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Welcome to the reboot/restart/rebirth/

resurrection of the Journal of Cost Analysis and 

Parametrics (JCAP). After a five-year hiatus, we 

have pulled the publication in-house and ceased 

paper production as we reinstate our journal. The 

journal will be published on the ICEAA website, at 

least at first. We are also exploring options and 

avenues for traditional library access as well as 

social media promotion. 

After much discussion over the past couple of 

years, the ICEAA Board of Directors, upon the 

recommendation of the JCAP editors, have 

decided to broaden the scope of our journal. As 

you’ll see in this issue, we include qualitative as 

well as the previously preferred quantitatively 

rigorous articles. The new direction is calculated 

to make the journal of more interest to the 

totality of our membership. We plan to publish 

discerning work of significance that speaks to the 

membership and advances the intellectual 

pursuits within the cost arena writ large.  

In this issue the reader will find the three best 

paper award winners from the 2021 ICEAA 

Workshop, as well as best-in-track award 

winning papers from 2020. Two additional 

articles are from prior submissions.  

Brent Johnstone provides a pertinent and oft 

forgotten look at broken learning. In How Green 

Was My Labor: The Cost Impacts of Manufacturing 

Personnel Changes, he provides a model for 

estimating the cost of personnel changes on a 

program, adding instruction where existing 

learning curve literature falls short.  

Christina Snyder addresses the question Does 

Cost Leadership Matter? in a novel way. She 

applies cost estimator survey responses 

regarding leadership impact on program/product 

success and then uses the ten behaviors 

identified by Google’s Project Oxygen seeking an 

understand of the necessary skills for successful 

cost leadership. 

Rounding out the three 2021 ICEAA Workshop 

best papers is Parametric Joint Confidence Levels: 

A Practical Cost and Schedule Risk Management 

Approach by Sara Jardine, Kimberly Roye, and 

Dr. Christian B. Smart. They present a 

parametric and machine learning approach, 

developing mathematical models for cost and 

schedule risk, with the application of machine 

learning models, developing higher-fidelity 

schedule models.  

From the 2020 conference, we feature Andy 

Braukhane’s 13 Reasons a Cost Estimate could go 

wrong during a Concurrent Engineering Study 

(and How to Avoid Them), wherein he highlights 

and addresses the difficulties of concurrent 

engineering on the cost estimator.  

Patrick McCarthy explores the culmination of 

learning curve knowledge In Search of the 

Production Steady State: Mission Impossible? He 

adds to learning curve application by seeking the 

prediction of a production steady state and, given 

the unique nature of defense acquisition, whether 

one really exists.  

The final two articles are legacy submissions to 

the journal, yet they retain currency and advance 

Editor’s Note  
David L. Peeler, Jr., CCEA 
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the understanding of simulation and cost 

estimating relationship development. Using 

Dummy Variables in CER Development advances 

our understanding in this area, as two Frank 

Freiman Lifetime Achievement Award recipients, 

Dr. Shu-Ping Hu and Alfred Smith clarify when 

the use of dummy variables is appropriate. The 

authors propose specific guidelines for 

appropriate use of dummy variables as well as 

common errors analysts experience in 

application.  

In Improvements on the Development of Correlated 

Input Variables for Monte Carlo Simulation, 

Douglas Henke adopts methods of rank 

correlation and multivariate input for modeling 

by Monte Carlo simulation to provide insights 

into algorithm mechanics, yielding a richer 

understanding of the process and a more 

accurate reflection of desired correlations for 

both symmetric and highly skewed distributions. 

This issue returns the Journal of Cost Analysis and 

Parametrics to the ICEAA membership. The 

expansion of content should serve us well and be 

a resource for the whole community. We think 

there is something in these pages for the wide 

array of practicing cost/risk/schedule 

estimators/analysts/leaders, etcetera. We hope 

you enjoy the articles and apply the gained 

knowledge to your professional efforts. Thank 

you to all who have encouraged and supported 

the return of our professional journal; and most 

importantly, thank you for reading. 

 

David Peeler 

JCAP Editor 

Professional Development & Training Workshop 

PITTSBURGH 
May 17-19, 2022 

Call for Papers 

Abstract Summaries Due November 2, 2021 

www.iceaaonline.com/pit22cfp 
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Introduction 

In the ideal world of theoretical learning curves, 

product configurations, production rates and the 

quantity and skill level of employees remain 

constant throughout time, thus allowing us to plot 

smooth, continuous reductions in unit cost over 

time. In the real world, this is far from the case. All 

three variables – configuration, production rates, 

and employees – are in constant flux. 

The impact of configuration changes on the 

learning curve and on manufacturing unit costs 

are well-understood. The impact of production 

rates on unit cost has also been extensively 

studied, albeit with contradictory opinions 

whether changes in production rates have 

significant or insignificant long-run impacts on 

manufacturing hours. (Johnstone, 2017.) 

However, the published learning curve literature 

is largely silent on how changes in the number or 

skill level of manufacturing employees affect cost. 

While this issue impacts all long-cycle 

manufacturing operations, typically the literature 

only addresses the subject in the context of 

production gaps and the subsequent loss of 

learning. (Anderlohr, 1969.) However, the impact 

of production gaps is so deleterious that planners 

and schedulers go out of their way to avoid them, 

and therefore they occur only infrequently. Far 

more common are increases or decreases in 

workforce levels due to fluctuations in production 

deliveries, and yet little is written down to guide 

the estimator. 

This paper hopes to fill in the gaps. Estimators are 

frequently confronted with workforce increases 

or decreases and asked to calculate the impacts on 

shop performance. This paper identifies issues 

associated with both new hires and workforce 

reductions and offers an analytical format. Based 

on a study of a large workforce expansion on a 

mature aircraft program, a model to analyze 

future workforce changes is presented as well as 

an example case. 

 

Overview of the Problem 

Questions about workforce changes really ask: 

What is the impact of assigning new work to 

people? In turn, assignments of new work are 

usually driven by changes in delivery rates.  

If everyone was equally proficient and skilled – or 

if the work was simple – this would not be an 

issue. Manufacturing jobs, however, require a high 

degree of proficiency and product-specific 

knowledge which are not easily transferable. This 

How Green Was My Labor:  

The Cost Impacts of Manufacturing Personnel Changes 

Brent M. Johnstone 

 

Abstract: Estimators are frequently confronted with manufacturing personnel increases or 

decreases and asked to calculate shop performance impacts. However, existing learning curve 

literature offers little guidance how to do so. This paper identifies issues associated with both new 

hires (so-called "green labor”) and workforce reductions and offers an analytical format. Based on a 

study of a large workforce expansion on a mature aircraft program, a model to analyze future 

personnel changes is presented as well as example cases. 
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is particularly acute in the shipbuilding industry. 

According to industry sources, it takes three to 

five years for a new hire off the street to be 

trained and developed into a journeyman 

employee. It takes an average of eight years to 

become a fully certified nuclear pipefitter. 

(Cuccias, 2018.) Estimates of shipbuilding costs 

require careful consideration of the productivity 

levels of so-called “green labor” (new hires) and 

“seasoned labor” (experienced employees). A 

RAND study on the shipbuilding industry 

summarizes the issue: 

“Workers with some experience are generally 

more productive than inexperienced workers. 

Thus, for a workforce with a higher 

proportion of inexperienced workers, 

additional effort is needed to complete an 

identical task. This additional work might be 

done using temporary workers, overtime, 

additional full-time employees, or even 

lengthening the ship production schedule.”  

(Arena, 2004.)  

But this issue is hardly restricted to shipbuilders. 

The short-term cost impact of hiring new, 

untrained employees is found in the aerospace 

industry as well. Commercial aircraft build 

provides several examples. In the late 1990s, 

Boeing attempted to significantly increase its 737 

and 747 production rates by hiring thousands of 

new workers. Boeing’s 1997 annual report 

laments: “In pushing to double production rate to 

meet heavy demands of a booming market, we 

experienced serious cost and schedule 

problems.” (Boeing, 1997.) A front page story 

from The New York Times that same year 

describes this further: 

“In early October, overwhelmed by thousands 

of foul-ups, Boeing temporarily halted 

production of the 747 as well as the smaller 

737….Boeing had to scramble to find people 

to build its airplanes, hiring 32,000 workers 

in the last 18 months. Despite what they 

describe as an aggressive training program, 

with five weeks of instruction before starting 

work, Boeing executives conceded that many 

new workers were still not fully prepared. 

‘We have incurred the penalty of these people 

learning’ on the job, said Gary R. Scott, the 

vice president in charge of producing the 737 

and 757.” (Zuckermann, 1997.) 

Interestingly, Boeing experienced similar issues 

on the same 747 production line 30 years earlier:  

“At the time production was starting on the 

747, Boeing could not find enough workers in 

the Seattle area and was forced to recruit 

intensively. Of the workers hired, less than 

half developed into normally productive 

workers. Labor hours per aircraft increased 

as production rate and cumulative quantity 

increased, i.e., the learning curve had a 

positive instead of a negative slope.”  

(Large, 1974.)  

Yet another case comes from McDonnell Douglas 

during the same time period, as it struggled to 

keep up with demand for a stretched DC-8 as well 

as an increase in DC-9 production. (Large, 1974.) 

These impacts are not permanent. Eventually the 

new employees reach a level of proficiency and 

their productivity approaches that of experienced 

employees. But even temporary impacts can 

create painful damage on production schedules 

and company profits.  

