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Welcome back to our relaunched Journal of Cost 

Analysis and Parametrics (JCAP). We were 

delighted at the response to the journal’s 

resurrection late last year. In keeping with our 

plan to publish discerning work of significance 

that speaks to ICEAA members, as well as 

advances intellectual pursuits within the cost 

arena writ large, we have complied another set of 

interesting articles. This issue contains three best 

track papers from our cancelled 2020 Workshop, 

three student papers, and a pre-hiatus, legacy 

submission with continued relevance. 

Your reading pleasure starts with Modeling 

Evolutionary Architectural Growth in Major 

Defense Acquisition Programs, where Matthew 

Dabkowski, et al, examine the assumptions 

underlying an algorithm to estimate the cost of 

unanticipated growth. Applying the algorithm to 

24 defense programs, the authors found valid 

application but also the need for additional, 

alternative and connection mechanisms. 

Ultimately, they propose a modified, data-driven 

approach using number theory, network science, 

simulation, and statistical analysis. 

Next, the reader will find a paper based on the 

2021 ICEAA Outstanding Air Force Institute of 

Technology Thesis Award. In this paper, Captain 

James Goljan explores Software Estimating in an 

Agile Environment. He compares the literature 

around software cost estimation techniques with 

actual practice at the 11 Air Force software 

factories. His results illuminate both 

commonalities and differences between the 

theory and practice of current software cost 

estimating approaches.  

Three papers that were submitted for the 

ultimately cancelled 2020 ICEAA Workshop were 

submitted for review and are contained in the 

heart of this issue. In Augustine’s Law: Are We 

Really Headed for the $800 Billion-Dollar Fighter? 

Brent Johnstone examines the trend in U.S. 

fighter costs and relates them to generational 

changes in aircraft design and manufacture. He 

also examines more recent jet fighter costs to see 

if Augustine’s Law is really unfolding, to wit “In 

the year 2054, the entire defense budget will 

purchase just one aircraft.” Christian B. Smart, et 

al, provide an interesting discussion on 

Leveraging the Wisdom of Crowds with Modern 

Regression, Machine Learning, and Ensembles with 

Application to Army Software Sustainment. The 

paper discusses ways to correct weaknesses in 

the log-transformed ordinary least squares 

method for development of cost estimating 

relationships, using modern regression methods, 

applying machine learning techniques, and 

combining multiple models. Katherine Mann 

and Ryan Hoang address the challenge of early 

lifecycle software cost estimation in But Wait, 

There’s More! Using SiSE for your Cost, Schedule & 

Performance Needs. Using real examples, Mann 

and Hoang demonstrate the Simple Software 

Estimation (SiSE) methodology for tying high 

level requirements to a standard sizing metric. 

We include another very interesting submission 

from the Air Force Institute of Technology, 

Empirical Investigation of Engineering Change 

Editor’s Note  
David L. Peeler, Jr., CCEA 
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Order Percentages in Defense Contacts, in which 

Captain Kaiana M. Miller, et al, explore the 

generally accepted rules of thumb associated 

with engineering change orders (ECO) vis-a -vis 

contract cost growth. The long recognized 10% 

for development and 5% for production 

management reserve rules of thumb serve as the 

basis for empirical analysis using over a thousand 

contracts. The authors provide cogent analyses 

and recommend informed alternatives for future 

management reserve decisions. 

The final article in this JCAP edition is the first of 

two papers which constitute the principal 

conclusions of Danny Polidi’s doctoral 

dissertation. The second article will appear in our 

October issue. The first installment, Foundation of 

Structured Architecture, System & Cost Modeling, 

describes generalized block diagram use to create 

a work breakdown structure for both a system 

model and a cost model. The author introduces 

cost model options offering direct input into 

design for system optimization. 

We trust you will find something of interest and 

possible use within these seven articles. Again, 

we are happy to have the publication restarted. 

We hope you enjoy the material and find 

productive ways to apply it in either your 

professional efforts or personal interests. Thank 

you for your continued supported and please 

keep the manuscripts coming. 

David Peeler 

JCAP Editor 

Professional Development & Training Workshop 

PITTSBURGH 
May 17-19, 2022 

Reconnect in the City of Bridges 

www.iceaaonline.com/pit2022 
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Introduction and Context 

The Budget Control Act (BCA) initiated 

substantial budget cuts to reduce spending 

within the federal government (2011). Inside the 

Department of Defense (DoD), sequestration – 

the unofficial title given to the BCA – drastically 

reduced spending for military operations and 

defense acquisitions. In the years that followed, 

various pieces of legislation were passed to 

modernize and streamline the defense 

acquisition process to facilitate the reduction in 

defense spending. Much of this legislation focused 

on increasing the useable lifecycle of defense 

systems and reducing development costs; 

however, these changes alone were not 

substantial enough to create meaningful and 

lasting change. To address this gap and other 

modernization efforts, the National Defense 

Strategy (NDS) was updated for the first time in 

over ten years. 

As a strategic document, the NDS “provides a 

clear road map for the [DoD] to meet the 

challenges posed by a re-emergence of long-term 

strategic competition with China and 

Russia” (DoD, n.d.). To this end, the NDS outlines 

several strategic objectives, including “sustaining 

Joint Force military advantages, both globally and 

in key regions, . . . defending allies from military 

aggression and bolstering partners against 

coercion, fairly sharing responsibilities for 

common defense; . . . [and] continuously 

delivering performance with affordability and 

speed” (DoD, 2018, p. 4). With respect to the 

equipment service members require to execute 

their global mission, the latter objective cannot 

be achieved without changes to how the DoD 

approaches the design, development, and 

Modeling Evolutionary Architectural Growth in Major Defense 

Acquisition Programs 

Matthew Dabkowski 

Arthur Middlebrooks 

Ricardo Valerdi 

 

Abstract: One of the critical artifacts in the system design process is the architecture. Represented 

in a variety of ways, architectures evolve over time as user needs evolve and design limits are 

reached. The emergent requirement to submit Department of Defense Architecture Framework 

(DoDAF) models prior to Milestone A has created opportunities for the early life cycle cost 

estimation of major defense acquisition programs. Although this development could be seen as 

positive, any cost estimation procedure ultimately needs to be informed and validated by real-world 

data. In this paper, we examine the assumptions underlying one such method – an algorithm to 

estimate the cost of unanticipated, evolutionary architectural growth via the SV-3 (or Systems-

Systems Matrix) and the Constructive Systems Engineering Cost Model. Specifically, using SV-3s 

from 24 different defense programs, we found that while the data generally comport with the 

method, alternative growth and connection mechanisms are needed. As such, we propose a 

modified, data-driven approach using number theory, network science, simulation, and statistical 

analysis – one which not only improves the algorithm’s fidelity but also reinforces the value of 

viewing DoDAF models as computational objects.  
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acquisition of military technology. In a budget-

constrained environment, this imperative 

becomes increasingly more important. 

Notably, even prior to the initiation of 

sequestration, researchers found that most of a 

program’s life cycle costs are often committed 

early in the system design process without 

knowledge of future requirements (e.g., Blanchard 

& Fabrycky, 1998, p. 37; Dowlatshahi, 1992, p. 

1803). Put simply, the architectural choices made 

by systems engineers today have profound 

implications for a system’s total cost at 

retirement. The inability to forecast this structural 

dependence reduces the DoD’s ability to be 

responsive and flexible to future capability gaps. 

Unfortunately, despite the opportunity to affect 

substantive change on the resulting cost of the 

system early in its life cycle, it is difficult to 

anticipate how requirements will change over 

time. For example, researchers found that more 

than 10% of a system’s baseline requirements will 

change during the development phase of a 

system’s life cycle (Pen a & Valerdi, 2015, pp. 63-

65). Recognizing this uncertainty and its 

implications, the NDS identified “reforming the 

Department’s business practices for greater 

performance and affordability” as one of its key 

lines of effort (DoD, 2018, p. 5).  

Within the performance and affordability line of 

effort, the NDS outlines five competitive 

approaches to improving the DoD’s practices, 

namely: “[1] deliver performance at the speed of 

relevance . . . [2] organize for innovation . . . [3] 

drive budget discipline and affordability to 

achieve solvency . . . [4] streamline rapid, iterative 

approaches from development to fielding . . . [5] 

Figure 1. AAF Pathways (USD(A&S), 2020b, p. 5.) 
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harness and protect the Nation Security 

Innovation Base” (DoD, 2018, pp. 10-11). While 

each of these approaches is worthy of intense 

pursuit, particularly streamlining development 

and fielding processes, the appropriate 

mechanisms must be in place for the right 

capabilities to reach service members at the right 

time. Recognizing this imperative, two years 

following the 2018 update to the NDS, the DoD 

issued DoD Instruction (DoDI) 5000.02 – Operation 

of the Adaptive Acquisition Framework (AAF). 

With the NDS’s priorities and focus on improving 

the DoD’s ability to deliver improved technical 

solutions at a reduced cost, “[t]he AAF supports 

the [Defense Acquisition System] with the 

objective of delivering effective, suitable, 

survivable, sustainable, and affordable solutions 

to the end user in a timely manner” (USD(A&S), 

2020a, p. 3). Figure 1 depicts the AAF’s six 

pathways, each of which is tailored to the desired 

capability gap. Within the scope of this research, 

we focus specifically on Major Capability 

Acquisition efforts, which consist of an initial 

Material Development Decision (MDD), followed 

by a series of critical milestones (MS). 

Following the MDD, but prior to MS A, there are 

several key considerations with respect to the 

system itself, including “technical, cost and 

schedule risks, and the plans and funding to offset 

them during the [Technology Maturation and Risk 

Reduction] TMRR phase” (USD(A&S), 2020b, p. 

12). This involves the designated PM conducting 

an analysis of the “Should Cost” 

targets, which are directly tied to 

the requirements specified in the 

Initial Capabilities Document. 

These targets are critical, as they 

establish the foundation for 

executing the final Request for 

Proposals and the cost for 

incorrectly doing so are high. For 

example, a RAND Project Air Force 

study found that across 35 mature 

programs unstable requirements 

accounted for a 12.9% increase in 

total costs (Bolten, Leonard, Arena, Younossi, & 

Sollinger, 2008, p. 72). In FY2005 dollars, this 

translated to a $23.7 billion increase. Additionally, 

between 1997 and 2009, the majority of Nunn-

McCurdy Breaches (significant cost overruns that 

must be statutorily reported to Congress) cited 

engineering/design issues and requirement 

changes as significant factors contributing to their 

programs’ unexcepted, excessive cost growth 

(GAO, 2011, p. 5). 

Taken together, these findings support the need to 

improve two dimensions of the system design and 

acquisition process with respect to cost reduction: 

requirements development and extending the 

useable life of systems. The AAF seeks to address 

the first issue; however, as specified by the NDS, 

these solutions must not only address today’s 

capability gaps but also be capable of mitigating 

those in future environments. Additionally, they 

must do so in a cost-effective manner. In 

recognition of this necessity, the recently 

published DoDI 5000.88 – Engineering of Defense 

Systems mandates that all Major Defense 

Acquisition Programs (MDAP) require a 

formalized Systems Engineering Plan (SEP) (USD

(R&E), 2020b, p. 12). Moreover, within the SEP 

and specific to extending the useable life of 

systems, DoDI 5000.88 directed the use a Modular 

Open Systems Approach (MOSA). 

As a framework for addressing capability gaps, 

MOSA “provides an integrated business and 

technical strategy for competitive and affordable 

Figure 2. MOSA Framework (USD(R&E), 2020a, p. 4). 
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acquisition and sustainment of a new or legacy 

system (or a component within a new or legacy 

system) over the system life cycle” (USD(R&E), 

2020a, p. 2). As seen in Figure 2, this framework 

includes six elements. Specific to this research, 

architecture is a representation of the 

“fundamental concepts or properties of a system 

in its environment embodied in its elements, 

relationships, and in the principles of its design 

and evolution” (ISO, 2011, p. 2). 

Within the AAF, during Material Solutions 

Analysis and prior to MS A, MOSA forces system 

designers to consider not only the first 

instantiation of the system but also how it will 

evolve over time. In doing so, they must consider 

and communicate the system’s architecture, 

specifying how components interface with one 

another to better facilitate future changes or 

upgrades. In support of MOSA, the DoD utilizes 

the DoD Architecture Framework (DoDAF), a 

series of viewpoints and models, to communicate 

information about the system. The requirement to 

develop these models Pre-MS A not only supports 

the NDS and AAF, but more practically, provides 

analysts with rich data regarding the components 

and interfaces of the system. 

For example, the DoDAF’s Systems Viewpoint 3 

(SV-3 or Systems-Systems Matrix) “provides a 

tabular summary of the system interactions” (DoD 

DCIO, 2010, p. 209). Within the context of system 

requirements and extending the useable life of the 

system, the SV-3 depicts relationships between 

the system components that execute the system’s 

functions, providing the analyst with critical 

information that can be used to explore options 

for evolving the system over time. This ensures 

that while we may not be capable of predicting the 

future operational environment, at the earliest 

point in the systems engineering process, we can 

be more reasonably assured that the system is 

designed to remain responsive to external 

changes in a budget-constrained environment. 

Given the NDS’s focus on improving the defense 

acquisition process for a rapidly changing 

operational environment, the dire implications of 

incorrectly estimating and managing system costs, 

and the adoption of the AAF and MOSA, there 

exists a tremendous responsibility and 

opportunity to improve early life-cycle cost 

estimates.  

Exploiting an Untapped Source of Early Life 

Cycle Information – Mapping DoDAF’s Models 

to COSYSMO’s Drivers  

In a recent article, Valerdi, Dabkowski, and Dixit 

(2015) exploited the Pre-MS A availability of 

DoDAF’s models by mapping them to the drivers 

of the Constructive Systems Engineering Cost 

Model (COSYSMO), a parametric, open academic 

cost model with the following cost estimating 

relationship (CER): 

 

 

 

where: 

PMNS = systems engineering effort in person 

months (nominal schedule), 

A = calibration constant derived from 

historical project data (assume as 0.25), 

wik = weight for the ith complexity level of the 

kth size driver (i ∈ {e (easy), n (nominal), d 

(difficult)}), 

Φik = quantity of the kth size driver with 

complexity level i (k ∈ {1 (requirements), 2 

(interfaces), 3 (algorithms), 4 (operational 

scenarios)}), 

E = diseconomies of scale constant (assume 

as 1.06), and 

EMj = systems engineering effort multiplier 

for the jth cost driver  

(assume                 )  

(Valerdi, 2008, p. 34). 

Specifically, using a blend of text mining and 

social network analysis techniques, they analyzed 

(1) 
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DoDAF’s manual to identify subsets of models 

that, on a basis of doctrine, should contain useful 

information for populating COSYSMO’s 18 drivers. 

The results of this analysis are summarized 

graphically in Figure 3, where: (a) a link between 

DoDAF model X and COSYSMO driver Y indicates 

model X should be relevant for rating driver Y, (b) 

DoDAF models shaded yellow were required Pre-

MS A between 2012 and 2015 (CJCS, 2012a; CJCS, 

2012b), (c) DoDAF models highlighted with a 

black star (⁎) were required Pre-MS A between 

2015 and 2018 (CJCS, 2015), (d) DoDAF models 

with their names highlighted in green are 

currently required pre-MS A (CJCS, 2018), and (e) 

COSYSMO drivers shaded red are not linked to 

any of the DoDAF models required by the 

Capability Development Document (CDD). 

As Figure 3 shows, the collection of DoDAF 

models required Pre-MS A nearly spans 

COSYSMO’s parameters, as they cover 14 of the 18 

drivers. Additionally, several DoDAF models that 

are not explicitly required by the CDD are 

derivatives of data contained within the 

mandatory models, suggesting even greater 

coverage is possible. For example, the SV-3 is 

simply a more compact, summary representation 

of the interfaces described in the SV-1 (DoD DCIO, 

2010, p. 209).  

Exploiting this untapped, relevant source of early 

life cycle information, Valerdi et al. (2015) 

provide an algorithm for organizations to improve 

the measurement reliability of their MDAP cost 

estimates using COSYSMO (pp. 543-545). 

Figure 3. Mapping of DoDAF’s models to COSYSMO’s drivers. 
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Additionally, there are other tangential benefits 

stemming from their work, including 

opportunities for “data mining techniques . . . to 

extract knowledge from existing systems 

engineering concepts” (Valerdi et al., 2015, pp. 

546). Given the rapid proliferation of such 

techniques and their application to new domains, 

algorithms employing these methods should be 

accompanied by a detailed explanation and 

assessment of any underlying assumptions. 

Consistent with this assertion, in this paper we 

methodically examine one such algorithm, 

namely, a method for estimating the cost of 

unanticipated, evolutionary architectural growth 

via the SV-3, COSYSMO, and network science 

(Dabkowski, Valerdi, & Farr, 2014).  

 

Estimating the Cost of Architectural Growth 

Early in the Life Cycle  

In “Exploiting Architectural Communities in Early 

Life Cycle Cost Estimation,” Dabkowski et al. 

(2014) estimate the cost of adding a future 

subsystem (X) to an existing system architecture 

when the purpose and function of X are unknown. 

Consisting of 12 steps and seen in Algorithm 1 

below, their approach leverages the current SV-

3’s structural properties to iteratively and 

randomly attach X to architectural modules (or 

communities), generate interfaces of reasonable 

complexity, and estimate the marginal cost of 

attachment.  

Algorithm 1 (Dabkowski et al., 2014, p. 101) 

For a specified, suitably large number of 

iterations . . .  

Preprocessing  

(1) Initialize the system as the current 

system, 

(2) Use the Girvan-Newman (2002) 

community detection heuristic to identify 

architectural communities, 

(3) Randomly assign X to community k, 

Intracommunity Growth 

(4) Generate a realization for Mx,intra given X 

is assigned to community k (mintra), 

(5) Connect X to mintra subsystems inside 

community k using the Baraba si-Albert 

(BA) model (1999), 

(6) For each interface established in (5), 

assign complexity (wiX,intra), 

Intercommunity Growth 

(7) Generate a realization for MX,inter given U 

is assigned to community k (minter), 

(8) Connect U to minter communities using 

the BA model, 

(9) For each interface established in (8), 

assign complexity (wiX,inter), 

Cost Estimation 

(10) Estimate the cost for the augmented 

system using COSYSMO (PMNS*), 

(11) Calculate the additional cost of adding 

subsystem U (PMNS* − PMNS), and 

(12) Store results and return to (3). 

For example and without loss of generality, 

imagine the hypothetical SV-3 in Panel (a) of 

Figure 4 serves as the current system in Step (1) 

of Algorithm 1. With 8 subsystems and 12 

interfaces, this SV-3 graphically summarizes the 

relationships between existing subsystems, where 

shading in row i and column j implies subsystem i 

interfaces with subsystem j, and darker shades 

indicate greater interface complexity. Moving to 

Step (2), given the emphasis on MOSA within the 

DoD (USD(R&E), 2020b), we suspect that the 

current system’s architecture might contain 

communities of subsystems where the density 

of interfaces within communities is high relative 

to the density of interfaces between them. To 

identify and exploit this structure, we apply the 

popular Girvan-Newman (2002) community 

detection heuristic, which yields the permuted, 

isomorphic SV-3 seen in Panel (b) of Figure 4. In 

Step (3), subsystem X is randomly assigned to one 

the current system’s two architectural 

communities, namely C1 or C2.  
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Continuing with the example, suppose 

subsystem X is assigned to C1. Using a 

rich-by-birth effect, the number of 

subsystems X interfaces with in C1 is 

modeled as a discrete random variable 

(MX,intra) with a probability mass 

function (PMF) equal to the observed 

intracommunity degree distribution of 

C1’s subsystems. By inspection, C1’s 

PMF for MX,intra is P(MX,intra = 2) = 0.5 

and P(MX,intra = 3) = 0.5. As per Step (4), 

we generate a realization (mintra) from 

this PMF to represent the number of X’s 

intracommunity interfaces.  

Assuming mintra = 2, we connect X to 2 

subsystems in C1 using the BA model from 

network science, which mimics a rich-get-richer 

effect. Observed in a variety of real-world 

networks (e.g., Redner, 1998; Banavar, Maritan, & 

Rinaldo, 1999; Newman, 2001; Cancho, Janssen, 

& Sole , 2001), the BA model specifies that the 

probability of X attaching to an existing 

subsystem i in C1 is proportional to i’s number of 

intracommunity interfaces (Baraba si & Albert, 

1999). In Panel (b) of Figure 4, C1’s subsystems 

A, D, F, and H have degrees 2, 3, 3, and 2, 

respectively. Accordingly, their corresponding 

attachment probabilities are 0.2, 0.3, 0.3, and 0.2, 

and in Step (5) we use these probabilities to 

determine X’s adjacency.  

If Step (5) determines that X connects to 

subsystem A, then in Step (6) we use the 

observed interface complexity distribution of 

subsystem A as the PMF for the complexity of the 

interface between X and subsystem A (wAX). 

Specifically, one of A’s existing interfaces is rated 

easy, and the other is rated nominal. 

Accordingly, we apply the relative weights for 

COSYSMO’s number of major interfaces size 

driver (Valerdi, 2008, p. 86) to obtain the 

following PMF for wAX:  

P(wAX = 1.1) = 0.5 and P(wAX = 2.8) = 0.5 , and a 

Bernoulli trial determines the outcome. 

 

Steps (7) through (9) model intercommunity 

growth in a manner similar to Steps (4) through 

(6), and Steps (10) and (11) apply COSYSMO’s 

CER to calculate the marginal cost of attachment. 

Finally, Step (12) completes the loop and 

captures the result. Subsequent iteration 

generates the data necessary to estimate the 

cumulative distribution functions and statistics 

for the estimated cost of adding subsystem X to 

C1 and C2. 

 

Algorithm 1’s Underlying Assumptions and 

Associated Hypotheses  

Although Algorithm 1 has intuitive appeal, the 

validity of its underlying assumptions must be 

assessed. Starting with its principal input, we 

note that an SV-3 is nothing more than the 

adjacency matrix representation of a network, 

where nodes symbolize subsystems and edges 

denote interfaces. As such, if Dabkowski et al. 

(2014) have designed the right algorithm (i.e., 

Algorithm 1 is valid), the networks represented 

by real-world SV-3s will be similar to the 

hypothetical example in Figure 4. 

Methodologically, network similarity is typically 

assessed by comparing a list of structural 

statistics (Shore & Lubin, 2015), but selecting 

which statistics to compare is a matter of debate. 

With this in mind, study objectives typically drive 

the selection (e.g., Hunter, Goodreau, & Handcock, 

2008), and our primary goal is to determine 

Figure 4. Hypothetical SV-3 with 8 subsystems and 12 interfaces in its 

original (Panel (a)) and permuted (Panel (b)) forms, where shading 

indicates interface complexity such that light gray ⇒ easy, medium 

gray ⇒ nominal, and black ⇒ difficult. 
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whether Algorithm 1 can accommodate real-

world SV-3s. Therefore, we restrict our focus to 

three characteristics, namely: type, density, and 

community structure. 

With respect to type, we note that the 

hypothetical example reflects the interfaces that 

exist between a single set of subsystems. 

Specifically, the subsystems represented by the 

rows match those identified in the columns. In 

the parlance of network analysis, this is known as 

a one-mode network (Wasserman & Faust, 

2009, p. 36-37). Moreover, upon closer 

examination, we note that the hypothetical 

example is symmetric across its main diagonal, 

implying the interfaces are bidirectional; the 

network is undirected. Finally, as mentioned 

earlier, the hypothetical example’s cells are 

shaded according to interface complexities, which 

ultimately map to numerical weights in 

COSYSMO’s CER. Accordingly, the network is 

valued. Taken together, Algorithm 1 accepts one-

mode, undirected, valued SV-3s as input, and 

our first hypothesis is as follows: (H1) – Real-

world SV-3s are one-mode, undirected, valued 

networks. 

Moving on to density, Algorithm 1 makes use of 

the Girvan-Newman community detection 

heuristic, which “was designed with sparse 

networks in mind, . . . [and] may not perform as 

well on dense networks” (2002, p. 7826). 

Formulaically, the sparsity of a one-mode, 

undirected network with N nodes can be assessed 

by its density, which is simply the ratio of its 

observed number of edges (E) to the maximum 

possible number of edges or 2E / (N(N - 1)) 

(Wasserman & Faust, 2009, p. 101). Although 

there is no definitive standard for characterizing 

a network as sparse, informally, the adjacency 

matrix of a sparse network consists primarily of 

zeros. Adopting this as our standard, this implies 

that a sparse network will have a density less 

than 0.5. For example, with N = 8 subsystems and 

E = 12 interfaces the hypothetical example in 

Figure 4 has a density of 0.428. As such, it is 

sparse, and, as expected, the Girvan-Newman 

community detection heuristic performs well, 

correctly identifying its two architectural 

communities. In sum, by using the Girvan-

Newman community detection heuristic in 

Algorithm 1, Dabkowski et al. (2014) implicitly 

assume real-world SV-3s are sparse, and this 

leads us to our second hypothesis: (H2) – The 

densities of real-world SV-3s are less than 0.5.  

As for community structure, recall that the 

hypothetical example in Figure 4 consists of two, 

well-defined communities, and Algorithm 1 

conforms to this structure. The questions are: 

“Does the community structure in the 

hypothetical example warrant this approach,” 

and “If so, do real-world SV-3s exhibit similar 

behavior?” To address these issues, we use 

Girvan and Newman’s well-known modularity 

metric, which ranges from its minimum of 0, 

when “the number of within-community edges is 

no better than random,” to its theoretical 

maximum of 1, indicating very strong community 

structure (Newman & Girvan, 2004, p. 7). In 

practice, however, Girvan and Newman note 

modularities above 0.7 are uncommon, and 

values greater than 0.3 suggest strong 

community structure (Newman & Girvan, 2004, 

p. 7). Adopting this standard, we used the 

edge.betweenness.community function from the 

statistical software R’s igraph package (Csardi & 

Nepusz, 2006) to calculate the modularity for the 

hypothetical example. With a value of 0.333, its 

modularity exceeds the 0.3 threshold, and 

Algorithm 1 rightly abides its strong community 

structure. Whether or not this also applies to real

-world SV-3s needs to be assessed, yielding our 

third hypothesis: (H3) – The modularities of real-

world SV-3s are greater than 0.3.  

Beyond validity related to input, the validity of 

Algorithm 1’s growth and connection 

mechanisms must also be assessed. Looking at 

the growth mechanism, Dabkowski et al. (2014) 

modeled an incoming subsystem’s number of 

interfaces (or degree) as a random variable with 

a PMF equal to the observed degree distribution 

of the current system. In fact, their approach 
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differs substantially from the growth step in the 

standard BA model, where a fixed versus random 

number of edges (m) are added each time a new 

node enters the network (Baraba si & Albert, 

1999). That said, when m is constant the total 

number of edges in a network of N nodes is fixed, 

reducing the flexibility of the standard BA model. 

For example, if a network starts as the smallest 

possible connected graph prior to the addition of 

new nodes, it will have m nodes and m - 1 edges. 

In this case, following the network’s eventual 

growth to N nodes, it will have  E = m(N - m) + (m 

- 1) = m(N - m + 1) - 1 total edges. For the 

hypothetical example in Figure 4, this is 

problematic. Specifically, if m = 1, once the SV-3 

grows to its final size of N = 8 subsystems it will 

have E = 7 interfaces. This is 5 too few; therefore 

m must be greater than 1. However, if m = 2, it 

will ultimately have E = 13 interfaces, which is 1 

too many.  

Accordingly, holding an incoming subsystem’s 

number of interfaces constant is overly 

restrictive, and using the observed degree 

distribution in Algorithm 1 seems reasonable. As 

Dorogovtsev and Mendes (2003) note: 

How can we account for the 

influence of the network on the 

properties on a newborn vertex? 

This, our baby, has only one 

characteristic, namely the number 

of its connections. Then, let this 

number not be fixed by God but be 

distributed with some distribution 

function which depends on the 

current state of the network . . . let 

the degree distribution of the 

newborn vertex be dependent on 

the degree distribution of the 

network (p. 42) . 

Nonetheless, as with the standard BA model, the 

validity of this approach must be assessed. 

Ultimately, we want a stochastic model capable of 

growing SV-3s with N subsystems and 

approximately E interfaces. More precisely, if the 

mean absolute percentage error (MAPE) in 

interfaces is no more than 20%, we feel the model 

is sufficient, and our fourth hypothesis is as 

follows: (H4) – Using the observed degree 

distribution of a real-world SV-3 to model its 

incoming subsystems’ number of interfaces 

grows SV-3s with a MAPE in interfaces less than 

or equal to 20%. 

Finally, for Dabkowski et al.’s (2014) connection 

mechanism, in Steps (5) and (8) of Algorithm 1 

they used linear preferential attachment to 

connect an incoming subsystem to subsystems 

already in the architecture. As such, if real-world 

SV-3s utilize linear preferential attachment, their 

connection mechanism is valid; otherwise, it is 

not. Unfortunately, proving the presence of linear 

preferential attachment in a network’s evolution 

requires longitudinal data or snapshots of its 

growth over time (Newman, 2001; Jeong, Ne da, & 

Baraba si, 2002), and such data is often 

unavailable.  

Nonetheless, even without longitudinal data, we 

can use a network’s degree distribution to 

examine whether linear preferential attachment 

played a role in its evolution, as networks grown 

via linear preferential attachment have a 

characteristic statistical marker. Specifically, the 

probability that a node has degree d, p(d), is 

proportional to d-ω where ω = 3 - p and p 

represents the fraction of edges that are directed 

(Baraba si & Albert, 1999). Moreover, while our 

earlier discussion demonstrated that m is not 

fixed and the standard BA model does not apply, 

this marker still holds. As Baraba si and Albert 

note in their landmark 1999 paper: “For most 

networks, the connectivity m of the newly added 

vertices is not constant. However, choosing m 

randomly will not change the exponent” (p. 512). 

In short, if real-world SV-3s have been grown via 

linear preferential attachment, ω should be 3. 

Formally known as a power law, this scale-free 

behavior typically presents itself in the heavy, 

right-hand tail of the network’s degree 

distribution, and following normalization, its 
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discrete distribution function is: 

 

where an approximate maximum likelihood 

estimator for ω is given by: 

 

 

and:  

dmin= the lower bound for the power 

law behavior (Clauset, Shalizi, & 

Newman, 2009).  

Using these facts, we formulate our fifth and final 

hypothesis as follows: (H5) – The observed 

degree distributions of real-world SV-3s follow a 

power-law with ὢ = 3. 

  

Results and Analysis of Hypothesis Testing 

In order to test the hypotheses identified in the 

previous section, we used the SV-3s from 24 

different defense programs. Consisting of 

weapons systems; combat and transportation 

vehicles; command, control, and communications 

suites; and intelligence, surveillance, and 

reconnaissance platforms, the programs vary 

considerably in both size and scope, providing a 

broad sample and facilitating generalization 

(AIMD, 2014). The results and analysis of this 

testing are given below. 

 

(H1) – Real-world SV-3s are one-mode, 

undirected, valued networks. 

As seen in the first several columns of Table 1, 

real-world SV-3s do not match Algorithm 1’s 

expected input; therefore, (H1) is refuted. First, 

with respect to mode, 6 of the 24 SV-3s only 

reflect the interfaces that exist between two 

different sets of subsystems (e.g., internal and 

external) [Endnote 1]. Known as two-mode 

networks (or bipartite graphs), these SV-3s do 

not comport with the standard BA model 

[Endnote 2]. Next, of the 18 remaining SV-3s, 4 

are asymmetric across their main diagonal or 

directed. While this does not agree with 

Algorithm 1’s expected input, the standard BA 

model is extensible to directed networks by using 

each node’s in-degree (di,in, the number of 

directional edges pointing to node i) when 

calculating attachment probabilities. Last, none of 

the 24 SV-3s are valued, let alone weighted 

according to interface complexity. Without 

interface complexities, the validity of using 

subsystem i’s observed interface complexity 

distribution to estimate future interface 

complexity cannot be assessed. In sum, although 

(H1) is refuted, 14 of the 24 real-world SV-3s are 

one-mode, undirected networks, and these will 

form the basis for our subsequent analysis.  

 

(H2) – The densities of real-world SV-3s are 

less than 0.5.  

Of the 14 one-mode, undirected SV-3s in Table 1, 

only one (i.e., System 6) has a density greater than 

0.5. Accordingly, in general, (H2) is affirmed. 

Moreover, the average and median density among 

these 14 SV-3s are 0.245 and 0.214, respectively, 

which compare favorably with the hypothetical 

example’s density of 0.428. As such, our sample 

suggests real-world SV-3s are sparse, and using 

the Girvan-Newman community detection 

heuristic in Algorithm 1 is appropriate.  

 

(H3) – The modularities of real-world SV-3s 

are greater than 0.3.  

While Table 1 provides definitive evidence for 

refuting (H1) and affirming (H2), the data for (H3) 

is less clear. In particular, 6 of the 14 one-mode, 

undirected SV-3s have modularities greater than 

0.3. Put another way, roughly 50% of the real-

world SV-3s in our sample have strong 

community structure worth exploiting, and 

Algorithm 1 accommodates this. On the other 

(2) 

(3) 
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hand, when an SV-3’s modularity is less than 0.3, 

the identified community structure may be 

spurious, and exploiting it in Algorithm 1 is not 

recommended. As such, a non-community version 

of the connection mechanism is needed, and 

Algorithm 1 should be modified accordingly.  

 

 

(H4) – Using the observed 

degree distribution of a real-

world SV-3 to model its 

incoming subsystems’ 

number of interfaces grows 

SV-3s with a MAPE in 

interfaces less than or equal 

to 20%. 

To test (H4), we simulated the 

growth of the 14 one-mode, 

undirected SV-3s in Table 1 

using Algorithm 1’s growth and 

connection mechanisms. In 

particular, at t = 0 we start with 

an SV-3 consisting of two 

subsystems connected by a 

single interface. Accordingly, 

the PMF for the first incoming 

subsystem’s number of 

interfaces is simply  

P(M = 1) = 1, and it generates 

one interface, which is attached 

to either of the two existing 

subsystems with equal 

probability. At t = 1, the SV-3 

consists of 3 subsystems, 

where two subsystems have 

one interface and one 

subsystem has two interfaces. 

As such, the PMF for the second 

incoming subsystem’s number 

of interfaces is  

P(M = 1) = 2/3 and P(M = 2) = 

1/3. Drawing a random variate 

from this PMF determines the number of 

interfaces the second incoming subsystem 

generates, and these interfaces are connected to 

the three existing subsystems using linear 

preferential attachment. At t = 3 the process 

repeats itself, and it continues until the SV-3 

consists of N subsystems, at which point the total 

number of interfaces is recorded. The results of 

this simulation for 1,000 trials at each value of N 

are given in Table 2. 

  Type Size   Community Structure 

System Modes Undirected? Valued? N E Density Communities Modularity 

1 2 – – – – – – – 

2 2 – – – – – – – 

3 1 Y N 19 26 0.152 4 0.365 

4 1 Y N 14 19 0.209 4 0.256 

5 1 Y N 21 46 0.219 2 0.072 

6 1 Y N 4 4 0.667 1 0 

7 1 Y N 15 16 0.152 3 0.498 

8 1,2 Y N 9 12 0.333 2 0.247 

9 2 – – – – – – – 

10 1 N N – – – – – 

11 1 Y N 24 19 0.069 8 0.611 

12 1 N N – – – – – 

13 1 N N – – – – – 

14 1 Y N 10 16 0.356 3 0.271 

15 1 Y N 28 23 0.061 8 0.749 

16 1 Y N 22 67 0.290 11 0.057 

17 1 Y N 19 18 0.105 6 0.532 

18 1 Y N 18 30 0.196 6 0.150 

19 1 N N – – – – – 

20 1,2 Y N 9 8 0.222 3 0.414 

21 2 – – – – – – – 

22 2 – – – – – – – 

23 2 – – – – – – – 

24 1,2 Y N 6 6 0.400 4 0.042 

Table 1. Summary of the type, density, and community structure of real-world SV-

3s. Bold entries highlight modularity values which indicate strong community 

structure. Systems with both one- and two-mode SV-3s are denoted by “1,2” in the 

“Modes” column. For these systems, values in the size and community structure 

panels correspond to the one-mode SV-3. 
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As Table 2 shows, (H4) is refuted. Specifically, 

with the exception of System 6, using the 

observed degree distribution generated too 

many interfaces on average, and this is 

reflected in the magnitude of the lower bounds 

of the 95% confidence intervals on the mean 

number of interfaces as well as the MAPEs. 

Furthermore, as highlighted by the system 

ranks according to density and MAPE, sparse 

SV-3s performed worse than dense SV-3s, with 

the MAPE reaching 485% for the least dense SV

-3 (System 15). Accordingly, the observed 

degree distribution is an inadequate model for 

an incoming subsystem’s number of interfaces, 

and an alternative growth mechanism is 

needed. 

 

(H5) – The observed degree distributions of 

real-world SV-3s follow a power-law with  

ὢ = 3 

As late as 2008, the preferred method for 

testing (H5) would have been to plot the 

histogram of the SV-3’s degrees on a log-log 

graph and subsequently perform least-squares 

regression to estimate ω. However, this method 

has several statistical shortcomings, and in 

2009 Clauset et al. formalized hypothesis tests 

for assessing power law behavior, along with 

procedures for estimating ω and dmin in 

Equation (3) [Endnote 3]. These procedures 

have been implemented in R’s igraph package 

via the power.law.fit function (Csardi & Nepusz, 

2006), and the results of this estimation for the 

14 one-mode, undirected SV-3s are given in 

Table 3. 

