613   1 

28 0.3P1813  1  

29 0.3P1913   1 

30 0.3P2113   1 

31 0.3P2413  1  

32 0.3P2513   1 

33 0.3P3013   1 

34 0.35P113   1 

35 0.35P213   1 

36 0.35P313   1 

37 0.35P713  1  

38 0.35P813   1 

39 0.35P1513   1 

40 0.35P1813   1 

41 0.35P1913   1 

42 0.35P2513   1 

43 0.35P2813   1 

44 0.35P2913  1  

45 0.4P113   1 

46 0.4P213   1 

47 0.4P313   1 

48 0.4P1513   1 

49 0.4P1613   1 

50 0.4P1713  1  

51 0.4P1813   1 

52 0.4P1913   1 

53 0.4P2013   1 

54 0.4P2513   1 

55 0.4P2913  1  

56 0.4P3013   1 
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Table A14 

 

Closest Missing Data Theory Predictive Accuracy in Data Set 14 (DS14) Experiments for    

Final Software Requirements Analysis Effort Hours Types of Data 

Id Experiment 

Run Case No. 

LD 

(0) 

SI-Mean 

(30) 

MI-LR 

(26) 

1 0.05P314  1  

2 0.05P914   1 

3 0.1P214   1 

4 0.1P914   1 

5 0.1P1814  1  

6 0.15P314   1 

7 0.15P614   1 

8 0.15P714   1 

9 0.15P2414  1  

10 0.15P3014   1 

11 0.2P214   1 

12 0.2P314   1 

13 0.2P914  1  

14 0.2P1214  1  

15 0.2P1814  1  

16 0.2P2914   1 

17 0.25P614   1 

18 0.25P814  1  

19 0.25P1114  1  

20 0.25P1214  1  

21 0.25P1414  1  

22 0.25P1714  1  

23 0.25P2514  1  

24 0.25P2714   1 

25 0.3P114   1 

26 0.3P214  1  

27 0.3P1614   1 

28 0.3P1814   1 

29 0.3P1914  1  

30 0.3P2114  1  

31 0.3P2414  1  

32 0.3P2514  1  

33 0.3P3014   1 

34 0.35P114   1 

35 0.35P214   1 

36 0.35P314  1  

37 0.35P714  1  
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38 0.35P814   1 

39 0.35P1514  1  

40 0.35P1814  1  

41 0.35P1914  1  

42 0.35P2514  1  

43 0.35P2814  1  

44 0.35P2914   1 

45 0.4P114   1 

46 0.4P214   1 

47 0.4P314   1 

48 0.4P1514  1  

49 0.4P1614   1 

50 0.4P1714  1  

51 0.4P1814  1  

52 0.4P1914  1  

53 0.4P2014  1  

54 0.4P2514  1  

55 0.4P2914   1 

56 0.4P3014  1 1 

 

Table A15 

 

Closest Missing Data Theory Predictive Accuracy in Data Set 15 (DS15) Experiments for    

Final Software Architectural Design Effort Hours Types of Data 

Id Experiment 

Run Case No. 

LD 

(0) 

SI-Mean 

(23) 

MI-LR 

(33) 

1 0.05P315   1 

2 0.05P915  1  

3 0.1P215   1 

4 0.1P915  1  

5 0.1P1815  1  

6 0.15P315   1 

7 0.15P615   1 

8 0.15P715  1  

9 0.15P2415  1  

10 0.15P3015   1 

11 0.2P215   1 

12 0.2P315   1 

13 0.2P915   1 

14 0.2P1215   1 

15 0.2P1815  1  

16 0.2P2915   1 
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17 0.25P615   1 