Disruption due to changes in staffing levels is not 

restricted to new hires brought on to 

accommodate a production rate increase. Delivery 

rate decreases which result in workforce 

reductions can create similar problems, as we will 

see. Even maintaining the same number of 

employees in an area can be problematic, if shop 

management is forced to reassign roles and 

responsibilities due to a reduction in another 

department. 
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Types of Workforce Changes 

As mentioned earlier, there is very little 

discussion of this potential disruption in learning 

curve literature. The only text which deals with it 

at any length is E. B. Cochran’s Planning 

Production Costs: Using the Improvement Curve. 

(Cochran, 1968.) The first section of this paper 

draws extensively from Cochran’s exposition.  

Suppose a new customer is signed up and delivery 

rates increase. Small increases in delivery rates 

can sometimes be satisfied by greater efficiencies 

in the learning curve as hours per unit decrease 

over time. However, beyond a certain point, 

additional employees will need to be hired. There 

is no change to the aircraft configuration (that 

would be a design change) but we simply need 

more bodies to produce the additional aircraft. 

The consequences are, as Cochran notes:  

• Some tasks are continued by workers 

experienced performing them 

• Some tasks are assigned to workers who have 

no experience performing them 

• Some tasks are removed from personnel 

already performing them for reassignment to 

either the new workers or members of the 

original crew 

A graphical illustration of a workforce addition 

due to an increase in production rates is shown in 

Figure 1. In the current state, it takes a crew of 

three mechanics to deliver an end-item in seven 

days. But in order to accommodate a production 

increase, the production line must be sped up to 

deliver an end-item in five days. To make that 

happen, a fourth crew member is added. 

 

This will require work to be reassigned. That 

reassignment will obviously impact the fourth 

mechanic, who finds himself doing unfamiliar 

work. It will also impact the three original crew 

members. At a minimum, they will have work 

removed from them. But it is also possible that 

work will be reassigned among themselves as 

well.  

To express this mathematically, Cochran suggests 

we use the proportion of new workers added as 

an index of the tasks which are new to the revised 

crew. To develop a “new man ratio," we define p1 

and p2 as the number of people required before 

and after the change respectively. For a workforce 

addition, the “new man ratio” becomes: 

ta = (p2 – p1) / p2 

For a crew of 15, an increase to 20 would mean ta 

= (20 – 15) / 20 = 25%. We can interpret ta as the 

minimum proportion of workers who must 

perform tasks which are new to them. In this case, 

at least a quarter of the crew members will have 

tasks which are new. Due to the reassignment of 

previous crew workers, the actual proportion of 

workers performing task new to them may be 

somewhat higher than ta, but it cannot be less. 

 

Workforce Reduction 

Now suppose the delivery rate decreases due to a 

reduction in customer sales. As deliveries slow 

and production intervals increase, there is no 

longer a need for as many mechanics in the shop. 

To keep costs economical, some will be 

transferred off the program to perform work on 

other projects, or perhaps temporarily furloughed 

or even released by the company altogether.  

Many aerospace shops are unionized. The basic 

agreement between labor and management 

typically regulates how workforce reductions 

carried out. In most cases, workforce reductions 

are carried out by seniority. If a reduction in force 

is required, the employees with the least 

experience will be laid off first. This happens 

Figure 1. Workforce Addition 
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across the entire shop regardless of which 

program drives the workforce reduction – a 

reduction in the delivery rate for Program A may 

drive a layoff of employees in unaffected Program 

B, if they have less seniority. This potentially 

creates gaps in crews across the shop floor. As 

less-senior employees are laid off, the remaining 

employees are "bumped" into different work 

areas and sometimes different programs to 

accomplish the necessary reductions.  

There are two major cost impacts of these moves: 

• Some employees will have all-new tasks due 

to being "bumped" into a new area with 

associated learning loss. 

• The remaining employees will have an 

expanded scope of work as span times 

increase. Employees must be trained to 

handle additional scope; a percentage of 

everyone's work will be new to them.  

A graphical illustration of a workforce reduction 

due to a decrease in production rates is shown in 

Figure 2. In the current state, we have four crew 

members working to deliver an end-item every 

five days. To accommodate the slowdown, we 

only need three crew members to deliver a 

product every seven days. The fourth mechanic 

may be moved to a different area, a different 

program, or leave the company altogether; but his 

work will have to be reassigned to the remaining 

three mechanics, who now find themselves 

performing tasks with which they are unfamiliar. 

Not surprisingly, this necessary realignment of 

work will create a temporary disruption which 

will result in higher hours per unit while 

personnel become accustomed to their new tasks. 

As defined by Cochran, the “new man ratio” for a 

workforce reduction is:  

td = (p1 – p2) / p1 

For a crew of 15 which is reduced to 10 

mechanics, td = (15 – 10) / 15 = 33%. At least one 

third of the work must be reassigned to 

mechanics for whom it is new. Note that our 

denominator is different for a workforce 

reduction. Whether we are dealing with a 

workforce increase or decrease, we always 

measure the change against the larger of the two 

numbers, p1 or p2.  

 

Turnover 

Turnover occurs when a certain number of 

mechanics are replaced by an equivalent number, 

but the total workforce count does not change. It 

frequently occurs as an extension of a workforce 

decrease. In the previous example, Program A 

experienced a delivery rate requiring a workforce 

reduction. Program B continues to build at the 

same delivery rate as before and requires no 

change in headcount. But because of the 

“bumping” of employees across the shop floor, 

Program B now finds itself with employees who 

formerly worked on Program A and are unfamiliar 

with the unique requirements and processes of 

Program B. This too will create some temporary 

disruption. 

Designating p as the total number 

of employees and d as the 

number removed, Cochran 

defines the “new man ratio” for a 

task turnover as: 

tt = d/p 

For a crew of 15, assume five 

mechanics are removed and their 

places taken by new ones. This 

yields tt = 5/15 = 33%. So at least Figure 2. Workforce Reduction 
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a third of the mechanics will be performing tasks 

which are new to them.  

 

Estimating the Impacts of Changes 

Calculating the “new man ratio” for a workforce 

change does not, however, tell us the cost impact 

of a workforce change. We cannot assume that a 

25% “new man ratio” translates to a 25% cost 

increase. If we think back to Anderlohr’s five 

elements of learning improvement – production 

personnel, supervision, continuity of production, 

tooling, and methods – we can see that only the 

first and second elements are impacted by a 

workforce change. (Anderlohr, 1969.) Assuming 

there is no change to the production 

configuration, tooling, or the production process 

itself, those contributors to learning should not 

see an impact.  

It is also probable that minor workforce changes 

do not impact cost. In any large organization, 

there is a certain level of turnover – hires, firings, 

retirements – which occurs as an ordinary part of 

the business. “[I]t appears,” writes Cochran, “that 

the new manpower effect must exceed a certain 

‘threshold’ level before its cost effects need be 

taken into account.” (Cochran, 1968.) 

Nonetheless, it seems reasonable to make four 

assumptions about the impact of workforce 

changes: 

a) Employees new to a task will initially perform 

less efficiently than experienced employees. 

b) Over time the performance of new employees 

will improve relative to experienced 

employees. 

c) At some point the performance of new 

employees should converge with that of 

experienced employees.  

d) How long it takes to fully integrate a new 

employee varies depending on how much 

prior experience that employee has – with the 

industry he is working in, with the specific 

company he works for, with the production 

program that employs him, and with his or 

her specific work assignment. The more 

familiar an employee already is with Program 

A, for example, the faster his performance in a 

new job will approach the other Program A 

employees already performing that job.1 

These assumptions can be illustrated graphically, 

as seen in Figure 3. If we use employee 

performance to earned standard as our baseline 

for efficiency, we can see that employees 

performing a task new to them initially perform at 

a higher variance factor (measured as actual 

hours divided by earned standards) -- which is to 

say, they will be less efficient relative to their 

more experienced peers. This delta cost premium 

will continue for some length of time until 

eventually the performance levels converge, and 

our new hires are no longer “new.”  

Students of the learning curve may note that this 

graph looks like the cost impact of a product 

design or configuration change. Certainly, the two 

have similarities. “In both cases the work is new 

to the operator, the penalty is larger for events 

occurring further out in the production sequence, 

and it shrinks rapidly as production continues,” 

writes Cochran. “However, a workforce change is 

less severe than a design change because 

supervision, tooling, support personnel, and other 

crew members are left unaltered.” (Cochran, 

1968.) 

The graph leaves us with two unanswered 

questions, however. First, how much loss of 

Figure 3. Theoretical Performance of  
New/Experienced Employees Over Time  

Break-in of New Hires 

New Hires Reach Same 

Efficiency as 

Experienced Employees 

New Hire Performance 

Experienced Employees 
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learning occurs at the point an employee begins a 

task new to him? Second, how long does it take for 

the performance of new employees and 

experienced employees to converge?  

Naturally at this point, we turn to Cochran for 

guidance on the next steps. But here the usually 

reliable author fails us. He attempts to translate 

the workforce change into a “task turnover ratio,” 

and then use the ratio to develop the cost of the 

workforce change. But the “task turnover ratio” is 

constructed a priori without any reference to data 

and is consequently impossible to duplicate or 

verify. Moreover, his solution for converting the 

“task turnover ratio” into a cost impact is clumsy 

and difficult to incorporate into a model. 