System 3 4 5 6 7 8 11 14 15 16 17 18 20 24 

N 19 14 21 4 15 9 24 10 28 22 19 18 9 6 

E 26 19 46 4 16 12 19 16 23 67 18 30 8 6 

Density 0.15 0.21 0.22 0.67 0.15 0.33 0.07 0.36 0.06 0.29 0.11 0.2 0.22 0.4 

Rank (by density) 10 8 7 1 10 4 13 3 14 5 12 9 6 2 

95% CI on μ(LB) 63 35 76 3 40 15 99 18 131 83 63 56 15 7 

95% CI on μ(UB) 65 37 79 3 41 15 103 19 137 86 65 58 15 7 

MAPE 146 92 74 17 153 35 431 29 485 40 255 93 86 26 

Rank (by MAPE) 10 8 6 1 11 4 13 3 14 5 12 9 7 2 

Table 2. Results of growing SV-3s when the observed degree distribution is used to generate an incoming subsystem’s 

number of interfaces. The 95% confidence intervals (CIs) reflect a plausible range of values for the mean number of 

interfaces (μ), where LB and UB denote the lower and upper bounds, respectively. 

Power law distribution fitting H0 : Data follow a power law distribution with the fitted parameters 

  H1 : Data do not follow a power law distribution with the fitted parameters 

System 3 4 5 6 7 8 11 14 15 16 17 18 20 24 

ὢ 3.06 2.27 2.78 ∞ 2.8 2.69 2.52 2.26 2.33 2.57 2.06 2.22 2.01 ∞ 

 d̂min 3 2 3 – 2 2 1 2 1 4 1 2 1 – 

p-value 0.99 0.99 0.58 – 0.99 0.99 1 0.67 1 0.5 0.28 0.99 0.83 – 

95% CI on ὢ (LB) 2.13 1.68 2.09 – 1.95 1.86 1.98 1.67 1.9 2 1.66 1.72 1.51 – 

95% CI on ὢ (UB) 5.11 3.64 4.09 – 4.82 4.76 3.46 3.62 3.05 3.57 2.77 3.16 3.19 – 

Ntotal 19 14 21 4 15 9 24 10 28 22 19 18 9 6 

Nfit 10 9 15 – 9 8 24 9 28 18 19 14 9 – 

Table 3. Results of fitting discrete power law distributions to the observed degree distributions of real-world SV-3s. 

Systems 6 and 24 do not have sufficient data to estimate ω. 
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Based on these results, the power law distribution 

is a statistically plausible model for the observed 

degree distributions of the SV-3s. After all, among 

the 12 cases with sufficient data to estimate ω and 

dmin, the smallest p-value is 0.28 (System 17), 

suggesting we unanimously fail to reject the null 

hypothesis that the data follow a power law 

distribution with the fitted parameters. Moreover, 

in all but one case (System 17), the 95% 

confidence intervals for ω include 3, suggesting 

there is statistical support for the presence of 

linear preferential attachment in the SV-3s’ 

evolution. Nevertheless, the high p-values for 

several of the systems are concerning, and they 

are likely due to the small sizes of the data sets 

used to fit the parameters (Nfit) [Endnote 4]. As 

Clauset et al. (2009) caution, “It is possible for 

small values of n that the empirical distribution 

will follow a power law closely, and hence that the 

p-value will be large, even when the power law is 

the wrong model for the data” (p. 678).  

With this in mind, we can test whether the data 

follows another heavy-tailed distribution more 

closely, and the discrete exponential distribution 

is an appropriate choice, as it represents the 

limiting distribution of the subsystems’ degrees 

when the pi are uniform and preferential 

attachment is not present (Baraba si, Albert, & 

Jeong, 1999). Accordingly, we performed a 

likelihood ratio test to determine whether a 

discrete power law or a discrete exponential 

distribution better fits the data (Clauset et al., 

2009). Implemented in R’s poweRlaw package 

(Gillespie, 2015), the results of this test are 

summarized in Table 4, where p-values less than 

0.05 indicate statistically significant results and, if 

significant, a positive (negative) test statistic 

implies the power law (exponential) distribution 

is a better fit.  

As seen in Table 4, only System 5 produced a 

statistically significant result, with the power law 

being favored over the exponential distribution. 

Additionally, Systems 14 and 20 were nearly 

significant, and, in both cases, the exponential 

distribution better fits the data. In sum, our 

likelihood ratio testing cannot refute the presence 

of linear preferential attachment in real-world SV-

3s; however, due to small n, our conclusion lacks 

statistical power. Accordingly, (H5) is affirmed, 

but further investigation is warranted.  

 

Accommodating Reality – A Modified, Data-

Driven Approach  

As the hypothesis testing in the previous section 

demonstrated, Algorithm 1 cannot accommodate 

all real-world SV-3s in its current form, and it 

must be modified. In particular, evaluating (H1) 

identified that SV-3s may be two-mode and 

directed, requiring different growth and 

connection mechanisms. Moreover, none of the 24 

real-world SV-3s we examined are valued; 

therefore, the validity of using the observed 

interface complexity distribution to estimate 

future interface complexity cannot be assessed. 

Although these shortcomings must be addressed, 

they are beyond the scope of this work, and we 

restricted our focus to the 14 one-mode, 

undirected SV-3s.  

For these SV-3s, evaluating (H2) confirmed the 

appropriateness of using the Girvan-Newman 

community detection heuristic, and analyzing 

Power law versus exponential H0 : Both distributions are equally far from the true distribution 

  H1 : One of the test distributions is closer to the true distribution 

System 3 4 5 6 7 8 11 14 15 16 17 18 20 24 

p-value 0.33 0.56 0.01 – 0.86 0.28 0.31 0.06 0.65 0.24 0.21 0.53 0.08 – 

Test Statistic -0.9 -0.6 2.8 – -0.2 -1.1 1 -1.9 -0.5 -1.2 -1.2 -0.6 -1.8 – 

Table 4. Likelihood ratio test results reflecting whether a discrete power law or a discrete exponential distribution 

better fits the observed degree distributions of real-world SV-3s. Bold entries indicate statistically significant results. 
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(H3) indicated strong community structure for 6 

of the 14 SV-3s. To accommodate SV-3s without 

strong community structure, Algorithm 1 needs 

an additional, non-community connection 

mechanism. Furthermore, investigating (H4) 

clearly indicated that using the observed degree 

distribution to model an incoming subsystem’s 

number of interfaces generates too many 

interfaces on average, and an alternative growth 

mechanism is needed. Finally, although 

examining (H5) provided statistical support for 

the presence of linear preferential attachment in 

the SV-3s’ evolution, the results lack statistical 

power.  

While these shortcomings may seem damning, we 

see them as an opportunity to develop a modified, 

data-driven approach. Specifically, real-world SV-

3s hold the key to finding models of evolutionary 

architectural growth, starting with the PMF for an 

incoming subsystem’s number of interfaces. 

 

Establishing Feasible PMFs for an Incoming 

Subsystem’s Number of Interfaces (P(M = m)) 

Consider System 3 from Table 1. With 19 

subsystems and 26 interfaces, if m is modeled by 

the observed degree distribution, Table 2 

indicates that the resulting SV-3s will have 38 too 

many interfaces on average. Therefore, our first 

objective is to find a distribution for m (P(M = m)) 

that grows SV-3s of size (N = 19, E = 26).  

To do this, we return to System 3 and make the 

following observation. If the SV-3 starts as a 

single unconnected subsystem and each incoming 

subsystem must generate at least one interface, 

the remaining N - 1 = 18 subsystems must 

produce exactly E = 26 interfaces, and the 

following relation holds: 

 

 

Where E(i)  represents the number of interfaces 

the ith oldest subsystem generates and   

1 ≤ E(i) ≤ min{i, E - (N - 2)}[Endnote 5]. For 

example, consider Figure 5, which gives three 

possible solutions to Equation (4) for System 3.  

Examining the first solution, we note that  

1 ≤ E(i) ≤ min{i, 9} for each subsystem and  
 

           ; it is feasible. However, given the 

distribution of the E(i)’s, the first solution has 

multiple feasible permutations. To show this 

directly, note that there are 12 subsystems with 1 

interface, and one of these subsystems must fill 

the first position (E(i) = 1). Following this 

assignment, 16 subsystems with less than 3 

interfaces are available to fill the second and 

third positions, which yields four cases, namely:  

(a) {E(1) = 1, E(2) = 1, E(3) = 1},  

(b) {E(1) = 1, E(2) = 1, E(3) = 2},  

(c) {E(1) = 1, E(2) = 2, E(3) = 1}, and 

(d) {E(1) = 1, E(2) = 2, E(3) = 2}.  

At this point, the single subsystem with four 

interfaces becomes available for assignment, and 

any of the 15 remaining subsystems can fill 

positions 4 through 18, where the distribution of 

the remaining Ei’s is dependent on the case. In 

particular, if we denote the number of remaining 

subsystems with 1, 2, or 4 interfaces as n1, n2, and 

n4, respectively, we note:  

(a) {n1 = 9, n2 = 5, n4 = 1},  

(b) {n1 = 10, n2 = 4, n4 = 1},   

(c) {n1 = 10, n2 = 4, n4 = 1}, and 

(d) {n1 = 11, n2 = 4, n4 = 1}.  

Figure 5. Three possible solutions to Equation (4). 

(4) 
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Armed with this information and applying the 

well-known formula for the permutation of 

indistinguishable objects with repetition, the 

number of ways to feasibly permute the first 

solution in Figure 5 is: 

Of course, similar logic applies to the second and 

third solutions in Figure 5, as well as every other 

non-permutationally equivalent solution. Simply 

put, the total number of feasible solutions is large.  

Fortunately, while the sequencing of the 

subsystems affects feasibility and must be 

checked, it does not affect the distribution of m. 

Specifically, each of the 65,520 feasible 

permutations of the first solution has 12 

subsystems with 1 interface, 5 subsystems with 2 

interfaces, and 1 subsystem with 4 interfaces, 

implying P(M = m) = {0.667, m = 1; 0.278, m = 2; 

0.55, m = 4}. Recalling our objective is to find a 

PMF for m that consistently grows SV-3s of size 

(N, E), we do not need to find every feasible 

sequence for m. In the context of Equation (4), we 

need to find the unordered sets of E(i),  

{E1, E2, ∙ ∙ ∙, EN-1} , such that 

where 1 ≤ Ei  for all i.  

In fact, this is equivalent to solving a restricted 

partition problem from number theory, where E 

(a positive integer) is decomposed into the sum 

of exactly N - 1  positive integers. Using the 

generating function approach (Gupta, 1970), the 

total number of restricted partitions, p(E, N - 1), 

is equivalent to the coefficient of the xE  term after 

expanding the polynomial: 

 

 

where each of the infinite order polynomials of 

the form (1 + xr + x2r +  ∙ ∙ ∙) can be truncated just 

prior to its order exceeding N - 1. Applying this 

result to System 3 yields:  

Therefore, p(26, 18) = 22, and these 22 restricted 

partitions (r) capture the possible PMFs for m, 

which can be enumerated using the 

restrictedparts function from R’s partitions 

package (Hankin, 2006). Calling this function for 

E = 26 and N - 1 = 18 returns the result in Figure 

6.  

As Figure 6 shows, although each of the 22 

restricted partitions sum to 26 and have a 

minimum value of 1, the maximum value ranges 

from a high of 9 to a low of 2. Accordingly, while 

Figure 6. Restricted partitions of System 3’s interfaces.  

(5) 

(6) 
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these PMFs for m are all feasible, they are 

different, and some may better replicate the 

degree distribution of System 3 when we use 

them to grow SV-3s of size (N = 19, E = 26) . 

 

Parameterizing the Strength of Preferential 

Attachment (β) 

Armed with feasible PMFs for m, our next task is 

to determine the role linear preferential 

attachment plays in the formation of System 3’s 

SV-3. Looking at Table 3, we failed to reject the 

null hypothesis that System 3’s degree 

distribution followed a discrete power law 

distribution with ω = 3, implying linear 

preferential attachment is present. However, as 

seen in Table 4, subsequent likelihood ratio 

testing failed to reject that a discrete exponential 

distribution fits the data equally well, suggesting 

linear preferential attachment might be absent.  

These two cases represent poles along a 

continuum, and another possibility is that 

preferential attachment is present but it is not 

linear. For example, the probability of an 

incoming subsystem attaching to an existing 

subsystem i could be given by   

where 0 < β < 1 (Baraba si, 2015). In this case, the 

incoming subsystem is more likely to connect 

with highly connected subsystems but the 

attachment probability is a sublinear function of 

degree – it is more muted. Moreover, even if 

likelihood ratio testing concludes that a discrete 

power law distribution fits the data better, it does 

not address the possibility that the preferential 

attachment could be a superlinear function of 

degree (β < 1 ). As with the feasible PMFs for m, 

settling on a best value for β necessitates that we 

grow SV-3s of size (N = 19, E = 26) for various 

values of β and measure how close their degree 

distributions are to System 3’s. The question is:  

 

 

 

“How should the difference between the degree 

distributions of two SV-3s of size (N, E) be 

measured?” 

 

Assessing the Difference Between Degree 

Distributions (z*) 

Although there are several well-known methods 

for calculating the difference between probability 

distributions (e.g., the two-sample Kolmogorov-

Smirnov test statistic (Darling, 1957) and the 1st 

Wasserstein metric or Earth Mover’s Distance 

(Rubner, Tomasi, & Guibas, 1998)), the SV-3s’ 

equivalent size invites an intuitive approach 

based on their observed degrees. Drawing on a 

frequently used example from combinatorial 

optimization, imagine we have N skiers with 

heights (hi) and N sets of skis with lengths (lj), 

and we want to match the skis to the skiers such 

that the sum of the absolute pairwise differences 

between the heights of the skiers and the lengths 

of the skis (z = Σ|hi - lj|)  is minimized. As simple 

as it sounds, a globally optimal solution to this 

problem can be obtained by ordering the skis/

skiers by length/height and assigning skis to 

skiers on a basis of their relative size  

(i.e., z* = Σ|h(k) - l(k)|, where (k) denotes the kth 

height/length of smallest skier/ski) (Lawler, 

1976, p. 208).  

By analogy, if we consider the N subsystems of SV

-3s A and B as the skis and skiers, respectively, 

and match their subsystems on a basis of relative 

degree, the sum of the absolute pairwise 

differences between their degrees (z = Σ|di - dj|) is 

minimized. If the degrees of the two SV-3s are 

identical, their degree distributions are the same, 

and the value of the minimum (z*) equals zero. 

On the other hand, as the degrees become 

dissimilar, their degree distributions begin to 

diverge, and z* increases. Consequently, z* 

provides an intuitive measure of the difference 

between the degree distributions. With this in 

mind, when growing SV-3s of size (N, E) , with the 

goal of replicating the degree distribution of a 

real-world SV-3, smaller values of z* are 

preferred. 
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Simulating Growth to Identify Optimal  

P(M = m) and Values for β  

At this point, we have generated a set of feasible 

PMFs for an incoming subsystem’s number of 

interfaces {P(M = m)} , and we have 

parameterized the attachment probabilities to 

vary the strength of preferential attachment (β). 

Moreover, we have developed an intuitive 

measure z* to assess the difference between the 

degree distributions of two SV-3s of size (N, E). 

Ultimately, for a real-world SV-3, we would like to 

find the member(s) of {P(M = m)} and value(s) of 

β that minimize z*. Given the stochastic nature of 

the connection mechanism, as well as the need to 

feasibly permute the restricted partitions 

indicated by {P(M = m)}, z* is a random variable 

(Z*). Accordingly, we designed an experiment to 

simulate the growth of SV-3s of size (N, E) for all 

restricted partitions and various values of β to 

identify which, if any, combination(s) of the 

parameters produces the smallest population 

mean for Z* (μz*). The pseudocode for this 

procedure is as follows: 

(1) Calculate, sort, and store the degrees of a 

real-world SV-3 of size (N, E)   

(2) Generate and store the restricted partitions 

for SV-3s of size (N - 1, E)  , 

(3) Determine a representative set of values for 

β (i.e., β = {0, 0.1, 0.2, ∙ ∙ ∙ , 1}), and 

(4) For each restricted partition (r) and value of 

β, for a specified, suitably large number of 

iterations, on each iteration l . . .  

Figure 7. Sample means of the minimum absolute pairwise differences between the degrees of System 3’s SV-3 and the degrees 

of 1,000 simulated SV-3s for each (r, β) pair. Yellow shading denotes the five smallest sample means, and blue shading reflects 

the relative magnitude of the sample means across the 242 (r, β) pairs, where darker shades reflect larger means.  
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(a) Randomly permute the restricted 

partition until feasible  

(E(i) ≤ i for i ∈ {1, 2, ∙ ∙ ∙ , N - 1}), 

(b) Initialize the simulated SV-3 as a single 

subsystem, 

(c) Sequentially add N - 1 subsystems to the 

simulated SV-3, where the ith  incoming 

subsystem generates E(i)  interfaces and 

attaches to existing subsystem k with 

probability pk ∝ dkβ , 

(d) Calculate and sort the degrees of the 

simulated SV-3, and 

(e) Sum the absolute pairwise differences 

between the sorted degrees of the 

simulated SV-3 and the real-world SV-3; 

store the result as z*r,β,l . 

Increasing β from 0 to 1 in increments of 0.1 and 

running 1,000 iterations for each (r, β) pair 

produce 242,000 realizations of Z* for System 3. 

The sample means of this experiment are 

summarized in Figure 7.  

As seen in Figure 7, the sample means range from 

a minimum of 7.046 for the (r = 5, β = 0.2) pair to 

a maximum of 13.21 for the (r = 1, β = 0.1) pair. 

Additionally, the poorest performing (r, β) pairs 

seem to be concentrated in r = {1, 2, 21, 22} and  

β = {0.9, 1}. Based on these observations, 

parameter settings affect the fit, and this is 

highlighted in Figure 8, where the sample means 

have been converted to ascending ranks by row 

and column and shaded accordingly.  

In particular, on the left side of Figure 8 it 

appears that β = {0.2, 0.3, 0.4, 0.5} produce SV-3s 

with degrees that more closely match the degrees 

of System 3’s SV-3, immaterial of r. Similarly, 

regardless of the value of β, on the right side of 

Figure 8 it seems that r = {5, 9, 15} perform 

relatively well. Based on these observations, we 

conclude that the underlying population means 

depend on the restricted partition and the value 

of β and that a best fitting (or better fitting) (r, β) 

pair(s) may exist. 

To test this conclusion formally, consider (a) we 

have two factors (the restricted partitions and 

Figure 8. Ascending ranks of the sample means from Figure 7 by restricted partition number (left side) and β (right side). 

Yellow shading denotes the seemingly best performing levels of β and r by rank, and blue shading reflects the relative 

magnitude of the ranks across the rows (left side) and columns (right side), where darker shades reflect higher ranks. 
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the set of βs); (b) we are evaluating each factor at 

every level of interest; (c) we are interested in 

which, if any, combination(s) of the factors 

produce the minimum mean; and (d) the number 

of iterations at each combination of the factors is 

the same. Accordingly, our simulation experiment 

is a balanced, fixed effects two-factor factorial 

design, and the corresponding effects model for 

our simulation experiment is given by: 

where μ is the overall mean effect; τr is the effect 

of the rth restricted partition;γβ is the effect of β at 

its indicated level; (τγ)r,β  is the effect of the 

interaction between τr and γβ; and ∈r,β,i is a 

random error component (Montgomery, 2005, p. 

165). Furthermore, if we assume the ∈r,β,l are 

independently and normally distributed with 

mean 0 and variance σ2 for each (r, β) pair, we 

can use two-way analysis of variance (ANOVA) to 

perform an omnibus F test of the following 

hypotheses (Montgomery, 2005, p. 166): 

 

 

 

 

 

   

Unfortunately, the Z*r,β,l constitute a finite set of 

positive integers; therefore, the ∈r,β,l will not be 

normally distributed. Nonetheless, with respect 

to the Type I error rate, the F test is robust 

against violations of the normality assumption 

(Donaldson, 1968), even when the dependent 

variable assumes a very small number of discrete 

values (Bevan, Denton, & Myers, 1974). 

Additionally, although the F test assumes equality 

of variance in the ∈r,β,l, when this assumption is 

violated in balanced designs numerous studies 

have shown that the actual probability of 

committing a Type I error closely matches the 

nominal level of significance (e.g., Glass, Peckham, 

& Sanders, 1972). That said, these studies 

typically employ experimentation versus 

analytical derivation, and generalizing their 

conclusions to our specific situation seems 

questionable. With this in mind, we can alleviate 

any issues by halving the nominal level of 

significance (i.e., from α = 0.05 to α = 0.025), as 

Keppel and Wickens (2004) note this is “the 

fastest and simplest way to eliminate concerns 

about heterogeneity” (p. 152). Using this 

approach, we performed a two-way ANOVA on 

the output of our simulation experiment, and the 

results are summarized in Table 5.  

As seen in Table 5, both of the main effects and 

the interaction effect are significant at α = 0.025, 

and we reject the null hypotheses captured in 

Equations (8), (9), and (10) in favor of their 

alternatives [Endnote 6]. Additionally, given the 

significant interaction effect, the focus of our post

-hoc testing is on the individual cell means in 

Figure 7 versus the row or column means.  

With this in mind, we can treat each of the 242 (r, 

β) pairs as separate levels of a single factor, 

thereby reducing our two-way ANOVA problem 

to a one-way problem. Moreover, as we are 

interested in whether there is an (r, β) pair with 

the smallest population mean, Hsu’s multiple 

comparisons with the best (MCB) procedure 

(Hsu, 1984) is an appropriate post-hoc test. In 

particular, if we denote the population mean of 

the ith (r, β) pair as μi , Hsu’s MCB constructs 

simultaneous, two-sided confidence intervals for 

           such that the family

(7) 

(8) 

(9) 

(10) 

Source of 
Variation 

Sum of 
Squares 

Degrees 
of 

Freedom 

Mean 
Square 

F0 p-value 

r 243083 21 11575 1607.38 0 

β 77610 10 7761 1077.71 0 

Interaction 9043 210 43 5.98 0 

Error 1740994 241758 7     

Table 5. Results of two-way ANOVA. 
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-wise error rate (FWER) is controlled at a 

specified level (typically 0.05). If a confidence 

interval contains 0, then the population means of 

the corresponding (r, β) pairs are deemed 

equivalent and optimal. Otherwise, a statistically 

significant difference exists, and the sign of the 

confidence interval’s bounds determines which 

(r, β) pair is best. With this in mind, we set the 

FWER at 0.025 to account for the known 

heterogeneity, and we ran Hsu’s MCB in the 

statistical software Minitab (2015) [Endnote 7]. 

The results of this post-hoc testing are given 

Figure 9.  

As Figure 9 indicates, although the (r = 5, β = 

0.02)pair has the smallest sample mean, Hsu’s 

MCB suggests that 23 additional (r, β) pairs are 

also optimal. Interestingly, the optimal values of β 

range from 0 to 0.6, with the majority falling on 

0.2 and 0.3. This suggests that the preferential 

attachment mechanism is sublinear, and this fits 

with our previous likelihood ratio testing (see 

Table 4). Specifically, although we failed to reject 

the null hypothesis that the discrete power law 

and exponential distributions are equally far 

from System 3’s true degree distribution, the test 

statistic is slightly negative. As such, the evidence 

(albeit not statistically significant) favors the 

exponential distribution, and it hints that the 

preferential attachment mechanism is more 

uniform than linear. Nonetheless, in the absence 

of additional evidence, the optimal P(M = m) and 

values for β in Table 6 constitute a set of equally 

compelling conditions for generating an incoming 

subsystem’s interfaces and preferentially 

attaching them to System 3. 

Figure 9. Results of Hsu’s MCB with FWER 0.025, where the rows and columns of Figure 7 have been permuted by 

descending sample means. Yellow shading denotes the (r, β) pair with the smallest (optimal) sample / population mean 

(μr=5,β=0.2); green shading indicates additional (r, β) pairs with population means equal to (μr=5,β=0.2); and blue shading 

reflects the relative magnitude of the sample means across the remaining, suboptimal (r, β) pairs, where darker shades 

reflect larger means. 
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Incorporating Findings into a Modified, Data-

Driven Approach  

As seen above, using linear preferential 

attachment to connect an incoming subsystem to 

System 3’s existing architecture is ill-advised. 

Moreover, as seen in Table 7, ANOVA and Hsu’s 

MCB analysis of Systems 4, 6, 7, 8, 11, 14, 15, 17, 

18, 20, and 24 reinforce the appropriateness and 

importance of using a data-driven approach.  

In particular, while Brown-Forsythe testing found 

statistically significant heterogeneity in each 

system’s data except System 24, the maximum to 

minimum variance ratios were less than 4 to 1, 

allowing us to safely proceed with ANOVA using 

half the nominal level of significance. As with 

System 3, ANOVA identified significant main 

effects in every system expect System 24, and for 

systems with multiple restricted partitions, the 

interaction effect was also significant. Subsequent 

Hsu’s MCB analysis for the ten systems with 

significant effects revealed optimal β ranging 

from 0 to 1, with some systems favoring uniform 

attachment (i.e., Systems 14, 15, and 17) and 

others leaning towards linear attachment (i.e., 

Systems 4, 6, and 11). Additionally, with the 

exception of System 15, every system had 

multiple optimal (r, β) pairs, yet the number of 

optimal pairs was a fraction of the total number 

of pairs, especially for systems with multiple 

restricted partitions.  

Simply put, real-world SV-3s suggest a one-size-

fits-all approach is overly simplistic, and this also 

applies to the statistical methods we employed. 

For example, Systems 5 and 16 are not 

represented in Table 7, and this is a deliberate 

omission. Specifically, Systems 5 and 16 have 

2,417 and 98,222 restricted partitions, 

respectively, and, assuming a significant 

interaction effect and with 11 levels of β, this 

implies the simultaneous testing of 26,587 and 

1,080,442 hypotheses via Hsu’s MCB. This is well 

over 20 times the number of hypotheses tested in 

the next closest system in Table 7, and it falls into 

the domain of large-scale simultaneous inference, 

where minor deviations from the theoretical null 

hypothesis can substantially affect the results 

(Efron, 2012). In short, more advanced methods 

are necessary to analyze these systems. 

Beyond statistical methods, our approach is 

limited to simultaneously finding PMFs for an 

incoming subsystem’s number of interfaces and 

estimating the strength of preferential 

attachment. It does not address architectural 

communities. For example, during the growth of 

System 3 using the (r = 5, β = 0.02) pair, we 

applied the Girvan-Newman community 

detection heuristic to each of the 1,000 simulated 

SV-3s, producing the histogram and kernel 

density plot seen in Figure 10.  

 

r 

Optimal P(M = m) Optimal β  

m β 

1 2 3 4 5 6 0 0.1 0.2 0.3 0.4 0.5 0.6 

4 0.889   0.056  0.056 1 1 1 1 1    

5 0.889    0.111   1 1 1 1 1 1   

7 0.833 0.056 0.056   0.056   1      

8 0.833 0.056  0.056 0.056     1 1     

9 0.833  0.111  0.056   1 1 1 1 1 1   

15 0.778   0.222             1 1 1 1 

Table 6. Optimal P(M = m) and values for β. The restricted partitions (r) listed in the leftmost column appear at least 

once in an optimal (r, β) pair (i.e., the corresponding rows of yellow or green-shaded cells in Figure 9), and these have 

been transformed into their corresponding PMFs in the panel titled “Optimal P(M = m).” Similarly, in the panel titled 

“Optimal β,” 1s indicate that the corresponding values of β are part of an associated optimal (r, β) pair (i.e., the 

corresponding columns of yellow or green-shaded cells in Figure 9). 
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Based on Figure 10 and recalling Table 1, these 

results are encouraging. After all, System 3’s SV-3 

displayed strong community structure with four 

communities and a modularity of 0.365. In Figure 

10, the plurality of the 1,000 simulated SV-3’s 

contained four communities, and, when this 

occurred, the mean modularity was 0.361 – a 

difference of just 1%. When we consider that our 

simulation does not control for community 

structure, this miniscule difference in modularity 

is remarkable. Nonetheless, a majority of the 

1,000 simulated SV-3s did not have four 

communities; therefore, we cannot claim our 

growth mechanism reliably replicates System 3’s 

community structure. 

With this in mind, we see the PMF for an 

incoming subsystem’s number of interfaces as a 

system-level property. Thus, unlike Algorithm 1, 

we no longer recommend calculating separate 

PMFs for an incoming subsystem’s number of 

Preprocessing 
ANOVA Source of Variation  

p-value (α = 0.025) 
Hsu’s MCB Analysis 

(FWER = 0.025) 

System # 

# of 
restricted 
partitions 

# of 
feasible  

(r, β) pairs 

Brown-
Forsythe  
p-value 

Max to 
Min 

Variance 
Ratio r β Interaction 

# of 
optimal  

(r, β) pairs r β 

4 11 121 0 2.2 0 0 0 6 1 {0.5,…,1} 

6 1 11 0 1.89 NA 0 NA 5 1 {0.6,…,1} 

7 2 22 0 2.08 0 0 0.002 6 2 {0,…,0.5} 

8 5 55 0 1.47 0 0 0 5 5 {0,…,0.4} 

11 1 11 0 1.27 NA 0 NA 2 1 {0.9, 1} 

14 15 165 0 2.45 0 0 0 10 7 {0, 0.1, 0.2} 

            10 {0.2} 

            12 {0,…,0.3} 

                  14 {0} 

15 1 11 0 1.44 NA 0 NA 1 1 {0} 

17 1 11 0 1.61 NA 0 NA 3 1 {0, 0.1, 0.2} 

18 101 1111 0 3.62 0 0 0 31 5 {0.3,…,0.8} 

            6 {0.3, 0.5} 

            10 {0.5,…,0.8} 

            11 {0.4, 0.5, 0.7} 

            14 {0.7} 

            23 {0.6, 0.7, 0.8} 

            40 {0.6, 0.7, 0.8} 

            41 {0.7} 

            58 {0.6,…,0.9} 

            72 {0.7, 0.8, 0.9} 

                  95 {1} 

20 1 11 0 1.72 NA 0 NA 3 1 {0, 0.1, 0.2} 

24 1 11 0.8716 1.15 NA 0.25 NA NA NA NA 

Table 7. ANOVA and Hsu’s MCB analysis of remaining one-mode, undirected SV-3s. Systems with a single restricted 

partition only have effects due to β; thus, their interaction effects are undefined. 
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intra and intercommunity interfaces, and we 

adopt a different approach. Specifically, if an 

incoming subsystem generates m interfaces and it 

is subsequently assigned to community k, we can 

view the intracommunity designation of the m 

interfaces as a sequence of m Bernoulli trials, 

where the probability of success (p) is given by:  

When viewed in this way, an incoming 

subsystem’s number of intracommunity 

interfaces, Mintra, is simply a Binomial (m, p) 

random variable. Of course, it is possible that 

Mintra could generate a realization (mintra) that 

exceeds the size of community k (Nk). 

Accordingly, we can set the number of intra and 

intercommunity interfaces as m’intra = min 

{mintra,Nk} and minter = m – m’ respectively.  

 

Using this approach and in light of our previous 

findings, we recommend the following, modified 

version of Algorithm 1:  

Algorithm 2 

For a specified, suitably large number of 

iterations . . .  

Preprocessing  

(1) Initialize the system as the current system, 

(2) Build an optimal set of {P(M = m), β} pairs, 

(3) Use Girvan-Newman to identify 

architectural communities and calculate 

modularity,  

Growth 

(4) Randomly select a member from the 

optimal set of {P(M = m), β} pairs,  

(5) Generate a realization for the incoming 

subsystem’s (X’s) number of interfaces 

using P(M = m); if the modularity suggests 

strong community structure, use 

Connection Option A; otherwise, use 

Connection Option B,  

 

Figure 10. Histogram and kernel density plot reflecting the community structure of System 3’s simulated growth  

using the r=5,β=0.02 pair. 
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Connection Option A 

(6a) Randomly assign X to community k, 

(6b) Model Mintra as a Binomial (m, p) 

random variable; generate a realization 

for Mintra ; and set the number of intra 

and intercommunity interfaces as m’intra 

= min{mintra, Nk} and m’inter = m – {m’intra} 

respectively, 

(6c) Attach X to m’intra subsystems inside 

community k and minter subsystems 

outside community k using attachment 

probabilities 

(6d) For each intracommunity interface 

established in (6c), assign complexity 

(wiX,intra), 

(6e) For each intercommunity interface 

established in (6c), assign complexity 

(wiX,inter), 

Connection Option B 

(6a) Attach X to m subsystems using 

attachment probabilities,  

 

(6b) For each interface established in 

(6a), assign complexity (wiX), 

Cost Estimation 

(7) Estimate the cost for the augmented 

system using COSYSMO (PMNS*), 

(8) Calculate the additional cost of 

adding subsystem X (PMNS* − PMNS), and 

(9) Store results and return to (4). 

 

Limitations and Directions for Future 

Research  

Although Algorithm 2 addresses several of 

Algorithm 1’s shortcomings, it still has 

limitations. First, as indicated earlier, SV-3s are 

not currently weighted by interface complexity. 

Thus, the validity of using the observed interface 

complexity distribution to estimate future 

interface complexity in Steps (6b), (6d), and (6e) 

above cannot be assessed, and further research is 

necessary. Second, while Algorithm 2 accepts one

-mode, undirected SV-3s as input, real-world SV-

3s can be two-mode or directed. With this in 

mind, methods that accommodate these SV-3 

types could yield additional, valuable information 

and should be explored. Third, Algorithm 2 

employs the Girvan-Newman community 

detection heuristic, and, despite its 

appropriateness, better performing heuristics 

exist (see Danon, Diaz-Guilera, Duch, & Arenas, 

2005). Nonetheless, any community detection 

method, regardless of its performance, may 

ignore other, more compelling marcostructures 

within the architecture. For example, subsystems 

may partition into a hierarchy of clusters, where 

subsystems in lower ranking clusters not only 

have a high density of interfaces with subsystems 

inside their clusters but also have a high density 

of interfaces with subsystems inside higher 

ranking clusters. To identify this and other 

hidden macrostructure, one can apply the 

network analysis technique known as 

blockmodeling, and this represents an intriguing 

way to generalize the current approach.  

Conclusions 

The requirement to submit DoD component-

approved DoDAF models prior to MS A has 

created interesting, new possibilities for the early 

life cycle cost estimation of MDAPs. In particular, 

Valerdi et al. (2015) demonstrate that the DoDAF 

models required Pre-MS A nearly span 

COSYSMO’s parameters, and Dabkowski et al. 

(2014) exploited this mapping in Algorithm 1 by 

estimating the cost of unanticipated, evolutionary 

architectural growth via the SV-3 and COSYSMO. 

Although this development could be seen as 

positive, any cost estimation procedure 

ultimately needs to be informed and validated by 

real-world data. Accordingly, in this paper, we 
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examined the assumptions underlying Algorithm 

1 using the SV-3s from 24 different defense 

programs. 

The results were mixed. Specifically, while the 

type, density, and community structure of real-

world SV-3s generally comport with Algorithm 1, 

modifications and extensions are necessary to 

accommodate two-mode or directed SV-3s. 

Moreover, using the observed degree distribution 

to model an incoming subsystem’s interfaces 

generates too many interfaces, and an alternative 

growth mechanism is needed. Finally, although 

there is statistical support for linear preferential 

attachment as a method of connecting 

subsystems, the SV-3s are small, and our 

statistical results inevitably lack power.  

With this in mind, we developed a modified, data-

driven approach that addresses several of these 

concerns. In particular, using number theory, 

network science, simulation, and statistical 

analysis, we were able to find optimal sets of 

PMFs and strengths of preferential attachment 

for 12 of the 14 one-mode, undirected SV-3s. 

Integrated into Algorithm 2, these optimal sets 

better represent a system’s evolutionary growth, 

and they improve the fidelity of the algorithm. 

Nonetheless, as noted earlier, our approach has 

several limitations, and these represent 

opportunities for future research.  

Aside from developing Algorithm 2, this paper 

also makes several tangential contributions to 

network science. First, to the best of our 

knowledge, this is the first attempt at 

simultaneously estimating a growing network’s 

incoming edge distribution and detecting the 

strength of preferential attachment. To date, 

these efforts have been disconnected, and linking 

them is not only natural but also necessary in 

light of their significant interaction effect. Second, 

assessing the presence of linear preferential 

attachment has traditionally been confined to 

large networks with longitudinal data. By 

modeling the set of feasible edge sequences via 

restricted partitions, we have provided 

researchers with a way to accommodate small 

networks with a single realization. Last, while 

other metrics exist, our use of the minimum sum 

of the absolute pairwise differences between the 

degrees of two identically-sized networks 

provides analysts with an intuitive measure of the 

similarity between their degree distributions. 

Taken together, these contributions highlight the 

benefits of applying network science to new 

domains, and they reinforce the value of viewing 

DoDAF models as computational objects.  
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Endnotes 

1. For those familiar with DoDAF, this seems to violate the generally prescribed structure of the SV-3. 

However, during DoDAF’s most recent, major revision, models shifted from a template-driven paradigm to a 

“fit for purpose” construct (DoD DCIO, 2010, p. 3). 

2. In practice, two-mode networks are often transformed into one-mode networks to facilitate analysis 

(Borgatti, 2009). For example, imagine a two-mode network X, where rows represent professors, columns 

denote institutional committees, and a 1 in cell (i, j) implies professor i is a member of committee j. Under 

the assumption that co-memberships in committees imply meaningful connections between professors, XXT  

yields a useful one-mode, valued network A, where rows and columns represent the professors and values 

provide the number of co-memberships for each pair of professors. Further binarizing A (such that cells 

greater than 1 are set to 1) yields a simple one-mode network. That said, using this approach for a two-mode 

SV-3 is ill-advised, as internal subsystems that interface with common external subsystem(s) do not 

necessarily interface with one another.  

3. While the details of estimating dmin are beyond the scope of this work, Clauset et al. (2009) note that d̂min is 

selected such that its value “makes the probability distributions of the measured data and the best-fit power-

law model as similar as possible above d̂min ” (p. 671). 

4. Data to the left of dmin is discarded prior to estimating ω; therefore, Nfit ≤ Ntotal . 

5. To ascertain the validity of the final inequality, note: (a) prior to the ith oldest subsystem entering the SV-3 

there are i subsystems in it, which implies the ith oldest subsystem can connect to at most i subsystems and 

(b) if Ei ≥ 1, Ej is maximized when Ei = 1 for all i ≠ j, which implies Ej = E - (N - 2).  