18 0.25P815  1  

19 0.25P1115   1 

20 0.25P1215  1  

21 0.25P1415  1  

22 0.25P1715  1  

23 0.25P2515  1  

24 0.25P2715   1 

25 0.3P115   1 

26 0.3P215   1 

27 0.3P1615  1  

28 0.3P1815   1 

29 0.3P1915  1  

30 0.3P2115  1  

31 0.3P2415  1  

32 0.3P2515  1  

33 0.3P3015   1 

34 0.35P115   1 

35 0.35P215   1 

36 0.35P315   1 

37 0.35P715   1 

38 0.35P815   1 

39 0.35P1515   1 

40 0.35P1815   1 

41 0.35P1915  1  

42 0.35P2515  1  

43 0.35P2815   1 

44 0.35P2915   1 

45 0.4P115   1 

46 0.4P215   1 

47 0.4P315   1 

48 0.4P1515   1 

49 0.4P1615  1  

50 0.4P1715  1  

51 0.4P1815   1 

52 0.4P1915  1  

53 0.4P2015  1  

54 0.4P2515  1  

55 0.4P2915   1 

56 0.4P3015   1 
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Table A16 

 

Closest Missing Data Theory Predictive Accuracy in Data Set 16 (DS16) Experiments for    

Final Software Detailed Design Effort Hours Types of Data 

Id Experiment 

Run Case No. 

LD 

(0) 

SI-Mean 

(32) 

MI-LR 

(24) 

1 0.05P116   1 

2 0.05P216  1  

3 0.05P316   1 

4 0.05P416   1 

5 0.05P516  1  

6 0.05P616  1  

7 0.05P716   1 

8 0.05P816   1 

9 0.05P916  1  

10 0.05P1016   1 

11 0.05P1116   1 

12 0.05P1216   1 

13 0.05P1316  1  

14 0.05P1416  1  

15 0.05P1516  1  

16 0.05P1616   1 

17 0.05P1716  1  

18 0.05P1816   1 

19 0.05P1916  1  

20 0.05P2016   1 

21 0.05P2116  1  

22 0.05P2216  1  

23 0.05P2316  1  

24 0.05P2416   1 

25 0.05P2516  1  

26 0.05P2616  1  

27 0.05P2716  1  

28 0.05P2816  1  

29 0.05P2916  1  

30 0.05P3016  1  

31 0.05P116  1  

32 0.05P216  1  

33 0.05P316   1 

34 0.05P416   1 

35 0.05P516   1 

36 0.05P616   1 

37 0.05P716  1  
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38 0.05P816  1  

39 0.05P916  1  

40 0.05P1016  1  

41 0.05P1116  1  

42 0.05P1216  1  

43 0.05P1316   1 

44 0.05P1416   1 

45 0.05P1516   1 

46 0.05P1616   1 

47 0.05P1716   1 

48 0.05P1816  1  

49 0.05P1916  1  

50 0.05P2016   1 

51 0.05P2116  1  

52 0.05P2216  1  

53 0.05P2316  1  

54 0.05P2416  1  

55 0.05P2516   1 

56 0.05P2616   1 

 

Table A17 

 

Closest Missing Data Theory Predictive Accuracy in Data Set 17 (DS17) Experiments for    

Final Software Construction Effort Hours Types of Data 

Id Experiment 

Run Case No. 

LD 

(0) 

SI-Mean 

(32) 

MI-LR 

(24) 

1 0.05P317  1  

2 0.05P917  1  

3 0.1P217   1 

4 0.1P917  1  

5 0.1P1817  1  

6 0.15P317   1 

7 0.15P617   1 

8 0.15P717   1 

9 0.15P2417  1  

10 0.15P3017   1 

11 0.2P217   1 

12 0.2P317   1 

13 0.2P917   1 

14 0.2P1217  1  

15 0.2P1817   1 

16 0.2P2917   1 
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17 0.25P617  1  