(Cochran, 1968.) Clearly a different approach is 

required. 

 

Our Study 

Earlier in the paper, we identified four 

assumptions about the cost impact of 

manufacturing personnel changes. Can we verify 

these assumptions from actual data?  

The ideal dataset would allow us to examine 

performance data by employee with sufficient 

visibility to identify if an employee was new to an 

area or already experienced in the work. The 

dataset would cover also a reasonably long period 

of time, allowing us to examine a “before” and 

“after” situation related to a major production 

rate change involving either a sizeable increase or 

decrease in workforce levels. 

Employee-level data is valuable because it allows 

us to correlate change in cost to changes in 

workforce levels more easily. High-level hours per 

unit (HPU) data runs the risk of being 

contaminated by other factors that influence cost 

– part shortages, quality problems, etc. While we 

might observe increases in manufacturing hours 

as workforce levels changed, we cannot be certain 

using HPU data if the increased hours were driven 

by workforce, or by other factors. Employee-level 

data, on the other hand, allows us to see how the 

performance of employees new to an area varied 

from that of experienced employees, giving us a 

greater certainty that we have really captured the 

cost delta associated with workforce changes 

only. 

It was also important to identify a point in an 

aircraft program where the configuration as well 

as the planning, tooling, and build processes had 

stabilized. There is always a large influx of 

personnel at the beginning of a program as the 

initial aircraft are built, but it is impossible to 

distinguish the cost impacts related to new 

personnel becoming acquainted with their jobs 

from the seismic shifts in HPU caused by 

managing engineering changes, correcting 

planning and tooling for so-called “make-it-work” 

changes, the untangling of part shortages driven 

by late engineering, and general chaos of an 

aircraft development program. Likewise, a major 

change in the aircraft configuration creates 

similar confusion, albeit on a smaller scale. Only 

during a period of program maturity can we 

successfully analyze the unique impacts of a 

workforce change. 

Fortunately, a situation arose on an Aeronautics 

production program which involved a substantial 

increase in production rates and a corresponding 

change in shop floor personnel headcounts. For 

proprietary reasons, this program will not be 

named in this paper, but simply referred to as 

Program D. 

 

Production Intervals and Workforce Changes 

Before discussing how data for Program D was 

collected and analyzed, a quick discussion of 

production intervals (PI) is in order. To measure 

the schedule impacts of increases or decreases in 

delivery rates, production management 

frequently refers to “production interval,” “line 

move rate” or “takt time.” All three terms mean 

the same thing: the number of workdays between 

product deliveries.  
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The PI is directly tied to delivery rates. Assume 

that a typical work-month has 21 planned 

workdays (excluding Saturdays, Sundays and 

holidays). To support a delivery rate of four per 

month, we must deliver aircraft approximately 

every five days. (This is calculated as 21 planned 

workdays per month / 4 deliveries per month = 

5.25 days between line moves. If the delivery rate 

slows to three per month, then the line move rate 

increases to seven days. (This is calculated as 21 

planned workdays per month / 3 deliveries per 

month = 7 days between line moves.) The PI and 

delivery rate per month are inversely related: as 

delivery rates increase, the PI decreases; as 

delivery rates decrease, the PI increases. 

Program D required a significant increase in 

production rates to be carried out over a two-year 

period. For example, in the mate thru delivery 

area, the PI was scheduled to decrease from 4 to 

2.7 to 2 over three lots, yielding a doubling of 

delivery rates. Other components of the aircraft, 

while working at different PIs due to 

coproduction, had similar rates of change.  

Overall, the number of employees touching the 

aircraft during build also had to double over a two

-year period. The timing of the hiring waves 

varied by component depending on their position 

in the build sequence (component assembly was 

first, followed by mate and final assembly, and 

finally flight line). The increase in personnel was 

not accomplished all at once but timed with the 

planned decrease in PI. This meant that a given 

area experienced two and sometimes three 

distinct hiring waves. 

 

The Method 

We began by pulling weekly performance data by 

employee for the components under study over a 

42-month period. In order not to release too much 

data about Program D, we will avoid identifying 

specific calendar years and refer to these periods 

as Year Zero, Year One, Year Two and Year Three. 

The six-month period prior to the workforce 

increase will be designated Year Zero. Based on 

staffing plans, we identified January of Year One 

as the beginning of the planned workforce 

increases. Weekly data was then accumulated 

through December of Year Three. The point of 

“full staffing” was reached earlier – in March of 

Year Three – but going beyond that point gave us 

the ability to see how long it took for performance 

between new and experienced employees to 

stabilize.  

Figure 4. Example of Data Collection by Employee (Subset) 
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The data gave us actual hours and earned 

standards by employee number for each 

component. We limited the study to assembly 

areas since these planned standards largely 

represent an engineered standard, typically 

constructed from predetermined time systems 

such as Methods-Time Measurement (MTM) data. 

In the old MIL-STD-1567A vocabulary, these 

would be Type I standards. (MIL-STD-1567A, 

1983.) The fabrication areas, on the other hand, 

use standards developed from prior actuals (Type 

II standards per MIL-STD-1567A) and while, 

sufficiently accurate for fabrication shop 

management, do not demonstrate enough fidelity 

over time to provide us with a meaningful 

analysis.  

Using January of Year One as a baseline, any 

employee who was charging to an area during the 

six months prior (during Year Zero) was labeled 

as an “experienced employee.” An examination of 

staffing profiles for the prior two years showed a 

very stable headcount by area, giving us 

confidence that we could safely designate these 

employees as “experienced” without researching 

everyone’s situation. Correspondingly, employees 

which began charging to an area after January of 

Year One was designated as “new.” These could be 

existing employees which were transferred to a 

different area, or employees which were new to 

the company altogether. Figure 4 shows a tabular 

example of how the data was arranged. 

The weekly data by individual build area was 

rolled up by month by employee and segregated 

by “new” and “experienced” employees. The 

variance factors (actual hours spent divided by 

earned standard hours) was used as the point of 

comparison.  

One of the problems in the data was that each 

build area experienced two or three waves of new 

employees, making it difficult to analyze how long 

it took for a wave of employees new to an area to 

reach the same performance levels as their peers. 

To solve this problem, the performance data of 

new employees was stratified across time. We 

then added up the actual hours and earned 

standards for the first month of performance by 

employees and calculated a collective variance 

factor. We then did the same thing for month two, 

month three, etc. We then calculated the average 

variance factor for employees who were in place 

prior to Year One across all months to calculate a 

baseline for comparison. Figure 5 shows an 

example of the data stratification. 

Figure 5. Example of Data Stratification over Time (Subset) 
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This allowed us to construct charts by build area 

like Figure 6. 

In their first month after introduction to a new 

area, the performance of employees was worse 

than the baseline performance of their 

experienced peers. This improved over the 

succeeding months until – in this case – the 

performance of the two groups converged at 

month six. 

Across all build areas, the performance of 

employees new to an area was initially worse than 

that of experienced employees. Most areas (10 of 

the 13 build areas) showed convergence or near-

convergence (defined as achieving a less than 10 

percent difference) to the baseline over varying 

lengths of time. The median length of time for 

convergence was nine months. 

 

This gives us the opportunity to validate our four 

assumptions: 

• New employees had worse performance 

initially than their experienced peers. 

• New employees improved their performance 

relative to more experienced employees. 

• In most cases, there was convergence of new 

employee performance back to the baseline. 

• The median timeframe of that convergence 

took nine months. 

Using this finding, the data labels were 

reconfigured. For the first nine months after 

introduction to an area, individual employees 

were classified as “new.” For month 10 and on, 

those same employees were now considered 

“experienced.” 

This allows us to show performance by new and 

experienced employees over time and see the 

overall performance delta over time. Figure 7 

shows the variance factors for a sample build area 

plotted on the first Y axis, with the number of 

employees counted as “new” (subject to the nine-

month time frame) plotted against the second Y 

axis. 

By calculating this performance delta in terms of 

performance to standard, we can also calculate 

the estimated hours impact of introducing new 

employees. The cost of integrating new employees 

for a given month is calculated using the following 

formula: 

Figure 6. Comparison of New/Experienced  

Employee Performance by Month Since Introduction - 

Example Build Area  

Figure 7. Comparison of New/Experienced Employees (Subject to Nine-Month Limit) Over Time – Sample Build Area  

Higher variance factor  
(actuals/standard) means new 
employees are less productive 
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Hd = Hs x (Vn – Ve) 

where Hd = delta cost (hours) of integrating new 

employees for a given month, Hs = total earned 

standards by new employees for a given month, 

Vn = monthly variance factor for new employees 

and Ve = monthly variance factor for experienced 

employees. 

We can now look for the correlation between the 

hours delta attributable to introducing new 

employees against the number of employees 

considered new to the area at any given point in 

time. An example of this is given in Figure 8.  

Our goal now is to calculate some useful 

relationship between the level of workforce 

changes and the resulting cost impact. To do this, 

all the data was aggregated across the build areas 

by month. For each month, the following data was 

calculated: 

• Percent of new employees (number of new 

employees divided by the number of total 

build employees) 

• Percent cost delta (delta hours associated 

with new employees divided by the total 

number of hours charged)  

This allowed us to relate the two variables and see 

the relationship plotted on a log-log space in 

Figure 9. 