6. As stated previously, halving the nominal level of significance provides a reasonable hedge against 

unequal variance in the ∈r, β,l ; however, if the variances are equal, it is unnecessary. Accordingly, given the 

non-normality of the data, we evaluated the homogeneity of the residuals using the Brown-Forsythe test, 

and this returned a p-value of 0, firmly rejecting the variances of the ∈r, β,l  are equal. That said, unequal 

variances “typically cause Type I error rates to be slightly inflated . . . less than 0.02 at the 0.05 level . . . 

provided the ratio of the largest to the smallest variance is no more than 4 to 1, and n is at least 5" (Myers, 

Well, & Lorch, 2010, p. 191). In our case, the maximum and minimum variances are 14.02 (for (r = 22, β = 

0.9) and 4.35 (for (r = 5, β = 0.1)), yielding a ratio of 3.22. Accordingly, halving the nominal level of 

significance is appropriate.  

7. In fact, Hsu’s MCB is equivalent to Dunnett’s multiple comparisons with a control (MCC) procedure, where 

the control condition is selected as the factor setting (i.e., (r, β) pair) with the minimum observed mean 

(Lawson, 2010, p. 47). This has favorable implications for the robustness of Hsu’s MCB. Specifically, when 

the design is balanced, Dunnett’s MCC is known to be robust against non-normality and unequal variance, 

provided the maximum to minimum variance ratio is less than 4:1 (Toothaker, 1993). As Toothaker (1993) 

notes, you can use Dunnett’s MCC at α = 0.05 “with little consequence of unequal variances if the maximum 

true α you would tolerate would be 0.075” (p. 61). Thus, as with our earlier two-way ANOVA, we halved our 

nominal FWER to 0.025.  
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Introduction 

Defense organizations are moving towards agile 

methodologies as a preferred approach to 

software development. The desire to implement 

agile methods is discussed in the 2019 Defense 

Innovation Board (DIB) report, which identifies 

speed and cycle time as the most important 

metrics for software development (McQuade et 

al., 2019). This movement toward agile 

methodologies provides a conundrum for defense 

cost analysts. These cost analysts are proficient in 

developing software estimates based on 

commonly accepted defense sizing metrics such 

as Source Lines of Code (SLOC). But the agile 

environment is unique. The agile mentality relies 

on flexibility and working in small iterations. 

Utilizing metrics like SLOC are often discouraged 

as it constrains the team to a pre-conceived work 

estimate and because it can incentivize the 

contractor to develop inefficient code (Bhatt, 

Tarey, & Patel, 2012). As a result, agile programs 

require cost analysts to potentially adopt new 

methods for proper cost estimation. For example, 

agile programs may use techniques such as level-

of-effort estimates which incorporate the number 

of team members and the expected duration of 

time to work on a new requirement (Rosa, 

Madachy, Clark, & Boehm, 2020). Due to the 

DoD’s lack of experience and familiarity with 

agile, the objective of this article is to investigate 

the current state of agile software cost estimation 

and provide recommendations for cost analysts.  

The DoD has only recently implemented agile 

software development, but the agile concept itself 

dates back to 2001 with the publication of the 

Agile Manifesto (Regan, Lapham, Wrubel, Beck, & 

Bandor, 2014). Since its inception, agile practices 

have become widely adopted throughout private 

industry (Randall, 2014). The private sector’s 20 

years of experience provides an opportunity to 

uncover best practices for cost analysts in an 

agile environment. To study this, we first conduct 

an extensive literature review regarding the 

recommended agile software cost estimating 

models and techniques. The question then 

becomes, “how do the recommended techniques 

align with the methods defense cost analysts are 

currently using?” To answer this, we collect data 

from 11 agile Air Force software factories to 

determine what practitioners actually do. 

Comparison of the two results will provide 

defense analysts with insight on differences 

between current DoD practices and those 

advocated by the published literature.  

 

The Importance of Software in Military 

Systems  

Software plays a critical role in military systems. 

The Defense Innovation Board (2019) states that 
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the DoD’s ability to adapt and respond to threats 

is now determined by its capacity to rapidly 

develop and deploy effective software (McQuade 

et al., 2019). Therefore, speed, cycle time, and 

value have become the most important metrics to 

effectively manage software and subsequently 

impact national defense readiness. Specifically, 

program offices can affect speed and cycle time 

by working closely with operators to deliver 

capabilities based on the most urgent 

requirements and by accounting for any new 

requirements as they arise (Cohen, 2019). To 

address this need for rapid deployment of 

valuable software capabilities, agile software 

factories such as Kessel Run were initiated. These 

software factories were designed to move the 

DoD away from traditional development 

approaches such as Waterfall or Spiral and 

towards the more modern agile approach. 

 

The Agile Advantage  

There is a debate regarding the merits of agile in 

comparison to traditional software development 

approaches. That discussion is outside the scope 

of this article. Rather, the DoD’s shift to agile 

(rightly or wrongly) necessitates a basic 

understanding of the potential advantages of an 

agile approach. What are those advantages? The 

agile software development method has 

advantages along three dimensions: 1) ability to 

rapidly adjust to the immediate needs of the 

customer 2) delivers viable products sooner and 

3) provides more cost effective programs.  

The first Agile advantage is that it provides an 

environment for the customer to communicate 

constructive feedback to the development team. 

A distinct advantage of Agile stems from the 

shorter cycle times to produce useable iterations 

on a product for the customer. Agile teams 

produce a Minimum Viable Product (MVP) which 

has enough features of the end product to meet 

the basic minimum functionality required by the 

client (McQuade et al., 2019). The use of an MVP 

allows agile teams to get immediate feedback 

from the end user which developers can utilize to 

decide the best course of action for future 

development. Agile development differs from the 

traditional Waterfall approach since constant 

feedback loops decrease the risk of implementing 

the wrong functionality for a product (Perkins & 

Long, 2020).  

The second Agile advantage is reduced cycle time. 

Agile methodologies have already been adopted 

and successfully proven to reduce the delivery 

time of products in several federal government 

organizations including the Integrated Strategic 

Planning and Analysis Network (ISPAN), 

Department of Veteran’s Affairs (VA), and 

National Aeronautics and Space Administration 

(NASA). For example, the ISPAN program 

shortened the acquisition cycle duration between 

initiation and Initial Operational Capability by 45 

months (Pinto et al., 2016). Similarly, the VA 

currently delivers capabilities an average of 4.2 

months compared to 3-7 years prior to 

implementing Agile practices (Pinto et al., 2016). 

The 14th Annual State of Agile Report showed 

that the number one reason why commercial 

companies adopted Agile practices was because it 

helped them “accelerate software 

delivery” (Digital.AI, 2020). 

The third advantage of Agile methods is that they 

have the potential to make programs more cost 

efficient. While this potential benefit of Agile is 

debatable, there is evidence for the claim. In the 

commercial sector, Digital.AI (2020) reports that 

26% of companies adopt Agile due to its 

increased cost savings (Digital.AI, 2020). 

Similarly, Freeform Dynamics & CA Technologies 

(2018) found that 29% of IT related companies 

experienced a reduction to overall costs through 

the incorporation of Agile methodologies 

(Freeform Dynamics & CA Technologies, 2018). 

Additionally, the Air Force’s first dedicated Agile 

Software Factory, Kessel Run, has already 

produced positive financial results. Kessel Run 

developed a tanker planning tool for the Qatar 

AOC utilizing state of the art software to 
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construct planning routes which immediately 

saved a reported $214,000 per day in logistics 

and fuel (Cohen, 2019). 

These benefits have resulted in Agile 

development becoming the leading methodology 

that private industries use to create software. The 

commercial successes suggest the DoD may 

similarly benefit by employing Agile. However, 

the nascent Agile implementation in defense 

programs means research into the impacts to 

defense cost estimation is scarce. The defense 

cost analyst is left with uncertainty regarding the 

best techniques and methods for an Agile 

environment.  

 

Data and Methods 

To inform the discussion on how agile cost 

estimation can be improved in the defense arena, 

we compare the predominant published 

literature on recommended agile cost estimation 

methods to current practices in Air Force 

Software Factories. This approach necessitated 

two data sets be collected and analyzed. The first 

data set comes from a robust literature search 

that resulted in 1,814 published articles being 

examined. The second data set comes from 

practitioner responses at 11 Air Software 

Factories that are currently employing Agile 

techniques. Details of each follows: 

Published Literature Data 

To identify the relevant literature, a four phased 

search strategy was employed. The first phase 

involves searching for all articles generated from 

search strings in two major databases: IEEE 

Xplore and Science Direct. The primary search 

string consists of: 

“Software Effort Estimation” <AND> “Cost” 

The primary string is supplemented with the use 

of additional keywords to better refine the 

search. The additional keywords are:  

 

“Agile” <OR> “Expert Judgment” <OR> 

“Algorithm” <OR> “Machine Learning” <OR> 

“Technique” <OR> “Estimate” <AND> language 

“English” 

The second phase of the search strategy 

eliminated all duplicate files and articles that are 

not published in the English language. In phase 

three, the articles are analyzed to deduce 

whether they meet the inclusion and exclusion 

criteria set for the study. During this phase, the 

articles’ title, abstract, conclusion, and keywords 

are read to determine if they meet the standards 

for the research. Table 1 outlines the inclusion/

exclusion criteria. After this primary reading, the 

fourth phase consists of a full read through of the 

article to ensure an article meets the required 

acceptance criteria. 

It is important to note that simply defining or 

listing a cost estimating technique resulted in that 

paper being excluded from the final dataset. Our 

interest is to discern those models or techniques 

that are being supported or advocated for by the 

authors. Including papers that simply define or 

list a technique would artificially inflate the 

advocacy for the cost estimating method. Figure 1 

outlines the four phased search approach and the 

number of articles remaining after the application 

of inclusion/exclusion factors. 

 

Inclusion Criteria Exclusion Criteria 

Provides analysis or 
recommendation of the 
techniques, models, & 
approaches used in Agile 
software estimation 

Not related to Agile based 
environments 

Published in peer-reviewed 
journal articles or 
conference proceedings 

Simply defines or explains 
the type of software 
estimation techniques 

Published DoD report   

Published in the last 20 
years (2000 or later) 

  

Table 1: Article Inclusion/Exclusion Criteria 
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Ultimately, from the original 1814 search hits, 83 

articles are selected for the analysis of this study 

(see Appendix A for the full article list). The 

articles chosen support, advocate, or defend the 

usage of specific practices when conducting cost 

estimation in a software environment. Seventy-

six of the articles are from an industry 

perspective while seven relate to the manner in 

which the DoD advises or conducts its cost 

estimation. The 83 articles provide insight into 

the currently recommended Agile cost estimation 

best practices. This information serves as a 

reference point for the Air Force specific data 

collected in the second data set.  

Air Force Practitioner Data 

Practitioner data is obtained from a data call of 

Agile Air Force Software Factories. This 

information is a baseline for how the Air Force 

and DoD have adapted cost estimation in an Agile 

environment. As of January 2021, there are 16 

identified Air Force Software Factories. Eleven of 

these organizations provided information 

regarding their software cost estimation process. 

Organizations provided their preferred sizing 

metrics and cost estimation techniques. 

Additionally, Software Factories provided context 

regarding their thoughts on cost estimation 

techniques employed in their organization as well 

as their overall level of satisfaction with the 

processes.  

The information collected from 

the Software Factories will be 

compared to the sources 

compiled from the published 

literature. A direct statistical 

comparison of certain metrics 

and techniques will be 

accomplished using Clopper 

Pearson binomial confidence 

intervals. The comparison of the 

two data sets will provide insight 

into how the military is 

conducting its software effort and 

cost estimation compared to the 

current literature. 

Results 

We first examine the results from the published 

literature. Agile cost estimation methods in 

industry today can be categorized into three 

major styles: Algorithmic, Non-Algorithmic, and 

Data-Based (see Table 2). Algorithmic models use 

statistical formulation to generate software 

estimates (Mahmood, Kama, & Azmi, 2019). The 

major forms of Algorithmic models include: Use 

Case Points, Function Points, Story Points, 

COCOMO-II, Parametric models such as SLIM & 

SEER-Sim, Case Based Analogy (CBR), and SLOC 

(Mahmood, Kama, & Azmi, 2019). Use Case 

Points, Function Points, Story Points, and SLOC 

can all be utilized as independent variables in 

Algorithmic models as a means to estimate cost. 

However, at their core, they are all sizing metrics. 

Therefore, for the purpose of this study, they will 

be excluded from the Algorithmic category and 

included in a separate table tallying sizing 

metrics. Non-Algorithmic models are typically 

based on interpretation and comparison to 

historical data to generate estimates for the 

future. The major forms of Non-Algorithmic 

models include: Expert Judgment, Planning 

Poker/disaggregation, and Wideband Delphi 

(Mahmood, Kama, & Azmi, 2019). Data-Based 

estimates utilize machine learning and artificial 

intelligence to develop optimization models that 

develop multifaceted relationships between 

Figure 1. Article Search and Filter Process 
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inputs and outputs. The most common form of 

Data-Based methods include: Artificial Neural 

Networks (ANN’s), Genetic Algorithms, Fuzzy-

Based Models, and Bayesian Networks 

(Mahmood, Kama, & Azmi, 2019).  

The 83 sources from the literature review are 

mapped to the various techniques (see Appendix 

B). The table in Appendix B uses a number 

system that references the 83 specific articles 

provided in the Selected Cost Estimation 

Techniques Work Cited of Appendix A. Note that a 

variety of sources incorporate multiple 

references to techniques in their methodology. A 

reference indicates that the article advocates for 

the use of a certain technique, style, or size 

metric. For example, article 34 is one particular 

source; however, it references the use of SLOC, 

COCOMO-II, and Neural Networks. We track both 

the number of references and the number of 

sources for the analysis. All citations in the 

Appendix B table are listed chronologically 

according to their respective date of publication. 

Figure 2 summarizes the data from Appendix B. 

The results indicate that Neural Networks 

(44.58%), Regression using Unsupervised 

Learning Techniques (20.48%), and Expert 

Judgment (21.69%) are amongst the most 

prevalent effort estimation strategies referenced 

in the literature. Additionally, the table within 

Figure 2 aggregates the data by the three 

Technique Styles. The % Use column identifies 

the percentage of sources that reference a 

particular Technique Style. Data Based 

approaches are the most common, appearing in 

57.83% of the sources.  

 

Technique 
Style 

Techniques 

Algorithmic COCOMO-II 

Algorithmic SLIM 

Algorithmic SEER-SEM 

Algorithmic Parametric Models 

Algorithmic Regression Models 

Non- Expert Judgment  

Non- Planning Poker/disaggregation 

Non- Wideband Delphi 

Data-Based Neural Networks 

Data-Based Regression Using Unsupervised 

Data-Based Fuzzy Models 

Data-Based Genetic Algorithms 

Data-Based Case Based Analogy 

Data-Based Bayesian Networks 

Table 2: Technique Style and Techniques 

Figure 2. References to Software Effort Estimation Techniques 
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The sizing metric used is also an important 

consideration for cost analysts. The authors are 

agnostic regarding the best sizing metric. 

However, many defense cost analysts have strong 

opinions (for and against) regarding sizing 

metrics such as SLOC. Therefore, we examine the 

various sizing metrics identified in the peer-

reviewed literature (see Table 3). 

The most obvious conclusion from Table 3 is that 

more than half of the articles do not directly 

specify the sizing metric used. Authors may make 

reference to 

generic size or 

effort 

terminology 

without directly 

identifying the 

specific metric 

utilized. There 

are a total of 37 

articles that did 

reference size 

(note that 

articles 16, 20, 

and 52 discuss 

more than one 

size metric). Of 

these articles, 

Use Case Points 

appears to be the 

most commonly 

referenced sizing metric at 15.66%; however, 

according to Table 3, each sizing metric appears 

to have a relatively similar number of 

appearances in the data set as they are all 

mentioned in the range of 8.43%-15.66%. 

Figure 3 illustrates the references to technique 

styles when accounting for the articles that 

additionally identify the sizing metric utilized. 

Recall that articles that only use a size metric to 

build their model are not mapped to one of the 

three technique styles: Algorithmic, Non-

 

Sizing Metric Statistics of Usage Cited Literature 

Unidentified Metric 55.42% 

67, 79, 7, 43, 35, 26, 40, 25, 18, 42, 47, 21, 4, 
72, 9, 49, 32, 10, 38, 75, 31, 59, 74, 63, 45, 
15, 22, 24, 3, 44, 2, 81, 23, 8, 48, 76, 19, 12, 
68, 69, 17, 80, 55, 41, 11, 64 

Use Case Points 15.66% 51, 50, 83, 78, 71, 29, 52, 5, 20, 62, 6, 37, 16 

SLOC 13.25% 1, 36, 34, 66, 20, 54, 60, 30, 27, 73, 16 

Story Points 12.05% 33, 57, 56, 58, 53, 46, 61, 82, 14, 65 

Function Points 8.43% 28, 70, 13, 52, 77, 16, 39 

Table 3: Software Size Metrics 

Figure 3: Number of References to Technique Styles Accounting for Size Metrics 
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Algorithmic, and Data-Based. Using Function 

Points as an example, Table 3 shows seven 

instances of the Function Point metric in the 

literature. But Function Points only appear three 

times in Figure 3 as being associated with one of 

the technique styles. Another important 

consideration in Figure 3 is that an article may 

discuss multiple techniques. Using SLOC as an 

example, Table 3 shows 11 instances of the SLOC 

metric in the literature. Figure 3, however, shows 

17 instances of SLOC associated with a technique 

style. The reason is that six articles (1, 34, 20, 30, 

27, 73) include multiple techniques with the 

SLOC sizing metric.  

Further analysis of the published literature 

reveals a number of sources describing the 

viability of a hybrid or ensemble model which 

incorporates multiple techniques into the 

creation of a new multifaceted one. This is one 

reason articles appear in the previous tables as 

repeated references. Table 4 shows 25 articles 

(30.12%) recommend the construction of a 

hybrid/ensemble model. Additionally, 21 of the 

25 articles that mention the use of an ensemble 

method incorporate a Data-Based approach in 

that model. However, not all articles that mention 

multiple techniques are advocating for a hybrid 

model. The ‘Indifference Between Techniques’ 

row captures articles which find that different 

techniques can be equally viable or that certain 

techniques should only be utilized under specific 

conditions. Lastly, the largest category 

comprising 60.24% of the data set only makes 

use of one technique. 

There are seven sources found in the literature 

regarding DoD policy and doctrine on Agile 

software cost estimation. Examining these 

sources separately is important given that we will 

be comparing the literature to current defense 

practitioner practices. Due to the limited 

information, Figure 4 captures the DoD 

techniques and estimating sizing metrics 

specified in one graphic. There cannot be any 

conclusive determinations due to the low sample 

size; however, there is a noticeable lack of 

discussion regarding the use of Data-Based styles. 

The previous literature has highlighted the 

increase in the academic discussion regarding 

Data-Based styles. Only one DoD article (41) 

mentions the need for effort estimating to pivot 

towards using machine learning. Also of note, 

there is discussion on SLOC (16, 63) as a viable 

sizing metric as well as the reliance on expert 

judgment (16, 45) to construct estimates.  

 

Software Factory Results 

This section provides results 

from the data collection of 

the 11 Agile Air Force 

Software Factories. We 

defined a Software Factory as 

any software development 

team striving to apply Agile 

principles to their processes 

as they support DoD systems. 

The Software Factories 

provided either the name of 

their organization or the 

specific program they are 

working on (see Appendix C 

 

Model 
Statistics of 

Usage 
Cited Literatures 

Single 
Technique 

60.24% 

79, 7, 26, 25, 18, 42, 21, 28, 72, 
49, 70, 32, 50, 83, 59, 74, 78, 
33, 63, 57, 56, 58, 13, 45, 71, 
29, 52, 66, 22, 53, 46, 77, 54, 3, 
62, 44, 2, 23, 8, 60, 61, 12, 14, 
68, 17, 80, 55, 41, 11, 39 

Hybrid/
Ensemble 

30.12% 
43, 35, 47, 4, 36, 51, 34, 75, 31, 
15, 5, 20, 24, 81, 48, 82, 19, 30, 
6, 65, 69, 27, 37, 73, 64 

Indifference 
Between 
Techniques 

9.64% 67, 40, 1, 9, 10, 38, 76, 16 

Table 4. References to Hybrid/Ensemble Methods 
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for the full list). To maintain the integrity of 

responses, each of the Factory’s specific answers 

will remain anonymous in the subsequent 

analysis. Factories are randomly assigned a 

number from 1 to 11 and any discussion 

regarding specific responses will refer to the 

respective sources as Factory #1-11.  

The data call from the Software Factories closely 

mirrored the sizing metrics and technique 

categories determined in the literature review; 

however, there are some 

differences. The software 

factory data covers three main 

technique styles: Algorithmic, 

Non-Algorithmic, and 

Engineering Build-up. In 

contrast, the three main styles 

from the literature are 

Algorithmic, Non-Algorithmic, 

and Data-Based. There are no 

references to Data-Based 

techniques in any Software 

Factory response, so this 

technique style is effectively 

eliminated from the data. 

Instead, Engineering Build-up 

represents a new 

categorization of cost 

estimation for this data set. 

Also, the Algorithmic 

technique style has a change to 

its composition. For the 

software factory data, the 

various parametric techniques 

are compiled together under 

one ‘Parametric’ category due 

to the lack of overall 

responses. The Parametric 

category includes references to 

SEER-SEM, SLIM, COCOMO-II, 

and generic parametric 

techniques. Lastly, the 

Software Factories elaborate 

on the use of Capacity Based 

and Analogy estimation which 

are techniques not previously defined or 

explored in the published literature data. 

Figure 5 depicts the techniques used by the 

Software Factories. The Non-Algorithmic 

category is the largest with usage by 9 of the 11 

Factories. The dominant Non-Algorithmic 

techniques are planning poker in nine Factories 

(3, 4, 5, 6, 7, 8, 9, 10, & 11) and subject matter 

expert in seven Factories (1, 3, 4, 5, 6, 7, & 10).  

Figure 4. DoD Article References to Techniques 

Figure 5. Software Factory References to Techniques 
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In addition to Non-Algorithmic, Factories also 

expressed a preference for Capacity Based 

estimates. Capacity based estimating, which falls 

under the new Engineering Build-up category, is 

used by 7 of 11 Factories (2, 3, 4, 5, 7, 8, & 10). 

Capacity based estimating examines contract 

elements to individually assess the number of full

-time employees required to satisfy the 

requirement. Factory #2 articulates that since 

they are putting positions on contract instead of 

the product itself, it makes sense to directly 

estimate the capacity. They argue that the use of 

Capacity Based estimation has far more fidelity 

than the traditional use of any type of traditional 

Parametric technique. Furthermore, Factories #3 

and #4 support the notion that cost estimates 

should be constructed based on equipment, 

licenses, and full time employees. Factory #7 

estimates the effort according to the number of 

overall Story Points to be accomplished over the 

course of the year and then determines the 

number of full time employees required to 

accomplish that established goal. Factory #8 

identifies that cost estimation is independent of 

software size and is rather a function of 

personnel, equipment, contracting, and other 

direct costs. The results illustrate that Capacity 

Based is a widely utilized and supported 

technique for agile cost estimation at the 

Software Factories. 

Figure 5 also shows that Factories identified the 

usage of Algorithmic style techniques. While 

there are four Factory references (4, 6, & 10) to 

Parametric techniques, these references include 

caveats. More specifically, three Factories that 

specify the use of Algorithmic technique styles 

additionally utilize Non-Algorithmic techniques. 

Factory #6 articulates that Parametric techniques 

are typically only utilized by contractors or when 

mandated cost estimating databases do not have 

analogous projects. Additionally, there is one 

reference to Regression techniques at Factory #6; 

however, the team highlights that only some of 

the Parametric models include a Regression 

based approach. Furthermore, Factory #10 states 

that they rarely utilize Parametric techniques. 

Specifically, the Factories articulate that none of 

their organizations utilize the COCOMO-II model. 

These results directly contrast the literature 

results which had 9 of the 83 sources touting the 

use of the COCOMO-II model. Overall, these 

results highlight a predominant presence and 

preference towards Non-Algorithmic technique 

styles.  

In addition to techniques, we are also interested 

in the sizing metrics used by the Software 

Factories. The data (see Table 5) does not present 

a clear dominance of any one metric. Even the 

most prevalent metric, Story Points, is only 

incorporated in 5 of the 11 Factories (7, 8, 9, 10, 

& 11). However, there are notable takeaways. 

Only one Factory reports using Function Points 

(11) while four Factories (6, 7, 10, & 11) utilize 

Use Case Points. The data additionally highlights 

the fact that only two Factories (6 & 10) utilize 

SLOC. Factory #6 states they are not satisfied 

with the results of SLOC estimates, and that they 

typically transform SLOC values into Use Case 

Points. Factory #10 caveats that their usage of 

SLOC is only to support other program’s metrics. 

Additionally, Factory #5 reports that they have 

removed the use of SLOC in estimates as they do 

not believe it to be an accurate or relevant metric. 

Factory #7 clarifies that they have only recently 

transitioned from using SLOC to Use Case Points 

and Story Points. The results demonstrate that 

SLOC is not generally considered a viable metric 

at the Software Factories. 

 

Sizing Metric Factory References 

SLOC 6, 10 

Function Points 11 

Use Case Points 6, 7, 10, 11 

Story Points 7, 8, 9, 10, 11 

Table 5: Software Factory Sizing Metrics 
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In summary, the results from the software 

factories present three major findings. First, Non-

Algorithmic techniques are prevalent in almost 

the entirety of Software Factory responses while 

Algorithmic styles are almost non-existent. 

Second, Capacity Based estimating is highly 

prevalent in Factories and represents a form of 

software effort cost estimation that is not seen in 

the literature. Third, almost all Factories reject 

SLOC as a metric due to accuracy concerns in the 

Agile environment. 

Comparison of Literature and Factory Data 

 There are three main conclusions derived from 

comparing the literature with the practitioner 

data. First, the Air Force is lagging in terms of 

adaptation and adoption of Data-Based models. 

However, secondly, the Air Force is synchronized 

with the findings of the prevailing literature 

which shows that SLOC is typically not used as a 

metric in Agile environments. Lastly, despite the 

literature favoring Algorithmic and Data-Based 

techniques, the Air Force predominantly follows 

the use of Non-Algorithmic and Capacity Based 

cost estimation models. 

One of the most noticeable differences is that 

there are no recorded instances of Data-Based 

techniques in the Software Factory data. While 

perhaps surprising given the large quantity of 

Data-Based solutions in the literature, the results 

can be explained by a number of reasons. The Air 

Force Agile Software Factories have only been 

established within the last several years. As of 

2021, 6 out of the 11 Factories respond that they 

are either not happy or uncertain regarding their 

current cost estimation process. Data-Based 

solutions offer a much more advanced 

methodology for conducting cost estimates as an 

optimization on existing techniques. Air Force 

Software Factories are still trying to establish 

themselves and their overall framework. 

Therefore, as of 2021, the relative infancy of the 

Software Factories may help explain the lack of 

adopting more complicated cost models.  

Furthermore, the published literature shows the 

techniques that academics are perpetuating as 

the most preferred methodologies. It is worth 

noting, while the case studies and data can 

mathematically justify the empirical advantage of 

using more refined techniques, it does not speak 

toward the level of difficulty in successfully 

adopting such practices. The Data-Based 

techniques may offer superior solutions; 

however, those solutions may only be minutely 

superior to a far simpler alternative. In economic 

terms, the marginal benefit experienced by the 

improved results may not outweigh the marginal 

costs required to adapt the model. Therefore, it is 

intuitive that a less complicated and more easily 

adoptable cost model could provide Factories 

with a superior solution in the meantime.  

Second, The sizing metric, and in particular SLOC, 

is a flashpoint for software estimators. According 

to the DoD’s Software Development Estimating 

Handbook SLOC is one of the most widely used 

methods to obtain the scope for a software 

program (NCCA & AFCAA, 2008). However, many 

Agile proponents argue against its use as the level 

of efficiency and experience between developers 

causes a disparity in the amount of SLOC and time 

required to develop similar functionality (Bhatt, 

et al., 2012). The research appears to support the 

prevailing sentiment that SLOC is not widely used 

in Agile environments. The literature only has 11 

out of 83 references to SLOC as a metric while the 

Software Factories had 2 out of 11 references. A 

comparison of confidence intervals can be 

utilized to understand if the two sets of data have 

statistically equivalent proportions in regards to 

the use of SLOC. A Clopper Pearson interval can 

be constructed to provide a 95% binomial 

confidence interval for the responses for SLOC 

usage in each data set. The null hypothesis is that 

there is not a significant difference between the 

data sets’ use of SLOC. The alternative is that 

there is a significant difference in the way each 

data set uses SLOC. Figure 6 displays the two 

confidence intervals overlaid on the same graph, 
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with the interval for the literature on the bottom 

in red and the interval for the Software Factories 

on the top in blue. When comparing the 

confidence intervals, because there is an overlap, 

this results in the failure to reject the null. 

Therefore, the conclusion is that there is not a 

significant difference between the ways each data 

set uses SLOC as a metric.  

Furthermore, there are two major caveats to the 

11 references to SLOC in the literature. First, 

there is correlation between SLOC and the 

COCOMO-II model. The COCOMO-II model is 

known to work primarily with SLOC based inputs. 

Six of the 11 sources (34, 66, 20, 30, 27, & 73) in 

the literature that reference SLOC additionally 

recommend the COCOMO-II model. By contrast, 

none of the Factories use the COCOMO-II model. 

Therefore, it is not surprising to see a lack of 

support for both SLOC and the COCOMO-II model 

in the software factories. The contrast highlights 

the fact that the COCOMO-II model may be more 

prevalent in the world of academic research 

rather than in regular industry practice. 

Therefore, under this assumption, when 

controlling for the COCOMO-II specific sources, 

there are only five references to SLOC in the 

literature. Second, two of those remaining five 

references (16 and 60) are from DoD sources 

regarding cost estimation in an Agile 

environment. Therefore, when additionally 

controlling for those DoD sources, there are 

actually only three references (1, 36, and 54) 

from the literature that recommend the use of 

SLOC. The analysis further supports that the Air 

Force’s Agile cost estimation practices, as 

demonstrated by the Software Factory data, 

coincide with the majority of the published 

literature sources which also do not incorporate 

SLOC into their cost estimation models. The low 

proportions in both data sets show the low 

prevalence of SLOC in Agile. 

Third, the Software Factories shows a far greater 

reliance on Non-Algorithmic models in 

comparison to the published literature. Once 

again, a Clopper Pearson interval can be utilized 

to construct a 95% confidence interval for each 

data set’s proportion of references to Non-

Algorithmic styles. The null hypothesis is that 

there is not a significant difference between the 

data sets’ use of Non-Algorithmic styles. The 

alternative is that there is a significant difference 

between the ways each data set addresses the use 

of Non-Algorithmic styles. Figure 7 displays the 

two confidence intervals overlaid on the same 

image, with the interval for the published 

literature on the bottom in red and the interval 

for Data the Software Factories on the top in blue. 

When comparing the confidence intervals, 

because there is not an overlap this results in the 

rejection of the null hypothesis. Therefore, the 

conclusion is that there is a significant difference 

between the ways each data set uses Non-

Algorithmic styles. 

Figure 6. SLOC Usage 

Figure 7. Non-Algorithmic Comparison 
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Conclusion 

The purpose of this article was to identify the 

differences or commonalities between the 

recommended published literature on agile 

software cost estimating in comparison to 

current practices in the DoD. That comparison 

illuminated three main points. First, the Air Force 

needs to continue to research ways to consider 

incorporating Data-Based techniques into their 

Factories. Second, despite DoD literature, the Air 

Force agrees with the predominant majority of 

the literature and does not utilize SLOC as a 

preferred metric within its Agile organizations. 

Third, the Air Force adheres to Non-Algorithmic 

and Capacity Based estimation which contradicts 

the prevailing literature that favors Data-Based 

models. 

The finding regarding Data-Based models 

prevalence in the literature merits further 

discussion. Recall that data-based models include 

things such as neural networks or machine 

learning. These techniques became popular in 

recent years in many other fields, and as such, 

their prevalence in the Agile estimating literature 

may be an artifact of this larger trend. 

Additionally, it is important to note that many of 

these models are “black boxes” which mask the 

relationship between input and output variables. 

In other words, there may be legitimate concerns 

in adopting this type of methodology. Regardless, 

the prudent approach would be for future 

research to investigate the merits of these models 

in a DoD environment.  

It is an exciting time to be a cost analyst. The 

adoption of agile software development in the 

DoD is necessitating new ways of thinking about 

software cost estimation. Understanding the 

recommended methods in comparison to current 

practices is a key step to illuminating a future 

path where the best possible estimating methods 

are employed. 
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Appendix B: References to Software Effort Estimation Techniques 

 

Techniques 
Statistics of 

Usage 
Cited Literatures 

Neural Networks 44.58% 
67, 1, 4, 72, 9, 49, 36, 70, 50, 34, 31, 59, 63, 
15, 5, 46, 54, 24, 3, 2, 81, 23, 8, 48, 82, 19, 
30, 6, 68, 69, 17, 80, 55, 41, 11, 73, 64 

Expert Judgment (Top-Down, 
Bottom-Up) 

21.69% 
35, 26, 40, 25, 18, 9, 10, 38, 75, 45, 53, 20, 
44, 76, 65, 27, 37, 16 

Regression Using 
Unsupervised Learning 
Techniques 

20.48% 
67, 43, 36, 32, 51, 31, 5, 24, 62, 48, 82, 19, 6, 
68, 69, 55, 64 

COCOMO-II 10.84% 4, 34, 29, 52, 66, 20, 30, 27, 73 

Regression Model 10.84% 43, 35, 1, 75, 33, 71, 81, 60, 68 

Case Based Analogy 9.64% 43, 35, 9, 31, 22, 48, 65, 37 

Parametric Model 7.23% 21, 57, 56, 58, 53, 12 

Wideband Delphi 7.23% 79, 40, 47, 10, 38, 16 

Planning Poker 4.82% 47, 38, 76, 14 

Fuzzy Models 4.82% 15, 48, 61, 6 

Genetic Algorithms 3.61% 7, 31, 48 

Bayesian Networks 3.61% 42, 48, 64 

SLIM 1.20% 74 

SEER-SEM 1.20% 74 
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Appendix C: Software Factories and Programs 
 

Software Factory/Program Name Overall Mission 

Bespin Delivering Custom Mobile Experiences to Airmen 

Kessel Run Delivering War-Winning Software Capabilities 

Platform 1 DoD Enterprise DevSecOps Provider 

Unified Platform 
Providing DevSecOps/Software Factory Managed 
Services with Integrated Security 

Rogue Blue Developing & Sustaining STRATCOM Tools 

Ski Camp 
Employing DevSecOps to Support Embedded 
Weapon System Software 

Space Camp 
Software Node of Platform One Deploying Space 
Mission Capabilities 

SMC Forge Program 
Delivering a Common Command and Control 
Network for Satellites 

A-10 Operational Flight Program Delivering Avionics Software for the A-10 

Personnel Recovery Command and 
Control 

Delivering Tools & Services for Planning, 
Collaborating, and Managing Search and Rescue 
Efforts 

F-16 Center Display Unit 
Delivering Avionics Software for the F-16 Center 
Display Unit 
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Abstract: Augustine’s Law famously proposed fighter aircraft costs are growing so rapidly that by 2054 

buying a single tactical aircraft will consume the entire defense budget. Is the situation really so dire? This 

paper examines the trend in U.S. fighter costs and relates them to generational changes in aircraft design and 

manufacture. It also examines the new jet fighters of the 2000s to see if Augustine’s Law is really unfolding as 

its author originally thought.  

Key words: Augustine’s Law, cost analysis, fighter aircraft, government procurement, cost effectiveness, cost 

estimates, mathematical models, planning 

“In the year 2054, the entire defense budget will purchase just one aircraft. This aircraft will  

have to be shared by the Air Force and Navy 3 ½ days each per week except for leap year,  

when it will be made available to the Marines for the extra day.” – Augustine’s Law XVI. 

Introduction 

In his book, Augustine’s Laws, former aerospace 

executive Norman Augustine proposed a series of 

“laws” – more accurately, a series of tongue-in-

cheek empirical observations -- about 

management behavior in the spirit of the late C. 

Northcote Parkinson. The mostly widely quoted of 

these is Augustine’s assertion (quoted above) that 

the rate of increase in military tactical aircraft 

costs over time would eventually exceed the cost 

of the overall defense budget and even (past 

2100) the gross national product (GNP) of the 

United States. 

This seemingly absurd conclusion nonetheless 

had empirical justification, which Augustine 

produced in his book. Beginning with the Wright 

Brother’s Model A in 1910, Augustine tracked the 

cost of U.S. tactical aircraft through the release of 

the F-18A/B in the early 1980’s and observed an 

exponential growth over time. Figure 1, 

reproduced from Augustine’s book, shows the 

then-year average unit cost increasing by a factor 

of four every decade.  

Extrapolating this trend into the future – as well 

as extrapolating the projected growth in the 

Defense Department budget and the nation’s GNP 

– Augustine calculated that the price of a single 

tactical aircraft would equal the entire projected 

defense budget by 2054. This is shown in Figure 2, 

as well as the astonishing conclusion that the 

price of our single aircraft would eventually 

exceed the GNP sometime around the year 2150:  

Figure 1: Reprinted with Permission of Norman Augustine 
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Augustine’s book does not provide absolute 

numbers, but useful approximations can be made 

from reading the charts themselves. Cost 

increases for tactical aircraft by a factor of four 

every decade translates into a 15% increase per 

year. Likewise, from the chart, it is apparent that 

the defense budget is assumed to increase by 

2.5% per year and the nominal GNP by 5.5% per 

year. This produces an intersection by 2054 

where the defense budget and the cost of a single 

aircraft meet at approximately $800 billion. 

Likewise, by 2114 the GNP and the cost of a single 

aircraft meet at approximately $3.6 quadrillion.  