18 0.25P817   1 

19 0.25P1117  1  

20 0.25P1217  1  

21 0.25P1417  1  

22 0.25P1717  1  

23 0.25P2517  1  

24 0.25P2717   1 

25 0.3P117   1 

26 0.3P217  1  

27 0.3P1617  1  

28 0.3P1817  1  

29 0.3P1917  1  

30 0.3P2117  1  

31 0.3P2417  1  

32 0.3P2517  1  

33 0.3P3017   1 

34 0.35P117  1  

35 0.35P217  1  

36 0.35P317   1 

37 0.35P717   1 

38 0.35P817  1  

39 0.35P1517  1  

40 0.35P1817  1  

41 0.35P1917  1  

42 0.35P2517  1  

43 0.35P2817   1 

44 0.35P2917   1 

45 0.4P117   1 

46 0.4P217   1 

47 0.4P317   1 

48 0.4P1517   1 

49 0.4P1617  1  

50 0.4P1717  1  

51 0.4P1817  1  

52 0.4P1917  1  

53 0.4P2017  1  

54 0.4P2517  1  

55 0.4P2917   1 

56 0.4P3017  1 1 
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Table A18 

 

Closest Missing Data Theory Predictive Accuracy in Data Set 18 (DS18) Experiments for    

Final Software Integration Effort Hours Types of Data  

Id Experiment 

Run Case No. 

LD 

(0) 

SI-Mean 

(34) 

MI-LR 

(22) 

1 0.05P318   1 

2 0.05P918   1 

3 0.1P218   1 

4 0.1P918  1  

5 0.1P1818  1  

6 0.15P318  1  

7 0.15P618  1  

8 0.15P718  1  

9 0.15P2418  1  

10 0.15P3018   1 

11 0.2P218   1 

12 0.2P318  1  

13 0.2P918  1  

14 0.2P1218  1  

15 0.2P1818  1  

16 0.2P2918   1 

17 0.25P618   1 

18 0.25P818  1  

19 0.25P1118  1  

20 0.25P1218  1  

21 0.25P1418  1  

22 0.25P1718  1  

23 0.25P2518   1 

24 0.25P2718   1 

25 0.3P118   1 

26 0.3P218   1 

27 0.3P1618  1  

28 0.3P1818  1  

29 0.3P1918  1  

30 0.3P2118  1  

31 0.3P2418  1  

32 0.3P2518  1  

33 0.3P3018   1 

34 0.35P118   1 

35 0.35P218  1  
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36 0.35P318   1 

37 0.35P718   1 

38 0.35P818  1  

39 0.35P1518  1  

40 0.35P1818  1  

41 0.35P1918  1  

42 0.35P2518  1  

43 0.35P2818   1 

44 0.35P2918   1 

45 0.4P118   1 

46 0.4P218   1 

47 0.4P318   1 

48 0.4P1518  1  

49 0.4P1618  1  

50 0.4P1718  1  

51 0.4P1818  1  

52 0.4P1918  1  

53 0.4P2018  1  

54 0.4P2518  1  

55 0.4P2918   1 

56 0.4P3018   1 

 

Table A19 

 

Closest Missing Data Theory Predictive Accuracy in Data Set 19 (DS19) Experiments for    

Final Software Qualification Testing Effort Hours Types of Data 

Id Experiment 

Run Case No. 

LD 

(0) 

SI-Mean 

(29) 

MI-LR 

(27) 

1 0.05P319   1 

2 0.05P919  1  

3 0.1P219  1  

4 0.1P919  1  

5 0.1P1819  1  

6 0.15P319   1 

7 0.15P619   1 

8 0.15P719   1 

9 0.15P2419  1  

10 0.15P3019   1 

11 0.2P219   1 

12 0.2P319  1  

13 0.2P919   1 
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14 0.2P1219   1 