For proprietary reasons, the value of the intercept 

is omitted. However, since the value of the 

logarithmic coefficient is close to unity, the 

relationship approaches a linear relationship. The 

R-square fit is excellent, and the model explains 

virtually all the observed variation. 

Figure 8. Cost Delta for New Employees Correlated to Number of Employees New to Area – Sample Build Area  

Figure 9. Observed Relationship Between New Employees and Associated Cost Premium 
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Length of the Recovery Period 

This study represents, in many cases, a worst-case 

scenario. First, Program D’s workforce doubled 

over an approximately two-year period. Most 

workforce increases or decreases are not so 

severe. Second, this workforce increase was 

accomplished in successive, overlapping hiring 

waves. Most workforce increases or decreases 

occur at as one-time discrete events. Finally, many 

of the new employees were not simply new to the 

program or the company, but new to the 

aerospace industry in general.  

This suggests that the nine-month recovery 

period could be shorter under other rate change 

scenarios. For example, a smaller workforce 

increase could transfer workers already in place 

on the shop floor but currently working on a 

different program. It is logical to suppose that 

those transferred employees will not take as long 

to acclimate themselves to their new jobs. In the 

case of a work reduction, the remaining 

employees are already on the program, but they 

may have to learn some new tasks. Theoretically 

this recovery period would be even shorter. 

 

Application of the Model and 

Approach 

Now that we have built this model, 

how is it applied? 

The ideal situation would allow us 

to work from a detailed staffing 

forecast. That forecast would tell us 

how many heads need to be added 

or deleted and the timing of those 

impacts. However, this data is not 

always available – for example, our 

company may not have detailed 

forecasts longer than a year out.  

However, using production interval 

and estimated hours per unit, we 

can approximate headcount levels in 

order to use the model. Note that the 

model depends on relative changes in headcount, 

and not absolute values. If we can correctly 

approximate the magnitude of the change, the 

answers that are returned should be good.  

Table 1 provides an example of how we can 

calculate a relative headcount change using this 

information. We assume at unit 600 a production 

interval change takes place which will create a 

workforce reduction. Based on this information, 

we can calculate a relative headcount change and 

the associated ratio of new/reassigned task 

shown in Table 1. 

Two caveats should be noted. First, this 

calculation will provide a value of full-time 

equivalent heads. In fact, due to absences 

(vacation, sick leave), overtime, or time charged 

to indirect efforts, the actual yield rate per 

employee could be more or less than a simple 

workdays per month multiplied by hours per day. 

However, since our interest is in the relative 

change in headcount, these refinements should 

not significantly alter the values or cause 

difficulties. Second, this approach also ignores the 

possibility at very low production rates, a 

minimum staffing level must be maintained in 

order to preserve critical skills. Where such a 

Table 1. Assembly Workforce Reduction  
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potential exists, the estimator should consult with 

his Industrial Engineering department to establish 

such a minimum skill level and adjust his 

calculations appropriately. 

Having calculated a 25% reassignment ratio, how 

do we translate into a cost impact? First, we must 

assume how long the disruption will last. We 

might imagine three general separate scenarios 

which could occur: 

Scenario A, Workforce Reduction: The 

reduction is accomplished within the program, 

with work reassigned to existing employees. 

While these workers must learn some new tasks, 

they are already familiar with techniques peculiar 

to the program. This scenario will have the 

shortest recovery period.  

Scenario B, Workforce Increase: The increase is 

accomplished by transferring workers from other 

company programs. While familiar with the 

aircraft industry as well as the company “way of 

doing business,” these workers will not be 

familiar with techniques peculiar to the program. 

In addition, some existing workers will be 

reassigned to different roles in order to help 

balance crews and optimize workflow. This 

scenario will have a recovery period somewhere 

between Scenario A and C.  

Scenario C, Workforce Increase with Outside 

Hires: The increase is 

largely accomplished 

by hiring workers 

from outside the 

company. These 

workers are not only 

unfamiliar with the 

unique program 

peculiarities, they are 

also unfamiliar with 

the company’s way of 

doing business. They 

may not even have 

prior experience in 

the aircraft industry. 

This scenario will have the longest recovery 

period.  

Our previous empirical study falls squarely into 

Scenario C. Therefore, the median nine-month 

recovery period would represent the “worst case.” 

While it follows logically that Scenario A will have 

the shortest recovery period, with Scenario B 

falling somewhere between A and C, it is difficult 

to establish a priori exactly how long these 

periods will last. The estimator should consult 

with Production management team and the 

Industrial Engineering department to help him 

make the best determination.  

For the purposes of our example, we have 

assumed a four-month period of recovery on the 

grounds that our situation corresponds most 

closely with Scenario A. Table 2 shows the 

calculations. It is first necessary to calculate the 

undisrupted HPU and spread those hours across 

time. Although our PI change is scheduled to take 

place in January effective unit 600, it is important 

to note that any component in work in January, 

even ones started prior to unit 600, can be 

impacted by the personnel change. That is 

because the “bumping” of personnel to 

accommodate the workforce reduction is likely to 

reassign workers across stations, potentially 

affecting any unit currently in work.  

For proprietary reasons, the actual cost equation 

Table2. Calculating Cost of Reassignment  
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cannot be released. We will assume that a 25% 

reassignment ratio relates to a cost premium of 

x%. Therefore, for the month of January, the 

total HPU for a given unit number is multiplied 

by the percent of task completed that month 

times x%. The result provides us the disruption 

expected for January. Similar calculations are 

performed for the month of February, March 

and April. Since we have assumed the impact 

ceases after four months, our calculations cease 

after April.  

In the end, our disruption will impact 11 units 

(unit numbers 595 through 605). It can be 

inferred that the number of aircraft impacted 

will increase at higher production rates (or 

longer production span times) since there will 

be more work in process at any given time, and 

therefore more opportunity for additional 

aircraft to be disrupted by workforce changes. 

For our example, the total disruption will look 

something like Figure 10. 

This distribution is different from the 

theoretical construct supposed in Figure 3. In 

that case, the units prior to the break-in aircraft 

for the rate change would be unaffected. But 

this theoretical construct does not really 

account for the “bumping” effect, which is likely 

to spread the disruption across any unit in work 

at the time of the workforce reduction.  

It could be argued that if new or reassigned 

workers become more proficient over time that 

the value of x will also change over time – that it 

should be higher in the first month of disruption 

and decrease over the four-month period until 

reaching the termination point, following the 

pattern we observed in Figure 6. This 

adjustment will potentially alter the shape of 

the distribution of disruption hours by unit. 

Such a feature could be incorporated into the 

model, but for simplicity of explanation a flat 

percentage has been assumed for each of the 

four months of impact. Depending on the 

estimator’s specific needs, precision at the 

individual unit may be traded off for simplicity 

of presentation and calculation. 

 

Next Steps 

As always, further research remains. Testing of 

the model in future instances of production rate 

increases or decreases will provide insight to its 

accuracy and the need for further refinements. 

In addition, data collection surrounding smaller

-scale workforce increases or decreases will 

provide further insight into the length of the 

recovery period. Our empirical research has 

established the outer bound of the time 

between initial disruption and eventual 

recovery to the underlying performance trend 

for a large workforce expansion. But we have 

supposed that this is the worst case, and for 

workforce reductions, cases of pure turnover, or 

smaller workforce increases, we are left to 

judgmentally decide how long the recovery 

period should be. Further research will reduce 

that element of judgment and provide the 

estimator more precise guidance, as well as 

verification that the model provides accurate 

predictions in those specific scenarios. 

 

Conclusion 

In the idealistic world of learning curve 

literature, fluctuations in delivery rates or the 

potential disruption created by “green labor” 

are frequently ignored or else assumed away. 

Its silence suggests that these matters are not 

worthy of much consideration.  

Figure 10. Disruption Hours by Unit  
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Charles E. Ferguson, an economics professor at 

Texas A&M University, facetiously defended 

himself to students who demanded to know how 

theoretical economics related to the problems of 

the real world by saying: “The real world is a 

special case -- and not a very interesting one at 

that.” The academic can strike such a pose. But 

cost estimators must live in – and produce 

estimates for – the real world.  

Changes in production rates and the associated 

impacts on workforce numbers and experience 

levels remain one of the production estimator’s 

greatest challenges. This paper aims to bring 

these issues to light and provide an analytical 

framework for these changes. It also provides a 

model for forecasting the impact of these changes 

based on analysis of a real-life case study of a 

workforce expansion. This analysis is presented 

not as the final word on the subject. As John 

Maynard Keynes reminds us, “It is better to be 

roughly right than precisely wrong.” It is hoped 

that this paper will stimulate further discussion in 

the estimating community on practical solutions 

to handle one of the common production issues.  

Brent Johnstone is a Lockheed Martin Fellow and production air vehicle cost estimator at Lockheed Martin 
Aeronautics Company in Fort Worth, Texas. He has 33 years’ experience in the military aircraft industry, 
including 30 years as a cost estimator. He has worked on the F-16 program and has been most recently the lead 
Production Operations cost estimator for the F-35 program. He has a Master of Science from Texas A&M 
University and a Bachelor of Arts from the University of Texas at Austin. 