Augustine’s prediction first appeared in written 

form (Augustine, 1979) several years earlier as an 

article in the Defense Systems Management Review. 

When asked in 2016 about his prediction, 

Augustine not only confirmed his original 

prediction but gave it an exact date: “It was 2054. 

I've refined it actually to July 23, 2054. The 

Economist just came out with [an] update to my 

law and I'm sorry to say we're right on 

track.” (Aitoro, 2016.) 

Along the same vein, another “law” authored by 

Augustine relates time against months to first 

flight (reference Figure 3) and concludes that 

there has been no change in aircraft design and 

development spans despite the increasing 

complexity of military and commercial aircraft 

design and build over time: 

The duration of the design and build phase of 

aircraft development programs has remained 

virtually unchanged for 40 years. This period 

is approximately the same for government 

projects, commercial projects, and, for that 

matter, projects undertaken in the Soviet 

Union. (Augustine, 1983.)  

Augustine’s ironic projections have been seized 

upon by critics of the defense establishment as 

proof of wasteful spending, “gold plate” 

requirements and an industry which has little to 

no concern about controlling costs. Summarizing 

much of the published criticism, Franck writes: 

“The most commonly held belief (the 

‘conventional wisdom’) regarding quality versus 

quantity choices is that the major weapon systems 

are laden with technological bells and whistles 

that add much to cost but little, if anything, to 

military effectiveness.” (Franck, 1992). In 

Figure 2: Reprinted with Permission of Norman Augustine 

Figure 3: Reprinted with Permission of Norman Augustine 
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Augustine’s view, the observed cost growth over 

time is not adequately explained by 

improvements in aircraft performance but is 

more closely linked to an engineering mindset 

that values technology for technology’s sake – a 

mindset that has created a cost growth that is 

unsustainable over time:  

This rate of growth seems to be an inherent 

characteristic of such systems, with the unit 

cost being most closely correlated with the 

passage of time rather than with changes in 

maneuverability, speed, weight, or other 

technical parameters. The same inexorable 

trend can be shown to apply to commercial 

aircraft, helicopters, and even ships and 

tanks, although in the last two somewhat less 

technologically sophisticated instances, the 

rate of growth is a factor of two every ten 

years. Automobiles, houses, and certain other 

commercial products more nearly 

approximate this latter case. The point is not, 

of course, that new technology is inevitably 

more expensive than old technology; the 

opposite is often the case. But what happens 

is that…new technology opens vast new 

capability vistas which are then crammed 

into each new generation of a product. 

(Augustine, 1983.)  

While Augustine’s laws have been widely (and 

approvingly) quoted over the subsequent three 

decades, there have been criticisms of this 

analysis. Eskew (2000) pointed out three 

methodological issues in Augustine’s analysis: 

• His projection is based on then-year (inflated) 
dollars instead of adjusting all values back to a 
constant dollar base. A substantial portion of 
the cost growth is therefore due to the larger 
trend in monetary inflation over time. The 
Bureau of Labor Statistics on-line Consumer 
Price Index (CPI) inflation calculator shows 
that $10,000 in January 1913 would now be 
worth $261,370 in June 2019 – an increase of 
2,514%. (BLS, 2019.)  
 

• The analysis does not consider the total 
number of aircraft procured. All else being 
equal, the larger the production buy, the lower 
the average unit cost – the familiar learning 
curve effect. If the size of production buys has 
decreased over time, this could produce a 
systemic bias toward higher aircraft unit prices 
over time. 

• Likewise, the analysis does not consider the 
number of aircraft produced in a single year. 
Larger lot buys are typically associated with 
lower costs due to the overhead savings due to 
larger business bases and the allocation of fixed 
support labor costs across larger quantities. 
Once again, smaller lot quantities over time 
could produce a systemic bias toward higher 
aircraft unit prices. 

To Eskew’s list, we can add: 

• The definition of “average unit cost” as used by 
Augustine is a nebulous one. This could 
represent unit recurring flyaway (URF), or 
production average unit cost (PAUC); or 
average procurement cost (AUPC) – each of 
which would reveal a substantially different 
answer. It is unclear what definition is used by 
Augustine, or if it is applied consistently over 
time.  

We come then to the purpose of this paper, which 

is to explore the following questions: 

• If fighter aircraft are compared over time using 
a standardized definition of unit cost, after 
normalization for inflation and learning curve 
impacts, are the trends Augustine observed still 
apparent?  

• Since Augustine’s initial publication, three 
major fighter programs have been introduced 
(F-18E/F, F-22 and F-35). If we introduce this 
new data, does it change or confirm Augustine’s 
projections? 

• Fighter jet aircraft are substantially more 
complex than their post-World War II 
predecessors. What is the relationship between 
cost and each successive generation of fighter 
aircraft? How much do advances in capability 
cost historically?  

• Regarding Augustine’s assertion regarding the 
unchanging length of development programs, 
what does history for the most recent fighter 
programs (F-18E/F, F-22 and F-35) tell us? 
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Method of Analysis 

To examine these issues more closely, a cost 

database from public domain sources was 

assembled. The primary source for cost data is 

the U.S. Military Aircraft Cost Handbook (DePuy, 

1983). The Handbook database represents Total 

Obligational Authority (TOA) requested by the 

services to procure attack, bomber and fighter 

aircraft. Values are reported in then-year dollars 

and normalized to FY1981 dollars. The Handbook 

uses FY buy average costs to calculate airframe, 

airframe and engine, and total flyaway unit cost 

curves, allowing the calculation of theoretical T-

100 values. The Handbook presents data for 

aircraft in the active U.S. inventory during 

FY1960-FY1980 period. This eliminates some of 

the first-generation fighters such as the P-80. The 

most recently introduced fighter aircraft in the 

MCR database is the F-18A/B series. In this 

analysis, the FY1981 cost data was escalated to 

FY2018 dollars using December 2018 U.S. DoD 

aircraft procurement escalation indices.  

To include more recent aircraft introduced into 

the fleet, a supplemental database was created 

from public domain reports such as U.S. DoD 

budget documents (USAF, 2010, USN, 1999, USN, 

2000, USN, 2001, USN, 2002, USN, 2003, USN, 

2004, USN, 2005, USN, 2006, USN, 2007, USN, 

2008, USN, 2009, USN, 2010, USN, 2011, DoD, 

2012a, DoD, 2013, DoD, 2014) as well as General 

Accounting Office (GAO) reports (GAO, 2019). 

This provides then-year flyaway cost data by FY 

buy for the most recent aircraft introduced to the 

fleet: F-18E/F, F-22, and F-35. After 

normalization to FY2018 dollars using the same 

DoD escalation indices, unit curves were drawn 

from unit flyaway data and T100 theoretical 

values calculated.  

In addition, aircraft empty weight information 

was pulled from public domain sources, most 

coming from RAND studies (Hess, 1987) 

supplemented by Selected Acquisition Report 

(SAR) data or Air Force and/or industry press 

releases (DoD, 2012b, USAF, 2015, Lockheed 

Martin, 2019). In all, cost and weight data were 

found for 23 U.S. fighter aircraft with Initial 

Operational Capability (IOC) dates ranging from 

1949 to 2016. 

A popular way to review military aircraft history 

is to talk of “generations” of fighter jet aircraft. F-

22 and F-35 are commonly cited as “fifth 

generation” fighters, and their eventual 

replacements as “sixth generation.” In truth there 

is no fully accepted definition of jet fighter 

generations. However, there is rough agreement 

on the timelines and characteristics associated 

with each fighter generation, although there may 

be disagreement on whether an individual 

aircraft should be classified as, say, second or 

third generation. Yoon (2004) suggests the 

following timeline to assess fighter development: 

• First Generation Jet Fighters (circa 1945 to 
1955) – Powered by the first turbojet engines, 
these post-World War II aircraft have capability 
like their piston engine predecessors. These 
aircraft are subsonic, usually do not carry radar 
and carry conventional weaponry such as 
machine guns and bombs but not guided 
missiles. First generation aircraft used in the 
sample were the North American F-86 and 
Northrop F-89. Unfortunately, other early 
examples from the U.S. inventory such as the 
Lockheed P-80 and F-94, Republic F-84, and the 
North American F-96 were eliminated because 
reliable T100 flyaway cost or weight data was 
not available. 

• Second Generation Jet Fighters (circa 1955 to 
1960) – This generation introduces the first 
supersonic combat aircraft. They also introduce 
radar and the use of guided missiles. Second 
generation aircraft used in the sample were the 
Douglas A-3; McDonnell A-4, F3H, and F-101; 
Convair F-102 and F-106; Lockheed F-104; and 
the Republic F-105. 

• Third Generation Jet Fighters (circa 1960 to 
1970) – This generation introduces multi-role 
fighters which combine air defense and ground 
attack missions in a single configuration. Third 
generation aircraft used in the sample were the 
McDonnell F-4, Grumman A-6, Vought A-7 and 
the General Dynamics F-111. 
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• Fourth Generation Jet Fighters (circa 1970 to 
1990) – This generation continues the trend 
towards multi-role aircraft but improves 
capability with more advanced avionics and 
weapons systems. Greater emphasis is placed 
on maneuverability versus pure speed and 
incorporation of lessons learned from the 
Vietnam air war. Fourth generation aircraft 
used in the sample were the Grumman F-14, 
McDonnell Douglas F-15, F-18 and AV-8B, 
Fairchild A-10 and the General Dynamics F-16. 

• Generation 4.5 Jet Fighters (circa 1990 to 2000) 
– This generation represents an upgrade to 
existing fourth generation aircraft but 
incorporates more advanced electronics and, to 
some degree, a reduced radar cross section 
(RCS) through the incorporation of limited 
stealth characteristics. The singular example of 
Generation 4.5 in the sample was the Boeing F-
18E/F. 

• Fifth Generation Jet Fighters (circa 2000 to 
Today) – This generation introduces low 
observable stealth, more powerful engines, and 
advanced integrated avionics. The F-35 also 
introduces shared battlefield awareness and the 
ability to work with a broad array of networked 

systems. Fifth generation aircraft used in the 
sample were the Lockheed Martin F-22 and F-
35A. For analysis purposes, only the 
Conventional Takeoff and Landing (CTOL) 
version of F-35 was used since it is the most 
commonly produced variant in lieu of the F-35B 
and F-35C versions. 

 

Analysis – Military Fighter Aircraft 

If we plot the T100 flyaway FY2018 dollars per 

unit – without performing any adjustment for 

aircraft weight -- against the initial fielding date of 

the aircraft, we get the result shown in Figure 4. 

Based on the best fit line, the T100 dollars per 

unit have increased from $2M per unit in 1949 to 

$134M per unit in 2019 – an annualized increase 

of 6.6% in real (constant year) dollars. However, 

this may be slightly misleading since U.S. fighter 

aircraft have increased in size over time. Because 

we know from numerous prior studies (Hess, 

1987, Resetar, 1991, Younossi, 2001, et al.) that 

aircraft flyaway cost is positively correlated with 

Figure 4. Fighter T100 Flyaway Dollars (FY18$) per Unit Over Time  
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aircraft weight (all else equal, the heavier the 

aircraft, the more it costs to build), it is more 

illuminating to plot the T100 flyaway dollars per 

pound against the initial fielding date of the 

aircraft, as shown in Figure 5. 

The plot confirms Augustine’s general thrust: that 

cost of fighter aircraft has increased significantly 

over time even after normalizing for inflation, 

position on the learning curve and overall aircraft 

weight. It is also apparent that each generation of 

aircraft has increased in cost over the prior one. 

Based on the best fit line, the T100 dollars per 

pound have increased from $198 per pound in 

1949 to $4,087 per pound in 2019 – an 

annualized increase of 4.4% in real (constant 

year) dollars. 

The plot also reveals the time between each 

fighter generation has been progressively 

increasing since the jet age began. Fueled by “hot” 

wars in Korea and Vietnam, the pace of innovation 

in the 1950’s and 1960’s was especially quick 

with the introduction of supersonic flight and the 

capability to carry radar and guided missiles 

(second generation) and the ability to perform 

multi-role missions (third generation). The pace 

of innovation has slowed substantially since the 

end of the Cold War with 34 years between the 

fourth and fifth generations:  

 

Figure 5. Fighter T100 Flyaway Dollars (FY18$) per Empty Weight Pound Over Time 

  
Average 
Year of 

IOC 

Years Between 
Generation 

Generation 1 1950 N/A 

Generation 2 1957 7 

Generation 3 1965 8 

Generation 4 1977 12 

Generation 4.5 1999 22 

Generation 5 2011 12 

Table 1. Average Year of IOC by Fighter Generation 
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To get a better understanding of the impact that 

the introduction of each fighter aircraft generation 

has had on cost multiple variable regression model 

was constructed using T100 flyaway dollars as the 

dependent variable and empty weight as an 

independent variable. In addition, five dummy 

variables were assigned for second, third, fourth, 

fifth and Generation 4.5 aircraft. These dummy 

variables were set at either one (aircraft model 

included in that generation) or zero (aircraft 

model not included in that generation). The results 

of that regression (performed in Microsoft Excel) 

were as shown in Table 2. 

The resulting equation is: 

T100 = 0.0001 * EW1.19 * 0.765G2 * 1.285G3 * 

3.227G4* 5.701G4.5 *8.443G5 

Where: 

T100 = T100 unit flyaway cost (FY2018$ millions) 

EW = Empty weight (pounds) 

G2 = Second generation aircraft (1 if yes, 0 if no) 

G3 = Third generation aircraft (1 if yes, 0 if no) 

G4 = Fourth generation aircraft (1 if yes, 0 if no) 

G4.5 = Generation 4.5 aircraft (1 if yes, 0 if no) 

G5 = Fifth generation aircraft (1 if yes, 0 if no) 

 

The regression demonstrated a R-square value of 

93.2%, suggesting the combination of empty 

weight and aircraft generation explains greater 

than 90% of the variation observed in the data. All 

the independent variables were positively 

correlated with T100 hours per pound as 

SUMMARY OUTPUT               

                  

Regression Statistics             

Multiple R        0.965              

R Square        0.932              

Adjusted R Square        0.907              

Standard Error        0.306              

Observations 23             

                  

ANOVA                 

  df SS MS F     Significance F   

Regression 6        20.62           3.44         36.60           0.00        

Residual 16          1.50           0.09            

Total 22        22.13              

                  

  
Coefficients 

Standard 
 Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% 

Intercept (9.81) 1.74  (5.65) 0.00  (13.49) (6.13) (13.49) (6.13) 

Empty Weight 1.19  0.18  6.67  0.00  0.81  1.57  0.81  1.57  

Generation 2 0.57  0.24  2.34  0.03  0.05  1.08  0.05  1.08  

Generation 3 0.83  0.28  2.93  0.01  0.23  1.43  0.23  1.43  

Generation 4 1.44  0.26  5.44  0.00  0.88  2.00  0.88  2.00  

Generation 4.5 1.90  0.40  4.81  0.00  1.06  2.74  1.06  2.74  

Generation 5 2.25  0.34  6.59  0.00  1.52  2.97  1.52  2.97  

Table 2. Multiple Regression Outputs 
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expected, and all the resulting coefficients were 

statistically significant at the 5 percent level of 

error. Visually, this is shown in Figure 6. 

The graph shows us the clear stairstep pattern of 

increasing cost from generation to generation of 

fighter aircraft. It also allows us to quantitatively 

measure that growth. Assuming an aircraft with 

an empty weight of 30,000 pounds: 

Overall, the growth in cost has been 57% between 

each generation.  

We can see that tactical fighter aircraft have 

grown in cost over each generation. Now the 

question is: are they more capable? Intuitively, 

the answer is “yes” -- clearly, today’s fourth and 

fifth generation fighter aircraft could easily defeat 

its first-generation counterparts, laboring as they 

did at subsonic speeds without radars or missiles. 

Is there any way to measure this increased 

capability and relate it to the cost? 

As it turns out, the U.S. Military Aircraft Cost 

Handbook was developed as a companion volume 

to a larger study by TASC to develop relative 

measures of U.S. tactical aircraft capability (TASC, 

1980.) One of the results was an Aircraft System 

Performance (ASP) metric, which considers a 

variety of factors including payload, range, 

maneuverability, speed, target acquisition/

Figure 6. Fighter T100 Flyaway Dollars (FY18$) per Unit v. Empty Weight 

If a 30,000 lb fighter 
was…. 

T100 FY2018$ Flyaway 
($M per Unit) 

Generation 1 $12.00  

Generation 2 $21.20  

Generation 3 $27.40  

Generation 4 $50.70  

Generation 4.5 $80.30  

Generation 5 $113.20  

Table 3. Estimated T100 Flyaway Dollars (FY18$) per Unit 

for 30,000 Pound Fighter 
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engagement capability, navigational capability 

and survivability. The resulting numerical score 

can be interpreted against a baseline score for the 

F-4B (at 10). A tactical aircraft with an ASP score 

of 20 can be interpreted as a single aircraft is 

equivalent to two F-4Bs performing the same 

mission (Hildebrandt, 1986.)  

Ideally, we would be able to update these metrics 

for the three aircraft added since the TASC study 

was completed: F-18E/F, F-22 and F-35. 

Unfortunately, the author has been unable to find 

ASP metrics developed for these aircraft. But we 

can still compare flyway costs to performance 

metrics through fourth generation aircraft.  

A graph relating flyaway costs to TASC Aircraft 

System Performance is shown in Figure 7. 

Examination of the linear best fit line 

demonstrates a R-square value of 85.2%, 

suggesting the increase in T100 flyaway dollars 

per unit is highly correlated to increases in 

aircraft system performance. It is also apparent 

from the chart that each generation has a higher 

level of systems performance: 

It is also clear that this contradicts Augustine’s 

assertion that “…the unit cost being most closely 

correlated with the passage of time rather than 

with changes in maneuverability, speed, weight, 

or other technical parameters.” On the contrary, 

the graph suggests that the increase in unit cost is 

intimately correlated to the technical 

Figure 7. Fighter T100 Flyaway Dollars (FY18$) per Unit v. TASC Aircraft System Performance 

  Avg. ASP 

Generation 1 3.9 

Generation 2 9.6 

Generation 3 13.4 

Generation 4 20.2 

Table 4. Average Aircraft Systems Performance Score  

by Fighter Generation 
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characteristics of the aircraft. While the ASP 

indices are only available through the fourth 

generation, it can be surmised that the equivalent 

systems performance values would be even 

higher for Generation 4.5 and 5 aircraft – as is, of 

course, the cost. 

If we interpret the TASC systems performance as 

intended, this suggests a single fourth generation 

fighter jet is equivalent in performance to five (5) 

first generation aircraft. If this is correct, it helps 

explain another interesting fact that emerges 

from comparing U.S. fighter aircraft over time – 

the substantial decrease in production rates over 

time. This emerges vividly by plotting the annual 

production rate for the production lot in which 

the 100th unit delivers and correlating it to the 

flyaway cost, as shown in Figure 8.  

Clearly, there has been a significant decrease in 

production rates with each generation of fighter 

aircraft at the 100th unit: 

It has been suggested (Eskew, 1990) that the 

reduced production rates are a factor in the 

increased costs over time. Many analysts suggest 

high production rates produce cost savings -- 

driven by material discounts associated with 

buying larger quantities, wider distribution of 

fixed support labor and overhead costs across the 

number of units produced, and steeper learning 

curve slopes (for a review of the literature, see 

Johnstone, 2017). Accordingly, the decrease in 

Figure 8. Production Rate v. T100 Flyaway Dollars (FY18$) per Unit 

  
Avg. Annual Rate  

(T-100) 

Generation 1 510 

Generation 2 125 

Generation 3 110 

Generation 4 78 

Generation 4.5 39 

Generation 5 33 

Table 5. T-100 Annual Production Rates  

by Fighter Generation 
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production rates over time may potentially explain 

some of the increase in fighter aircraft costs. 

The problem with this analysis is it asks the 

proverbial “chicken or the egg” question: Have 

lower production rates over time driven higher 

aircraft costs? Or have higher procurement costs 

forced the services to buy fewer and fewer fighters 

with each successive generation? Or 

(alternatively) have the improvements in 

capability of fighters allowed the services to 

simply buy less of them without sacrificing the 

ability to perform the mission? The answer to this 

question is beyond the scope of this paper; 

nonetheless, it is the author’s intuition that the 

second and third answers are more plausible than 

the first. 

 

Augustine’s Law – True or False? 

We return to Augustine’s analysis of tactical 

aircraft and ask: are we really in danger of one day 

seeing the cost of a single aircraft equal the entire 

defense budget? The easiest way to answer this 

question is see how accurate Augustine’s 

predictions – made almost forty years ago – have 

matched up against our most recent experience. 

Specifically, how have his extrapolations fared 

against reality not only for tactical aircraft cost, 

but for the defense budget and the gross national 

product as well? 

As we noted earlier, Augustine’s book does not 

provide absolute numbers, but we can work them 

out from his charts. In the formulation of his law, 

Augustine assumed a nominal 15% increase per 

year in tactical aircraft costs in nominal dollars. 

Likewise, he assumed the defense budget would 

increase by 2.5% per year and the nominal GNP by 

5.5% per year. By the year 2019 (Budget, 2019a; 

Budget, 2019b), we should have had the data in 

Table 6. 

Graphically, if we fill in the actual experience since 

1980 for these three categories, we get the results 

in Table 6. Graphically, if we fill in the actual 

experience since 1980 for these three categories, 

we see the results shown in Figure 9. 

2019 Values Projected Actual 
Variance 
to Actual 

Tactical Aircraft  
Unit Cost 

$6.24B $146M 4163% 

U.S. Defense Budget $351B $689B -49% 

U.S. Gross Domestic  
Product (GDP) 

$22.5T $21.0T 7% 

Table 6. Comparison of Projected v. Actual, CY2019 

Figure 9. GDP, Defense Budget and Tactical Aircraft Trends, 1900-2050  
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Augustine’s extrapolation for GDP was quite close 

to the eventual 2019 value. He overstated the 

actual amount by only 7%, an excellent mark for 

a projection forty years into the future. His 

projection for the defense budget, developed 

from the post-Vietnam War wind-down, did not 

anticipate either the Reagan era defense buildup 

or the Bush War on Terror and therefore was 

understated by 49%. But for tactical aircraft, 

Augustine’s projection missed by four thousand 

percent. There is no six billion dollar fighter 

aircraft in 2019. Taking the F-18E/F, F-22 and F-

35 unit cost into account, the Augustinian trend 

line seems to have deflected. Since 1980, the 

growth in tactical aircraft costs seem to have 

slowed to 4% nominal (then-year) growth per 

year. Based on this, the projected 2019 fighter 

cost is closer to $145 million per copy. 

Augustine’s projections seem to have run into 

another empirical law – in this case, one coined 

by the late economist Herbert Stein (Stein, 1976): 

“If something cannot go on forever, it will stop.” 

Based on this analysis, it appears there is no 

longer any danger that our single aircraft cost 

will eventually overtake the total defense budget 

– in fact, based on this extrapolation, the lines 

seem to run roughly parallel at least through the 

prophetic year of 2154. Before we congratulate 

ourselves on our success, it seems worthwhile to 

mention that a 4% nominal growth in fighter cost 

year over year is still 1.5 times the inflation rate 

over the same time period. It means fighters are 

growing more expensive with each generation, 

and that this growth, if it persists, will continue to 

vex a Pentagon simultaneously trying to update 

its tactical and strategic aircraft fleet, its surface 

ship fleet and its nuclear weapons inventory.  

 

Development and Program Cost 

We now turn to Augustine’s conclusion that there 

has been no change in aircraft design and 

development spans despite the increasing 

complexity of aircraft design and build over time. 

Using the same dataset of fighter aircraft, 

development spans were plotted first by calendar 

year the aircraft was fielded and second against 

T100 unit cost.  

Based on a RAND database of acquisition 

milestones (Rothman, 1987), the length of 

development was defined as the span between a 

program’s initiation and delivery of the first 

production unit. In this case, the Milestone B date 

was chosen as the beginning of the official 

development effort. This is slightly different from 

Augustine’s analysis, which measured 

development contract award to first flight. First 

flight was not available from the RAND data, but 

the first production delivery was chosen as the 

next best alternative. 

Figure 10. Development Spans Over Time by Fighter Generation 
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Viewing the length of development spans across 

time, we see the results shown in Figure 10. 

Based on the data through the early 1980s, it is 

easy to see how Augustine came to his conclusion 

– development spans do not show an especially 

strong trend across time. But once we introduce 

later data for F-18E/F, F-22 and F-35A, a different 

picture emerges. Fighter aircraft fielded after 

1990 were in development substantially longer 

than prior generations.  

If we correlate development spans to T100 unit 

cost, we see the results shown in Figure 11. 

Once again, we see a correlation between 

development spans and flyaway unit costs. It is 

worth pointing out the two datapoints which are 

significantly below the trend line: the North 

American F-100 and the Grumman F-14. 

Performing a similar analysis, Eskew suggests 

that the F-100 and F-14 both benefited from 

inherited technology from other programs, thus 

shortening their development spans. The F-100 

evolved from the earlier F-86 aircraft, while the F

-14 inherited engines and avionics from the 

cancelled F-111B program (Eskew, 1990).  

Examination of the linear best fit line 

demonstrates a R-square value of 82.2%, 

suggesting the increase in development span 

months is positively correlated to T100 flyaway 

dollars per unit. But once again this fit is highly 

influenced by the addition of the F-18E/F, F-22 

and F-35A data points. Omitting those data 

points, the R-square drops to 23.9%.  

It could be argued that that F-22 and F-35 

represent peculiar circumstances. For example, 

the F-22 program, caught in the post-Cold War 

drawdown of defense spending, was rephased 

four times with additional time added to the 

Figure 11. Development Program Length v. T100 Flyaway Dollars (FY18$) per Unit 
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development program. In addition, it had design 

challenges surrounding stealth, integration of its 

avionics suites, and a new propulsion system. 

That does not explain, however, the longer span 

time associated with the F-18E/F, which had 

incremental improvements with minimal stealth, 

avionics systems mostly taken from its 

predecessor, and a derivative aircraft design 

(Younossi, 2005). Based on the experience of 

inherited technologies like the F-100 and F-14, 

one might expect it to be like fourth generation 

aircraft spans, and possibly even below them.  

That development span times have increased 

since the 1980’s is recognized by DoD leadership. 

In his 2013 implementation memo for the Better 

Buying Power initiative, Undersecretary of 

Defense (AT&L) Frank Kendall stated, “On 

average programs are taking about one year 

longer to complete development than they did 20 

years ago, but the root causes of longer program 

cycle times are not obvious, and the data includes 

wide variations” (Kendall, 2013, Riposo, 2014). In 

short, then, Augustine’s contention that “[t]he 

duration of the design and build phase of aircraft 

development programs has remained virtually 

unchanged for 40 years” must be considered 

challenged by the most recent program data. 

 

Conclusions 

For the moment, we will take Augustine’s 

humorous “laws” and treat them as literal 

assertions of truth. We can summarize the laws 

into a series of propositions, and post conclusions 

against each, as follows: 

Proposition 1: The price of tactical military 

aircraft is increasing at a factor of four every ten 

years, i.e., 15 percent per annum, and in time will 

overtake the United States defense budget and 

eventually its gross national product.  

Conclusion: Taken literally, this proposition is 

clearly false. An analysis of military fighter unit 

cost incorporating the most recent vehicles 

shows a slower rate of increase than observed for 

previous generation fighters. Extrapolated into 

the future, those costs will not overtake either the 

defense budget or the gross national product. 

Having said that, the observed year-over-year 

increase of 4% per year excluding inflation drives 

increasingly expensive fighter aircraft (and lower 

quantities) over time – which was Augustine’s 

point.  

Proposition 2: This increase in unit cost cannot be 

explained by improvements in technical 

parameters (maneuverability, speed, weight, et al.) 

and are seemingly inherent characteristics of these 

systems. 

Conclusion: This conclusion does not seem to be 

supported by analysis. The strong relationship 

between the TASC metrics of aircraft 

performance and unit cost for first through fourth 

generation fighters suggests that the increase in 

unit cost is correlated to the technical 

performance of the aircraft.  

Proposition 3: Aircraft design and development 

spans have not increased over time despite 

advances in technology and design complexity. 

Conclusion: This proposition was supported by 

the data through the early 1980’s. However, 

military fighter aircraft fielded after 1990 do 

show an increase in aircraft design and 

development spans, a trend which has been 

recognized by DoD leadership. This change is an 

unwelcome development, since it represents a 

lengthening of the “time to market” for 

warfighters to make new capabilities available for 

the battlefield.  

So why do Augustine’s laws still have lasting 

appeal? Because most reader – recognizing that 

Augustine’s tongue is firmly planted in cheek – 

recognize his laws should not be read literally but 

appreciated for the greater truth they represent. 

It is no question that military fighter unit costs 

are increasing at rates higher than inflation and 

that those rates have compounded significantly 

over time: fifth generation fighters are almost ten 
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times the cost of their first-generation 

predecessors. And this has profound implications 

for the sixth generation of fighter aircraft, which 

have already begun their initial DoD studies. For 

if history holds true, we can expect this next 

generation of aircraft will likely cross the $200 

million per unit threshold.  

Or they may not. The slowing of cost growth from 

the early 1980s when Augustine performed his 

original analysis gives some hope that the trend 

might be reduced further, or even reversed. It is 

possible that the Digital Revolution in design and 

manufacturing might offer a route to make this 

happen, as recently suggested by Dr. Will Roper, 

the former Undersecretary of the Air Force for 

Acquisition, Technology and Logistics. (Trimble, 

2019.) At the same time, cost analysts must 

recognize such a happy event would be a strong 

break from the past seventy years of history. The 

feasibility of doing just that, however, is beyond 

the scope of this paper, and a subject for another 

time.  

It seems appropriate to close with a word of 

warning: this analysis – and Augustine’s own – 

hinge on the validity of extrapolating historical  

 

data into the future. One cannot do better than 

Mark Twain to outline the risks of doing so:  

In the space of one hundred and seventy-six 

years the Lower Mississippi has shortened 

itself two hundred and forty-two miles. That 

is an average of a trifle over one mile and a 

third per year. Therefore, any calm person, 

who is not blind or idiotic, can see that in the 

Old Oo litic Silurian Period, just a million 

years ago next November, the Lower 

Mississippi River was upward of one million 

three hundred thousand miles long, and 

stuck out over the Gulf of Mexico like a 

fishing rod. And by the same token any 

person can see that seven hundred and forty-

two years from now the Lower Mississippi 

will be only a mile and three-quarters long, 

and Cairo and New Orleans will have joined 

their streets together and be plodding 

comfortably along under a single mayor and 

a mutual board of aldermen. There is 

something fascinating about science. One 

gets such a wholesale return of conjecture 

out of such a trifling investment of fact. 

(Quoted in Huff, 1954.)  

Augustine’s assertion that cost growth of 

highly complex systems is an inherent 

characteristic of those systems applies – as 

he indicated himself – to the commercial 

world as well as defense systems. In his 

book, Augustine graphs the cost of 

commercial airliners and produces a similar 

growth trend as tactical aircraft (Augustine, 

1983).  

To verify Augustine’s claim, a similar cost 

database for commercial airliners was 

assembled. The data was limited to 

commercial passenger jets, both wide body 

Appendix –  

Commercial Jetliner Aircraft 

Figure 12. Reprinted with Permission of Norman Augustine 
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and narrow. Lee (1990) was the primary source 

for cost data for jetliners introduced before 1995. 

T100 unit cost is not available and even if it were, 

it would be of doubtful utility. Commercial 

aircraft prices are frequently delinked to actual 

costs. Manufacturers routinely offer early units at 

prices below cost, hoping to establish their 

product in the market and recover losses later in 

the product life cycle once the model is safely 

established in the marketplace. Instead, Lee 

reported the listed aircraft price at the time of 

introduction. Lee’s values, reported in constant 

year 1995 dollars, were escalated to CY2018 

dollars using the U.S. GDP implicit price deflator 

(Federal Reserve, 2019). For aircraft introduced 

after 1995, the cost data was supplemented by 

press releases of published prices and other 

sources (Airliner.net, 2013, Airbus, 2018a, Boeing 

2019) normalized to CY2018 dollars. The final 

database was comprised of 46 aircraft models, 

the most recent being the Boeing 737 MAX.  

It is useful to segregate the jetliner dataset 

between long range (>4000 nautical miles) and 

short range (<4000 nautical miles). Examples of 

short-range jetliners include the Airbus A220 and 

A320, the Boeing 717, 727 and 737, the Douglas 

DC-9 and the McDonnell Douglas MD-80. Example 

of long-range jetliners include the Airbus A300, 

A310, A330, A350 and A380; the Boeing 707, 720, 

747, 767, 777 and 787; the McDonnell Douglas 

DC-10 and MD-11, and the Lockheed L-1011. 

A view of the CY2018 dollars per pound against 

the year of introduction shows a sizeable increase 

over the 1960-2019 time period, as shown in 

Figure 13. 

The annualized growth in constant year dollars is 

2.4% per year for short-range aircraft and 2.0% 

per year for long-range aircraft. This is 

approximately half of the annualized growth in 

military fighter aircraft.  

The taxonomy of commercial aircraft generations 

is much more poorly defined than its military 

equivalent, and there is no agreement among 

Figure 13. Commercial Aircraft Price per Empty Weight Pound Over Time  
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Table 7. Technology Advances in Commercial Aircraft Over Time  

sources. Table 7 summarizes 

changes in commercial jetliner 

design in safety features, 

engine performance, and 

materials usage (Airbus, 

undated, Airliners.net, 2007, 

Hiken, 2018). From this table, 

approximately four or five 

generations of aircraft designs 

can be identified, each more 

technologically advanced than 

the other. While this evolution 

is perhaps not as radical as its 

military equivalent – these 

aircraft examples operate at 

subsonic speeds, none carry 

weapons, and all are highly 

visible on radar – nonetheless 

it seems reasonable to suppose 

that the higher costs of 

commercial transport are also 

tied to higher levels of 

technical performance. 

Table 7. Technology Advances in  

Commercial Aircraft Over Time  
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Abstract: Cost estimating often relies on the log-transformed ordinary least squares method for the 

development of cost estimating relationships. This method has weaknesses; the most significant of which is 

that it provides estimates that are biased low. These deficiencies can be corrected, and predictive accuracy 

can be improved, using modern regression methods and applying machine learning techniques. Statisticians 

have found that predictive accuracy can be even further improved through the combination of multiple 

models in an ensemble, or crowd approach.  

The article discusses these methods in detail and applies them to an extensive dataset of 192 Army systems. 

Data analysis reveals several types of cost estimating relationships based on release type, release rhythm, 

and categories of data. This article discusses significance testing and goodness-of-fit metrics for all models 

developed. 

Introduction 

Cost estimating is defined as the process of 

collecting and analyzing historical data and 

applying quantitative models, techniques, tools, 

and databases to predict the future cost of an 

item, product, program or task. Commonly, Log-

Transformed Ordinary Least Squares (LOLS) 

method is used in the development of cost 

estimating relationships (CERs). There are some 

disadvantages with using LOLS: estimates are 

usually biased low and, in some cases, the 

estimates are not optimal.  

LOLS is biased in the sense that it is estimating 

the median, rather than the mean, of a 

lognormally distributed estimate. For a 

lognormal, the median is always less than the 

mean. This is an issue in cost estimating as 

estimates are rarely conducted in isolation, but 

rather as part of a larger WBS or a portfolio of 

systems. When these values are summed, the 

resulting total is less than the median of the total 

estimate. However, the means always add, so it is 

important to develop estimates at the mean 

value. (Smart 2017) 

To correct for the bias, analysts can consider 

applying nonlinear regression methods and 

machine learning methods to develop models and 

predict future costs. In this paper, we will provide 

introductions to these less commonly used 

methods and discuss how the results can be 

combined to increase the predictive accuracy of 

cost estimates.  

Using a dataset of Army software programs, the 

analysis will compare results of a log-

transformed OLS model to the results using the 

application of cross-validation using a crowd 

approach to determine how predictive power is 

influenced by this method. 
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Understanding the Crowd Approach 
Many people have encountered a situation in which they had to solve a math problem and used more than 
one way to solve it. As long as both methods yielded the same result, it is reasonable to think this would 
provide more confidence in the answer. In studying machine learning, research has shown that using multiple 
methods can improve predictive accuracy. For example, John Elder has been a pioneer in the use of ensemble 
models and has repeatedly found this to be the case (Elder 2003). Typically, when a model is too complex, it 
does not predict well in practice. However, the more models one uses, the more complex the overall 
prediction engine, but the predictions do better in practice than single models used by themselves. This was a 
revelation to the authors. 

An early example of ensemble predictions is a competition to guess the weight of an ox at an English county 
fair in 1906. Eight hundred people entered the contest. The statistician Francis Galton (he coined the term 
regression) was interested in the results, and thought that the average, or mean, result, would be far from the 
actual weight. He was surprised to discover that the actual weight of 1,197 pounds was only one pound from 
the mean of the 800 submissions. (Surowiecki 2004) 

More recently, the data science company Kaggle started hosting competitions to solve problems requiring 
prediction. The best known of these is the $1 million Netflix prize, where people submitted models to 
improve the company’s recommendation system. The catch with Kaggle submissions is that you get a score 
on how you do, but you cannot see the actuals to see the error of each estimate. Ensemble techniques have 
consistently proven to be crucial to winning submissions to these competitions, including the Netflix prize. In 
that particular competition, two teams tied for first. The tie breaker went to the team who submitted first. 
The first-place finisher submitted twenty minutes before the second-place finisher and won the entire $1 
million prize. (Siegel 2016) 

Ensembles are prominent in weather forecasting, especially in storm prediction. Whenever a tropical storm 
or a hurricane is discussed in a weather forecast, there will be a predicted plot for several different models. 
Most model predictions will cluster near a common path, but occasionally one or two predictions may be very 
different. The true path will likely be much closer to the path most of the model predictions rather than the 
outliers. Using multiple models helps to avoid being influenced by such predictions. 