15 0.2P1819  1  

16 0.2P2919   1 

17 0.25P619  1  

18 0.25P819   1 

19 0.25P1119   1 

20 0.25P1219  1  

21 0.25P1419  1  

22 0.25P1719  1  

23 0.25P2519  1  

24 0.25P2719   1 

25 0.3P119   1 

26 0.3P219   1 

27 0.3P1619  1  

28 0.3P1819  1  

29 0.3P1919  1  

30 0.3P2119  1  

31 0.3P2419  1  

32 0.3P2519  1  

33 0.3P3019   1 

34 0.35P119   1 

35 0.35P219  1  

36 0.35P319   1 

37 0.35P719  1  

38 0.35P819   1 

39 0.35P1519  1  

40 0.35P1819   1 

41 0.35P1919  1  

42 0.35P2519  1  

43 0.35P2819   1 

44 0.35P2919   1 

45 0.4P119   1 

46 0.4P219   1 

47 0.4P319   1 

48 0.4P1519  1  

49 0.4P1619  1  

50 0.4P1719   1 

51 0.4P1819  1  

52 0.4P1919  1  

53 0.4P2019  1  

54 0.4P2519  1  

55 0.4P2919   1 

56 0.4P3019   1 
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Table A20 

 

Closest Missing Data Theory Predictive Accuracy in Data Set 20 (DS20) Experiments for    

Final Software Documentation Management Effort Hours Types of Data 

Id Experiment 

Run Case No. 

LD 

(0) 

SI-Mean 

(32) 

MI-LR 

(24) 

1 0.05P320   1 

2 0.05P920   1 

3 0.1P220   1 

4 0.1P920  1  

5 0.1P1820  1  

6 0.15P320   1 

7 0.15P620   1 

8 0.15P720   1 

9 0.15P2420  1  

10 0.15P3020   1 

11 0.2P220   1 

12 0.2P320   1 

13 0.2P920  1  

14 0.2P1220  1  

15 0.2P1820  1  

16 0.2P2920   1 

17 0.25P620  1  

18 0.25P820  1  

19 0.25P1120  1  

20 0.25P1220   1 

21 0.25P1420  1  

22 0.25P1720  1  

23 0.25P2520  1  

24 0.25P2720   1 

25 0.3P120  1  

26 0.3P220   1 

27 0.3P1620  1  

28 0.3P1820  1  

29 0.3P1920  1  

30 0.3P2120   1 

31 0.3P2420  1  

32 0.3P2520  1  

33 0.3P3020  1  

34 0.35P120  1  

35 0.35P220   1 

36 0.35P320  1  
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37 0.35P720   1 

38 0.35P820   1 

39 0.35P1520   1 

40 0.35P1820   1 

41 0.35P1920  1  

42 0.35P2520  1  

43 0.35P2820   1 

44 0.35P2920   1 

45 0.4P120  1  

46 0.4P220   1 

47 0.4P320  1  

48 0.4P1520  1  

49 0.4P1620  1  

50 0.4P1720  1  

51 0.4P1820  1  

52 0.4P1920  1  

53 0.4P2020  1  

54 0.4P2520  1  

55 0.4P2920   1 

56 0.4P3020   1 

 

Table A21 

 

Closest Missing Data Theory Predictive Accuracy in Data Set 21 (DS21) Experiments for    

Final Software Configuration Management Effort Hours Types of Data 

Id Experiment 

Run Case No. 

LD 

(0) 

SI-Mean 

(32) 

MI-LR 

(24) 

1 0.05P321   1 

2 0.05P921  1  

3 0.1P221   1 

4 0.1P921  1  

5 0.1P1821   1 

6 0.15P321   1 

7 0.15P621   1 

8 0.15P721   1 

9 0.15P2421  1  

10 0.15P3021   1 

11 0.2P221  1  

12 0.2P321   1 

13 0.2P921  1  

14 0.2P1221   1 

15 0.2P1821   1 
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16 0.2P2921   1 