Footnotes 

1 Compare these to the assumptions of RAND’s 2004 model to assess changes in shipbuilding labor: “(1) It 

takes three years to become fully proficient at a trade; (2) worker productivity improves linearly with 

experience to a fully qualified status, beyond which no further productivity is modeled; (3) a worker with no 

experience has a productivity of two-thirds that of a fully proficient worker; and (4) the changes of hiring a 

worker at any experience level are identical.” (Arena, 2004.) 
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Abstract: Does cost team leadership matter? An anonymous survey of 150+ cost analysts unanimously 

reported that a cost-team lead's effectiveness ultimately impacts the team’s products. However, there has 

been minimal guidance as to what defines good leadership. Using the ten behaviors identified by Google’s 

Project Oxygen, this paper seeks to understand what skills are necessary for successful cost leadership. The 

findings lead to a simple conclusion that mirrors that of Project Oxygen: improving our soft skills will 

improve cost leader efficacy. 

Introduction  

The International Cost Estimating and Analysis 

Association (ICEAA) is a cost estimating 

organization built by cost estimators for cost 

estimators. While having a cost-specific emphasis 

does facilitate focus on state-of-the-art estimating 

techniques, it also leads our community to 

potentially be unaware of peripheral 

opportunities for professional growth. This paper 

seeks to capitalize on one of these peripheral 

knowledge areas, hypothesizing that by using 

lessons learned from Google’s Project Oxygen we 

can identify leadership behaviors that will result 

in positive cost team outcomes. If there is 

consensus from our community on the behaviors 

of good leadership, it would establish the 

groundwork for future training on cost leader 

improvement. 

This paper initiates a similar approach to survey, 

reflect, and update training; beginning with the 

question “does cost team leadership matter?” 

Given a lack of literature and training materials on 

leadership skills in the cost community, could the 

behaviors identified in Project Oxygen as being 

related to good managers translate to better cost 

leadership? This paper builds a foundation, 

expands upon, and provides context to the ten 

attributes that characterize great managers at 

Google. It shows the relevancy of Google’s 

research to the cost estimating community and, in 

replicating their study, highlights the important 

attributes of cost leaders. It also explores the 

differences between the opinions of leaders and 

non-leaders and how the findings from our cost 

community compares to the Project Oxygen 

management ranking. The results of these 

findings will provide examples of how the top 

perceived attributes can be put into action within 

our work. The identified attributes should also 

fuel further exploration into the relationship 

between leadership skills and team efficacy, 

ideally creating new training for those growing 

into leadership roles.  

 

Background - Google’s Project Oxygen 

A case study was conducted by Professor David A. 

Garvin, Alison Berkley Wagonfeld, Executive 

Director of the HBS California Research Center, 

and Senior Researcher Liz Kind for the Harvard 

Business Review in 2013 highlighting the 

behavior measurement of Google’s management, 

why managers matter and what the best 

managers do1. Known for a culture of consistent 

improvement, Google requested their personnel 

analytics team internally identify opportunities 

for team enhancement; they thought outside the 

box and questioned “Do Managers Matter?” 

Beginning in 2009 with the Google People and 

Innovation Lab (PiLab), they called the effort 

Project Oxygen and hypothesized that a very flat 

organizational hierarchy like Google’s “of 

engineers for engineers” was ideal, and that 

managerial roles had very little impact on 
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performance. To determine if managers matter, 

they wanted data to see who the highest 

performing managers were, who were the lowest 

performing, and whether it impacts the team. 

Figure 1 shows their scatterplot of manager 

performance and the team’s view of the manager. 

In the next step they studied the quantifiable 

differences between the most effective and least 

effective managers. Teams with managers in the 

most effective quadrant consistently had better 

team morale, less turnover, and greater employee 

satisfaction than those with less effective 

managers in the bottom left quadrant. For 

example, retention had a stronger correlation to 

manager quality versus other employee metrics 

like seniority, 

performance, tenure, 

or promotions. To 

the surprise of the 

researchers, the data 

suggested that not 

only did mangers 

matter, but that good 

managers had a 

significant impact on 

job satisfaction, 

employee retention, 

and performance.  

With sufficient data 

to prove the 

correlation between 

manager quality and 

team performance, the researchers asked the next 

logical question – “What do the best managers 

do?”. They sought to understand the qualities 

demonstrated by top versus the lower scoring 

managers. During the summer of 2009, Google 

conducted company-wide double-blind interviews 

with managers to identify the skills that correlate 

to manager efficacy and later compared that 

coded data with the manager performance. After 

several months of data analysis, they came up 

with eight behaviors that were common among 

high-scoring managers throughout the company. 

In 2018, behaviors 9 and 10 were added to make 

ten total actionable behaviors that improve 

manager performance.  

These behaviors are listed in order of frequency 

with which the behavior was mentioned during 

the interview and analysis process. The results of 

the data analysis were shocking to many at 

Google. The company that had been built by 

engineers and typically promoted people based on 

their technical expertise seemed to value “soft 

skills” like being a good coach, creating an 

inclusive team, and caring about the team 

members more than their technical knowledge 

and abilities. Laszlo Bock, senior vice president of 

people operations, commented, "It turns out that 

Figure 2 - re:Work Google Manager Behaviors 

Figure 1 - Manager Quality vs. Performance 
From https://www.youtube.com/watch?v=JattR1uoX7g 

https://www.youtube.com/watch?v=JattR1uoX7g
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[technical skills] that's absolutely the least 

important thing. It's important but pales in 

comparison. Much more important is just making 

that connection and being accessible.”6  

Diving into these behaviors a little deeper, this is 

how Google defines each behavior: 

1. Is a good coach – Agree on development 

priorities and check in with employee regularly 

2. Empowers the team – Does not micromanage 

3. Express interest for team personally – Show 

your team you care 

4. Is productive and results-oriented – Focus on 

priority results and deliverables 

5. Is a good communicator – Set the stage for two

-way dialogue 

6. Support career development - Help your team 

grow skills for their professional development 

7. Has a clear vision – Develop and share your 

vision for the team 

8. Has the technical skills to advise – Have the 

expertise and technical skills to advise team 

9. Collaborates across Google – Create stronger, 

more deliberate connections across teams 

10. Is a strong decision maker - Provide 

guidance and act swiftly 

Google uses the Project Oxygen findings to revise 

their annual feedback surveys, curriculum, tools, 

and programs to improve manager quality but not 

to penalize or demote. “Project Oxygen 

was always meant to be a developmental 

tool, not a performance metric” and we’re 

pleased to see that after coaching them on 

these skills, “the least effective managers 

improve the most over time.”1 I 

 

Methodology 

For the purposes of this effort to replicate 

Google’s study, the method of collecting 

data was an anonymous survey shared 

with ICEAA members and the cost 

estimating community. The primary 

purpose of the survey was to determine if 

the cost community agrees that team leadership 

matters and what behaviors are perceived to be 

the most important; it uses the ten identified 

Google Manager Behaviors and tried to establish 

their ranking in regard to cost team leadership. 

The survey was intentionally designed to be brief 

to maximize participation. It also included an 

open-ended response field to allow respondents 

to include any additional behaviors that should be 

added in the future. The study also sought to 

determine if there were any differences in the 

perceived importance of these behaviors between 

leaders and non-leaders.  

The survey was completed by 163 cost analysts 

with cost estimating experience ranging from one 

to 40+ years. Approximately 80% of respondents 

had more than 5 years of cost estimating 

experience and 46.6% would traditionally be 

considered “senior cost estimator/analysts” with 

over 15 years of cost estimating experience. 

To explore possible differences between leaders 

and non-leaders with regards to behavior ranking, 

a self-reported assessment of their past and 

current roles as cost estimating team leadership is 

provided in the table below. An overwhelming 

majority - 83.4% - of respondents have at one 

time in their career served as the leader of a cost 

team with one of more analysts reporting to them,  

 

Figure 3 - Experience Histogram 
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and currently 54.6% are considered leadership/

management.  

With regards to the importance of leadership in 

cost estimating, 100% of respondents responded 

“True” - a cost team lead's effectiveness has an 

impact on the cost products generated by the 

team. Given this unanimous response, defining 

which behaviors leadership should exhibit was 

the next step.  

The survey then asked “The following are 

qualities that you may value in a cost team lead. 

Using a Likert scale of (1-5), rate these qualities 

from important (1) to not important (5)”. The 

respondents were then presented with attributes 

of the ten behaviors but did not specifically 

reference the behaviors themselves. This is 

similar to how Google surveys their own 

employees and helps by defining a specific 

attribute to try to reduce vagueness or different 

understanding the definition of the behaviors. 

Based on their response regarding their 

leadership role, respondents were presented with 

one of two versions of the survey: one version was 

 Yes No   Yes % No% 

Have you ever served as the leader of a cost team, as in, leading the 
effort for a cost product with one or more analysts reporting to you? 

136 27   83.4% 16.6% 

Within your current company/organization are you considered 
leadership or management? 

89 74   54.6% 45.4% 

My team lead assigns stretch opportunities to 

help me develop in my career. 

My team lead communicates clear goals for the 

team. 

My team lead gives actionable feedback on a 

regular basis. 

My team lead provides the autonomy needed to 

do individual jobs (i.e., does not get involved in 

details that should be handled at other levels). 

My team lead consistently shows consideration 

for me as a person. 

My team lead keeps the team focused on 

priorities, even when it’s difficult (e.g., declining 

or deprioritizing other projects). 

My team lead has the technical expertise needed 

to review my work. 