The idea is counter-intuitive. In most applications, you should expect that the best is better than the average. 
You would not expect two mediocre athletes to perform better on average than a superstar. However, that is 
what happens with models. The average of several models, some of which may be good, and others that may 
be mediocre, will on average perform better than the best model. Studies have shown the improvement 
ranges between five and 30 percent. Even better, using ensembles has been shown to improve out-of-sample 
prediction, meaning that models will predict well when used in practice. (Siegel 2016) 

In The Wisdom of Crowds by James Suroweicki (2004), the concept of the crowd approach is discussed. When 
you put together a large enough and diverse enough group of people and ask them to make decisions affecting 
matters of general interest, that group’s decisions will be intellectually superior to the isolated individual. 
Applying this concept to cost estimating, we can determine that in the right circumstances, an average 
forecast is better than a single forecast.  

The use of multiple techniques for prediction is called the ensemble approach. An ensemble is a group of 
items viewed as a whole rather than individually. Suppose we have multiple models from which we would 
like to choose the “best”. The models could be constructed using different datasets, methods, variables or 
equation forms. 

There are (at least) two ways to combine estimates: 

• Using a simple average
• Using a more general method that considers correlation between the estimates

75
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We will examine the benefits to be obtained by each of these methods. 

Simple Averaging 
Simple averaging combines the estimates by computing the means of the estimates. 

(𝑥𝑥1 + 𝑥𝑥2 + ⋯+ 𝑥𝑥𝑛𝑛)/𝑛𝑛 

Let the residuals of a cost estimating relationship (CER) equation be defined by 𝜀𝜀. The residuals could be: 

• Absolute, as with a linear equation: 𝜀𝜀 = 𝑦𝑦 − 𝑓𝑓(𝑥𝑥)
• Percentage, as with a nonlinear equation: 𝜀𝜀 = 𝑦𝑦−𝑓𝑓(𝑥𝑥)

𝑓𝑓(𝑋𝑋)

Regardless of the residual form, the variance of an individual is defined as 𝜎𝜎�𝐼𝐼𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼2 = 𝐸𝐸[𝜀𝜀2]. If there are 

multiple equations, the variance of the average of the CERs is 𝜎𝜎�𝐴𝐴𝐼𝐼𝐴𝐴𝐴𝐴𝐼𝐼𝐴𝐴𝐴𝐴2 = 𝐸𝐸 ��1
𝑁𝑁
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independence, 

𝜎𝜎�𝐴𝐴𝐼𝐼𝐴𝐴𝐴𝐴𝐼𝐼𝐴𝐴𝐴𝐴2 = 𝐸𝐸 ��
1
𝑁𝑁
�𝜀𝜀
𝑛𝑛

𝐼𝐼=1

�
2

� =
1
𝑁𝑁2 𝐸𝐸 ��𝜀𝜀2

𝑛𝑛

𝐼𝐼=1

� +
1
𝑁𝑁2 𝐸𝐸 ��𝜀𝜀𝐼𝐼𝜀𝜀𝑗𝑗

𝐼𝐼≠𝑗𝑗

� 

= 1
𝑁𝑁2
𝐸𝐸[∑ 𝜀𝜀2𝑛𝑛

𝐼𝐼=1 ] = 1
𝑁𝑁
�∑ 𝜀𝜀2𝑛𝑛

𝑖𝑖=1
𝑁𝑁

�.

The quantity �∑ 𝜀𝜀2𝑛𝑛
𝑖𝑖=1
𝑁𝑁

� is the mean of the variances of the individual models. Thus, the SPE of the average of the 
models is the average of the variances divided by N. 

For example, suppose for two nonlinear models, we have standard deviations equal to 30 percent and 50 
percent, respectively. The first model has variance =0.32=0.09 and the second model has variance =0.52=0.25. 

The variance of the simple average is 1
2
�0.09+0.25

2
� = 0.085, which is lower than the better of the two models. 

By reducing the variance, we have also decreased the uncertainty in the estimate. 

Weighted Average 
With the simple average, we observe improvement over a single model. What happens when our estimates 
are correlated, meaning, they use the same data sources or we are comparing similar methods and model 
forms? When this occurs, the need to use the weighted average approach to incorporate correlation arises. 

To calculate the weighted average among models, a correlation matrix, nxn, between the estimates should be 
created.  

The i,jth element of the correlation matrix is 𝑬𝑬�𝜺𝜺𝒊𝒊𝜺𝜺𝒋𝒋� . Let 𝜶𝜶 denoted the nx1 vector of weights for the 
estimates. 

The SPE of the weighted average is 𝜶𝜶𝑻𝑻𝑪𝑪𝜶𝜶. The weights should be constrained so that their sum is equal to 1, 
and the weights should be chosen to minimize the SPE. 

With these constraints, we use the Lagrangian multipliers method and minimize 

𝑳𝑳 = 𝜶𝜶𝑻𝑻𝑪𝑪𝜶𝜶 − 𝟐𝟐𝟐𝟐�𝜶𝜶𝑻𝑻𝟏𝟏��⃗ − 𝟏𝟏� 

 where 𝟏𝟏��⃗  denotes the nx1 vector of all 1s. 
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To minimize, we take the first derivative and set it equal to 0. 

𝝏𝝏𝑳𝑳
𝝏𝝏𝜶𝜶

= 𝟐𝟐𝑪𝑪𝜶𝜶 − 𝟐𝟐𝟐𝟐𝟏𝟏��⃗ = 𝟎𝟎 

Rewriting yields 

𝟐𝟐𝑪𝑪𝜶𝜶 = 𝟐𝟐𝟐𝟐𝟏𝟏��⃗  

Dividing both sides by 2 and multiplying both sides by C-1 results in 

𝜶𝜶 = 𝟐𝟐𝑪𝑪−𝟏𝟏𝟏𝟏��⃗  

Multiplying both sides by 𝟏𝟏��⃗ 𝑻𝑻 yields 

𝟏𝟏��⃗ 𝑻𝑻𝜶𝜶 = 𝟐𝟐𝟏𝟏��⃗ 𝑻𝑻𝑪𝑪−𝟏𝟏𝟏𝟏��⃗  

The left side of the equation is the sum of the weights, which we constrained to be 1, thus 

𝟐𝟐 =
𝟏𝟏

𝟏𝟏��⃗ 𝑻𝑻𝑪𝑪−𝟏𝟏𝟏𝟏��⃗

Since 𝟏𝟏��⃗ 𝑻𝑻𝑪𝑪−𝟏𝟏𝟏𝟏��⃗ = ∑ ∑ 𝑪𝑪𝒊𝒊𝒋𝒋−𝟏𝟏𝒏𝒏
𝒋𝒋=𝟏𝟏

𝒏𝒏
𝒊𝒊=𝟏𝟏 , if we plug the expression 𝟐𝟐 back into 𝜶𝜶 = 𝟐𝟐𝑪𝑪−𝟏𝟏𝟏𝟏��⃗  the result is 

𝜶𝜶 =
𝑪𝑪−𝟏𝟏𝟏𝟏��⃗

∑ ∑ 𝑪𝑪𝒊𝒊𝒋𝒋−𝟏𝟏𝒏𝒏
𝒋𝒋=𝟏𝟏

𝒏𝒏
𝒊𝒊=𝟏𝟏

The SPE of the weighted average method is equal to 

𝑴𝑴𝑴𝑴𝑬𝑬 = �𝑪𝑪
−𝟏𝟏𝟏𝟏��⃗ �

𝑻𝑻
𝑪𝑪�𝑪𝑪−𝟏𝟏𝟏𝟏��⃗ �

�∑ ∑ 𝑪𝑪𝒊𝒊𝒋𝒋
−𝟏𝟏𝒏𝒏

𝒋𝒋=𝟏𝟏
𝒏𝒏
𝒊𝒊=𝟏𝟏 �

𝟐𝟐 = 𝟏𝟏��⃗ 𝑻𝑻𝑪𝑪−𝟏𝟏𝟏𝟏��⃗

�𝟏𝟏��⃗ 𝑻𝑻𝑪𝑪−𝟏𝟏𝟏𝟏��⃗ �
𝟐𝟐 = 𝟏𝟏

𝟏𝟏��⃗ 𝑻𝑻𝑪𝑪−𝟏𝟏𝟏𝟏��⃗
= 𝟏𝟏

∑ ∑ 𝑪𝑪𝒊𝒊𝒋𝒋
−𝟏𝟏𝒏𝒏

𝒋𝒋=𝟏𝟏
𝒏𝒏
𝒊𝒊=𝟏𝟏

 

In the uncorrelated case, 

𝜶𝜶𝒊𝒊 =

𝟏𝟏
𝝈𝝈�𝒊𝒊𝟐𝟐

∑ 𝟏𝟏
𝝈𝝈�𝒋𝒋𝟐𝟐

𝒏𝒏
𝒋𝒋=𝟏𝟏

 𝑴𝑴𝑴𝑴𝑬𝑬 =
𝟏𝟏

∑ 𝟏𝟏
𝝈𝝈�𝒊𝒊𝟐𝟐

𝒏𝒏
𝒊𝒊=𝟏𝟏

To compare the weighted average SPE with others (in the uncorrelated case), we need the following: 

Lemma – If a and b are positive numbers, then 𝒂𝒂
𝒃𝒃

+ 𝒃𝒃
𝒂𝒂
≥ 𝟐𝟐 with equality when a =b

Proof: 

(𝒂𝒂 − 𝒃𝒃)𝟐𝟐 ≥ 𝟎𝟎 

if and only if 

𝐚𝐚𝟐𝟐 − 𝟐𝟐𝐚𝐚𝟐𝟐 + 𝟐𝟐𝟐𝟐 ≥ 𝟎𝟎 

if and only if 

𝐚𝐚𝟐𝟐 + 𝟐𝟐𝟐𝟐 ≥ 𝟐𝟐𝐚𝐚𝟐𝟐 
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if and only if 

𝒂𝒂
𝒃𝒃

+
𝒃𝒃
𝒂𝒂
≥ 𝟐𝟐 

Comparing Simple Average to Weighted Average 
The Variance of the weighted average is less than or equal to the SPE of the simple average with equality only 
when all the individual SPEs are the same. Note that: 

𝑽𝑽𝒂𝒂𝑽𝑽𝒊𝒊𝒂𝒂𝒏𝒏𝑽𝑽𝑽𝑽𝑴𝑴𝒊𝒊𝑺𝑺𝑺𝑺𝑺𝑺𝑽𝑽 𝑨𝑨𝑨𝑨𝑽𝑽𝑽𝑽𝒂𝒂𝑨𝑨𝑽𝑽 =
𝟏𝟏
𝑵𝑵𝟐𝟐�𝝈𝝈�𝒊𝒊𝟐𝟐

𝑵𝑵

𝒊𝒊=𝟏𝟏

 

𝐕𝐕𝐚𝐚𝐕𝐕𝐕𝐕𝐚𝐚𝐕𝐕𝐕𝐕𝐕𝐕𝐖𝐖𝐕𝐕𝐕𝐕𝐖𝐖𝐖𝐖𝐖𝐖𝐕𝐕𝐖𝐖 𝐀𝐀𝐀𝐀𝐕𝐕𝐕𝐕𝐚𝐚𝐖𝐖𝐕𝐕 = 𝟏𝟏

∑ 𝟏𝟏
𝛔𝛔�𝐕𝐕
𝟐𝟐

𝐕𝐕
𝐕𝐕=𝟏𝟏

The weighted average variance is smaller than the simple average variance. To see this, consider 

𝟏𝟏
𝐍𝐍𝟐𝟐
∑ 𝛔𝛔�𝐕𝐕𝟐𝟐 ≥𝐍𝐍
𝐕𝐕=𝟏𝟏  𝟏𝟏

∑ 𝟏𝟏
𝛔𝛔�𝐣𝐣
𝟐𝟐

𝐍𝐍
𝐣𝐣=𝟏𝟏

This is true if and only if 

�𝝈𝝈�𝒊𝒊𝟐𝟐�
𝟏𝟏
𝝈𝝈�𝒋𝒋𝟐𝟐

𝑵𝑵

𝒋𝒋=𝟏𝟏

≥
𝑵𝑵

𝒊𝒊=𝟏𝟏

𝑵𝑵𝟐𝟐 

The left side of this inequality is a sum of ratios 

𝝈𝝈�𝒊𝒊𝟐𝟐
𝟏𝟏
𝝈𝝈�𝒋𝒋𝟐𝟐

This expression is equal to 1 when 𝑖𝑖 = 𝑗𝑗. When 𝑖𝑖 ≠ 𝑗𝑗, there is always a pair 𝝈𝝈�𝒊𝒊
𝟐𝟐

𝝈𝝈�𝒋𝒋
𝟐𝟐 +

𝝈𝝈�𝒋𝒋
𝟐𝟐

𝝈𝝈�𝒊𝒊
𝟐𝟐. There are N values for 𝑖𝑖 = 𝑗𝑗 

and for other pairs there are �𝑵𝑵𝟐𝟐� = 𝑵𝑵(𝑵𝑵−𝟏𝟏)
𝟐𝟐

 values. Therefore, the expression on the left, using the Lemma, is at 

least 𝐍𝐍 + 𝟐𝟐 ∗ 𝐍𝐍(𝐍𝐍−𝟏𝟏)
𝟐𝟐

= 𝐍𝐍 + 𝐍𝐍𝟐𝟐 − 𝐍𝐍 = 𝐍𝐍𝟐𝟐 and equality only occurs if all the variances are equal. Therefore, the 
weighted average variance is smaller than the simple average variance and is strictly smaller when the 
variances are not all the same value. 

We can also show that the weighted average has a variance smaller than the best single model in a crowd. 
Recall that 𝑀𝑀𝑀𝑀𝐸𝐸𝑊𝑊𝐴𝐴𝐼𝐼𝐴𝐴ℎ𝑡𝑡𝐴𝐴𝐼𝐼 𝐴𝐴𝐼𝐼𝐴𝐴𝐴𝐴𝐼𝐼𝐴𝐴𝐴𝐴 = 𝟏𝟏

∑ 𝟏𝟏
𝝈𝝈�𝒊𝒊
𝟐𝟐

𝒏𝒏
𝒊𝒊=𝟏𝟏

. To see that the variance of the weighted average is less than or equal 

to the minimum of the individual variances, note that 

𝝈𝝈�𝑴𝑴𝒊𝒊𝒏𝒏𝟐𝟐 ≥ 𝟏𝟏

∑ 𝟏𝟏
𝝈𝝈�𝒊𝒊
𝟐𝟐

𝒏𝒏
𝒊𝒊=𝟏𝟏

 if and only if 

𝝈𝝈�𝑴𝑴𝒊𝒊𝒏𝒏𝟐𝟐 �
𝟏𝟏
𝝈𝝈�𝒊𝒊𝟐𝟐

𝒏𝒏

𝒊𝒊=𝟏𝟏

≥ 𝟏𝟏 

Without loss of generality, assume 𝝈𝝈�𝟏𝟏𝟐𝟐 = 𝝈𝝈�𝑴𝑴𝒊𝒊𝒏𝒏𝟐𝟐 . Then, 𝝈𝝈�𝑴𝑴𝒊𝒊𝒏𝒏𝟐𝟐 � 𝟏𝟏
𝝈𝝈�𝟏𝟏
𝟐𝟐 + ⋯+ 𝟏𝟏

𝝈𝝈�𝑵𝑵
𝟐𝟐�= 𝟏𝟏 + 𝝈𝝈�𝑴𝑴𝒊𝒊𝒏𝒏𝟐𝟐  � 𝟏𝟏

𝝈𝝈�𝟐𝟐
𝟐𝟐 + ⋯+ 𝟏𝟏

𝝈𝝈�𝑵𝑵
𝟐𝟐� ≥ 𝟏𝟏. 

In summary, the weighted average approach should be used when estimates or datasets are correlated. 
Though, in analyses with few data points, correlation estimates may not be as accurate as the simple average. 
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Practical Example Using Army Data 
Army Data Description 
Through the support of Office of the Deputy Assistant Secretary of the Army – Cost and Economics (DASA-CE) 
leadership, the software sustainment initiative has succeeded over the past five years of moving the U.S. Army 
from a position of making educated guesses on what was being spent on software sustainment and its utility, 
to being able to provide deep insights from an Army-wide perspective into how software sustainment is being 
performed, how much it costs, and what software is being delivered to the warfighter. The initiative created 
an Army Software Sustainment Data Questionnaire which is used to collect system context-information, 
annual cost and effort data, software release data, and data on software licenses. 

The information in the database includes software release level data as well as management and process data 
on over 192 Army systems in sustainment. The information in the database supports the detailed analysis of 
software sustainment cost, schedule and risk drivers, and provides insight into the state of software 
sustainment management and processes practices. 

The results establish a robust foundation for software sustainment fact-based decisions, including: 

• Allocations of Costs by Work Breakdown Structure (WBS) Elements
• Cost & Schedule Estimating Relationships
• Cost Benchmarks

The amount of data collected resulted in over 411,000 repository data fields based on 192 Systems, 1,040 
Releases and 3,434 software licenses, Figure 1. 

The Army dataset used for this analysis includes the following variables: 

• Total Release Hours (Dependent)
• Super Domain (Independent)
• Total Software Changes (Independent)
• Acquisition Category (ACAT) (Independent)

These variables were selected based on the causal analysis on the data (Jones, et al. 2020). Total Release 
Hours is defined as the effort (in hours) required to maintain software in the WBS Element 1.0, Software 
Change Product. This effort changes the software to improve its capability or repair a problem. When systems 
were divided into application super domains, there were 93 Real-Time Systems (RT), 47 Engineering Systems 
(ENG), 33 Automation Information Systems (AIS), 13 Support Systems (SUP), and 6 Defense Business Systems 

Figure 1. Data Demographics 
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(DBS). In the dataset used for this analysis, there are no DBS datapoints. These three independent variables 
were identified as being influential in past studies conducted by the army. See “Using Army Software 
Sustainment Cost Estimating Results (DASA-CE)” from September 2018 for more details. 

Systems were asked to report the size measures that were used within their program. Software Changes (SC) 
was the most common size measure with data provided for 571 releases. SCs are enhancements or 
maintenance changes to the software.  

US DoD’s ACAT levels are also analyzed. There are three levels and an additional category for non-Program of 
Record (non-POR). The difference between each level depends on the location of a program in the acquisition 
process, funding amount for Research, Development, Test and Evaluation, total procurement cost, Milestone 
Decision Authority special interest and decision authority. ACAT I programs are major defense acquisition 
programs. 

The upper and lower 10% of the data was trimmed from the dataset to subset extreme cases for separate 
analysis. Trimming was based on unit cost (total release hours / #software changes). While the data had been 
scrubbed for hours and cost outliers, some of the unit costs were extremely low and some were extremely 
high. 

Using the trimmed dataset, we used two nonlinear methods and four machine learning methods to predict 
Total Hours given Super Domain, Total Software Changes, and ACAT level.  

Nonlinear Regression Methods 
We will introduce two nonlinear methods: Maximum Likelihood Estimation Regression for Lognormal Error 
(MRLN) and Zero-Percent Bias Minimum Percent Error (ZMPE). Dr. Christian Smart developed the MRLN 
method, which uses Maximum Likelihood Estimation (MLE) to directly estimate the mean lognormal without 
the use of transformations (Smart 2017). This method does not require lognormal transformations of either 
the dependent or independent variables. 

The likelihood function, which represents the likelihood of obtaining the sample data, is: 

𝐿𝐿(𝜃𝜃) = ∏ Pr (𝑋𝑋𝐼𝐼 = 𝐴𝐴𝐼𝐼|𝜃𝜃𝑛𝑛
𝐼𝐼=1 ). 

The vector, 𝜃𝜃, maximizes the likelihood function in the MLE. Using this technique provides a major advantage: 
the likelihood function is almost always available. LOLS is an MLE of the median when the residuals are 
lognormally distributed.  

Applying the MLE directly to the residuals yields an estimate of the lognormal mean. The goal for MRLN is to 
maximize the function: 

𝑙𝑙�𝛽𝛽0,𝛽𝛽1, … ,𝛽𝛽𝑝𝑝 ,𝜃𝜃� = −
𝑛𝑛
2

 ln (𝜃𝜃) −
1

2 𝜃𝜃
��𝑙𝑙𝑛𝑛(𝑦𝑦𝐼𝐼) − ln (𝛽𝛽0)  −�𝛽𝛽𝑗𝑗 ln (𝑋𝑋𝐼𝐼𝑗𝑗) +

𝜃𝜃
2

𝑝𝑝

𝑗𝑗=1

�

2𝑛𝑛

𝐼𝐼=1

 

Excel Solver can be used to perform this task. When Solver converges on a solution, Excel calculates the 
optimal values for 𝒂𝒂 and b to form the power equation. 

Dr. Steve Book developed the ZMPE method, which focuses on minimizing the sum of squared errors subject 
to the constraint that the sample bias is zero.  

The goal of this method is to find a function, 𝑦𝑦 = 𝑓𝑓(𝑥𝑥)(1 + 𝜀𝜀), with a multiplicative error, 𝜀𝜀 = 𝑦𝑦−𝑓𝑓(𝑥𝑥)
𝑓𝑓(𝑥𝑥)

, that fits a 

data set so that the following are satisfied: 

• Let y denote the actual and f(x, a, b) = a Xb denote the estimate. ZMPE minimizes  

 
��

𝒚𝒚𝒊𝒊 − 𝒇𝒇(𝒙𝒙𝒊𝒊,𝒂𝒂,𝒃𝒃)
𝒇𝒇(𝒙𝒙𝒊𝒊,𝒂𝒂,𝒃𝒃) �

𝟐𝟐𝒏𝒏

𝒊𝒊=𝟏𝟏

 

80



 

 Journal of Cost Analysis and Parametrics: Volume 10, Issue 2. April 2022    

Leveraging the Wisdom of Crowds with Modern Regression, Machine Learning, and Ensembles …  Christian B. Smart, et al 

 subject to the constraint that the sample bias is zero,  

 i.e.,  

 

The result is an optimal solution, 𝒂𝒂 and b, and can be calculated in Excel Solver. 

Machine Learning Methods – A Refresher 

In “Beyond Regression: Applying Machine Learning to Parametrics” (Roye, Smart 2019), multiple machine 
learning techniques were discussed in detail. Four supervised learning methods are used for this analysis and 
are briefly described in the following sections: 

• Regression Trees 
• Random Forests 
• Support Vector Machines 
• K-Nearest Neighbors 

Supervised learning techniques in machine learning is the process of an algorithm learning from a subset of a 
given dataset, referred to as the training dataset. In supervised learning, the input variables and output 
variables are named. The algorithm learns from the mapping function from the input and output. With this 
method, the goal is to approximate the mapping function so that new outputs can be predicted using new 
input data. 

Regression Trees 

A decision tree is a decision support tool useful in classifying data. Tree-based methods are options for 
analysis, because the data are split into homogenous groups, and the graphs present these splits with the use 
of branches (called decision nodes) and leaves (terminal nodes). The goal of tree-based methods is to 
partition data into smaller regions where interactions are manageable. They are useful when there is a non-
linear and complex relationship between dependent and independent variables. There are two types of trees: 
classification and regression trees. 

Regression trees are used when the dependent variable of interest is continuous. Figure 2 presents the 
components of a regression tree. 

 

Figure 2: Regression Tree Layout 

��
𝒚𝒚𝒊𝒊 − 𝒇𝒇(𝒙𝒙𝒊𝒊,𝒂𝒂,𝒃𝒃)
𝒇𝒇(𝒙𝒙𝒊𝒊,𝒂𝒂,𝒃𝒃) � = 𝟎𝟎

𝒏𝒏
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The root node represents the entire population, or most commonly, the sample dataset that is being explored. 
Decision trees recursively split a dataset into partitions based on a criterion. Starting with the root node of 
the tree, the method asks a sequence of yes and no questions to determine the decision nodes. The root node 
splits into two or more decision nodes. The decision nodes represent the first set of homogenous groups 
discovered within the dataset. When the algorithm determines which cut-off point minimizes the variance 
of y for a regression task, the branch ends in a leaf, or terminal node. Leaves represent a cell of partition and 
have a simple model for that cell; the model is the sample mean of the dependent variable. 

Figure 3 provides the regression tree using the example data. At the first decision node, if a release has less 
than 61 software changes, the left side of the tree when followed to the next decision tree node which splits 
again on less than 13 software changes. This first decision node represents the first set of homogeneous 
software releases within the dataset. Based on each smaller group, the tree splits again on either the number 
of software changes, ACAT level I or II programs, or Real Time super domain releases. The tree ends at the 
terminal nodes and provides the average Total Release Hours (lognormally transformed) of the data points 
included in each node. In Figure 3, the numbers in the oblong circles above the nodes (root, decision and 
terminal nodes) are the average Total Release Hours and the percent of the sample. At the root node, the 
average Total Release Hours is 8.42 and since this is before any splits occur, there is 100% of the sample 
included. 

 

Figure 3: SW Sustainment Regression Tree 

Random Forests 

The Random Forest algorithm can be thought of as an ensemble approach using regression trees. This 
approach combines the estimates of multiple regression trees to produce an average. Random forests have 
been proven to provide better prediction (“wisdom of the crowd” effect). They are also more stable (robust to 
small amounts of noise). However, since the predictions are rather complex, there is no single equation or 
CER. 
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Random forest adds additional randomness to a model. The algorithm searches for the best feature among a 
random subset of features, which results in more diversity that usually results in better prediction. 

Support Vector Machines 

The application of Support Vector Machines (SVM) in the 1990s to optical character recognition was very 
successful. (Boser, et al., 1992) The basic idea for classification with this method is to maximize the margin 
between classes, which yields maximally robust classification. To apply to continuous output, the analogous 
idea is to find an equation that is: 

• As “flat” as possible, i.e., the coefficients are as small as possible 
• Emphasis on sparseness, parsimony 
• Makes model less sensitive to errors in inputs  
• Minimizes the residuals that are outside a specified range of the estimate (𝜀𝜀-insensitive), e.g., 15% 

For a linear equation Y = a+bX, with n data points the problem becomes 

𝑴𝑴𝒊𝒊𝒏𝒏𝒊𝒊𝑺𝑺𝒊𝒊𝑴𝑴𝑽𝑽:  
𝟏𝟏
𝟐𝟐

(𝒂𝒂𝟐𝟐 + 𝒃𝒃𝟐𝟐) + 𝑪𝑪 ∗�𝜹𝜹𝒊𝒊

𝒏𝒏

𝒊𝒊=𝟏𝟏

 

𝑴𝑴𝑺𝑺𝒃𝒃𝒋𝒋𝑽𝑽𝑽𝑽𝑺𝑺 𝑺𝑺𝒕𝒕 |𝒚𝒚𝒊𝒊 − 𝒂𝒂 − 𝒃𝒃𝒙𝒙𝒊𝒊| ≤ 𝑴𝑴 + 𝜹𝜹𝒊𝒊 𝒇𝒇𝒕𝒕𝑽𝑽 𝒂𝒂𝑺𝑺𝑺𝑺 𝒊𝒊 = 𝟏𝟏, …𝒏𝒏 

where the delta values are non-negative, and the loss function is insensitive to residuals less than z (user 
specified), and a weight equal to C is given to the errors (controls for degree of parsimony). For an example of 
insensitive losses, for a $10 million project, you may not care about the residual as long as it is no larger than 
$1 million. 

Given a nonlinear equation Y = aXb, take log transforms of the data and apply the linear support vector set up. 
The insensitivity is now in log-space – the log of the differences between the actual and the estimate. 

As an alternative to logarithmic transformation, you can apply the same notion to the absolute value of 
percentage difference between the actuals and the estimates, i.e. 

  𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖𝑀𝑀𝑖𝑖𝑀𝑀𝑀𝑀:  1
2

(𝑎𝑎2 + 𝑏𝑏2) + 𝐶𝐶 ∗ ∑ 𝛿𝛿𝐼𝐼𝑛𝑛
𝐼𝐼=1  

  𝑊𝑊ℎ𝑀𝑀𝑒𝑒𝑀𝑀 𝛿𝛿𝐼𝐼 = ��
𝑦𝑦𝑖𝑖−𝐼𝐼𝑥𝑥𝑖𝑖

𝑏𝑏

𝐼𝐼𝑥𝑥𝑖𝑖
𝑏𝑏 � − 0.15 𝑖𝑖𝑓𝑓 �𝑦𝑦𝑖𝑖−𝐼𝐼𝑥𝑥𝑖𝑖

𝑏𝑏

𝐼𝐼𝑥𝑥𝑖𝑖
𝑏𝑏 � ≥ 15%

0 𝑜𝑜𝑜𝑜ℎ𝑀𝑀𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑀𝑀
�  𝑓𝑓𝑜𝑜𝑒𝑒 𝑖𝑖 = 1, … 𝑛𝑛 

For solving this optimization problem, Excel’s Solver capability can be used. 

Results 
First, we will present the CER developed using LOLS. 

𝑌𝑌 (𝑇𝑇𝑜𝑜𝑜𝑜𝑎𝑎𝑙𝑙 𝑅𝑅𝑀𝑀𝑙𝑙𝑀𝑀𝑎𝑎𝑒𝑒𝑀𝑀 𝐻𝐻𝑜𝑜𝐻𝐻𝑒𝑒𝑒𝑒)
= 6.42 − 0.55 ∗ 𝐸𝐸𝑁𝑁𝐸𝐸 𝑀𝑀𝑆𝑆 − 0.055 ∗ 𝑅𝑅𝑇𝑇 𝑀𝑀𝑆𝑆 − 0.95 ∗ 𝐴𝐴𝐴𝐴𝑀𝑀 𝑀𝑀𝑆𝑆 + 0.30 ∗ 𝐴𝐴𝐶𝐶𝐴𝐴𝑇𝑇 + 0.72
∗ 𝑇𝑇𝑜𝑜𝑜𝑜𝑎𝑎𝑙𝑙 𝑀𝑀𝑜𝑜𝑓𝑓𝑜𝑜𝑒𝑒𝑎𝑎𝑒𝑒𝑀𝑀 𝐶𝐶ℎ𝑎𝑎𝑛𝑛𝑎𝑎𝑀𝑀𝑒𝑒 

Super Domain and ACAT were defined as categorical variables (1 or 0). If ACAT is 1, then the datapoint was 
obtained from an ACAT I or II program. As a reminder for the Super Domain designations, Real-Time Systems 
(RT), Engineering Systems (ENG), and Automation Information Systems (AIS). Super Domain and ACAT 
variables are categorical variables, while Total Software Changes and Total Release hours are continuous 
variables. 

The data used for the nonlinear and machine learning analysis was log-transformed to facilitate the 
comparison of the results to the LOLS model. 
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CERs were also developed using ZMPE and MRLN.  

Next, we will discuss how to compute the simple and weighted averages using the estimates (𝑌𝑌�) for each of 
the methods.  

For the simple average, the average of 𝑌𝑌�  for MRLN, ZMPE, Regression Trees, Random Forest, SVM, and KNN 
was calculated. This average 𝑌𝑌�  was used to calculate the goodness-of-fit statistics. 

For example, consider the estimates for the first 10 datapoints for the six methods presented in Table 1. 

 

Observation MRLN ZMPE R-Tree R-Forest SVM KNN 
1 7204.21 9768.36 5448.91 8091.82 4074.67 5222.58 
2 6885.73 9308.97 5448.91 8108.96 4017.75 4513.26 
3 7166.47 4888.93 5448.91 4597.52 5310.05 5316.64 
4 574.66 660.47 682.06 4990.52 1758.86 2467.58 
5 9015.69 12405.18 5448.91 7944.49 4695.12 3620.33 
6 2596.23 1657.38 5448.91 3695.92 3080.11 2635.91 
7 8660.85 10453.97 24690.77 13522.31 16743.01 23840.75 
8 6885.73 9308.97 5448.91 8108.96 4017.75 4513.26 
9 31608.07 47208.50 22762.34 14850.36 38877.70 32809.06 
10 2035.47 1278.89 1956.78 3248.21 2335.26 2843.57 

Table 1: Estimates for Nonlinear Prediction Methods 

 

We will then take the simple average of the estimate for the methods, such that: 

𝑀𝑀𝑖𝑖𝑀𝑀𝑆𝑆𝑙𝑙𝑀𝑀 𝐴𝐴𝐴𝐴𝑀𝑀𝑒𝑒𝑎𝑎𝑎𝑎𝑀𝑀 =  
𝑌𝑌�𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁 + 𝑌𝑌�𝑍𝑍𝑀𝑀𝑍𝑍𝑍𝑍 + 𝑌𝑌�𝑀𝑀𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑌𝑌�𝑀𝑀𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝑅𝑅𝑡𝑡 + 𝑌𝑌�𝑆𝑆𝑆𝑆𝑀𝑀 + 𝑌𝑌�𝐾𝐾𝑁𝑁𝑁𝑁

6
 

Table 2 presents the averages of the six explored methods for the first 10 data points. This new average 
estimate is then used to calculate the goodness-of-fit statistics. 

 

Observation MRLN ZMPE R-Tree R-Forest SVM KNN Average 
1 7204.21 9768.36 5448.91 8091.82 4074.67 5222.58 6635.09 
2 6885.73 9308.97 5448.91 8108.96 4017.75 4513.26 6380.60 
3 7166.47 4888.93 5448.91 4597.52 5310.05 5316.64 5454.75 
4 574.66 660.47 682.06 4990.52 1758.86 2467.58 1855.69 
5 9015.69 12405.18 5448.91 7944.49 4695.12 3620.33 7188.29 
6 2596.23 1657.38 5448.91 3695.92 3080.11 2635.91 3185.74 
7 8660.85 10453.97 24690.77 13522.31 16743.01 23840.75 16318.61 
8 6885.73 9308.97 5448.91 8108.96 4017.75 4513.26 6380.60 
9 31608.07 47208.50 22762.34 14850.36 38877.70 32809.06 31352.67 
10 2035.47 1278.89 1956.78 3248.21 2335.26 2843.57 2283.03 

Table 2: Estimates and Averages for Nonlinear Prediction Methods. 
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For the weighted average, the calculation is a little more involved. First, all six models were included in the 
weighted average. The algorithm returned negative weights for two models – MRLN and KNN. Because of the 
ambiguity of negative weights, we decided to remove those models, and apply the weighted average over four 
models instead. This resulted in weights for ZMPE, Regression Trees, Random Forests, and SVM equal to 
27.0%, 26.0%, 38.4%, and 8.6%, respectively. 

 
Table 3: Estimates and Weighted Averages for Nonlinear Prediction Methods. 

 

Nonlinear models need different measures of goodness-of-fit than are used for linear ones. The goodness-of-
fit measures we use are commonly used in nonlinear modeling and are the nonlinear analogues to traditional 
linear regression. These are Pearson’s R2, the Standard Percent Error, and Sample Percent Bias. 

Goodness-of-fit metrics were calculated for each method and used to compare to the LOLS model. 

• Pearson’s R2- The square of the correlation coefficient between the actual and estimated effort 
• Standard Percent Error (SPE) – The standard deviation of the difference between the actual and 

estimated effort as a percentage of the estimated effort 
• Sample Percent Bias – Average percentage error 

Pearson’s R2, which we will refer to as R2, is defined as: 
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Standard Percent Error is defined as: 

The standard percent error is a nonlinear analog to the regression standard error, and is defined as  

𝑀𝑀𝑆𝑆𝐸𝐸 =  �
1

𝑛𝑛 − 𝑘𝑘
∗��

𝑦𝑦𝐼𝐼 − 𝑓𝑓(𝑥𝑥𝐼𝐼)
𝑓𝑓(𝑥𝑥𝐼𝐼)

�
𝑛𝑛

𝐼𝐼=1

2

∗ 100% 

 

MRLN ZMPE R-Tree R-Forest SVM
Weighted 
Average

7204.21 9768.36 5448.91 8091.82 4074.67 7511.86
6885.73 9308.97 5448.91 8108.96 4017.75 7389.51
7166.47 4888.93 5448.91 4597.52 5310.05 4958.84

574.66 660.47 682.06 4990.52 1758.86 2423.28
9015.69 12405.18 5448.91 7944.49 4695.12 8220.58
2596.23 1657.38 5448.91 3695.92 3080.11 3548.33
8660.85 10453.97 24690.77 13522.31 16743.01 15874.64
6885.73 9308.97 5448.91 8108.96 4017.75 7389.51

31608.07 47208.50 22762.34 14850.36 38877.70 27710.52
2035.47 1278.89 1956.78 3248.21 2335.26 2302.21
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where n is the sample size, and k is the number of fitted coefficients. In this case, lower values are 
desired. 

Sample Percent Bias, which we refer to as Bias, and is defined as: 

��
𝒚𝒚𝒊𝒊 − 𝒇𝒇(𝒙𝒙𝒊𝒊)
𝒇𝒇(𝒙𝒙𝒊𝒊)

� /𝒏𝒏
𝒏𝒏

𝒊𝒊=𝟏𝟏

 

The goodness-of-fit statistics were calculated for the in-sample and out-of-sample datapoints. For machine 
learning techniques, a training and a test sample from the dataset are randomly sampled. For this analysis, an 
80% training sample (211 data points) was taken from the dataset, with the remaining 20% (52 data points) 
being used for testing. The training sample is used to fit each machine learning model, while the test sample 
provides an unbiased evaluation of the final model fit on the training sample. The in-sample results are 
calculated from the training sample; the out-of-sample results are calculated from the test sample. 

The machine learning methods were all biased low initially because of the log transformation. A sample bias 
correction adjustment was made, in line with the adjustment MRLN makes, to correct for this sample bias. 

The in-sample results are shown in Table 4 and the out-of-sample results are displayed in Table 5. 