17 0.25P621   1 

18 0.25P821   1 

19 0.25P1121  1  

20 0.25P1221  1  

21 0.25P1421   1 

22 0.25P1721  1  

23 0.25P2521  1  

24 0.25P2721   1 

25 0.3P121  1  

26 0.3P221  1  

27 0.3P1621  1  

28 0.3P1821  1  

29 0.3P1921  1  

30 0.3P2121  1  

31 0.3P2421  1  

32 0.3P2521  1  

33 0.3P3021  1  

34 0.35P121  1  

35 0.35P221  1  

36 0.35P321   1 

37 0.35P721   1 

38 0.35P821  1  

39 0.35P1521  1  

40 0.35P1821   1 

41 0.35P1921  1  

42 0.35P2521  1  

43 0.35P2821   1 

44 0.35P2921   1 

45 0.4P121  1  

46 0.4P221  1  

47 0.4P321   1 

48 0.4P1521  1  

49 0.4P1621  1  

50 0.4P1721  1  

51 0.4P1821  1  

52 0.4P1921  1  

53 0.4P2021   1 

54 0.4P2521  1  

55 0.4P2921   1 

56 0.4P3021   1 
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Table A22 

 

Closest Missing Data Theory Predictive Accuracy in Data Set 22 (DS22) Experiments for 

Final Software Quality Assurance Effort Hours Types of Data 

Id Experiment 

Run Case No. 

LD 

(0) 

SI-Mean 

(31) 

MI-LR 

(25) 

1 0.05P322   1 

2 0.05P922   1 

3 0.1P222   1 

4 0.1P922  1  

5 0.1P1822  1  

6 0.15P322   1 

7 0.15P622  1  

8 0.15P722  1  

9 0.15P2422  1  

10 0.15P3022   1 

11 0.2P222  1  

12 0.2P322  1  

13 0.2P922  1  

14 0.2P1222  1  

15 0.2P1822  1  

16 0.2P2922   1 

17 0.25P622   1 

18 0.25P822   1 

19 0.25P1122  1  

20 0.25P1222   1 

21 0.25P1422  1  

22 0.25P1722  1  

23 0.25P2522  1  

24 0.25P2722   1 

25 0.3P122   1 

26 0.3P222   1 

27 0.3P1622  1  

28 0.3P1822  1  

29 0.3P1922  1  

30 0.3P2122  1  

31 0.3P2422  1  

32 0.3P2522  1  

33 0.3P3022   1 

34 0.35P122   1 

35 0.35P222   1 

36 0.35P322   1 

37 0.35P722   1 
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38 0.35P822   1 

39 0.35P1522  1  

40 0.35P1822  1  

41 0.35P1922  1  

42 0.35P2522  1  

43 0.35P2822  1  

44 0.35P2922   1 

45 0.4P122   1 

46 0.4P222   1 

47 0.4P322   1 

48 0.4P1522  1  

49 0.4P1622  1  

50 0.4P1722  1  

51 0.4P1822  1  

52 0.4P1922  1  

53 0.4P2022  1  

54 0.4P2522   1 

55 0.4P2922   1 

56 0.4P3022   1 

 

Table A23 

 

Closest Missing Data Theory Predictive Accuracy in Data Set 23 (DS23) Experiments for 

Final Software Verification Effort Hours Types of Data 

Id Experiment 

Run Case No. 

LD 

(0) 

SI-Mean 

(23) 

MI-LR 

(33) 

1 0.05P323   1 

2 0.05P923   1 

3 0.1P223   1 

4 0.1P923   1 

5 0.1P1823  1  

6 0.15P323   1 

7 0.15P623   1 

8 0.15P723   1 

9 0.15P2423  1  

10 0.15P3023   1 

11 0.2P223   1 

12 0.2P323   1 

13 0.2P923   1 

14 0.2P1223  1  

15 0.2P1823   1 

16 0.2P2923   1 
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17 0.25P623   1 

18 0.25P823   1 

19 0.25P1123  1  

20 0.25P1223   1 

21 0.25P1423  1  

22 0.25P1723  1  

23 0.25P2523  1  

24 0.25P2723   1 

25 0.3P123   1 

26 0.3P223   1 

27 0.3P1623   1 

28 0.3P1823  1  

29 0.3P1923  1  

30 0.3P2123  1  

31 0.3P2423  1  

32 0.3P2523  1  

33 0.3P3023   1 

34 0.35P123   1 

35 0.35P223   1 

36 0.35P323   1 

37 0.35P723   1 

38 0.35P823   1 

39 0.35P1523  1  

40 0.35P1823  1  

41 0.35P1923  1  

42 0.35P2523  1  

43 0.35P2823   1 

44 0.35P2923   1 

45 0.4P123   1 

46 0.4P223   1 

47 0.4P323   1 

48 0.4P1523  1  

49 0.4P1623  1  

50 0.4P1723  1  

51 0.4P1823  1  

52 0.4P1923  1  

53 0.4P2023  1  

54 0.4P2523  1  

55 0.4P2923   1 

56 0.4P3023   1 
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Table A24 

 