The actions of my team lead show they value 

different perspectives brought to the team, even if 

it is different from their own. 

My team lead makes tough decisions effectively 

(e.g., decisions involving multiple teams, 

competing priorities). 

My team lead effectively collaborates across 

boundaries (e.g., team, organizational). 

Leadership assigns stretch opportunities to help 

team develop in their careers. 

Leadership communicates clear goals for the 

team. 

Leadership gives actionable feedback on a 

regular basis. 

Leadership provides the autonomy needed to do 

individual jobs (i.e., does not get involved in 

details that should be handled at other levels). 

Leadership consistently shows consideration for 

team as people. 

Leadership keeps the team focused on priorities, 

even when its difficult (e.g., declining or 

deprioritizing other projects). 

Leadership has the technical expertise to review 

the team’s work. 

The actions of leadership show they value 

different perspectives brought to the team, even if 

it is different from their own. 

Leadership makes tough decisions effectively 

(e.g., decisions involving multiple teams, 

competing priorities). 

Leadership effectively collaborates across 

boundaries (e.g., team, organizational). 

Q1 

 

Q2 

 

Q3 

 

Q4 

 

 

Q5 

 

Q6 

 

 

Q7 

 

Q8 

 

 

Q9 

 

 

Q10 

Leaders Non-Leaders 
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presented to those who responded that they are 

currently in a leadership role, while the other was 

presented to non-leaders. 

The survey then presented the ten behaviors and 

had the respondents pick the top five that seemed 

most important to them, finally narrowing those 

down to the number one most important 

behavior. They were then presented with the five 

unselected behaviors and asked them to pick the 

least important behavior. The final question was a 

free response to allow respondents provide any 

skills not mentioned that are important qualities 

of cost team leaders. 

Results 

Initial analysis compared the survey results of 

leaders and non-leaders in the cost community to 

the Project Oxygen ranking. By calculating the 

average Likert scale response for each attribute, 

an ordinal ranking of most to least important was 

established for the leader and non-leader groups. 

Figure 4 shows not only the discrepancies 

between the cost community’s responses and the 

original Google study but the differences in 

reactions to the attributes between leaders and 

non-leaders within the cost community.  

While both cost groups value the importance of 

clear communication of goals, opinions of leaders 

and non-leaders differ in several notable 

actionable attributes, such as non-leaders 

assigning a much higher importance to leadership 

having the technical expertise to review the team’s 

work and giving actionalbe feedback on a regular 

basis more than leaders do. Meanwhile, self-

identified leaders seem to give higher significance 

to leadership consistently shows consideration for 

Figure 4 - Ranking of Leadership Attributes 

ICEAA Non- Leader Google ICEAA Leader 
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team as people and the actions of leadership show 

they value different perspectives brought to the 

team much more than the non-leaders do. 

Analyzing the Likert scale responses to the 

attributes using a divergent bar chart (Figure 5), it 

is apparent the only skill that leaders believed 

was less than neutral was Leadership has the 

technical expertise to review the team’s work. 

Leaders otherwise seemed more likely to rank 

skills as a important (1) while non-leaders were 

much more likely to give neutral or not important 

(5) responses. 

To address what respondents indicated was the 

most important attribute, communicating clear 

goals, the guidance can come from what Google 

provides to train their own managers. In their 

own rework training site, “Google's high-scoring 

managers are clear, concise, and honest in their 

verbal and written communications. But being a 

good communicator also means being an effective 

listener. Google encourages managers to be 

available for their teams and to encourage open 

dialogue and honest feedback.”7 The results 

suggest the cost estimating community would 

benefit from creating and implementing training 

that teaches rising leaders best practices in 

written and verbal communication as well as 

active and effective listening skills. This training 

could likely also address how to best give 

actionable feedback.  

Figure 6 shows how many respondents chose 

behaviors as one of the top five responses that 

they deemed most important when presented 

with all ten Google Manager Behaviors. The data 

has been normalized to account for the 

percentage of each type of survey respondent as 

more leaders responded to this cost community 

survey than non-leaders.  

The three behaviors chosen most frequently were: 

is a good communicator, empowers the team, and 

uses the technical skills to advise. Self-identified 

leaders overwhelmingly chose being a good 

communicator within their top five most 

important behaviors. Non-leaders valued the 

ability of leadership to use their technical skills to 

Figure 5 -Leadership Attribute Divergent Bar Chart 
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advise and their ability to empower the team 

slightly more than the self-identified leaders, but 

otherwise the responses appear very similar 

between the two populations.  

After selecting their top five important behaviors, 

they then are asked to narrow it down to the most 

important and least important skill. From this 

data, another interesting point to note is the 

different perceptions within the leader and non-

leader groups. This difference is best highlighted 

by looking at the skills that have similar amounts 

of respondents that say it is the most important as 

those that say it is the least important. For 

examples with leaders, while ten chose using their 

technical skills to advise as the most important 

skill, nine believed it was the least important. Five 

leaders believe that a strong decision maker was 

the most important while five leaders felt it was 

the least important.  

 

Non-leaders have noticeable discrepancies both in 

the importance of leadership being a good coach 

and being results-oriented. These discrepancies 

may be caused by different interpretations of the 

meaning of the behaviors and the bias of the 

respondent. 

Overwhelmingly, the cost community believes 

that expressing interest in the team personally is 

the least important skill, followed by having a 

vision and collaborating across disciplines. For the 

next iteration of the survey expressing interest in 

the team personally should not be listed as a 

specific behavior on its own but included as an 

attribute into other behaviors like being a good 

coach.  

Given the nature of this exploratory survey, it was 

also imperative to ask if respondents believed 

additional important behaviors that should be 

included the next time. These responses are 

shown in full in Appendix 1 and depicted visually 

Figure 6 - Top 5 skills 
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in Figure 8. Of the 163 respondents, 51 mentioned 

additional behaviors, skills, or attributes that 

should be considered in the next iteration of this 

survey; proving there is a lot of room for “soft 

skills” training at ICEAA’s Workshops and within 

ICEAA’s curricula. One notable comment shows 

the importance of this paper and hopefully value 

of potential ICEAA training courses: “Skills outside 

of Cost. Cost team leaders who are too narrow 

into the field are stifling to innovation. Must be 

progressive and willing to deviate from the 

"guides" and "training" which are beyond dated 

(or even wrong from the start).”  

 

Limitations and Future Work 

This paper scratched the surface of an element of 

cost estimating that previously received very little 

attention from the community. However, given 

that all 163 respondents agreed that a cost team 

lead's effectiveness has an impact on the cost 

products generated by the team, it seems that 

refining the work from this initial study and 

implementing the findings would be worth 

further endeavors. Ideally, future studies would 

include correlating cost product/team metrics to 

a team’s rating of their cost team leader on 

aspects such as delivery time, accuracy, team 

productivity, product credibility, or team 

satisfaction. This addition would provide data 

similar to that produced by the Project Oxygen 

study, to prove that the team leader quantifiably 

affects the team and determine the behaviors that 

have the most positive impact. Realistically, all 

cost organizations and agencies could do their 

own internal experimentation using the Project 

Oxygen method to gain their own unique insights 

into their leadership. In the meantime, using the 

feedback from this exploratory survey, training 

could be developed that will result in more 

effective leadership and therefore improve the 

products delivered and team satisfaction. 

Though ICEAA has over 1,000 cost estimators 

worldwide, this survey was delivered in English 

and filled out primarily by North American cost 

analysts. ICEAA’s wide variety of international 

support could expand the reach of a future survey. 

Also, with over 1,000 members of ICEAA the 

survey participation rate was only between 10-

15% of known cost estimators. Although this was 

a good response rate for the initial work, 

hopefully future work will have a greater 

participation.  

Though the survey asked for years of cost 

experience, that does not necessarily reflect the 

respondent’s age, especially in the lower numbers. 

Figure 7 - Least and Most Important Skills 

Most important Least important 
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If a future survey were also to ask the 

respondent’s age, it could be determined whether 

younger cost estimators have the same 

expectations of their leadership as the more 

senior estimators. Similarly, “A survey by Virtuali 

found that 83% of millennials want fewer layers 

of management. This means they want managers 

who are easily approachable and willing to take 

their opinions into account.”4 Seeing if one’s 

expectations of cost leadership is different based 

on age would be insightful when trying to lead 

and motivate a team with a diverse age set.  

Conclusion 

In a survey of cost analysts, the community 

unanimously agreed that leadership is important 

to the end cost product. Even with consensus on 

the impact of the cost lead, the community at large 

does not provide guidance on or appear to value 

the behaviors that make an effective leader. Using 

the ten behaviors identified by Google’s Project 

Oxygen, our study, even accounting for its 

discussed limitations, found the same results. 

“Soft skills” like being a good communicator, 

though proven to have a positive impact on team 

and leadership performance, have been largely 

overlooked by our profession. This paper 

established a foundation to determine the most 

important qualities of effective cost team 

leadership. While additional and more refined 

studies will be valuable, the responsibility is ours 

to now emphasize the importance of these skills 

and develop training/best practices for effective 

communication skills in leadership, a proven 

metric for cost team success.  