Method (In-Sample) R2 SPE Bias 
LOLS 51.10% 178.74% -58.17%
MRLN 51.10% 104.34% 2.20%
ZMPE 47.87% 97.93% 0.00%
Regression Trees 62.01% 124.40% 0.00%
Random Forest 47.08% 133.74% 0.00%
SVM 63.90% 135.72% 0.00%
KNN 57.50% 123.43% 0.00%
Simple Average 62.69% 97.05% 13.56%
Weighted Average* 61.45%  78.91% 37.19% 

Table 4: Goodness-of-Fit Statistics for the In-Sample Data 

Method (Out-of-Sample) R2 SPE Bias 
LOLS 92.52% 263.15% -98.57%
MRLN 92.52% 151.20% -22.78%
ZMPE 90.71% 143.79% -17.99%
Regression Trees 84.84% 241.76% -67.21%
Random Forest 45.59% 307.37% -48.03%
SVM 45.18% 262.01% -44.26%
KNN 65.55% 289.17% -54.06%
Simple Average 91.88% 216.40% -51.82%
Weighted Average* 90.10% 153.78% -10.10%

Table 5. Goodness-of-Fit Statistics for the Out-of-Sample Data 

86



 Journal of Cost Analysis and Parametrics: Volume 10, Issue 2. April 2022 

Leveraging the Wisdom of Crowds with Modern Regression, Machine Learning, and Ensembles …  Christian B. Smart, et al 

For the in-sample data, the single best SPE belongs to ZMPE, followed by MRLN. Among single models, SVM 
has the highest R2, followed by MRLN. The simple average has an R2 comparable to the best of any single 
model, along with an SPE comparable to the best of any single model. The weighted average has a similar R2 
but a much smaller SPE – however it has a significantly positive bias. 

The out-of-sample data is a better indicator of how the models will perform when applied in practice, as the 
coefficients were not influenced by any of these data. For the out-of-sample data, ZMPE and MRLN are the 
two best single models – they both have R2s in excess of 90%, and SPEs significantly better than the other 
methods. Out-of-sample R2s can sometimes outperform in-sample R2s if the training data contains more 
complicated relationships between the dependent and independent variables than the test dataset. The 
simple average has a -50% bias and a much higher SPE than MRLN or ZMPE. The weighted average, however, 
has an R2 and an SPE, that is comparable to both MRLN and ZMPE, as well as a lower bias. The weighted 
average is better overall than any single model. 

Conclusion 
Whether the scenario involves guessing the weight of an animal at a county fair or trying to determine how 
much a new variant of a combat vehicle will cost, an ensemble approach can often produce a better estimate 
than a single model. This is a little counterintuitive. To obtain the cost estimate for a program, one might 
think it would be optimal to find the best cost model to give you an estimate. But a better result may be 
obtained by averaging estimates from two (or more) mediocre cost models instead. Ensembles seem to 
consistently produce more accurate estimates.  

The authors applied the ensemble concept to estimating Army software sustainment costs. For these data, we 
have shown that weighted averages generalize better than most models and perform as well or better out of 
sample than the single best model. Though it is often most common to produce a single regression estimate, 
introducing the ensemble approach can increase the accuracy of prediction. The authors also applied machine 
learning methods that can compete with traditional regression methods. 

In Appendix A, an additional concept of cross validation is discussed. Though this method was not 
implemented in this paper, it is an important concept to consider. 
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But Wait, There’s More! 

Using SiSE for your Cost, Schedule & Performance Needs 

Katharine Mann 

Ryan Hoang 

 

Abstract: Software cost estimating is a challenging effort when there is little information known about a 

program early in the lifecycle. Historically, the Department of Homeland Security (DHS) has had difficulty in 

properly sizing software development efforts for Life Cycle Cost Estimates (LCCEs). In 2017, the DHS Cost 

Analysis Division piloted the Simple Function Point Analysis (SFPA) methodology, later renamed to Simple 

Software Estimation (SiSE), tying high level requirements in existing Acquisition documentation to a 

standard sizing metric. After demonstrating successes with several programs, additional value of SiSE results 

for program management beyond cost estimating was explored. This paper and presentation will cover the 

SiSE methodology, requirements definition and analysis, and how functional size can be used to effectively 

manage program cost, schedule, and performance. We will use real DHS programs, policies, and lessons 

learned to demonstrate the benefits of SiSE as a secret ingredient for program management success and 

describe how to engage with program managers to employ this tool in their programs. Finally, we will 

discuss our future research efforts and initiatives to implement SiSE across federal acquisitions. We believe 

this to be an innovative and exciting way to estimate and manage software development programs in any 

organization. 

Keywords: Software cost estimating, Agile, Simple Function Points, Software sizing, Program Management, 

Stakeholder Engagement, Requirements, Functional Sizing 

Introduction 

1.1 Agile Requirements 

Developing agile requirements is a different 

process than the traditional waterfall approach 

used in U.S. Government software acquisitions 

[1]. Gone are the days of defining and finalizing 

hundred-page requirements documents before 

typing a single line of code; gone are the months 

of development that may or may not deliver 

software that functions as originally intended. 

Instead, the Agile Manifesto prioritizes 

continuous delivery of working software, which 

often requires changing requirements late in 

development to suit the customer’s needs. [2] 

This is a momentous paradigm shift in the 

acquisition of new IT software systems. 

There have been difficulties in implementing 

Agile development approaches across the 

Government, as many Agile principles conflict 

with established processes. For example, Agile 

only plans work over weeks or months; however, 

the federal budget process requires funding 

requests to be prepared for submission to 

Congress nearly two years before those funds 

would be received. As a result, acquisition 

programs must be able to estimate future 

software development work based on vague or 

unknown requirements. As seen in Figure 1 the 

agile scrum development process is incremental 

and iterative, the key premise on delivering 

working software to the customer for continuous 

feedback and refinement. To address the need for 

flexible, user-centric requirements that still meet 

the federal acquisition regulations associated 

with taxpayer funding, cost estimators need a 

way to estimate software development from 

flexible high level agile requirements. 
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1.2 Software Cost Estimating 

The basics to estimating the cost of software 

development break down to the simple equation: 

Effort = Size x Throughput 

where Size is equal to the scope of working 

software produced to meet the customer’s needs, 

expressed through a standard unit of 

measurement, and Throughput is the rate at 

which software developers can design, code, test, 

and deliver working software to the client. Effort 

can then be easily converted to cost as a build-up 

from labor rates and quantities. 

Of the two components depicted in Figure 1, 

throughput is easier to quantify. Throughput is 

typically presented as a “per time” metric, such as 

Lines of Code per Hour, Function Points per 

Month, or Story Points per Sprint, and can be 

determined from historical development rates. 

Size is much more difficult to measure, as there is 

a myriad of ways to calculate the size of the 

software system being developed; below is a brief 

discussion of three common size measurements.  

1.2.1 Story Points 

In Agile Estimating and Planning, Cohn wrote: 

“Story points are a unit of measure for expressing 

the overall size of a user story, feature, or other 

piece of work. When we estimate with story 

points, we assign a point value to each item. The 

raw values we assign are unimportant. What 

matters are the relative values. A story that is 

assigned a two should be twice as much as a story 

that is assigned a one. It should also be two-thirds 

of a story that is estimated as three story 

points.” [3] Story points, as stated by Cohn, are a 

subjective unit of measure. An individual Agile 

team assigns them to identify the relative 

difficulty of various tasks, and usually require a 

prioritized product backlog of user stories, which 

is not developed until much later in the 

acquisition process; therefore, it is difficult to 

aggregate and compare between development 

teams and different programs. Additional 

technical information is necessary to derive a 

normalized relationship between the effort 

performed by different teams and their assigned 

story points. While we believe that story points 

Figure 1: Agile SCRUM Process Chart, adapted from the SCRUM Body of Knowledge (SBoK, 2017) 
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are an important and indispensable part of the 

individual agile team planning process for sprints 

and backlog burn-down, story points do not lend 

themselves to long-term program management.  

 

1.2.2 Software Lines of Code (SLOC) 

Most commonly used within the Department of 

Defense, Software Lines of Code (SLOC) is the 

physical count of lines of text in the source code. 

As stated in the 2019 Defense Innovation Board 

Metrics for Software Development “The current 

state of practice within the DoD is that software 

complexity is often estimated base on the number 

of source lines of code (SLOC), and its rate of 

progress is measured in terms of programmer 

productivity. While both of these quantities are 

easily measured, they are not necessarily 

predictive of cost, schedule, or performance.” [4] 

According to code.org, “Of course, every engineer 

knows that ‘lines of code’ is a silly measure…No 

software engineer measures the value of their 

work in lines of code. In fact, the best-designed 

programs often have the simplest designs and the 

fewest lines of code.” [5] SLOC may provide some 

general idea of the scope of a development effort 

for an Rough Order of Magnitude estimate, but 

variations in code length due to type of 

programming language and the coding efficiency 

of individual developers means accuracy of SLOC 

estimates are likely inconsistent. 

 

1.2.3 Function Points 

The Function Point, developed by IBM’s Allan 

Albrecht in 1979, is a standard unit of 

measurement based on how a system uses 

information. Capers Jones, leading authority in 

software estimating, stated: “Function Point 

metrics are the most accurate and effective 

metrics yet developed for software sizing and 

also for studying software productivity, quality, 

costs, risks, and economic value. Unlike the older 

‘lines of code’ metric Function Points can be used 

to study requirements, design, and in fact all 

software activities from development through 

maintenance.” [6] Function Points are agnostic of 

programing language or development 

methodology (e.g., waterfall, agile). Since its 

inception, the methodology governed by the 

International Function Point User’s Group 

(IFPUG) established in 1986 is an International 

Organization for Standardization (ISO) standard. 

A Function Point is consistent regardless of who 

performs the count or what the system does. 

While the counting process involves some 

interpretation, experienced Function Point 

counters can produce counts for a system within 

5% of each other. 

Figure 2 is a pictorial 

representation of 

system components 

that need to be 

understood when 

calculating Function 

Points. Drawbacks to 

Function Points can 

include the time 

required to learn the 

counting practice, time 

to conduct a full count, 

and the effort required 

to obtain certification.  
Figure 2: Pictorial representation of Function Point counting components of a system 
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1.3 Challenges to the Department of 

Homeland Security 

Each year, DHS invests billions of taxpayer 

dollars into everything from helicopters for 

Customs and Border Protection (CBP), vessels for 

the U.S. Coast Guard, baggage screening 

equipment for the Transportation Security 

Administration (TSA), and complex software 

systems. These software systems are used for 

such purposes as administering Federal 

Emergency Management Agency (FEMA) grants, 

processing U.S. citizenship applications, and 

monitoring the enforcement of illegal 

immigration. In a recent report by the 

Government Accountability Office (GAO) in May 

of 2017 it was noted that “in fiscal year 2016, the 

department’s IT budget of approximately $6.2 

billion was the third largest in the federal 

government.” [7] Like many other federal 

agencies in the U.S. Government, the Department 

of Homeland Security (DHS) has struggled with 

estimating the cost of and establishing realistic 

schedules for large IT programs. 

One of the primary challenges experienced by 

DHS is accurately estimating the size of software 

development efforts. Many of these efforts result 

in public-facing systems and have many 

stakeholders with various needs, leading to 

complex sets of requirements. In the cost 

estimating field, developing an estimate is not 

conceptually difficult, as estimates are often just 

build-ups of labor; the justification of those 

inputs is what presents the major challenge. Agile 

development principles often conflict with 

established processes in the traditional 

acquisition lifecycle framework. Development 

teams will continually shift or add requirements 

as directed by the customer to deliver working 

software, but how can a program tell that it has 

completed what it originally set out to do? 

Understanding the true scope of programs is the 

missing piece to improving program management 

practices. 

 

1.4 Charge by the Under Secretary for 

Management 

In 2017, the DHS Under Secretary for 

Management (USM) charged the Cost Analysis 

Division (CAD) under the DHS Office of the Chief 

Financial Officer (OCFO) to find a way to improve 

cost estimates for Agile software development 

programs. There were two primary objectives: 

1. Enhance the credibility and accuracy of a 

software development estimate and 

2. Decrease the time required to develop the 

estimate. 

At the time, DHS had designated five software 

development programs as pilots for 

implementing agile processes and best practices 

and providing lessons learned for other DHS 

endeavors. In addition to being highly visible 

major acquisitions, these programs were at 

various stages of the acquisition lifecycle and had 

experienced common challenges with cost, 

schedule, and performance. The charge by the 

USM provided a timely opportunity for the Cost 

Analysis Division to expand its technical 

knowledge of software development and attempt 

some novel estimating methods. From 

discussions with industry and Government 

partners, the Cost Analysis Division learned of the 

benefits of functional sizing techniques and 

identified functional sizing as a promising 

solution to the current dilemma. 

 

 

2. SIMPLE SOFTWARE ESTIMATION (SiSE) 

2.1 SiSE Process Overview 

The Cost Analysis Division developed a custom 

software cost estimation process called Simple 

Software Estimation (SiSE), combining the open-

source Simple Function Point (SiFP) method as 

published by Dr Roberto Meli (v1.01) and work 

pioneered and shared by analysts at the National 

Security Agency (NSA). [8] The SiSE Estimating 
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Process combines functional software sizing (i.e., 

quantifying business function/transaction types, 

system interfaces, and requirements counts from 

high-level acquisition documentation) together 

with software productivity rates (e.g., hours per 

function point) to determine Agile software 

development effort and costs. Note that we 

realize that there are Diseconomies of Scale (DoS) 

associated with software development 

estimating; however, we currently assume a 

simplified linear relationship between software 

functional size and productivity. The Simple 

Function Point method was acquired by the 

International Function Point User’s Group 

(IFPUG) in September of 2019, which indicates 

growing interest in the underlying methodology. 

[9] 

The SiSE functional sizing methodology leverages 

the process of IFPUG’s ISO certified counting 

practices manual. The IFPUG counting practice 

estimates the size of software based on an 

understanding of the system’s lowest-level 

business transactions (External Inputs, External 

Outputs, and External Inquires) and data storage 

interfaces (Internal Logical Files and External 

Interface Files) as seen in Figure 2. The IFPUG 

counting method requires the counter to quantify 

the complexity of each transaction or data 

storage component, based on a set of criteria. 

Then, depending on the component type and 

complexity, a Function Point value is assigned. 

The SiSE method was developed as an alternative 

to this lengthy and labor-intensive Function Point 

counting process.  

The SiSE method maps the IFPUG components to 

two groups – Transactions (i.e., Create, Update, 

Delete, Report, and Read), which map to External 

Inputs (EI), External Outputs (EO), or External 

Queries (EQ), and Logical Data Groupings (i.e., 

Saves), which map to Internal Logical Files (ILF) 

and External Interface Files (EIF). Figure 3 

illustrates this mapping between the IFPUG 

components and their Function Point counts, and 

the SiSE components and weightings. 

The Cost Analysis Division’s research illustrates 

that functional requirements are typically 

expressed as action verbs (e.g., “submit,” 

“maintain,” “receive”). Each requirement can be 

decomposed into one or more components 

(groupings of generic transactions and/or data 

groups) and corresponding weighing factors from 

the Simple Function Point method. Work done by 

functional sizing experts produced a lexicon of 

140+ action verbs and their associated 

components. With the associated size for each 

action verb pre-defined, a functional size estimate 

for a set of requirements can be produced and 

totaled quickly.  

To understand a software system’s business 

transactions and estimate software requirements, 

the Cost Analysis Division uses a program’s 

Concept of Operations (CONOPS), a high-level 

acquisition document developed early in our 

acquisition lifecycle that describes what functions 

Figure 3: Mapping between IFPUG and SiSE Components and Weightings 
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the completed system will do. The CONOPS is 

reviewed and validated by the DHS requirements 

and technical communities to ensure all required 

capabilities are captured before a program moves 

further through the acquisition lifecycle. The SiSE 

sizing step leverages the action verbs used in the 

CONOPS written functional requirements to 

quickly estimate a Simple Function Point size of 

the software. Once the initial size estimate is 

calculated, additional factors and risk may be 

applied to the estimated size to anticipate 

software growth, complexity, and program 

uniqueness. 

The program office and the appropriate technical 

communities should then validate the final size 

estimate to ensure a consistent interpretation of 

the requirements used for the estimate. The Cost 

Analysis Division uses analogous historical and 

industry data to determine a throughput/

productivity rate used with the estimated Simple 

FP size to estimate the total software 

development effort for the program. This is then 

time-phased across the schedule to estimate the 

software development cost for a program’s Life 

Cycle Cost Estimate (LCCE). 

 

2.2 What is a Good Requirement? 

It should be obvious that successfully conducting 

SiSE depends on a solid understanding of the 

functionality of the system being developed. It is 

impossible to assess the accuracy of any sizing 

estimate without understanding what a 

developed system does, and much of this 

understanding comes from written program 

documentation. With the shift to Agile methods 

also comes the mindset that documentation is 

secondary to developed software due to 

constantly changing requirements; therefore, it is 

crucial that the early, high-level program 

requirements are well written. There are many 

factors to consider when writing requirements 

[10]: 

 

1. User’s perspective – SiSE focuses on 
functional size, i.e. the actions that the system 
performs when it is operational. Good 
requirements should capture those actions. 
Non-functional requirements such as 
availability, maintainability and reliability, 
while important considerations during 
development, do not factor directly in SiSE. 

2. Unique / One action per requirement – A 
good requirement should only describe one 
individual action. Including multiple actions in 
a requirement may cause confusion and lead 
to effort being underestimated. 

3. Clear and concise actions – In the Agile 
spirit, requirements should be direct to keep 
documentation minimal. Keeping the written 
requirement concise also helps ensure that the 
functions are easily recognized. 

4. Consistent level of detail – Good 
requirements for SiSE should be described at 
similar levels of detail. If a requirement is 
overly detailed or broken into multiple smaller 
actions, it may lead to that effort being 
overestimated relative to others. 

5. Testable / Verifiable – Good requirements 
should have criteria to determine if the 
requirement has been developed properly and 
the capability met. This allows for 
development progress to be accurately 
tracked. 

Various artifacts such as the CONOPS or a 

Functional Requirements Document (FRD) are 

produced as a program increases in maturity and 

describe requirements at differing levels of detail. 

The Cost Analysis Division is exploring using 

other DHS document sources for SiSE sizing to 

include the FRD, Requirements Traceability 

Matrix (RTM), and the Software Requirements 

Document (SRD). Analysts can also derive SiSE 

from user stories pulled from project 

management tools such as JIRA for sizing. Other 

federal agencies can utilize similar high-level 

requirements documentation if the organization 

does not employ CONOPS to the detailed software 

business function level. Performing SiSE with 

each of these documents will produce different 
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sizing estimates. Work is ongoing to investigate 

which requirements documents provide the most 

useful information to accurately estimate 

functional size. 

 

 

3. BUT WAIT, THERE’S MORE! 

As part of the Simple Software Estimating 

process, the Simple FP estimate quantifies the 

size of the functional requirements for a 

development effort. This number, when used by a 

cost estimator, provides a justifiable input for 

estimating cost. But after performing this sizing 

effort to produce just one number – the Simple FP 

estimated size, is that it? No! There are many 

ways that our size estimate, when utilized 

effectively by a program office, can provide 

maximum value by influencing many aspects of 

program management activities. 

 

3.1 Developing Schedules – “When can this be 

delivered?” 

One of the first items that a program needs to 

have agreement on is the realistic duration of the 

software development effort. There have been 

studies conducted that provide metrics on 

development rates for functional sizing (ex: FP/

team-month, etc.). Using a standard approach like 

Simple FP with an appropriate productivity rate 

to estimate our software development effort (in 

hours or person months) we can then estimate, 

using historical development rates, the schedule 

duration to complete the software development. 

If a schedule was already assigned to a program, 

this schedule estimation can assess the 

reasonableness of existing development 

timelines. The program can then justify to 

decision makers why pre-assigned milestones (or 

deadlines!) may be unrealistic and should be 

delayed or re-evaluated. 

 

3.2 Estimating Resources – “What staff is 

needed?” 

If timelines are already established, SiSE can 

assist program management with an easy way to 

quantify how many resources will be required to 

meet those deadlines. Using software 

development rate metrics together with the 

Simple FP size estimate the assigned milestone 

dates, an analyst can estimate the required team 

size and quantity to meet the desired schedule. If 

the available team size is insufficient, the analysis 

provides solid, objective justification to ask for 

additional program resources and funding. 

 

3.3 Planning Agile Sprints – “What is 

everyone’s workload?” 

If based on good requirements (i.e., unambiguous, 

clearly stated, functional requirements), a cost 

analyst can use the Simple FP estimate, with a 

relevant productivity rate to estimate the effort 

required to develop each of those requirements. 

Because each requirement is objectively 

quantified, Agile teams can appropriately divide 

tasks when planning sprints and minimize 

potentially over-assigning work. Program 

managers can use also use this approach to 

assess team throughput and ensure that they are 

all producing similar amounts of functionality. 

This approach is far more objective and 

applicable across teams than the alternative 

velocity metric (expressed as Story Points per 

Sprint) typically used by Agile development 

teams. 

 

3.4 Reviewing Vendor Proposals – “Is this bid 

realistic?” 

This paper provides an overview on how 

programs can use SiSE to assess internal 

schedules and resourcing. This estimating 

process can also be applied to assessing vendor 

proposals for software development services, to 

validate that the scope of work is mutually 
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understood between the Government and 

contract offerors. The Simple FP sizing estimate 

can provide a quick cross-check to the overall 

amount of effort proposed, as well as gauge 

reasonableness of the delivery timeline and the 

staffing proposed to meet those dates. This will 

allow programs to better evaluate best-value 

proposals when awarding contracts. 

 

3.5 Tracking Progress – “How is the program 

performing overall?” 

The results of SiSE combines with other noted 

analyses to produce a baseline for accurate 

tracking of development progress. An initial 

cumulative Simple FPs “estimate to complete” 

chart can be plotted to project completion dates 

and effort, using assumed development rates and 

proposed staff. Plotting cumulative, delivered 

Simple FPs completed after each sprint against 

this initial projection can provide a program 

manager with valuable information in the form of 

a Burn Up chart. Program and project managers 

can track current development progress and see 

if the project progress is trending as planned. 

Deviations will provide an early indication of 

potential issues and allow the program to react 

pre-emptively. Establishing a visual 

representation of such progress also provides an 

instrument to initiate useful communication with 

leadership and focus the conversation on issues 

that require attention. An example of a visual 

representation can be seen in Figure 4. 

 

3.6 DHS Examples of SiSE Use 

The pilot of SiSE methodology on DHS programs 

has resulted in successes in various aspects of 

program acquisition processes. Three examples 

are highlighted in this section. 

Figure 4. Example Function Point Tracking Chart 
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3.6.1 Program A 

Program A was one of the first pilot programs for 

testing the Simple Function Point Analysis (SFPA) 

methodology, the predecessor to SiSE. The 

Program was a Level 2 ($300M-$1B total lifecycle 

cost) agile development program for a public 

facing web-based system. The program’s CONOPS 

clearly detailed the user requirements via 

functional capabilities statements, which made it 

very easy to apply SiSE to estimate functional 

size. The estimated SiFPs were adjusted for risk 

and used with current throughput rates to update 

the program’s LCCE for Department approval. 

Program A’s LCCE helped to prove the 

methodology’s viability for DHS programs; the 

program’s requirements statements are some of 

the primary examples the Cost Analysis Division 

uses to educate other programs how to effectively 

write requirements for SiSE. 

 

3.6.2 Program B 

Program B is a Level 1 ($1B+ total lifecycle cost) 

program in the obtain phase of the acquisition 

lifecycle for a very complex, critical system with 

large computing/storage requirements and 

interfaces with systems both internal to DHS and 

external to stakeholders and partners. The 

program estimated Function Points for the 

system using the COSMIC sizing methodology 

[11].  

As part of an Independent Cost Assessment (ICA) 

of the program’s LCCE, the Cost Analysis Division 

used SiSE to size requirements described in one 

of the program’s capability documents. The 

software development costs calculated through 

SiSE were within 8% of the program’s estimate, a 

reasonable range for an independent cross-check. 

The Cost Analysis Division’s ICA and the approval 

of Program B’s LCCE demonstrated the value of 

SiSE for developing a software size estimate 

quickly and with similar accuracy to other 

standardized Function Point counting methods. 

In addition to using Function Points in the 

development of the LCCE, Program B also 

implemented a progress tracking chart as 

described in Section 3.5. The chart is presented to 

stakeholders whenever the program meets with 

the DHS Acquisition Review Board for milestone 

decisions or program reviews. Trends projected 

in the chart have been consistent with progress 

observed as the program continues development 

activities. 

 

3.6.3 Program C 

Program C is a Level 2 program in the obtain 

phase of the acquisition lifecycle for a system that 

streamlines many unique process workflows into 

a single management platform. The program 

recently updated their LCCE to reflect a shift in 

acquisition approach to agile software 

development. The Cost Analysis Division was able 

to collaborate with the program to apply SiSE on 

business functions described in the program’s 

CONOPS; the use of SiSE did not require Program 

C to create any new acquisition documents 

specifically for the LCCE update. Part of the 

program’s updates also included re-baselining 

schedule milestones due to lower staffing levels 

than planned. The Cost Analysis Division used the 

Simple Function Point estimate along with 

throughput data and agile team quantities to 

project system development and identify a new 

date to reach Full Operational Capability. The 

recommended milestone dates were consistent 

with the schedule provided by the program’s 

development contractor. The work done with 

Program C showed SiSE’s ability to be performed 

on requirements regardless of development 

approach, as well as reduce program 

overdependence on contractors for program 

management activities.  
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4. SUCCESSES WITH SiSE IMPLEMENTATION  

Over the last few years, there has been a large 

amount of progress made by the Cost Analysis 

Division in implementing SiSE in DHS. We 

highlight several accomplishments, as well as 

ongoing efforts to improve, refine, and expand 

the SiSE methodology to provide maximum value 

to the Department. 

 

4.1 Leadership Support 

DHS Leadership has supported the use of SiSE as 

a methodology to estimate software development 

sizing. They have recognized the objective nature 

of Simple Function Points and their standard 

calculation, as well as the link to functional 

requirements. Tracking SiFPs has begun to focus 

discussions of development progress on 

capabilities delivered rather than deadlines 

promised. In a May 2019 memo from the DHS 

Acting Chief Financial Officer, all new or re-

baselining Major Acquisition programs are now 

required to use functional sizing for estimating 

software development effort. 

 

4.2 Joint Agile Software Innovation Cost IPT 

(JASI CIPT) 

The Joint Agile Software Innovation (JASI) Cost 

Integrated Product Team (IPT) was founded in 

2018 by representatives from DHS, the National 

Security Administration (NSA), and the National 

Geospatial-Intelligence Agency (NGA) with three 

objectives: 

1. Develop a pragmatic and defendable approach 
to estimate and measure software 
development through Functional Sizing 

2. Improve data availability to enhance the 
credibility of estimates 

3. Investigate new approaches to track, measure, 
and report progress of an agile program 
throughout its development lifecycle 

Through JASI, the Cost Analysis Division provides 

SiSE training to over a dozen different audiences, 

with more sessions planned. JASI has also 

expanded to include membership from thirteen 

federal agencies in the Defense, Intelligence, and 

Civilian cost communities. These agencies all 

recognize the potential for SiSE to improve the 

development of cost estimates and are excited to 

implement SiSE in their own organizations. JASI 

CIPT won the 2019 Team Achievement award 

through the Washington Capital Area Chapter of 

the International Cost Estimating and Analysis 

Association (ICEAA) in recognition of the 

collaborative efforts of the team. 

 

4.3 Adoption by New Acquisition Programs 

The Cost Analysis Division’s efforts to promote 

SiSE and provide training in the methodology to 

current acquisition programs have spread 

awareness across the department. Several early 

phase acquisitions have indicated that they are 

attempting to use SiSE as part of their program 

planning activities. To date, two DHS programs 

independently used SiSE to develop their Rough 

Order of Magnitude estimates.  

 

4.4 Engagement with DHS Stakeholders 

The Cost Analysis Division is working with 

acquisition stakeholders across the department 

to refine, improve and standardize SiSE. The Cost 

Analysis Division is collaborating with the Offices 

of the Chief Information Officer and Chief 

Technology Officer to improve and standardize 

written requirements and develop processes to 

validate Simple Function Point-based LCCEs from 

a technical perspective. The Cost Analysis 

Division is also engaging with the Office of the 

Chief Procurement Officer to facilitate collection 

of valuable performance metrics as part of future 

Agile development contracts. 
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4.5 Data Collection 

The Cost Analysis Division is undergoing efforts 

with many DHS agile programs to collect data on 

completed software. Data being collected 

includes written requirements and respective 

Simple FP counts, agile team quantities and 

composition, effort to develop functional 

requirements, and actual costs, among others. 

The Cost Analysis Division intends to use the data 

to refine the number of Simple FPs assigned to 

various requirements statements, as well as 

develop DHS-specific throughput rates to 

improve size and schedule estimates for future 

programs. Simple FP estimates from different 

requirements documents will also be examined to 

determine which document type provides the 

most accurate and appropriate basis of estimate.  

 

 

5. CONCLUSIONS 

5.1 Benefits and Summary 

The Cost Analysis Division believes SiSE offers 

many benefits to Agile acquisition programs. SiSE 

provides a faster, more reliable, and repeatable 

process for cost estimators to produ63ce credible 

estimates of functional size and development 

effort. The methodology leverages high-level 

documents created early in the acquisition 

lifecycle, allowing long-term analysis of system 

capabilities without being impacted by agile 

processes that can shift development priorities. 

Lastly, integrating functional sizing into other 

aspects of program management provides 

additional value to program managers by tying all 

activities to the same requirements and can be 

communicated consistently to leadership and 

decision makers. 

 

5.2 Future Work 

The SiSE methodology is still a “work in 

progress.” We seek to improve this methodology 

based on data and lessons learned by programs 

as they progress through software development. 

All Cost Analysis Division efforts referenced in 

this paper are ongoing, with the hope that the 

SiSE process will soon become a standard not 

only within DHS, but across the U.S. Federal 

Government. 
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Introduction 

Since at least 1983, the Department of Defense 

(DoD) has instructed cost estimators to include in 

their contract estimates an additional percentage 

of the total costs to be held in reserve as a buffer 

against the possibility of an Engineering Change 

Order (ECO) (Gibson, 1983). An ECO is a tool used 

by management to direct a scope change to a 

contract (Engineering Change Proposals, 2021). 

This scope change is typically technical (e.g., 

correction of a design error that does not become 

evident until testing and modeling). Such scope 

changes amount to cost growth. Therefore, it 

would be beneficial to the government if accurate 

predictions could be made about the appropriate 

amount to hold in reserve. Reserving too much 

money limits the number of programs able to be 

funded. Reserving too little money puts a 

program at risk of being delayed or even 

cancelled. 

The Government Accountability Office (GAO, 

2008) determined that 63% of Major Defense 

Acquisition Programs (MDAPs) required 

contractual changes after system development. 

Such changes included administrative, 

engineering (also referred to as technical), and 

added non-technical work requirements changes. 

The same report showed that poorly defined 

requirements in acquisition programs can create 

significant cost growth. Major defense programs 

that had requirement changes after initial system 

development experienced mean cost growth of 
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72% from initial estimate, while those that did 

not have requirement changes experienced only 

11%. 

Per Gibson (1983) in a DoD ECO guidebook, a 

10% estimate has provided reasonable coverage 

for the unanticipated requirements on many 

programs. The guidebook also provides 

suggestions for when to deviate from the 10%. 

However, no empirical data has been found that 

substantiates the validity of the 10% percentage. 

Some practitioners have continued to anchor 

estimates to that 10% rule-of-thumb (ROT) for 

Development contracts (DEVROT) in addition, to 

using a ROT for Production contracts (PRODROT). 

Specifically, the Air Force Life Cycle Management 

Center uses a 5% reserve for PRODROT (S. 

Valentine, personal communications, 2021). 

This article has three objectives. The first is to 

investigate whether DEVROT of 10% and PRODROT 

of 5% provide a good estimate of the amount to 

be held in reserve for ECOs. If the first objective 

indicates that either ROT appears inaccurate, 

then the second objective is to develop a more 

accurate ROT to account for the percentage 

increase in cost due to ECOs. In conjunction with 

objective two, the third objective is to determine 

which factors, such as service, commodity type, 

contract type, or contract length, may drive 

differences in ECO percentages. These factors 

stem from previous research (Christensen & 

Templin, 2000; Arena et al., 2006; Bolten et al., 

2008; Harmon & Arnold, 2013; Kozlak et al., 

2017; Trudelle et al., 2017a, 2017b; D’Amico et 

al., 2018; Ellis et al., 2018) that indicate a possible 

association with program cost growth. 

 

Methods 

The data used for this article originated from the 

DoD contracting system known as Electronic 

Document Access (EDA). EDA is an online 

resource in which government contracting 

agencies upload scanned copies of actual 

contractual documents (EDA, 2017). The Defense 

Cost and Resource Center (DCaRC) commissioned 

a support contractor to establish a separate 

database from batches of contracts from EDA, 

which were identified of value by defense 

analysts. In October 2021, the support contractor 

provided the authors of this article the EDA data 

in the form of an Excel database. 

To the best of our knowledge, the contracts in the 

current database were not chosen randomly. 

Each year, the DoD office of Cost Assessment Data 

Enterprise (CADE) sends out a data call to cost 

agencies DoD-wide requesting a list of contracts 

on which analysts would like information. Cost 

agencies then send their contract list to the 

support contractor, which in turn, then searches 

for them in EDA and transfers the data to the 

CADE database. The CADE database is updated on 

a quarterly basis. 

Basic DoD contracts and their modifications 

comprise the database. The database includes a 

column of dollar amounts for each contract and 

modification, normalized for inflation to fiscal 

year (FY) 2020 using the 2020 OSD inflation 

table. Besides contract baseline cost, ECO cost, 

and ECO percentage (ECO cost / baseline cost), 

the database also contains contract number, 

service, commodity type, program, life cycle 

phase, contract type, contract start date, period of 

performance (PoP) end date, and schedule length 

in days (difference between PoP and contract 

start date). 

Because only development and production 

contracts were germane to the analysis, we 

remove any Operating and Support (O&S) 

contracts in the database. To minimize the effect 

of error or unrealistic baselines, we omit any 

contract that exceeds 100% in absolute value for 

an ECO percentage. This exclusion is in-line with 

exclusion criteria from Ellis et al. (2018). Table 1 

highlights the complete inclusion/exclusion 

criteria for the database we analyzed. The 

database contained 11,481 unique contracts with 

their respective modifications (if any) and 

reasons for modification. The Appendix lists the 
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programs which had contracts in the database. 

Due to the nature of the available data, the 

analysis in this research is solely at the contract 

level as opposed to the program level. 

We analyze the finalized data using both 

descriptive measures and statistical inferential 

tests. The descriptive measures include means, 

standard deviations, coefficients of variation 

(CV), medians, interquartile ranges (IQR), and a 

quartile-based CV of IQR/medians. The 

inferential tests include t-tests, the 

nonparametric Kruskal-Wallis test (Wilcoxon 

Rank Sum when just comparing two 

populations) and Steel-Dwass multiple 

comparisons, Pearson’s Chi-squared test for 

dependency between variables, associated 

odds ratios and confidence intervals for 

significant odds ratios. Given the large sample 

sizes for initially testing the current DEVROT 

and PRODROT of 10% and 5%, assessment of 

normality is not needed. However, when 

conducting further tests comparing various 

services, commodities, and contract types 

(Table 2 lists those in our database), we chose 

the conservative nonparametric approach over 

the customary analysis of variance and 

subsequent Tukey analysis. For level of 

significance, we use an alpha of 0.05 for all the 

inferential tests. JMP Pro 15 was the software 

used to perform the statistical calculations. 

 

Results 

From the 1,216 contracts in our final database, 

we first analyze the development ones. Table 3 

reflects the summary statistics 

for these 448 contracts. With a 

p-value of less than 0.0001 for 

the accompanying t-test, 

empirical evidence suggests 

that DEVROT based on the 

mean value of 16.3% is 

statistically greater than 10%. 

But there is a high degree of 

variability present among the 

development contracts as 

reflected in both the standard 

deviation and IQR. This 

variability indicates that the 

median may also play a role in 

determining how much to 

estimate/reserve for ECO. A 

median value of 10.4% is very 

near the DEVROT value of 10% 

and is not statistically 

significant. 

INCLUSION 
CRITERIA 

CONTRACTS 
ADDED 

CONTRACTS 
REMOVED 

CONTRACTS 
REMAINING 

Original Dataset 11,481  11,481 

Non-Technical 
Modifications 

 8,537 2,944 

Blank Baseline or 
ECO Cost 

 12 2,932 

Absolute Value of 
ECO % > 100% 

 498 2,434 

O&S Contracts   1,218 1,216 

Table 1: Inclusion/exclusion criteria describing the establishment 

of the final analyzed database. 

SERVICES COMMODITIES 
CONTRACT 
TYPES 

Air Force AIS (Automated Information System) Cost 

Army Decoys Fixed 

DoD (two or more services) Electronics Time and 
Materials 
(T&M) Navy (includes Marines) Engine 

  

F-16 

  

F/A-18 

Ground Vehicle 

Gun 

Missiles 

Non-lethal 

Ordnance 

Other Aircraft 

Radar 

Ship 

Space 

Targets/Drones 

UAV (Unmanned Aerial Vehicle) 

Table 2: Breakdown of services, commodities,  

and contract types in the final analyzed database. 
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Table 3 also reflects the summary statistics for 

the 768 production contracts. With a p-value of 

0.0001 for the accompanying t-test, empirical 

evidence suggests that PRODROT based on the 

mean value of 8.8% is statistically greater than 

5%. Like the development contracts, production 

contracts also display a high degree of variability 

with respect to ECO percentage as reflected in the 

standard deviation and IQR. 

DEVROT and PRODROT are statistically different 

from one another with a p-value of less than 

0.0001 for both the t-test and Wilcoxon Rank 

Sum test. This implies that development and 

production contracts statistically differ with 

respect to ECO percentages, with DEVROT > 

PRODROT. We present these results in separate 

subsections. 