Closest Missing Data Theory Predictive Accuracy in Data Set 24 (DS24) Experiments for 

Final Software Validation Effort Hours Types of Data 

Id Experiment 

Run Case No. 

LD 

(0) 

SI-Mean 

(35) 

MI-LR 

(21) 

1 0.05P324  1  

2 0.05P924   1 

3 0.1P224  1  

4 0.1P924  1  

5 0.1P1824  1  

6 0.15P324   1 

7 0.15P624   1 

8 0.15P724   1 

9 0.15P2424  1  

10 0.15P3024   1 

11 0.2P224  1  

12 0.2P324  1  

13 0.2P924  1  

14 0.2P1224  1  

15 0.2P1824  1  

16 0.2P2924   1 

17 0.25P624   1 

18 0.25P824   1 

19 0.25P1124  1  

20 0.25P1224  1  

21 0.25P1424  1  

22 0.25P1724  1  

23 0.25P2524  1  

24 0.25P2724  1  

25 0.3P124  1  

26 0.3P224  1  

27 0.3P1624  1  

28 0.3P1824  1  

29 0.3P1924   1 

30 0.3P2124  1  

31 0.3P2424  1  

32 0.3P2524  1  

33 0.3P3024   1 

34 0.35P124   1 

35 0.35P224  1  

36 0.35P324   1 

37 0.35P724  1  



199 

 

 

38 0.35P824  1  

39 0.35P1524  1  

40 0.35P1824  1  

41 0.35P1924  1  

42 0.35P2524  1  

43 0.35P2824   1 

44 0.35P2924   1 

45 0.4P124   1 

46 0.4P224   1 

47 0.4P324   1 

48 0.4P1524  1  

49 0.4P1624  1  

50 0.4P1724   1 

51 0.4P1824  1  

52 0.4P1924   1 

53 0.4P2024  1   

54 0.4P2524  1  

55 0.4P2924   1 

56 0.4P3024   1 

 

Table A25 

 

Closest Missing Data Theory Predictive Accuracy in Data Set 25 (DS25) Experiments for 

Final Software Review Effort Hours Types of Data 

Id Experiment 

Run Case No. 

LD 

(0) 

SI-Mean 

(34) 

MI-LR 

(22) 

1 0.05P325  1  

2 0.05P925  1  

3 0.1P225  1  

4 0.1P925  1  

5 0.1P1825  1  

6 0.15P325  1  

7 0.15P625  1  

8 0.15P725  1  

9 0.15P2425   1 

10 0.15P3025   1 

11 0.2P225  1  

12 0.2P325   1 

13 0.2P925  1  

14 0.2P1225   1 

15 0.2P1825  1  
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16 0.2P2925   1 

17 0.25P625  1  

18 0.25P825  1  

19 0.25P1125  1  

20 0.25P1225  1  

21 0.25P1425  1  

22 0.25P1725  1  

23 0.25P2525  1  

24 0.25P2725  1  

25 0.3P125   1 

26 0.3P225  1  

27 0.3P1625  1  

28 0.3P1825  1  

29 0.3P1925  1  

30 0.3P2125  1  

31 0.3P2425  1  

32 0.3P2525  1  

33 0.3P3025   1 

34 0.35P125   1 

35 0.35P225   1 

36 0.35P325   1 

37 0.35P725   1 

38 0.35P825   1 

39 0.35P1525  1  

40 0.35P1825  1  

41 0.35P1925  1  

42 0.35P2525  1  

43 0.35P2825   1 

44 0.35P2925   1 

45 0.4P125   1 

46 0.4P225   1 

47 0.4P325   1 

48 0.4P1525   1 

49 0.4P1625  1  

50 0.4P1725   1 

51 0.4P1825  1  

52 0.4P1925  1  

53 0.4P2025  1  

54 0.4P2525   1 

55 0.4P2925   1 

56 0.4P3025   1 
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Table A26 

 