  Non-Leaders Leaders 

  

Most 
important 

Least 
Important 

Most 
important 

Least 
Important 

Uses their technical skills to advise 8 3 10 9 

Is a good coach 5 6 7 5 

Is a strong decision maker 4 2 5 5 

Empowers the team 16 1 16 0 

Helps grow team members professionally 4 1 6 2 

Expresses interest in team personally 0 21 2 25 

Is results-oriented 4 7 1 4 

Is a good communicator 18 1 19 1 

Has a vision 2 10 9 18 

Collaborates across disciplines 2 10 8 13 

Figure 8 - Leadership Skills Word Cloud 
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1. Telling the truth and doing the right thing whether 
it benefits you or not 

2. Ability to handle conflict within the team and 
ability to guide client 

3. Ability to include diverse perspectives 

4. Ability to influence and participate in hiring of 
team 

5. Ability to manage to scope and limit scope creep 

6. Able to clearly define the requirements of the 
project 

7. Act with personal integrity 

8. An understanding of mathematics 

9. Approachability. Humility. Brand new analysts 
have really good ideas, it's important that they 
have a voice. Also, important to demonstrate that 
it’s OK to not always know the answer, and work 
together to find one. Being a "strong decider" often 
means, stubborn and not receptive, so I value the 
opposite and try to welcome input for the 
improvement of the team and our processes. 

10. At our Cost Department, a CTL is the hardest job. 
Because we are matrixed to our program offices 
that have two bosses and a team handed to them. 
The Captain is demanding time, supervisors has 
requests and trainees need daily attention. 
Balancing every need is important and on the job 
training 

11. Be supportive to your team members, make sure 
they know you have their back 

12. Calmness under pressure 

13. Candor and trust 

14. a skill related to interfacing with the customer or 
translating things into requirements. I think that's 
a very important skill 

15. Collaboration within the cost team  

16. Combination of business and technical savvy 

17. Creative problem solving, innovative, exceptional 
time management, ability to define scope and ask 
the hard questions of program/technical 
leadership, and a network of SMEs in all 
disciplines to provide reach-back support as 
necessary 

18. Empathy 

19. Empathy 

20. Encourages open minded techniques that allow 
team members to think outside the box 

21. Flexibility Resilience Political Savvy Influencing/
Negotiation Integrity/Character 

22. Flexibility to adapt to changing circumstances. It is 
inevitable that the assumptions at the beginning of 
the estimate are changed and a leader needs to not 
get frustrated and keep the team from being 
frustrated or distracted 

23. Has a backbone to stand up to pressure to change 
an estimate 

24. Has a clear plan for achieving the team's goals 

25. Having experience as a member of a cost team 
under multiple Cost Team Leads 

26. Ownership. A team lead owns the team and the 
outcomes, both good and bad, of the team 

27. Innovation, creative problem solving, critical 
thinking, curiosity 

28. Integrity and Responsibility 

29. Know your customer 

30. Knows and balances the strengths and weaknesses 
of the team members 

31. Leaders should treat the team with respect 

32. Manages time well 

33. Mentoring 

34. Organized, approachable 

35. Planning. The team lead needs to be able to 
backwards plan and work the plan in order to 
complete the task at quality an on time. 

36. Positive attitude 

37. project management  

38. Providing top-cover and standing up for their 
team 

39. Remain neutral  

40. Sets individual goals for each team member. 

41. Skills outside of Cost. Cost team leaders who are 
too narrow into the field are stifling to innovation. 
Must be progressive and willing to deviate from 
the "guides" and "training" which are beyond 
dated (or even wrong from the start) 

Appendix 1 – Are there any skills not mentioned above that you think are  

important qualities of cost team leaders?  
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42. Strong and productive relationship with the 
customer  

43. Support team members when they fail 

44. Teaches 

45. team leaders need to know our business 

46. Technical expertise is important, but the 
leadership ability through emotional 
intelligence is the most important.  

47. The ability to effectively multi-task 

48. The team leader needs to advocate for the cost 
team in organizations that do not place high 

importance or regard on the cost team. I would 
be happy to discuss in more detail what I have 
experienced in this regard 

49. Transparency 

50. Trusting the team to finish the activities and 
should be able to delegate 

51. Well, the ability to communicate is mentioned, 
but should also include working with the 
customer to truly understand their goals. This 
could be part of the "vision" but feels a bit 
different  
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Abstract: The use of Joint Confidence Level (JCL) analysis at NASA has proven to be a successful policy. 

Bottom-up resource-loaded schedules are the most common method for jointly analyzing cost and schedule 

risk. However, high-level parametrics and machine learning for JCL have been used successfully by one of the 

authors. This approach has some advantages over the more detailed method. In this paper, we discuss the 

use of parametrics and machine learning methods, especially as they apply to JCL analysis. The parametric 

and machine learning approach involves the development of mathematical models for cost and schedule risk. 

Parametric methods for cost typically use linear and nonlinear regression analysis. These methods applied to 

schedule often do not provide the high R-squared values seen in cost models. We discuss the application of 

machine learning models, such as regression trees, to develop higher-fidelity schedule models. We then 

introduce a bivariate model to combine the results of the cost and schedule risk analyses, along with 

correlation, to create a JCL using models for cost and schedule as inputs. We provide a previous case study of 

the successful use of this approach for a completed spacecraft mission and apply the approach to a large data 

set of cost, schedule, and technical information for software projects.  

Background 

For over fifty years, the cost analysis community 

has applied uncertainty analysis methods using 

univariate probability theory in risk analysis to 

generate separate distributions of a program’s 

estimated cost and schedule (Garvey, 2000). In the 

schedule analysis and broader project 

management professional communities, the use of 

the schedule risk analysis has also been around 

for even longer and dates back to the Project 

Evaluation and Review Technique (Hulett, 2009). 

The interdependency between cost and schedule 

has long been recognized, but NASA is one of the 

few government agencies that has established 

official policy to conduct integrated cost and 

schedule risk analysis, which they call “joint 

confidence level analysis.” We will use the term 

joint confidence level and its common 

abbreviation JCL throughout this paper.  

 

The use of joint cost and schedule risk analysis 

has largely been limited to resource-loaded 

schedule analyses. While providing a great deal of 

insight into a project, resource-loaded schedules 

are labor-intensive. They also suffer from a 

drawback common to most bottom-up methods, 

which is the underestimation of the true amount 

of cost and schedule risk for a program. 

Parametric models can be developed much 

quicker and can provide a more comprehensive 

picture of program risk. Despite the development 

of such methods more than 20 years ago (Garvey, 

2000), little has been adopted from multivariate 

theory to combine or develop conditional cost and 

schedule probability distributions to present to 

decision-makers.  

 

Introduction 

This paper reintroduces the top-down parametric 

approach to conducting JCL analysis. This 

technique is less cumbersome yet just as accurate 
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in the quantification of top-level cost and schedule 

risk as the familiar bottom-up resource loaded JCL 

method. We enhance the practice of the top-down 

parametric method with the consideration of 

machine learning techniques in addition to the 

use of traditional parametric regression analysis. 

We introduce the application of optimization 

methods to develop Cost Estimating Relationships 

(CER). We present regression trees as a means to 

develop better Schedule Estimating Relationships 

(SER), since it is more difficult to use traditional 

regression methods to derive meaningful 

trendlines using historical schedule data. Using 

the results of the individual cost and schedule 

analysis, uncertainty analysis is applied 

separately to compute the means and variances, 

which are used to specify the parameters of a 

bivariate probability model for a given program. 

Dr. Christian Smart has developed a standalone 

MS Excel spreadsheet to compute a bivariate 

probability model. Using the means and variances 

from the Cost Risk Analysis (CRA) and 

Schedule Risk Analysis (SRA) along 

with the program’s target budget and 

schedule values, the calculator will 

produce the JCL and associated iso-

curves at various joint confidence 

levels.  

In this paper, the following topics are 

addressed: 

• Benefits of JCL within Project 
Management 

• JCL Methods: Bottoms-Up and 
Top-Down Parametric 

• Parametric Machine Learning 
Techniques: Optimization and Regression 
Trees 

• Top-Down Parametric Method Case Study: 
NASA MAVEN spacecraft program 

In summary, this paper highlights the benefits of 

JCL analysis and offers a quicker top-down 

parametric JCL method to be used by the cost 

community. The JCL provides a more holistic view 

of uncertainty so that decision-makers can make 

more informed decisions. We provide a 

comparison of the top-down and more well-

known bottom-up JCL approaches, provide an in-

depth process for the top-down JCL method using 

a software program example, and demonstrate a 

real-life successful NASA spacecraft program that 

used the top-down parametric JCL approach.  

 

Joint Confidence Level Benefits to Risk 

Management 

Projects of all types frequently experience cost 

growth and schedule delays. Projects that do not 

suffer from one or both maladies are the rare 

exception, rather than rule. In addition to being 

common, these phenomena are often extreme, 

especially for cost. Indeed, the cost for 

approximately 1 in 6 defense and NASA missions 

doubles or more from the initial plan to the final 

actual. Defense and NASA projects are comparable 

to other industries, as shown in Table 1. These 

issues are long-standing and have shown no signs 

of improving over the last several decades. 

The extent and the frequency of cost increases 

and schedule slips is prima facie evidence that 

these programs have a significant amount of 

resource risk and that this risk has not been 

managed well. The resource risks for these 

projects have also not been analyzed with 

accuracy, as exhibited by the track record for cost 

and schedule risk analysis. For cost analysis, see 

Table 2 for a comparison of the 90% confidence 

levels (90th percentile of the CDF or S-curve) with 

the actual costs. 