 

Development  

Of the 448 development contracts, one 

contract had no ECO cost, 59 had negative 

ECO cost, while the remaining 388 (86.6%) 

had positive ECO cost. As stated previously 

in the Methods section, we conducted three 

Kruskal-Wallis (K-W) tests to determine any 

statistical difference among the services, 

commodity, and contract type with respect 

to ECO percentage. No statistical difference 

existed among services (p-value of 0.5387) 

or commodity type (p-value of .1022). For 

contract type, 65 contracts were identified 

as unknown (missing). Of the remaining 383, 251 

(65.5%) were identified as cost, 85 as fixed, and 

47 as T&M. A statistical difference appeared 

between cost and fixed (K-W p-value of 0.0385, 

with a subsequent p-value of 0.0277 for the Steel-

Dwass (S-D) multiple comparisons). Table 4 

highlights the metrics associated with cost, fixed, 

and T&M contracts, respectively. Note: both the 

mean ECO percentages for cost and T&M 

contracts were statistically (p-value < 0.0001) 

greater than DEVROT of 10%, while fixed type 

contracts were equivalent. 

From studies noted in the Introduction section, 

we next address if dollar threshold and/or 

contract schedule length is associated with 

whether a contract is likely to exceed the DEVROT 

of 10%. The natural breaks are those set for 

DoD’s classification. ACAT I is associated with 

Research, Development, Test and Evaluation 

(RDT&E) costs over $525M (in FY 2020 dollars); 

ACAT II with RDT&E programs between $200M 

and $525M (FY 2020); and ACAT III for all 

program less than $200M. The p-value for the 

Pearson’s chi-squared test of independence was 

0.4709. This finding suggests dollar thresholds 

associated with ACAT categories do not appear to 

affect the likelihood of exceeding the DEVROT of 

10%. 

Regarding contract length, only 346 (77.2%) of 

the contracts had complete schedule data 

(neither contract award date nor PoP end date 

METRIC DEVELOPMENT PRODUCTION 

Sample Size 448 768 

Mean 0.163 0.088 

Standard Deviation 0.279 0.286 

Coefficient of Variation 1.711 3.253 

Median 0.104 0.035 

Interquartile Range (IQR) 0.265 0.141 

IQR / Median 2.563 4.014 

Table 3: Summary statistics for the 448 development and 768 

production contracts. Numbers rounded to three decimal places. 

METRIC COST FIXED T&M 

Sample Size 251 85 47 

Mean 0.172 0.102 0.211 

Standard Deviation 0.264 0.271 0.399 

Coefficient of 
Variation 

1.531 2.654 1.89 

Median 0.114 0.057 0.109 

Interquartile Range 
(IQR) 

0.269 0.215 0.421 

IQR / Median 2.36 3.772 3.862 

Table 4: Summary statistics for the 251 cost, 85 fixed, and 47 T&M 

development contracts. Numbers rounded to three decimal places. 
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were missing). We tested if contract length equal 

to or greater than five years had an increased 

chance of exceeding the DEVROT of 10%. This 

threshold is based on Trudelle et al., 2017a which 

showed that program length of five years or more 

appeared to be a statistically significant indicator 

of cost growth. The Pearson’s chi-squared 

dependency test returned a p-value of 0.0007. 

The associated odds ratio of 3.99 (with an 

associated 95% confident interval of (1.71, 9.31)) 

suggests that development contracts that equal 

or exceed five years in length are four times more 

likely to exceed an ECO percentage of 10%. 

Prior to preceding into a comparable analysis by 

narrowing to contracts with just net positive ECO 

cost (hereafter referred to as positive ECO cost), 

we investigate what factors (service, commodity, 

contract type) might indicate that a development 

contract is likely to experience positive ECO cost. 

The p-value for testing dependency between 

service and positive ECO cost was 0.9611, 

strongly suggesting no dependency whatsoever. 

Consistent to the previous finding regarding all 

ECO costs, development contracts, irrespective of 

commodity type, had a comparable chance of 

experiencing positive ECO with one exception, 

ground vehicles. 

The ground vehicles in our database consisted of 

the Joint Light Tactical Vehicle (primarily Army/

Marine), the Joint Mine Resistant Ambush 

Protected (Army/Marine), the Logistic Vehicle 

System Replacement (Marine equivalent to the 

Army's Heavy Expanded Mobility Tactical Truck), 

and the Medium Tactical Vehicle Replacement 

(Marine equivalent of the US Army's Family of 

Medium Tactical Vehicles). These types of 

vehicles are approximately 3.81 times less likely 

to experience a positive ECO cost. The associated 

p-value for this Pearson chi-squared test was 

0.0037 with a 95% confidence interval for the 

odds ratio of (1.45, 9.98). Table 5 contains the 

descriptive statistics for ground vehicles. As 

previously noted, high variability is present as 

shown by the standard deviation and IQR values. 

Regarding contract type, cost contracts appear to 

have a higher likelihood of experiencing a 

positive ECO cost compared to fixed and T&M. 

The p-value for the Pearson’s chi-squared test 

was 0.0137 with an associated odds ratio of 2.05 

and a 95% confidence interval of (1.15, 3.65). 

Overall, it appears that a cost development 

contract is more likely to experience positive ECO 

cost, while a ground vehicle like those in our 

database is less likely to experience positive ECO 

cost. 

Next, we narrow to just those contracts with 

positive ECO cost, which represent 86.6% of all 

the development contracts in our database. Table 

6 contains the descriptive measures of just the 

positive ECO contracts. As expected, both the 

mean and median are higher than those shown in 

Table 3. In addition, both the CV and IQR/Median 

are lower. 

METRIC VALUE 

Mean 0.125  

Standard Deviation 0.389 

Coefficient of Variation 3.112 

Median 0.044 

Interquartile Range (IQR) 0.559 

IQR / Median 12.704 

Table 5: Summary statistics for the 20 ground vehicle 

development contracts. Numbers rounded to three 

decimal places. 

METRIC VALUE 

Mean 0.222 

Standard Deviation 0.233 

Coefficient of Variation 1.05 

Median 0.14 

Interquartile Range (IQR) 0.285 

IQR / Median 2.045 

Table 6: Summary statistics for the 388 development 

contracts with positive ECO cost. Numbers rounded to 

three decimal places. 
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Among just contracts that experienced positive 

ECO cost, neither service (K-W p-value of 0.2882) 

nor commodity (K-W p-value of 0.1371) 

appeared significant at the 0.05 level but contract 

type (K-W p-value of 0.0468) did. Given the p-

value was very close to the 0.05 level, the 

subsequent S-D multiple comparisons lacked the 

statistical power to meet this significance 

threshold. S-D only indicated that fixed and T&M 

contracts might be different with a p-value of 

0.0590. Table 7 highlights the metrics associated 

with cost, fixed, and T&M contracts for just those 

with positive ECO cost, respectively. Sixty 

contracts had missing information for contract 

type. Note: all contract types possessed a mean 

percentage statistically greater than DEVROT of 

10% (p-value < 0.0001). 

Next, we address if dollar threshold and/or 

contract schedule length might affect the chance a 

contract is likely to exceed the DEVROT of 10%. 

Using the same ACAT dollar thresholds as before, 

the p-value for the Pearson’s chi-squared test of 

independence was 0.1382. This finding suggests 

dollar thresholds associated with ACAT 

categories may not affect the likelihood of 

exceeding the DEVROT of 10% when just 

examining contracts with positive ECO cost. 

We did conduct post hoc analysis given this drop 

of p-value from 0.4709 (from the previous ACAT 

analysis) to 0.1382 with respect to investigating 

dollar threshold and exceeding DEVROT of 10%. 

We varied the dollar threshold incrementally 

between $10M to $100M and observed the spot 

whereby both the p-values and odd ratios change 

the most statistically. As shown in Table 8, that 

dollar amount appears to be around $30M. Table 

9 highlights the metrics associated with contracts 

less than $30M and those equal to or greater than 

that value. 

Regarding contract length, only 319 (82.2%) of 

the ECO positive contracts had complete schedule 

data (neither contract award date nor PoP end 

date were missing). We again tested if contract 

length equal to or greater than five years had an 

increased chance of exceeding the DEVROT of 10%. 

The Pearson’s chi-squared test returned a p-value 

of 0.0009, suggesting dependency between them. 

METRIC COST FIXED T&M 

Sample Size 223 68 37 

Mean 0.224 0.182 0.337 

Standard Deviation 0.218 0.208 0.326 

Coefficient of 
Variation 

0.973 1.138 0.967 

Median 0.151 0.128 0.204 

Interquartile Range 
(IQR) 

0.286 0.227 0.617 

IQR / Median 1.894 1.778 3.022 

Table 7: Summary statistics for the ECO positive 

development contracts. Numbers rounded to three 

decimal places. 

DOLLAR 
AMOUNT 

ODDS 
RATIO 

P-VALUE 

<$10M 1.89 0.003 

<$20M 1.94 0.0016 

<$30M 2.17 0.0002 

<$40M 1.75 0.0077 

<$50M 1.62 0.0234 

<$100M 1.57 0.0531 

Table 8: Odds ratios and p-values for varying baseline 

contract amount from $10M to $100M in 2020 FY for 

ECO positive cost contracts. 

METRIC <$30M $30M≥ 

Mean 0.268 0.17 

Standard Deviation 0.255 0.194 

Coefficient of Variation 0.949 1.144 

Median 0.177 0.094 

Interquartile Range (IQR) 0.318 0.216 

IQR / Median 1.794 2.295 

Table 9: Summary statistics for the ECO positive cost 

contracts less than $30M (in FY 2020 dollars) and those 

equal to or greater than $30M. Numbers rounded to 

three decimal places. 
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The odds ratio of 4.60 (with an associated 95% 

confident interval of (1.74, 12.17)) suggests that 

ECO positive development contracts that equal or 

exceed five years in length are more likely to 

exceed an ECO percentage of 10% than shorter 

contracts. 

In summary, for development contracts it 

appears there is a high likelihood (86.6%) that 

these experience positive ECO cost. The median 

and mean ECO percentages are 14% and 22% 

respectively. Both are statistically greater than 

the DEVROT of 10%. Ground vehicles are less likely 

to experience positive ECO cost, while cost type 

contracts are more likely to experience positive 

ECO cost. Lastly, development contracts with a 

PoP equal to or exceeding five years and 

contracts less than $30M in FY 2020 dollars are 

likely to experience an ECO percentage greater 

than 10%. In the Discussion and Conclusion 

section, we quantify our ECO recommendations 

through a table utilizing the median values 

presented in this section due to the high 

variability reflected by the coefficient of 

variations and ratios of IQR/Median. We now 

turn to the results associated with the production 

contracts. 

 

Production  

For this subsection, we replicate the analysis and 

flow that we performed previously for 

development contracts but just for production 

contracts. Of the 768 production contracts, 148 

had negative ECO cost, while the remaining 620 

had positive ECO cost. These 620 contracts 

equate to approximately 80.7% of the production 

contracts. Such a relatively high percentage 

suggests that the analysis should also analyze the 

characteristics of just the positive ECO cost 

contracts to provide additional insight. Prior to 

this conditional analysis, we investigate 

inferential patterns among all the production 

contracts. 

 

Testing ECO percentage differences among the 

services, the initial K-W produced a p-value of 

0.0337, with Navy contracts being statistically 

lower than Air Force contracts (S-D p-value of 

0.0276). However, it should be noted that a fair 

number of F/A-18 contracts (13 out of 71) had -

100% ECO [Note: programs can have multiple 

contracts, thereby allowing this number to be 

plausible.], which drove the mean percentage of 

the F/A-18 to -7.2%. No other commodity had a 

negative ECO %. When excluding those 13 

contracts, the K-W’s p-value rose significantly to 

0.1431, reflecting a truer picture among the 

services, suggesting that there appears to be no 

statistical difference among the services with 

respect to ECO %. Moving forward with any 

remaining inferential analysis in this part, we 

continue to exclude these 13 contracts. 

For any K-W test, it is advisable to exclude any 

comparison group that has five or fewer 

observations because of low power issues 

(Kruskal & Wallis, 1952; Howell, 2002). 

Consequently, we removed the commodity 

groups Ship (3 contracts: DDG 51), Gun (2 

contracts: CIWS and LW155), and AIS (2 

contracts: GCSS-MC and DCGS-N). Therefore, we 

cannot make any inferential decisions regarding 

these commodities. 

For the remaining commodities, we conducted a 

K-W test and found a statistical difference among 

the remaining commodities (p-value of 0.0160). 

The S-D multiple comparisons determined that 

Ground Vehicle and Other aircraft were 

statistically different from the other commodities 

(we separated the F-16 and F/A-18 from the 

Other Aircraft due to their relatively large 

number of contracts; Ellis et al. (2018) performed 

a similar measure for the F/A-18). The S-D 

multiple comparisons displayed a p-value of 

0.0394 and noted that Ground Vehicle generally 

has lower ECO % compared to Other aircraft. 

Investigating differences between contract types, 

we first needed to exclude production contracts 

labeled as unknown or missing. This number 



108 Journal of Cost Analysis and Parametrics: Volume 10, Issue 2. April 2022 

Empirical Investigation of Engineering Change Order Percentages in Defense Contracts   Kaiana M. Miller et al 

totaled 95. For the remaining, we had 75 cost, 

569 fixed, and 16 T&M contracts. Unlike 

development contracts that primarily consisted 

of cost type contracts, most of the production 

contracts were fixed contracts (86.2%). When 

inferentially comparing among cost, fixed, and 

T&M contracts, the only statistical difference 

appeared between cost and fixed (K-W p-value of 

0.0003, with a subsequent p-value of 0.0002 for 

the S-D for multiple comparisons). We saw 

similar results for development contracts. Table 

10 highlights the metrics associated with cost, 

fixed, and T&M production contracts, 

respectively. 

As with development contracts, we next analyze 

if dollar threshold and/or contract schedule 

length might affect if a contract is likely to exceed 

the PRODROT of 5%. We use dollar thresholds 

again with respect to ACAT level but adjust 

accordingly for production. Specifically, ACAT I is 

associated with Procurement costs greater than 

$3.065B (in FY 2020 dollars); ACAT II with 

Procurement dollar amounts less than ACAT I but 

greater than $920M (FY 2020); and ACAT III for 

anything less. The p-value for the Pearson’s chi-

squared test of independence was 0.7181. This 

finding suggests dollar thresholds associated 

with ACAT categories do not appear to affect the 

likelihood of exceeding the PRODROT of 5%. 

Regarding contract length, 624 (82.6%) of the 

contracts had complete schedule data (neither 

contract award date nor PoP end date were 

missing). We tested if contract length equal to or 

greater than five years (due to Trudelle et al. 

(2017a) findings) had an increased chance of 

exceeding the PRODROT of 5%. The Pearson’s chi-

squared test returned a p-value of 0.0510, which 

just barely misses our level of significance of 0.05, 

suggesting perhaps borderline dependency at 

best that production contracts that equal or 

exceed five years in length are slightly more likely 

to exceed an ECO percentage of 5%. 

Prior to proceeding into a comparable analysis by 

narrowing to production contracts with just a 

positive ECO cost, we investigate what factors 

might indicate a production contract is likely to 

experience positive ECO cost. The p-value for 

testing dependency between service and positive 

ECO cost was 0.0026, strongly suggesting 

dependency. Further investigation reveals that 

Air Force production contracts are statistically 

more likely than Navy (which includes Marines) 

and Army to experience positive ECO cost. The 

associated p-value for this Pearson’s chi-squared 

test is 0.0002 with an odds ratio of 2.12 with a 

95% confidence interval of (1.42, 3.18). 

Because a strong dependency appears between 

service and likelihood of incurring positive ECO 

cost, we need to perform conditional analysis on 

service before comparing among commodities. 

This conditional analysis is required because 

there is a natural dependency between service 

and commodity. Due to small sample size for 

some commodities, we excluded AIS, Gun, and 

Ship contracts. When comparing among Air Force 

commodities, UAV and F-16 production contracts 

are less likely to experience positive ECO cost 

compared to the other commodities of Decoys, 

Electronics, Engines, Missiles, Ordnance, Other 

Aircraft, Space, and Targets/Drones. The p-value 

for this Pearson’s chi-squared test was less than 

0.0001 with an odds ratio of 5.71 and a 95% 

confidence interval of (2.84, 11.50). 

METRIC COST FIXED T&M 

Sample Size 75 569 16 

Mean 0.236 0.094 0.091 

Standard Deviation 0.306 0.245 0.431 

Coefficient of 
Variation 

1.295 2.614 4.726 

Median 0.102 0.031 0.104 

Interquartile Range 
(IQR) 

0.347 0.139 0.565 

IQR / Median 3.402 4.484 5.461 

Table 10: Summary statistics for the 75 cost, 569 fixed, 

and 16 T&M production contracts. Numbers rounded to 

three decimal places. 
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For just Navy, we compare only the commodities 

F/A-18, Missiles, Other Aircraft, and Ground 

Vehicle contracts because of small sample issues 

(having five or fewer contracts) for the other 

commodities of Decoys, Engine, Space, Target/

Drones, and UAV. The commodity that is the least 

likely to experience positive ECO cost are Ground 

Vehicle production contracts compared to the 

other three commodities tested (comparable to 

what we found with development contracts). The 

p-value is less than 0.0001 with an odds ratio of 

3.30 and a 95% confidence interval of (1.99, 

5.47). The next commodity, the F/A-18, is less 

likely to experience positive ECO cost compared 

to Missiles and Other Aircraft. Its p-value is 

0.0078 with an odds ratio of 2.93 and a 95% 

confidence interval of (1.30, 6.63). For Army only 

commodities, 0.3329 was the resultant p-value 

suggesting no commodity is more likely to 

experience positive ECO cost than another. 

Regarding contract type, the p-value associated 

with testing the assumption if contract type (cost, 

fixed, and T&M) affects the likelihood of 

experiencing a positive ECO cost was 0.0762, 

suggesting a weak association since it isn’t less 

than 0.05. Tentatively, it appears T&M is the least 

likely to experience positive ECO cost with cost 

type contracts being the most likely. 

Next, we narrow to just those production 

contracts with positive ECO contracts, which 

represent 80.7% of all the production contracts 

in our database. Table 11 contains the descriptive 

measures of just the positive ECO contracts. As 

expected, both the mean and median are higher 

than those shown in Table 2. In addition, both the 

CV and IQR/Median are lower. 

Among just production contracts that 

experienced positive ECO cost, neither service (K-

W p-value of 0.7242) nor commodity (K-W p-

value of 0.3347 after excluding commodities with 

five or less contracts) appeared significant at the 

0.05 level but contract type (K-W p-value of less 

0.0001) strongly did (after excluding 88 contracts 

listed as unknown or missing information). The 

subsequent S-D analyses suggested strong 

statistical differences between cost and fixed type 

contracts (p-value of 0.0002) and between T&M 

and fixed contracts (p-value of 0.0055). Table 12 

highlights the metrics associated with cost, fixed, 

and T&M production contracts for just those with 

positive ECO cost, respectively. 

Next, we investigate if dollar threshold and/or 

contract schedule length might affect the chance 

that a positive cost production contract is likely 

to exceed the PRODROT of 5%. Using the same 

ACAT dollar thresholds as before, the p-value for 

the Pearson’s chi-squared test of independence 

was 0.8821. This finding suggests dollar 

thresholds associated with ACAT categories do 

not appear to affect the likelihood of exceeding 

the PRODROT of 5% for just contracts with 

positive ECO cost. 

METRIC VALUE 

Mean 0.157 

Standard Deviation 0.227 

Coefficient of Variation 1.446 

Median 0.055 

Interquartile Range (IQR) 0.18 

IQR / Median 3.264 

METRIC COST FIXED T&M 

Sample Size 65 457 10 

Mean 0.281 0.148 0.34 

Standard Deviation 0.305 0.216 0.282 

Coefficient of 
Variation 

1.085 1.458 0.831 

Median 0.144 0.054 0.283 

Interquartile Range 
(IQR) 

0.399 0.177 0.398 

IQR / Median 2.771 3.278 1.407 

Table 12: Summary statistics for the ECO positive 65 

cost, 457 fixed, and 10 T&M production contracts. 

Numbers rounded to three decimal places.  

Table 11: Summary statistics for the 620 production 

contracts with positive ECO cost. Numbers rounded to 

three decimal places. 
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Regarding contract length, only 550 (88.7%) of 

the ECO positive contracts had complete schedule 

data (neither contract award date nor PoP end 

date were missing). We again tested if contract 

length equal to or greater than 5 years had an 

increased chance of exceeding the PRODROT of 

5%. The Pearson’s chi-squared test returned a p-

value of 0.2817, suggesting lack of dependency 

between them. 

In summary for production contracts, it appears 

there is a high likelihood (80.7%) that these 

experience positive ECO cost. Given that occurs, 

the median and mean ECO percentages are 5.5% 

and 15.7% respectively. Although the median is 

relatively close to the PRODROT of 5%, the mean is 

much greater than 5%. Ground Vehicle 

production contracts experience less ECO % 

compared to Other Aircraft but no single 

commodity experienced uniformly lower ECO %. 

Cost production contracts statistically exceed 

fixed contracts with respect to ECO %, while 

borderline significance suggests contracts with 

schedule lengths of five or more years might 

exceed PRODROT of 5%. 

Regarding the likelihood of experiencing positive 

ECO cost, Air Force contracts have a higher 

chance than Navy. Among Air Force contracts, 

UAV and F-16 production contracts have lower 

positive ECO % chance compared to other 

commodities. Among Navy contracts (to include 

Marine), the least positive ECO % are Ground 

Vehicle commodities, followed by contracts for 

the F/A-18. The remaining commodities were 

comparable. There appeared no statistical 

difference among commodity with respect to 

Army production contracts. Lastly, for just 

positive ECO % production contracts, fixed 

contracts were statistically lower than both cost 

and T&M contracts. In the Discussion and 

Conclusion section, we quantify our ECO 

recommendations through a table utilizing the 

median values presented in this section because 

of the high variability reflected by the coefficient 

of variations and ratios of IQR/Median. 

 

Discussion and Conclusion 

Three key conclusions can be drawn from our 

findings. One, if a program manager wishes to use 

a rule-of-thumb, life-cycle phase matters. No 

single rule should be applied, and the traditional 

one is likely inappropriate regardless. Two, it 

appears that the variables of Service, Contract 

Type, Commodity, Program Size, and Schedule all 

have some degree of influence on the appropriate 

percentage to hold in reserve in case of ECO 

occurrence. Three, there are factors which 

correspond to increased likelihood of a contract 

incurring a positive ECO percentage, and those 

percentages will differ depending on those 

factors. 

Table 13 summarizes the overall descriptive 

results for both the development and production 

contracts in our database. The mean ECO 

percentages for these contracts are compared to 

either DEVROT or PRODROT. Statistically, mean 

values are higher than both ROTs at the level of 

significance of 0.05 with p-values < 0.0001. The 

LIFE CYCLE CURRENT 
MEAN 
ECO% - 

MEDIAN 
ECO% - 

MEAN ECO% - 
ONLY 
POSITIVE 
VALUES 

MEDIAN ECO 
% - ONLY 
POSITIVE 
VALUES 

PERCENT OF 
CONTRACTS 
WITH POSITIVE 
ECO COST 

PHASE ROT ALL  ALL 

Development 10% 16.30% 10.40% 22.20% 14.00% 86.60% 

Production 5% 8.80% 3.50% 15.70% 5.50% 80.70% 

Table 13: Summary statistics for the development and production contracts with ECO cost.  

Numbers rounded to three decimal places. 
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differences between the means and medians for 

both the development and production contracts 

indicate the relatively high variability associated 

with ECOs. This is supported by the earlier 

results with respect to relatively large standard 

deviations, IQRs, CVs, and ratios of IQRs to 

medians. 

Given our overall findings, we suggest that if a 

ROT is to be used for ECO, a four-tiered approach 

should be taken. First, the life cycle phase of the 

contract should be considered. Second, 

characteristics of the contract should be reviewed 

to determine whether there is an increased 

likelihood of incurring a positive ECO percentage. 

Third, a baseline ROT percentage should be 

chosen as a starting point; we advocate the 

median percentage of the positive ECO contracts 

as an initial value. Lastly, characteristics of the 

contract that our analyses considered strongly 

statistically significant should be reviewed to 

determine whether to adjust this baseline ROT 

estimate upward or downward. If pressed to 

provide one single ECO percentage for each life 

cycle phase, we recommend revising DEVROT from 

10% to 14% and PRODROT from 5% to 6%. 

With respect to tailoring suggested ROT % based 

on known program factors, we make the 

following recommendations with these caveats. 

One, we modified our level of significance 

threshold to 0.01 to minimize the chance of 

perhaps a spurious statistical finding affecting 

our conclusions and recommendations. Two, we 

use medians to arrive at these percentages in lieu 

of means to minimize the effect of outliers. Lastly, 

if a contract contains two or more significant 

factors that cause the new baseline ROT to 

change, then we recommend taking the higher 

adjustment among the significant factors to 

arrive at a single percentage recommendation. 

Tables 14 and 15 provide our suggested 

recommendations with respect to development 

and production contracts, respectively. Note: for 

any fractional percentages, we do round up to the 

nearest percentage for ease of convenience plus 

allowing for the realization that mean ECO % 

were always larger than median ECO %. 

We suggest that the ECO percentage estimates 

from Tables 14 and 15 should be used as an 

initial point estimate but should not be treated as 

an exact estimate. The means in all instances 

exceeded median estimates, and there is a great 

deal of variability associated with ECO costs. Cost 

estimators should use prior knowledge and other 

tools at their disposal to deviate from this point 

estimate when necessary. We again acknowledge 

that there is no one-size-fits-all ROT that should 

be used to estimate appropriate amounts to hold 

in MR in case of ECO. However, it does 

statistically appear that the original DEVROT and 

PRODROT of 10% and 5% are generally lower than 

what we witnessed in our database. 

FACTOR ADJUSTMENT 
FINAL ECO/

MR% 

Commodity = 
Ground Vehicle 

-9% 5% 

Baseline contract 
<$30M (FY 2020) 

4% 18% 

Contract schedule 
>= 5 years 

13% 27% 

Table 14: Suggested ECO percentages based on factors and 

adjustments from the new DEVROT of 14%. 

FACTOR ADJUSTMENT 
FINAL  

ECO/MR% 

Army or Navy 
contract 

-2% 4% 

Cost type contract 9% 15% 

T&M type contract 23% 29% 

Table 15: Suggested ECO percentages based on factors and 

adjustments from the new PRODROT of 6%  
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3DELRR (Three-Dimensional Expeditionary Long
-Range Radar) 

ADM-141C (ITALD: Improved Tactical Air 
Launched Decoy) 

ADM-160 (Miniature Air-Launched Decoy) 

ADS (Active Denial System) 

AEHF (Advanced Extremely High Frequency 
Satellite) 

AGM-65 (Maverick) 

AGM-84; RGM-84; UGM-84 (Harpoon SLAM-ER: 
Standoff Land Attack Missile-Expanded 
Response) 

AGM-86A/B/C/D (ALCM: Air-Launched Cruise 
Missile) 

AGM-88E (AARGM: Advanced Anti-Radiation 
Guided Missile) 

AGM-142 (Have Nap) 

AGM-154C (JSOW (Unitary): Joint Stand-Off 
Weapon Baseline Variant and Unitary Warhead 
Variant) 

AGM-158 (JASSM/JASSM-ER: Joint Air-to-Surface 
Standoff Missile) 

AGM-169 (JCM: Joint Common Missile) 

AHLTA (Armed Forces Health Longitudinal 
Technology Application) 

AIM-7; RIM-7 (Sparrow; Sea Sparrow) 

AIM-9 (AIM-9X: Air-to-Air Missile Upgrade) 

AIM-120 AMRAAM (Advanced Medium Range Air
-to-Air Missile) 

AQM-37 (Target Drone) 

ASIP (Advanced Special Improvement Program 
models of Single Channel Ground and Airborne 
Radio System (SINCGARS)) 

AWACS (Airborne Warning and Control System) 

AWS (AEGIS - MK 7 Advanced Shipboard Weapon 
System) 

B-1 (Lancer) 

B-2 (Spirit) 

B-52 CONECT (B-52 Stratofortress Combat 
Network Communications Technology) 

B-52H (Stratofortress) 

B-61 Tail Kit (B61 Mod 12 Life Extension 
Program Tail Kit Assembly) 

BGM-109 (Gryphon (Ground-Launched Cruise 
Missile)) 

BGM-178 (RATTLRS: Revolutionary Approach to 
Time-critical Long-Range Strike) 

BQM-34 (Firebee) 

BQM-74 (Chukar) 

BQM-167 (Skeeter) 

BTERM (Ballistic Trajectory Extended Range 
Munition) 

C-5 (Galaxy) 

C-17 (Globemaster III) 

C-37A (Gulfstream V) 

C-130 (Hercules) 

CBU-97 (Sensor Fused Weapon (SFW)) 

CBU-105 (Sensor Fuzed Weapon) 

CH-47 (Chinook) 

CHAMP (Counter-electronics High Power 
Microwave Advanced Missile Project) 

CIWS (Close in Weapons System) 

CV-22 (Air Force variant Osprey) 

DCAPES (Deliberate Crisis Action Planning and 
Execution Segments INC 2B) 

DCGS Navy (Distributed Common Ground System 
Navy) 

DDG 51 (Arleigh Burke Class Guided Missile 
Destroyer) 

DEAMS (Defense Enterprise Accounting 
Management System) 

E-2D (Advanced Hawkeye) 

EA-18G (Growler) 

EC-130H (Compass Call) 

Appendix 
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EELV (Evolved Expendable Launch Vehicle) 

EPS (Enhanced Polar System) 

EX-171 (ERM - Extended Range Munition) 

F-15 (Eagle) 

F-15 AN/ALQ-135 (Electronic Countermeasure) 

F-15 ATP (Advanced Targeting Pod) 

F-16 (Fighting Falcon) 

F-22 (Raptor) 

F-35 (Lightning II) 

F-119 (F-22 Engine) 

F-135 (F-35 Engine) 

F-136 (F-35 Engine) 

F/A-18 (Hornet) 

FAB-T (Family of Beyond Line-of-Sight Terminals) 

FMTV (Family of Medium Tactical Vehicles) 

GBU-12 (Paveway II) 

GBU-15 (Guided Bomb Unit 15) 

GBU-24 (Paveway III) 

GBU-39 (SDB I: Small Diameter Bomb Increment I) 

GBU-53/B (SDB II: Small Diameter Bomb, 
Increment II) 

GCSS-MC (Global Combat Support Systems - 
Marine Corps) 

GPS III (Global Positioning System III) 

GPS OCX (Global Positioning System Next 
Generation Operational Control System) 

GQM-163 (Coyote) 

GQM-173 (Multi-Stage Supersonic Target) 

H-1 (Upgrade program) 

HC/MC 130 (Recapitalization Aircraft) 

HH-60 (Pave Hawk) 

HMMWV (High Mobility Multi-Purpose Wheeled 
Vehicle) 

IDECM (Integrated Defensive Electronic 
Countermeasures) 

JAGM (Joint Air-to-Ground Missile) 

JDAM (Joint Direct Attack Munition) 

JLTV (Joint Lightweight Tactical Vehicle) 

JPALS (JPALS - Joint Precision Approach and 
Landing System) 

KC-46A (Pegasus) 

LAIRCM (Department of the Navy Large Aircraft 
Infrared Countermeasure) 

LRASM (Long Range Anti-Ship Missile) 

LVSR (Logistics Vehicle System Replacement) 

LW155 (Light Weight Howitzer 155 mm) 

MC-130J (Commando II) 

MGM-140 (ATACMS: Army Tactical Missile 
System) 

MH-60R (Seahawk) 

MH-139 (Grey Wolf) 

MHS (Military Health System) 

MIDS-LVT (Multi-Functional Information 
Distribution System - Low Volume Terminal 
(includes JTRS: Joint Tactical Radio System 
Terminals)) 

MIM-104A/B/C/D (Patriot) 

MIM-104F (PAC-3: Patriot Advanced Capability 3) 

MQ-1B (Predator) 

MQ-4C (Triton) 

MQ-9 (Reaper) 

MRAP (Joint MRAP: Joint Mine Resistant Ambush 
Protected Vehicles) 

MTVR (Medium Tactical Vehicle Replacement) 

MUOS (Mobile User Objective System) 

NAVSTAR GPS (Global Positioning System) 

P-8A (Poseidon) 

PIM (Paladin Integrated Management) 

QF-4 (FSAT: Full Scale Aerial Target) 

RIM-66 (Standard Missile 1 (SM-1MR)) 

RIM-116 (RAM BLK 2) 

RIM-116A (RAM BLK 0) 

RIM-116B (RAM BLK 1) 

RIM-161 (SM-3: Standard Missile 3) 
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RIM-162 (ESSM: Evolved Sea Sparrow Missile) 

RIM-174 (SM-6: Standard Missile-6) 

RQ-4 (Global Hawk) 

RUR-5 ASROC (Anti-Submarine Rocket (VLA: 
Vertical Launch)) 

SBIRS (Space-Based Infrared System) 

SBSS B10 (Space-Based Space Surveillance Block 
10) 

SH-60/HH-60H/MH-60 (Sikorsky Seahawk) 

SL-AMRAAM (Surface Launched - Advanced 

Medium-Range Air-to-Air Missile) 

Space Fence (Space Fence Inc 1) 

UH-60 (Black Hawk) 

V-22 (Navy Osprey) 

WCMD (Wind Corrected Munitions Dispenser) 

WGS (Wideband Global SATCOM Program) 

Weather Satellite Follow-on (WSF) 
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Abstract: Modern software packages exist to estimate system cost early in the system development and 

procurement process. This paper begins the development of a structured systems engineering approach to 

system design. This paper defines a standardized modular diagram for a RADAR system applied to military 

applications in the aerospace industry. This modular diagram with sub-system block elements will be used 

to create a system model. The standardized modular diagram will also be used to create a cost model, using 

the same modular sub-system block elements and industry standard historical cost data. The commercially 

available software packages which estimate system cost are limited in their ability to aid in system 

optimization towards multi-objective cost and performance goals, as many require a completed system 

design. Methods are needed to determine which components in a system would benefit from additional 

modeling such as using a multiphysics approach, and which design approach provides the best value (cost 

vs. performance) to the system. These methods are needed during concept development to aid in system 

scoping and cost estimation. To illustrate the benefits of cost optimization during early stages of design, this 

paper describes a sensitivity analysis approach applied to the design of an engineering system. This process 

seeks to use sensitivity analysis and a spiral design process to determine which cost drivers have the highest 

influence on overall system cost, and to realize high system performance while minimizing costs.  

This work demonstrates that a system can be defined as a standard set of block diagrams for an airborne 

RADAR for military applications created by integrating a wide sample of the available examples. And where 

each of the example block diagrams could be considered a subset of the more generalized form. This work 

describes using the generalized block diagrams to create a WBS structure as the foundation for both a 

system model and a cost model. This work applies a sensitivity analysis to a cost model in order to direct a 

system designer towards a trade study for the purposes of system optimization. And finally, this work 

introduces a method using component cost sensitivity to determine the range of possible cost 

improvements to bound project return on investment. 

I. Introduction 

There are several very good commercially 

available cost estimation packages. To use these 

packages, first a system must be defined. The 

system must be defined in terms of hardware 

blocks. The hardware blocks can be arranged 

with a hierarchy such as a Work Breakdown 

Structure (WBS). Once the system is defined, the 

system can be entered into the cost estimation 

package. The package essentially converts each 

hardware component into a corresponding cost. 

In this way the cost of a system can be estimated. 

In order to analyze a system, it is necessary to 

have a system upon which to perform the 

analysis. Typically, for a new effort a system is 

defined from the perspective of the designer 
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where certain features were a priority to the 

respective designer. Those priorities are reflected 

in the various block diagrams which are 

produced and can be seen as areas of increased 

fidelity while other areas of the block diagram are 

simplified or even combined with other functions 

into one sub-block. For the current example of an 

airborne RADAR for military applications there 

are many example block diagrams within the 

existing literature. However, although the end 

application is the same, the various block 

diagram examples vary widely. It can be 

considered that the block diagrams were tailored 

for each application and demonstrate the priority 

of the respective designer. This paper 

demonstrates the development of a generalized 

set of block diagrams for an airborne RADAR for 

military applications. The block diagrams were 

created by integrating a wide sample of the 

available examples where each of the examples 

could be considered a subset of the more 

generalized form. 

The focus of this paper will be divided into four 

main topics: block diagram development, systems 

engineering model development, systems cost 

model development, and sensitivity analysis 

concepts applied to a system cost model. 

The first section, Block Diagrams, will discuss the 

available literature on the topic. Specifically, 

research into the existence of industry standard 

block diagrams for an airborne based RADAR for 

military applications and subsequently the 

development of one where a standard did not 

exist. The level one system RADAR block diagram 

is defined along with the level two sub-blocks: 

antenna, transmitter, synchronizer, receiver, etc. 

A solid block diagram is frequently the best way 

to begin a new design. It becomes a pivot point 

upon which everything else is developed. All 

major radio frequency (RF) interfaces and 

divisions of functions can be seen (digital control 

will not be addressed).  

In the second section, Model The System, a 

structured approach to system engineering is 

started and the elements of the block diagram are 

described. The elements are ready to be loaded 

into a system engineering tool and form the basis 

of future work which would be expanded to 

include operational view diagrams, logical view 

diagrams and other system engineering artifacts. 

In the third section, Model The Cost, a structured 

approach to system cost modelling is discussed 

and the format of the model is described. The cost 

model utilizes the same functional blocks as 

defined in the block diagram section. This forms 

the basis for future work which will eventually 

lead to a robust modular cost model to describe a 

range of RADARs and their associated estimated 

costs. 

In the fourth section, Sensitivity Analysis Applied 

To A Cost Model, a concept is introduced whereby 

a sensitivity analysis could be applied to a cost 

model to direct a system designer towards a 

trade study for the purposes of system 

optimization. In addition, it is shown that a 

sensitivity analysis provides an upper bound of 

potential cost improvements which then forms 

the basis for a Return On Investment (ROI). 