Closest Missing Data Theory Predictive Accuracy in Data Set 26 (DS26) Experiments for 

Final Software Audit Effort Hours Types of Data  

Id Experiment 

Run Case No. 

LD 

(0) 

SI-Mean 

(28) 

MI-LR 

(28) 

1 0.05P326  1  

2 0.05P926   1 

3 0.1P226   1 

4 0.1P926   1 

5 0.1P1826   1 

6 0.15P326  1  

7 0.15P626  1  

8 0.15P726   1 

9 0.15P2426  1  

10 0.15P3026   1 

11 0.2P226   1 

12 0.2P326   1 

13 0.2P926  1  

14 0.2P1226  1  

15 0.2P1826   1 

16 0.2P2926   1 

17 0.25P626  1  

18 0.25P826  1  

19 0.25P1126  1  

20 0.25P1226  1  

21 0.25P1426   1 

22 0.25P1726   1 

23 0.25P2526  1  

24 0.25P2726  1  

25 0.3P126  1  

26 0.3P226   1 

27 0.3P1626   1 

28 0.3P1826   1 

29 0.3P1926  1  

30 0.3P2126  1  

31 0.3P2426  1  

32 0.3P2526  1  

33 0.3P3026   1 

34 0.35P126  1  

35 0.35P226   1 

36 0.35P326   1 

37 0.35P726   1 
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38 0.35P826  1  

39 0.35P1526  1  

40 0.35P1826   1 

41 0.35P1926   1 

42 0.35P2526  1  

43 0.35P2826   1 

44 0.35P2926   1 

45 0.4P126  1  

46 0.4P226   1 

47 0.4P326   1 

48 0.4P1526  1  

49 0.4P1626  1  

50 0.4P1726  1  

51 0.4P1826   1 

52 0.4P1926  1  

53 0.4P2026  1  

54 0.4P2526  1  

55 0.4P2926   1 

56 0.4P3026  1 1 

 

Table A27 

 

Closest Missing Data Theory Predictive Accuracy in Data Set 27 (DS27) Experiments for 

Final Software Problem Resolution Effort Hours Types of Data  

Id Experiment 

Run Case No. 

LD 

(0) 

SI-Mean 

(25) 

MI-LR 

(31) 

1 0.05P327   1 

2 0.05P927   1 

3 0.1P227   1 

4 0.1P927  1  

5 0.1P1827   1 

6 0.15P327   1 

7 0.15P627   1 

8 0.15P727   1 

9 0.15P2427  1  

10 0.15P3027   1 

11 0.2P227   1 

12 0.2P327   1 

13 0.2P927  1  

14 0.2P1227  1  

15 0.2P1827   1 
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16 0.2P2927   1 

17 0.25P627   1 

18 0.25P827   1 

19 0.25P1127   1 

20 0.25P1227  1  

21 0.25P1427  1  

22 0.25P1727  1  

23 0.25P2527  1  

24 0.25P2727  1  

25 0.3P127   1 

26 0.3P227   1 

27 0.3P1627  1   

28 0.3P1827    1 

29 0.3P1927  1  

30 0.3P2127  1  

31 0.3P2427  1  

32 0.3P2527  1  

33 0.3P3027   1 

34 0.35P127   1 

35 0.35P227   1 

36 0.35P327   1 

37 0.35P727  1  

38 0.35P827  1  

39 0.35P1527  1  

40 0.35P1827   1 

41 0.35P1927  1  

42 0.35P2527  1  

43 0.35P2827  1  

44 0.35P2927   1 

45 0.4P127   1 

46 0.4P227   1 

47 0.4P327   1 

48 0.4P1527   1 

49 0.4P1627  1  

50 0.4P1727  1  

51 0.4P1827   1 

52 0.4P1927  1  

53 0.4P2027  1  

54 0.4P2527  1  

55 0.4P2927   1 

56 0.4P3027   1 
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Table A28 

 

Closest Missing Data Theory Predictive Accuracy in Data Set 28 (DS28) Experiments for 

Final Cybersecurity Effort Hours Types of Data 

Id Experiment 

Run Case No. 

LD 

(0) 

SI-Mean 

(54) 

MI-LR 

(2) 

1 0.05P328  1  

2 0.05P928  1  

3 0.1P228  1  

4 0.1P928  1  

5 0.1P1828  1  

6 0.15P328  1  

7 0.15P628   1 

8 0.15P728  1  

9 0.15P2428  1  

10 0.15P3028  1  

11 0.2P228  1  

12 0.2P328  1  

13 0.2P928  1  

14 0.2P1228  1  

15 0.2P1828  1  

16 0.2P2928  1  

17 0.25P628   1 

18 0.25P828  1  

19 0.25P1128  1  

20 0.25P1228  1  

21 0.25P1428  1  

22 0.25P1728  1  

23 0.25P2528  1  

24 0.25P2728  1  

25 0.3P128  1  

26 0.3P228  1  

27 0.3P1628  1  

28 0.3P1828  1  

29 0.3P1928  1  

30 0.3P2128  1  

31 0.3P2428  1  

32 0.3P2528  1  

33 0.3P3028  1  

34 0.35P128  1  

35 0.35P228  1  

36 0.35P328  1  

37 0.35P728  1  
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38 0.35P828  1  

39 0.35P1528  1  

40 0.35P1828  1  

41 0.35P1928  1  

42 0.35P2528  1  

43 0.35P2828  1  

44 0.35P2928  1  

45 0.4P128  1  

46 0.4P228  1  

47 0.4P328  1  

48 0.4P1528  1  

49 0.4P1628  1  

50 0.4P1728  1  

51 0.4P1828  1  

52 0.4P1928  1  

53 0.4P2028  1  

54 0.4P2528  1  

55 0.4P2928  1  

56 0.4P3028  1  
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Appendix B: Two-Way Repeated Measures ANOVA in SPSS Selection 

Figure B1 

 

Select Analyze, General Linear Model, and Repeated Measures Screen 
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Figure B2 

 

Select Within-Subjects Variables and Between-Subjects Factors 
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Figure B3 

 

Define Profile Plots to Determine if the Means are Equal on each Missing Data Theory 

Technique  
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Figure B4 

Define Post Hoc Tests for the Independent Variables  
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Figure B5 

Define Estimated Marginal Means  
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Figure B6 

Define Options to Analyze 
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Appendix C: Select SPSS Outputs from Two-Way Repeated Measures ANOVA 

Figure C1 

Within-Subjects Factors Coded in SPSS 

 

 

Figure C2 

Between-Subjects Factors Coded in SPSS 

 

Between-Subjects Factors 

 N 

Program/ Treatment % of 

Missingness (IV 1) 

5 112 

10 168 

15 280 

20 336 

25 448 

30 504 

35 616 

40 672 

Data Set All Type (IV 2) 1 112 

2 112 

3 112 

4 112 

5 112 

6 112 

7 112 

8 112 
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9 112 

10 112 

11 112 

12 112 

13 112 

14 112 

15 112 

16 112 

17 112 

18 112 

19 112 

20 112 

21 112 

22 112 

23 112 

24 112 

25 112 

26 112 

27 112 

28 112 

MDTTechnique (IV 3) 2 1568 

3 1568 
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Figure C3 

Box’s Test of Equality of Covariance Matrices 
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Figure C4 

Mauchly’s Test of Sphericity 

 

 

Figure C5 

Levene’s Test of Equality of Error Variances 

 

 

 