This work is novel in that it demonstrates that a 

system can be defined as a standard set of block 

diagrams for an airborne RADAR for military 

applications created by integrating a wide sample 

of the available examples. And where each of the 

example block diagrams could be considered a 

subset of the more generalized form. This work is 

novel in that it describes using the generalized 

block diagrams to create a WBS structure as the 

foundation for both a system model and a cost 

model. This work is novel in that it introduces a 

sensitivity analysis applied to a cost model in 

order to direct a system designer towards a trade 

study for the purposes of system optimization. 

And finally, this work is novel in that it introduces 

a method using component cost sensitivity to 

determine the range of possible cost 

improvements to bound project return on 

investment. 



118 Journal of Cost Analysis and Parametrics: Volume 10, Issue 2. April 2022 

Foundation of Structured Architecture, System & Cost Modeling Danny Polidi et al  

II. Related Work 

A. Literature Assumptions and Search Terms. 

The available literature was consulted, primarily 

through the use of Google searching. The 

assumption of the author was that a standardized 

block diagram for an airborne RADAR for military 

applications already exists. The assumption was 

that there was a standard upon which all designs 

were based. Research was done using keyword 

search terms such as “standard block diagram”, 

“RADAR block diagram”, “airborne RADAR block 

diagram”, etc.  

 

B. Literature Results. 

For each effort, many search results were 

obtained. There were countless block diagrams 

for all types of RADARs. And, for the specific 

platform of airborne RADAR, again, there were 

many different results. However, although the 

results varied each version of a block diagram 

had some similarities. The differences appeared 

to be due to the focus of the respective system 

designers. In other words, if the designer’s focus 

was upon a specific sub-function, that area of the 

block diagram had significantly more fidelity. 

Conversely, other areas of the block diagram 

would be abbreviated or even combined with 

other sub-functions. In this way the designer 

could highlight an area or sub-block for increased 

emphasis. 

 

III. Block Diagrams 

A robust block diagram is frequently the best way 

to begin a new design. And it is a recommended 

first step. It is not uncommon for engineers to 

jump right into a design and begin designing. 

Each engineer responsible for a portion of the 

system has ideas on how to best proceed. And 

frequently those best ideas are competing rather 

than complimenting one another. Therefore, a 

robust discussion early on regarding system 

goals is critical. Without a clear set of system 

goals, it is unlikely a system will be designed 

correctly on the first attempt. And a first step 

towards defining those goals is to create a block 

diagram. It becomes a pivot point upon which 

everything else is developed. All major interfaces 

and divisions of functions can be seen.  

Not only do block diagrams align system and sub-

system designers but also block diagrams are key 

tools for cost analysts. The most obvious area of 

contribution is defining interfaces. With a good 

visual representation, interfaces are considered, 

and meaningful requirements can be created. 

Those requirements affect many variables 

including cost, performance, life span, operation, 

etc. A cost analyst does not need to be a system 

designer. But having some familiarity with the 

basic building blocks of the system is critical. A 

good cost analyst should actively participate in 

the early generation of system block diagrams to 

help influence the direction of the system design.  

 

A. Interfaces and Functions. 

Figure 1 shows a simple block diagram of a 

standard computer. In this case, the computer is 

made up of four sub-blocks. For purposes of this 

paper, the entire computer will be considered 

Level 1 while the sub-blocks indicated in the 

figure will be considered Level 2. 

Figure 1. Computer Block Diagram. 
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From this figure, the central processing unit 

(CPU) is the main sub-block in that it interfaces 

with all the other blocks. And none of the other 

sub-blocks talk directly to one another. By 

observing the arrows, some of the interconnects 

are 2-way communication, such as between the 

keyboard and CPU, while other interconnects are 

1-way communication, such as from the CPU to 

the monitor. In addition, there clearly are four 

blocks. Each block is labeled by function. Each 

block has distinct responsibilities for the system 

performance. And it could be clearly defined what 

those interfaces should be for those blocks to 

communicate with one another. For a team 

designing a computer system, this very simple 

block diagram already contains very valuable 

information which will help guide the designers 

towards a successful system design. This is the 

value of a block diagram. It can be done early, 

simply, and it can contain an enormous amount of 

critical system information. 

As a comparison, imagine a block diagram as the 

one indicated in Figure 2. Although the blocks are 

the same as Figure 1, the interfaces are clearly 

more complex. And the interactions between the 

blocks more closely resemble a network rather 

than a command-and-control structure such as 

that indicated in Figure 1. Clearly, block diagrams 

offer a shorthand to an enormous amount of 

information in a simple easy to read format. 

 

B. Standardized RADAR Block Diagram. 

With no clear standardized block diagram, the 

author used the available information to piece 

together one comprehensive solution. The goal 

here was to generalize the sub-blocks in such a 

way as to incorporate a wide sample of the 

available examples. Any sample block diagram 

could be considered a simplified, or tailored 

version of the more generalized form.  

Figure 3 is a generalized RADAR system block 

diagram for an airborne based military 

application. The outer dashed line can be 

considered Level 1, the complete RADAR System. 

The sub-blocks indicated in the figure comprise 

the Level 2 blocks and consist of antenna, 

transmitter, etc. This block diagram as well as the 

Level 3 block diagrams appear in the appendices.  

What can be concluded here is that every 

airborne RADAR system for a military application 

will have an antenna. Antenna designs can vary 

widely. It could have any number of radiator 

elements: 1, 10, 100, 1000, etc. It could have any 

type of radiator: notch, patch, whip, etc. However, 

it most certainly will have some form of antenna. 

And so that sub-block appears in the block 

diagram. In this case it has been labeled 001.01 

signifying the first (01) of the Level 2 sub-blocks. 

All of the sub-blocks have been correspondingly 

numbered. This will come up again within this 

paper when the WBS structure and models are 

discussed. 

 

Figure 2. Computer Block Diagram. 

Figure 3. Generalized RADAR System Block Diagram. 
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The block diagram also contains arrows which 

demonstrate the direction and flow of 

information between the sub-blocks. It can be 

seen that the directional flow is exclusively 1-

way. It should be noted that this is limited to the 

signal flow including radio frequency (RF) 

interfaces. There could potentially be cases of 

multi-directional flow for purposes of digital 

control which are not addressed. For example, 

the processor might turn off the transmitter and 

then receive some feedback that the transmitter 

has indeed been disabled. However, that is a 

control signal and is not captured by this signal 

flow diagram.  

The local oscillator appears as a dashed line and 

crosses into the transmitter and receiver as well 

as the white space in between. This is done 

because while those two sub-blocks require a 

local oscillator (LO) for operation, in some 

hardware configurations they have a resident 

dedicated LO, while in some configurations there 

is a separate sub-block dedicated to the LO 

function. And this representation is deliberately 

created to accommodate either physical 

hardware solution or implementation. 

The descriptions for each sub-block (Level 1, 2, or 

3) were generated in the same manner as the 

block diagrams. The available literature was 

widely explored, and the various descriptions 

were collected. Then, the various descriptions 

were combined into a higher order, more general 

version for which all descriptions could be 

considered a simplified, or tailored version of the 

more general versions presented here. 

 

C.  Sub-Block: 001.01 Antenna. 

A numbering convention was selected, and each 

element is assigned a unique identifier. The 

numbering convention identifies hardware 

“Levels” (1, 2, 3, etc.). The antenna appears in 

Figure 4 as element 001.01 which was previously 

noted to designate the first of the Level 2 

elements. The numbering convention was 

consistently applied throughout the development 

for the block diagrams, system model, and cost 

model.  

The antenna is the coupling element between free 

space and the other RADAR elements. The 

antenna transfers the RADAR energy from the 

transmitter into free space. And the antenna 

collects the echo energy from free space and 

delivers it to the receiver for down conversion 

and processing. 

 

As illustrated in Figure 4, the antenna sub-block 

can be further decomposed into Level 3 blocks: 

radiator, transmit-receive (T/R) product, and 

duplexer. The element numbers have been 

assigned as indicated in the figure.  

An anticipated criticism regarding this block 

diagram would come from the perspective of the 

hardware configurations. Typically, for an 

airborne system, there are two main hardware 

configurations. The first typical configuration is 

where each element is independent. Each 

element has a radiator and a T/R product. And 

then a bank of those channels is combined to 

make an array, a vertical configuration. The 

second configuration is where all the radiators 

are assembled in a bank of radiators, almost like a 

plate of radiators. And then those radiators are 

mated against a bank or plate of T/R products, a 

lateral configuration. A designer might argue that 

the image captured in Figure 4 is only one of the 

Figure 4. Antenna Block Diagram. 
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two possible configurations. However, the 

representation in Figure 4 is a functional view 

irrespective of the hardware configuration. 

Therefore, both configurations are applicable. 

The block diagrams contained within this 

document are created to showcase the functional 

sub-blocks and the associations between them. 

The diagrams were intended to satisfy all 

physical instantiations. 

The radiator is an exchanger between the 

propagating waves and the electric currents. The 

T/R product is a device where common circuitry 

for both transmit and receive functions are 

combined into a single module or element. The 

duplexer in a high-power RADAR system is the 

element that switches the antenna path between 

the transmitter and the receiver paths for a 

system where the two paths share an antenna. It 

is also used to protect the receiver from high 

power transmissions entering directly from the 

transmitter. 

 

D.  Sub-Block: 001.02 Transmitter. 

The transmitter appears in Figure 5 as element 

001.02. The transmitter modulates, or up 

converts, the wave to a transmission frequency. 

Then, if required to increase the signal power 

before transmission, the transmitter amplifies the 

wave for the antenna to send into operating 

space. 

As illustrated in Figure 5, the transmitter sub-

block can be further decomposed into Level 3 

blocks: power amplifier, up converter, and local 

oscillator (LO). The element numbers have been 

assigned as indicated in the figure.  

The power amplifier is a device that converts a 

low power signal into a higher power signal. In 

the past, the high-power amplifier was more 

likely to be some sort of traveling wave tube. But 

certainly, the more contemporary approach 

would be a solid-state high-power amplifier. 

Regardless of the hardware configuration, the 

block diagram is a functional view and represents 

either approach. The LO is an oscillator which is 

used to change the frequency of the signal. 

Local oscillators often employ some means of a 

phased locked loop (PLL). Typically, it is easier to 

have a stable oscillation when the frequency 

generated is low. And it is easier to generate a 

high frequency oscillation when the oscillation is 

less stable. By means of a PLL, it is possible to 

take the best of both and create a device which is 

stable at high frequencies. In the paper Digital 

Control Of Frequency Locked Oscillator, 

Microwave Journal March 2020, stable high 

frequency oscillations were achieved by locking a 

single oscillator to itself. It was accomplished by 

passing the signal through a long semi-rigid cable 

and then frequency locking to the time delayed 

reference.  

The up converter is a nonlinear electrical circuit 

that creates new frequencies from two signals 

applied to it. Most commonly, this is 

accomplished with a mixer. In the case of a 

transmitter, the mixing product is a multiple of 

the sum of the input signal and the LO signal. The 

purpose of the up converter is to modulate the 

signal from the synchronizer for the antenna. But 

it is widely known that by means of a mixer, 

multiple harmonics are generated. And, by use of 

filtering, any higher order harmonic can be 

isolated, amplified, and used as the mixing 

product. Figure 5. Transmitter Block Diagram. 
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E.  Sub-Block: 001.03 Synchronizer. 

The synchronizer appears in Figure 6 as element 

001.03. The synchronizer coordinates the timing 

of the RADAR. It generates timing pulses that are 

used to control the RADAR pulse repetition 

frequency (PRF). Signals are sent simultaneously 

to both the transmitter and the display to align 

the sweep echo pulses. 

 

The Synchronizer sub-block can be further 

decomposed into Level 3 blocks. However, for 

purposes of this analysis, the synchronizer will be 

considered as elemental, and cannot be further 

subdivided. This is done because there does exist 

a variety of synchronizer architectures and 

further analysis will need to be performed to 

determine a standardized Level 3 architecture. 

Thus, no element numbers have been assigned as 

indicated in Figure 6. 

 

 

F.  Sub-Block: 001.04 Receiver. 

The receiver appears in Figure 7 as element 

001.04. The receiver detects an incoming echo 

signal bounced off of a target, receives, amplifies, 

demodulates, and converts the analog signal to 

digital format for further analysis in the digital 

processor. 

As illustrated in Figure 7, the receiver sub-block 

can be further decomposed into Level 3 blocks: 

low noise amplifier, down converter, 

intermediate frequency (IF) amplifier, filters, 2nd 

down converter, detector, and analog to digital 

converter. The element numbers have been 

assigned as indicated in the figure.  

The local oscillator here is the same as that 

discussed in the RADAR and transmitter sections. 

As mentioned earlier, the LO is an oscillator 

which is used to change the frequency of the 

signal. In this application the LO is used to down 

convert a signal while in the transmitter it is used 

to up convert a signal. The low noise amplifier 

(LNA) boosts the signal while adding as little 

additional noise as possible. The goal is to 

maximize the signal to noise ratio (SNR) of the 

echo signal. 

In a receive chain, the signal to noise ratio is 

determined primarily by the first element. The 

first element of the chain dominates the entire 

chain’s performance. Low noise amplifiers, as the 

name suggests, are a special sub-class of 

amplifiers designed for this purpose. Therefore, 

an architect should assume an LNA as a first 

element. 

Figure 6. Transmitter Block Diagram. 

Figure 7. Receiver Block Diagram. 
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The down converter is a nonlinear electrical 

circuit that creates new frequencies from two 

signals applied to it. Most commonly, this is 

accomplished with a mixer. In the case of a 

receiver, the mixing product is a multiple of the 

difference of the inputs signal and LO signal. The 

purpose of the down converter is to demodulate 

the signal and the RF frequency of the LNA to a 

lower or intermediate frequency (IF) where 

amplification and filtering can be done more 

easily. Generally, multiple mixers would be used. 

Later in the signal chain, the signal will be 

converted from analog to digital. The signal must 

be digitized for meaningful data processing of a 

modern system. At some future time, it may be 

possible to directly convert an X-band signal to 

digital, but in today’s practical terms that is not 

yet possible. Therefore, the conversion is 

required. The detector and analog to digital (A/D) 

converter, as their names imply convert an 

analog signal into a digital signal. To convert the 

signal from analog to digital, a digital clock must 

be used. If the transmitted signal is 

“high,” using the Nyquist criteria, 

the sampling frequency must be 

“higher.” This is the fundamental 

limitation of the A/D converter. As 

mentioned, as time passes the 

technology is improving, but in 

today’s practical solutions, the 

architect’s options are still 

somewhat limited. 

 

G.  Sub-Block: 001.05 Processor. 

The processor appears in Figure 8 as element 

001.05. The processor decides if an echo is a 

target and determines if and how to present a 

depiction to the display. Typically, this may 

include number, location, and movement of 

targets. 

The processor sub-block can be further 

decomposed into Level 3 blocks. However, for 

purposes of this analysis, the processor will be 

considered as 

elemental, and 

cannot be 

further 

subdivided. 

This is done 

because the 

processor is 

primarily a 

digital device, 

and the focus 

of this 

analysis is 

upon the 

analog path for the signals. Thus, no element 

numbers have been assigned as indicated in 

Figure 8.  

H.  Sub-Block: 001.06 Power. 

The power block appears in Figure 9 as element 

001.06. The power block converts the primary 

power from the platform to the required forms 

needed for each sub-block. 

As illustrated in Figure 9, the power sub-block 

can be further decomposed into Level 3 blocks: 

transformer, rectifier, filter, and regulator. The 

element numbers have been assigned as 

indicated in the figure.  

The transformer is a device which transfers 

electrical energy through electromagnetic 

induction. The transformer is comprised of coils. 

As current passes through a coil it generates an 

electro-magnetic field. If a second coil is placed 

within that field, a current is generated in the 

second coil. By adjusting the ratio of turns for 

each coil, a voltage can be stepped up or down. In 

Figure 8. Processor Block Diagram. 

Figure 9. Power Block Diagram. 
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a familiar power supply, such as for a laptop, the 

power supply converts 120 volts AC from the 

wall outlet down to 12 volts DC for use by the 

computer. The transformation from 120 volts to 

12 volts, called a step down, is done by means of a 

transformer. Because the transformer is 

comprised of coils, the transformer is always the 

heaviest component in the power supply. 

The rectifier is a device which converts electricity 

from AC to DC. The most common rectifier is a 

bridge rectifier and can be created with four 

diodes. For a sinusoidal signal (Figure 10) half of 

the time the voltage is positive, and half of the 

time the voltage is negative. Through the rectifier, 

the negative half cycle of the sinusoidal signal is 

flipped up to be positive (Figure 11). As a result, 

the wave form is now a series of positive going 

sinusoidal voltage “bumps,” like humps of a 

camel’s back. 

 

The filter is a device used to remove unwanted 

frequency components. After the voltage has 

been transformed into a series of positive going 

sinusoidal voltage “bumps,” it is necessary to 

smooth it out. When the voltage value approaches 

zero the slope of the curve is negative. Once the 

voltage has reached zero volts, the voltage begins 

to rise and has a positive slope. The transition 

between a negative voltage slope and a positive 

voltage slope is instantaneous. The instantaneous 

nature of the voltage in the time domain 

corresponds to a high frequency effect in the 

frequency domain. By removing that high 

frequency component of the signal, by means of a 

filter, the corresponding waveform will be 

smoother. 

The regulator is a device which stabilizes a DC 

voltage independent of the load current. The 

signal, post filtering, approximates a fixed DC 

value. However, the value is not stable. The 

voltage continues to have some residual effects 

from its sinusoidal origin. For use in a system, 

voltages must be stabilized. A regulator removes 

frequency components of a “dirty” DC signal and 

clamps it to a predetermined value. Post 

regulation, the signal is a “clean” DC value. 

 

I. Sub-Block: 001.07 Display. 

The display appears in Figure 12 as element 

001.07. The display presents a depiction, in a 

usable form, of received targets. Typically, this 

may include number, location, and movement of 

targets. 

Figure 10. Sinusoidal Signal. 

Figure 11. All Positive Voltages. 

Figure 12. Display Block Diagram. 
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As illustrated in Figure 12, the display sub-block 

can be further decomposed into Level 3 blocks: 

video amplifier and display. The element 

numbers have been assigned as indicated in the 

figure.  

The video amplifier is a device which is designed 

to process video signals. The display is a device 

which is used for presenting images and video. 

Typically, this would be a cathode ray tube (CRT) 

or more recently some type of liquid crystal 

display (LCD) such as a laptop screen or monitor. 

 

IV. Model the System 

Once a rigorous block diagram for a system has 

been created the next step is to begin modeling 

the system, or otherwise referred to as 

architecting a system.  

Not only do system models align system and sub-

system designers but also system models are key 

tools for cost analysts. System models include 

many artifacts such as documented requirements, 

documented use cases, logical view diagrams, 

operational view diagrams, etc. Just as with block 

diagrams, a cost analyst need not be an expert in 

all these areas but certainly a firm understanding 

would be most helpful. An awareness of system 

modeling and the related artifacts enables a cost 

analyst to better understand the system and then 

to estimate a cost with a higher fidelity. Just as 

with block diagrams, a good cost analyst should 

actively participate in the development of a 

system model to help define the system design.  

There is a very important book on the topic 

entitled “Architecting Information-Intensive 

Aerospace Systems” by Dr. John M. Borky. In it, 

the author writes that architecting is done “to 

create systems and enterprises that are well 

organized, expandable and evolvable, robust 

under the stresses of real-world use, and 

affordable to own and operate. In short, the 

essence of the art and science of architecture is 

manifested in results that are beautiful in the 

eyes of their users while satisfying those users’ 

practical needs.” 

Robust models created through Model-Based 

Systems Engineering (MBSE) are the foundation 

of the entire System Engineering (SE) process 

and provides a clear and unambiguous definition 

of the system.  

While there are several tools which may do 

similar functions, for architecting the system in 

this paper, the COTS software tool used was 

chosen because it contained all the tools required 

to document requirements, document use cases, 

create logical view diagrams, operational view 

diagrams, and other system engineering artifacts.  

 

A. System Modelling Approach. 

When creating a structured architecture utilizing 

a COTS system engineering tool, one very useful 

structure is indicated in Table 1. 

 

These items are referred to as packages. This is a 

very solid structure and provides an architect 

with designated locations for creating system 

artifacts. With a structure such as this, virtually 

any artifact required, or created, can be sorted, 

and stored into one of these packages. 

System Engineering Model 

Components 

Internal Block Diagrams 

Packages 

a_Requirements 

b_UseCases 

c_Structure 

d_Behaviour 

e_Data 

f_Services 

g_Context 

PredefinedTypes (REF) 

z_Default 

Table 1 System Model Structure. 
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B. RADAR System Modelling Structure. 

An indentured set of numbers was created for 

this system and appears in Table 2. In Table 2, the 

hierarchy of the system design with Level 1, 2, & 

3 sub-block names and numbers can be seen. 

These numbers form the basis for a Work 

Breakdown Structure (WBS). 

C. Work Breakdown Structure (WBS). 

A Work Breakdown Structure (WBS) (MIL-STD-

881D) is a tool used to define a project in discrete 

work elements in a hierarchical format. It 

displays and defines the product, or products, to 

be developed and/or produced. It relates the 

elements of work to be accomplished to each 

other and to the end product. As described in 

the smallbusiness website, “The main purpose 

of a WBS is to reduce complicated activities to 

a collection of tasks.” It is a very useful 

management tool. By arranging the 

architecture in such a manner, not only will it 

describe the breakdown of the hardware from 

Level 1 to Level 2 and so on, but it can also 

form the foundation of the set of tasks 

required to design the hardware. For example, 

a radiator is designated as block 001.01.01. 

The design cycle for any block, such as a 

radiator, will likely follow a standard design 

cycle: requirements, preliminary design, 

detailed design, and integration, verification & 

validation (IV&V). Those are phases which are 

made up of tasks and could be designated with 

the further indentured designators: 

 

001.01.01.01 Requirements Phase 

001.01.01.02 Preliminary Design Phase 

001.01.01.03 Detailed Design Phase 

001.01.01.04 IV&V Phase 

 

These phases could additionally be designated 

with even lower-level numbers and even more 

specific tasks. The point is, creating a system 

structure with an eye towards a WBS is a best 

practice and frequently is a contract 

requirement.  

 

D. RADAR COTS System Model. 

The RADAR system demonstrated earlier as a 

set of block diagrams can be loaded into a 

COTS system engineering modeling tool 

(Table 1). The information from the block 

Figure 11 

Figure 12 

Table 2 Indentured System Numbering Structure. 

Level 1 Level 2 Level 3 Block Name 

001     Radar 

  001.01   Antenna 

    001.01.01 Radiator 

    001.01.02 TR Product 

    001.01.03 Duplexer 

  001.02   Transmitter 

    001.02.01 Power Amplifier 

    001.02.02 Up Converter 

    001.02.03 Local Oscillator 

  001.03   Synchronizer 

    001.03.01 Synchronizer 

  001.04   Receiver 

    001.04.01 Low Noise Amplifier 

    001.04.02 Down Converter 

    001.04.03 Local Oscillator 

    001.04.04 IF Amplifier 

    001.04.05 Filters 

    001.04.06 2nd Down Converter 

    001.04.07 2nd Local Oscillator 

    001.04.08 Detector 

    001.04.09 Analog to Digital Converter 

  001.05   Processor 

    001.05.01 Processor 

  001.06   Power 

    001.06.01 Transformer 

    001.06.02 Rectifier 

    001.06.03 Filter 

    001.06.04 Regulator 

  001.07   Display 

    001.07.01 Video Amplifier 

    001.07.02 Display 
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diagrams could be loaded into the requirements 

package. The various block diagrams can be 

loaded into the structure package. And, in 

general, all system artifacts could be documented 

within the COTS tool. 

The numbering and indenture of the entries 

should remain consistent with that presented in 

the earlier sections of this paper (Table 2). The 

specifications within the requirements package 

should also be consistent with the information 

contained within the block diagrams. 

A robust system model helps to align system and 

sub-system designers and are key tools for cost 

analysts. A good cost analyst need not be an 

expert in system engineering tools. But some 

familiarity with system engineering tools would 

be very advisable. And early participation in a 

product life cycle will help a cost analyst to not 

only influence the direction and the development 

of the system design but also to then be in a far 

better position to generate system cost estimates. 

 

V. Model the Cost 

Once a rigorous block diagram and system model 

for a system has been created the next step is to 

begin modeling the system cost. As mentioned, 

with early participation in a product life cycle a 

cost analyst will be in a far better position to 

generate system cost estimates. 

A new emphasis introduced here is a structured 

approach which includes a modular approach to 

modeling the system cost. At a later phase in the 

system design, it will be necessary to perform 

trade studies. The most common trade will be 

between two performance profiles. For example, 

“better” performance using more power vs. 

“worse” performance using less power. This is a 

very common trade in industry.  

To achieve the two profiles, a modular approach 

will be used to swap out blocks for either “better” 

or “worse” performance. This is the elegance of a 

modular approach to system architecture. If a 

parallel effort could be taken to create a 

corresponding cost model for each block, then as 

blocks are swapped in and out for performance 

trades, a cost trade could simultaneously be 

performed.  

As with system modeling, there are several COTS 

cost tools which may do similar functions. For 

costing the system in this research, the software 

package utilized was selected because it contains 

all the elements required to enable a user to 

create a modular cost model. Blocks can be 

created and turned on and off to simulate 

substituting one block for another. For each cost 

model block, there are parameters which can be 

adjusted to influence cost. Those parameters 

correspond to various ranges of hardware design 

details ranging from a very high level of detail to 

a very low level of detail depending on the user’s 

familiarity with the hardware being modeled. All 

of the cost data within the COTS tool is pulled 

from industry standards, so no cost data needs to 

be loaded. Of course, for any user the tool data 

can be modified for specific applications and past 

performance actuals. Some cost tools include 

information regarding the sensitivity of a 

particular parameter being adjusted. The 

presentation of the sensitivity factors is currently 

a bit crude, but it should be possible to pull the 

data for further analysis outside of the tool.  

 

A. Cost Modelling Approach. 

Unlike the system tool structure which focused 

on artifacts and a manner by which to organize 

them (See Table 1), a cost tool focuses on the 

hardware, or more precisely, the indentured 

organization of the hardware. This allows a 

system architect to utilize the WBS numbering 

system directly in the tool. The tool directly 

estimates cost based on what hardware will be 

included. So, to create a cost model a user needs 

to first consider the indenture of the hardware. 
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Level 1 – Deliverable hardware 

Level 2 – 1st Sub-block of hardware 

Level 2 – 2nd Sub-block of hardware 

Level 2 – 3rd Sub-block of hardware 

Etc. 

 

B. RADAR System Cost Modelling 

Structure. 

As with the system model, an indentured set 

of numbers was created for this system cost 

model and appears in Table 3. The entries in 

Table 3 are very similar to those from Table 

2. However, Table 3 has additional rows for 

“Roll Up.” A cost tool could call out Level 2 

hardware, for example an antenna. However, 

an antenna is also a collection of Level 3 

hardware blocks. In this case, both options 

are included in the cost model. And when the 

model is run to produce an estimate either, 

but not both would be selected.  

 

C. RADAR COTS Cost Model. 

The RADAR system demonstrated earlier as a 

robust set of block diagrams and system 

model can be loaded into a COTS cost 

estimation tool. With the structured 

approach, the numbering and indenture of 

the entries should remain consistent with 

that presented in the earlier sections of this 

paper (Table 3). 

As part of the COTS tool, each sub-block 

contains functional parameters which can be 

tuned for the specific application. For example, 

the weight of the specific hardware sub-block 

could be modified. What is initially loaded is an 

industry standard value to be used as a starting 

point.  

This is the domain of the cost analyst. A good cost 

analyst having participated early in the design life 

cycle of the product will have familiarity with the 

WBS and product requirements. With a robust 

cost model which mirrors the system model a 

cost analyst is well positioned to generate a 

robust cost estimate and can rapidly participate 

in trade study alternatives. Because of the 

modular nature of the model structure, it is 

Level 1 Level 2 Level 3 Block Name 

001     Radar 

  001.01   Antenna 

    001.01.01 Radiator 

    001.01.02 TR Product 

    001.01.03 Duplexer 

  001.02   Transmitter 

    001.02.01 Power Amplifier 

    001.02.02 Up Converter 

    001.02.03 Local Oscillator 

  001.03   Synchronizer 

    001.03.01 Synchronizer 

  001.04   Receiver 

    001.04.01 Low Noise Amplifier 

    001.04.02 Down Converter 

    001.04.03 Local Oscillator 

    001.04.04 IF Amplifier 

    001.04.05 Filters 

    001.04.06 2nd Down Converter 

    001.04.07 2nd Local Oscillator 

    001.04.08 Detector 

    001.04.09 
Analog to Digital 
Converter 

  001.05   Processor 

    001.05.01 Processor 

  001.06   Power 

    001.06.01 Transformer 

    001.06.02 Rectifier 

    001.06.03 Filter 

    001.06.04 Regulator 

  001.07   Display 

    001.07.01 Video Amplifier 

    001.07.02 Display 

Table 3 Indentured Cost Numbering Structure. 
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possible to turn blocks “on” or “off” to select what 

is to be included for an estimate. In this way, 

blocks can be swapped in a modular fashion 

allowing a cost analyst to work with the system 

architect the ability to perform cost trades.  

 

VI. Multivariable Analysis & Trade Studies 

A robust structured system modelling approach 

utilizes the concept of modularity. If the system is 

comprised of modules, then the possibility exists 

where modules could be swapped to modify the 

system for various performance characteristics. 

At the same time, if the cost model mirrors the 

system model, then as the system is being 

defined, a rough cost estimation could be 

determined simultaneously. 

Even with a modular approach, when designing a 

system more than one variable must be 

considered. Choices are made regarding those 

variables. In most cases, variable choices have 

competing impacts. For example, one design 

architecture may have “better” performance 

using more power vs. “worse” performance using 

less power. Decisions for a sub-system need to be 

evaluated at a system level. A system designer 

needs to consider the design as a system and 

realize that any change potentially has an impact 

beyond the sub-system. It is not usually possible 

to make an architecture or hardware change 

irrespective of the larger 

view of the system. This is 

really the heart of system 

engineering, consideration 

of an entire system, not 

just a collection of sub-

system parts. 

This is particularly 

important when 

considering cost because it 

is not possible to swap out 

cost as modular blocks and 

estimate new costs 

without understanding 

that there are affects to the system. There are 

multilevel impacts when modular blocks are 

substituted. Simply swapping out a block and 

estimating cost gives a first order indication of 

the cost impact. But until the design is finalized it 

is only a rough estimate. There is a spiral 

approach to design. As choices are made, impacts 

are assessed, costs can be estimated, new choices 

are made, and eventually the design spirals into a 

solution. 

To decide between competing variables a trade 

study can be employed. A trade study is a useful 

tool which allows a designer to compare and 

contrast the various possible choices to 

determine which solution would be “best” for the 

given application. 

To perform a trade study, first the various 

options are clearly defined. Criteria must be 

selected. Criteria are the items which are 

impacted by the options. Typical criteria are cost, 

schedule, performance, supportability, etc. A 

matrix is made with the options vs. the criteria, 

Table 4. A grade is given in the matrix for each 

criterion and option. Then the criteria are 

assigned a weight. The grades are scaled by the 

weighting factors. And then a score for the 

options can be calculated by adding up the 

weighted grades for each option. The option with 

the highest score “wins” the trade study and 

represents the “best” solution.  

Table 4 Sample Trade Study Matrix. 



130 Journal of Cost Analysis and Parametrics: Volume 10, Issue 2. April 2022 

Foundation of Structured Architecture, System & Cost Modeling Danny Polidi et al  

VII. Sensitivity Analysis Applied to a Cost 

Model 

The limitation of the commercially available cost 

estimation packages is that it is essentially a 

unidirectional process. A user defines a system 

and uses the cost estimation package to estimate 

cost. The user can then experiment with 

alternatives or modifications to the system and 

estimate the corresponding associated system 

cost. What is missing is a bidirectional interaction 

with the software package. There is very little 

guidance from the cost estimation package which 

suggests to the user system modifications for 

consideration. It lacks suggestions to the designer 

which modifications would have the greatest 

impact to the overall cost of the system.  

It is desirable to have a feature within a cost 

estimation package which can analyze the 

components of the system to determine which 

components have the greatest impact. In other 

words, which components have the highest 

sensitivity for modification as it pertains to the 

overall cost of the system. 

Although sensitivity analysis is well understood 

the application of sensitivity analysis upon a cost 

model for the purposes of maximizing the impact 

to the overall system cost is novel. It should be 

possible, and is explored in a follow-on paper, an 

effort to generate a cost sensitivity algorithm of 

the various components in a system to analyze a 

system and determine which subsystem 

components in a chosen design solution have the 

highest sensitivity to cost for the overall system. 

The analysis should highlight the areas to which a 

system designer could apply focus to reduce the 

overall system cost early in the life cycle of a 

program.  

 

A. Sensitivity Analysis Potential. 

Lack of adequate cost analysis tools early in the 

design life cycle of a system contributes to non-

optimal system design choices both in 

performance and cost. A goal is to develop 

algorithms for an automated tool/approach 

utilizing cost element sensitivity to enable a 

system designer the ability to understand the 

relative cost impacts of various decision/choices 

which affect system design early in the design 

cycle for an airborne based RADAR system for 

military aerospace applications. 

Most cost estimations are a unidirectional 

process. First a design is selected then the design 

cost is estimated. If the cost is not good the only 

feedback is typically to “reduce” cost. Then a new 

design is chosen, and the design cost is again 

estimated. But typically, the process lacks 

meaningful feedback which demonstrates how or 

where to make design changes to impact cost 

most significantly. Instead, the designer typically 

modifies an area of particular interest to the 

designer. 

Consider a complex system made up of sub-

system blocks, Figure 13. To estimate the cost of 

the entire system, the cost of the sub-system 

blocks is estimated and then rolled up into the 

top-level system cost. Typically, the cost is too 

high and there needs to be some effort to reduce 

the overall cost. So, trade studies are performed 

which focus on specific sub-system blocks. Of 

course, if any given block is modified, there will 

be an effect on other blocks known as secondary 

effects. For example, “better” performance using 

hardware which requires more power vs. “worse” 

performance using hardware which requires less 

Figure 13. Complex System of Sub-System Blocks. 
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power. A change such as that may have a 

secondary effect of increased copper thickness on 

other printed wiring boards which would then 

increase costs in other areas of the design. The 

secondary effects must be dealt with and 

considered but that would occur later in the 

process when a trade study is performed. 

Initially, there is the challenge of trying to 

determine which sub-block to apply focus to 

impact cost most significantly for the entire 

system, Figure 14. This is where the tools are 

significantly lacking. In the absence of 

sophisticated tools, the selection becomes 

somewhat arbitrary. It is desirable for the cost 

analyst to actively participate with the system 

designer to identify the areas of focus where the 

greatest impact to overall cost could be achieved. 

Used in conjunction with a COTS cost estimation 

tool, it should be possible to develop an algorithm 

to understand the system sub-blocks in terms of 

cost sensitivity to overall system cost. With such 

an algorithm a cost analyst could analyze a 

system and determine the relative cost sensitivity 

for each sub-block. 

Once the sub-system blocks have a relative 

sensitivity value, the sub-blocks could be ranked 

from most sensitive to least sensitive, Figure 15. 

Then using knowledge of the system, a cost 

analyst could suggest a few sub-blocks to focus 

attention for reasonable improvement goals, 

Figure 16.  

Once a few sub-blocks have been selected 

for reasonable improvement goals, and 

using the COTS cost estimation tool, an 

estimate could be made to determine the 

impact of cost to the entire system from 

simultaneous improvements to these few 

selected sub-blocks, Figure 17. 

 

Figure 15. Sensitivity Analysis Results. 

Figure 14. Arbitrary Sub-Block Selection. 

Figure 16. Selection of Five Sub-Blocks. 

Figure 17. Simultaneous Modification of Five Sub-

Blocks. 
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The overall impact estimation would provide a 

bound, or maximum, for potential cost 

improvements. To realize any potential 

component cost improvements there would need 

to be some amount of investment of resources. 

Any investment up to the estimated maximum 

potential value would yield a profit. This then 

forms the basis for a Return On Investment (ROI). 

Again, a full trade study would need to be 

performed to evaluate the potential impacts to 

the rest of the system. But those trade studies 

would be paid for using the ROI estimations.  

The limitation of the commercially available cost 

estimation tools is that it is essentially a 

unidirectional process. A user defines a system 

and uses the cost estimation package to estimate 

cost, Figure 18. What is missing is a bidirectional 

interaction with the software tool. By performing 

a sensitivity analysis upon the cost model, a cost 

analyst can offer suggestions to the system 

designer where to focus attention to most 

significantly impact overall system cost. 

 

VIII. Summary 

This paper presents an approach to generating a 

set of block diagrams for describing a 

standardized modular RADAR system applied to 

military applications in the aerospace industry. 

The resulting block diagrams were created using 

a compilation from a wide sample of available 

industry data and references integrated into a 

higher level, more generalized version. In 

addition to block diagrams, generalized block 

descriptions were also created along with a 

generalized numbering structure. 

This paper demonstrates an approach to 

implementing the generalized block diagrams 

and numbering structure to create both a system 

model as well as a cost model for the RADAR 

under consideration. By means of the numbering 

structure, the system and cost models could be 

generated in such a way as to be modular to 

facilitate eventual trade studies for performance 

and cost improvements. 

This paper discusses the potential advantages of 

a cost sensitivity algorithm applied upon the 

system cost model to analyze and determine 

which subsystem components in a chosen design 

solution have the highest sensitivity to overall 

cost. This paper illustrates that such an analysis 

could direct system designers to the areas of 

focus to most significantly impact the overall 

system cost early in the life cycle of a program.  

Finally, the paper discusses using the sensitivity 

analysis results to select a few sub-blocks for 

reasonable improvement goals for simultaneous 

improvements. Simultaneous improvements to 

these few selected sub-blocks would provide a 

bound, or maximum, for potential system cost 

improvements. Any investment up to the 

estimated maximum potential value would yield a 

profit. This then forms the basis for a Return On 

Investment (ROI). The ROI estimate would in turn 

fund future trade studies. 

Figure 18. Ideal Cost Estimation Process. 
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