Table 1. Comparison of Cost Growth and Schedule Delays Across  
Several Industries. (Source: Solving for Project Risk Management,  

Christian Smart, McGraw-Hill, 2020).  
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The projects in Table 2 are from a variety of 

applications. JCLs were conducted for at least two 

of the missions. For 5 of the 10 missions, the 

actual cost was at least one and a half times the 

90% confidence level, and for 2 it was double or 

more. Two of the missions listed in the table were 

cancelled. If they had not been cancelled, the cost 

growth would have been higher. The term “90% 

confidence level” for these analyses is grossly 

erroneous. Even so, 90% confidence levels should 

have been high enough to capture these 

variations. However, the actual cost was greater 

than the 90% confidence level for 8 of the 10 

projects. This dismal result is even worse than it 

appears. A more in depth discussion for projects 

one and five is provided below. 

• Project 1. One of the authors conducted a 
cost and schedule risk analyses using the 
top-down parametric method for project 1, 
which was a relatively rare mission that did 
not experience cost growth. The estimate of 
the 50% confidence level was within 1% of 
the actual cost. The project also completed 
on time, in line with the 50% confidence 
level for schedule. This kind of outcome is 
the exception rather than the rule. As can 
be seen from the table, all the other 
missions experienced significant cost 
growth. This provides evidence that the 
parametric JCL approach may be better at 
capturing the full extent of resource risk.  

• Project 5. This project experienced such 
significant growth from one phase to the 
next that it exceeded the 90% confidence 
level well before completion.  

The National Aeronautics and Space 

Administration (NASA) is one of the few 

government agencies that requires a JCL analysis 

be conducted for programs and projects. A JCL 

analysis is a process that combines a program or 

project’s cost, schedule, and risk into an 

integrated picture. It represents the probability 

that a program cost will be equal to or less than 

the targeted cost, and that the schedule will be 

equal to or less than the targeted finish date. 

According to the most recent NASA JCL policy, by 

providing a confidence level that integrates cost 

and schedule, the JCL helps inform management 

of the likelihood of a program’s programmatic 

success. Implementing JCL requirements for 

NASA programs has proven to be an effective 

forcing function to help program managers 

integrate stove-piped work products such as an 

Integrated Master Schedule (IMS), resource 

management, and risk management (NASA JCL 

Requirements Update Memo, 2019). 

A program manager’s decision space 

encompasses cost, schedule, and performance of 

a program. Risk analysis is needed when the 

expectations in any of these domains limit what is 

feasible. Therefore, managing risk is to manage 

the conflicts that exists within each domain and 

interdependencies across all three (Garvey, 

1993). Generating a joint probability distribution 

supports the estimation of a program’s cost and 

schedule, which simultaneously have a specified 

probability of not being exceeded. Because it is a 

more stringent requirement, the JCL is almost 

always higher than either the cost or schedule 

confidence level when developed separately. The 

JCL provides program managers with an 

assessment of the likelihood of achieving a 

budget for a given schedule, which aids the 

creation and management of credible project 

plans. Depending on the agency’s JCL goal, the 

amount of cost reserves and additional schedule 

Table 2. Cost Growth and Ratio of Actual Cost to 
90% Confidence Level for 10 Historical Projects  
(Source: Solving for Project Risk Management,  

Christian Smart, McGraw-Hill, 2020).  
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can be determined and provided to decision-

makers. Project management can then more 

effectively manage scope, cost reserves and 

schedule reserves of the project to mitigate the 

risk. 

 

Joint Confidence Level Methods  

There are two proven processes to calculate a JCL: 

the bottom-up resource-loaded schedule method 

and the top-down parametric method. Although 

the intention of this paper is to encourage the use 

of the top-down parametric as a more practical 

approach in the cost estimating field, we will 

briefly discuss the bottom-up method for the 

purpose of comparing it to the top-down method.  

 

Bottom-Up Method 

The bottom-up JCL method starts with a robust 

cost estimate and is mapped to a resource-loaded 

Integrated Master Schedule (IMS). A risk list is 

incorporated in the joint cost and schedule model 

at the lowest WBS element level and schedule and 

cost uncertainty is assigned. Although the bottom-

up method is popular and can successfully 

calculate a JCL, it has its disadvantages.  

Shortcomings of the bottom-up JCL approach 

include being resource intensive and time-

consuming. As with any bottom-up estimating 

approach, it is easier to inadvertently miss the 

accounting for uncertainty of lower-level risk 

elements and thus, underestimate risk of the 

overall program. It is also difficult to justify 

uncertainty probability distributions on lower-

level elements since data is scarcer and is 

typically not available at a low level. The bottom-

up method also ignores unknown-unknowns, 

which are largely covered in the historical 

parametric data used in the top-down approach. 

While unknown-unknowns cannot be predicted in 

advanced, their existence in the aggregate can be 

used in the quantification of cost and schedule 

risk with just as much confidence as actuaries 

place in the quantification of insurance risk 

(Augustine 1983). While they are impossible to 

predict in advance, they dominate the bulk of cost 

and schedule risk, so their inclusion is imperative 

in conducting realistic risk assessments. The 

inclusion of unknown-unknowns is largely 

captured by the standard error and prediction 

intervals derived from the parametric cost and 

schedule equations. 

The 2014 Joint Agency Cost Schedule Risk and 

Uncertainty Handbook (JA CSRUH) highlights the 

Fully Integrated Cost and Schedule Method 

(FICSM) as a bottom-up JCL approach. To provide 

a general understanding of the time-intensive 

bottom-up process, the FICSM approach is 

illustrated in Figure 1 below. This method can be 

applied using Joint Analysis of Cost and Schedule 

(JACS) in the ACEIT software suite and MS Project. 

 

Top-Down Method 

The top-down parametric JCL approach is less 

resource intensive than the bottom-up approach. 

Collect 
data 

Develop 
analysis  
schedule 

Map risk 
register to 
schedule 

Map costs 
to schedule 

Divide 
costs into 
TI and TD 

Assign 
uncertainty 

Run and 
assess 
model 

Figure 1. FICSM Process (Source: Joint Agency Cost Schedule Risk and Uncertainty Handbook 2014).  
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The reference to understand and explain the top-

down parametric JCL approach was adopted from 

“A Family of Joint Probability Models for Cost and 

Schedule Uncertainties” (Garvey, 1993). To begin 

the discussion, an illustration of the top-down 

parametric process is illustrated in Figure 2.  

A description for each of the six steps will be 

provided, while a more in-depth approach will be 

discussed for Step 2, where cost and schedule 

analyses are developed independently. During 

this step, if traditional parametric regression 

approaches do not result in any viable 

statistically significant estimating relationships, 

machine learning techniques can be used to 

predict estimating relationships. Throughout the 

steps, we will use a hypothetical software 

program example to demonstrate the top-down 

parametric JCL process. 

Step 1: Cost and Schedule Data Collection. To 

begin, the analyst should collect a schedule and 

cost dataset separately that meets the criteria for 

performing parametric analysis to test the 

statistical significance of a cost and schedule 

estimating relationship. Data collection for the 

dataset would include historical analogous 

programs.  

 

In the software program example, the cost 

dataset included hours as the dependent variable 

and peak staff and Equivalent Source Lines of 

Code (ESLOC) as the independent variables. The 

schedule dataset included duration in months as 

the dependent variable and potential schedule 

drivers such as new code, peak staff, and total 

development hours.  

If data are not available, there are a variety of off-

the-shelf parametric estimating tools that can be 

used including SEER-H, SEER-SEM, and SEER-

Space. 

Step 2: Cost and Schedule Regression Analysis. 

Perform regression analysis on the cost and 

schedule datasets separately using linear and 

nonlinear models. Test the statistical significance 

of regression equations and determine if any 

viable regression equations result. Different 

statistical software tools can be used to perform 

regression analysis during this step, including MS 

Excel, CO$TAT, or JMP. If traditional regression 

analysis does not result in any CERs or SERs, 

machine learning techniques should be 

considered. 

Parametric techniques are within the scope of 

machine learning and can be applied to 

determine relationships between cost and 

Figure 2. Top-Down Parametric JCL Process.  



Parametric Joint Confidence Level Analysis: A Practical Cost and Schedule Risk Management Approach Sara Jardine, et al 

35 Journal of Cost Analysis and Parametrics: Volume 10, Issue 1. October 2021 

schedule and their drivers. These machine 

learning techniques include optimization to 

produce the “best” coefficients for a regression 

equation and regression trees. We introduce the 

discussion of regression trees in parametric 

estimating of schedules due to the fact that SERs 

are more difficult to estimate using traditional 

regression methods. The range of schedules 

typically has a smaller spread than cost, making 

trendlines less statistically significant. However, 

program technical data often includes a 

considerable amount of categorical data, which 

lends itself well to the use of regression trees. In a 

later section of this paper, we will provide a more 

in-depth discussion on the use optimization and 

regression trees for Step 2 of the top-down 

parametric approach.  

In the software program example, optimization 

was applied using MS Excel Solver to develop a 

CER where peak staff and ESLOC were the 

independent variables driving hours. Since the 

example software program dataset was large (e.g., 

more than 50 data points), Maximum Likelihood 

Estimation Regression for Log Normal Error 

(MRLN or “Merlin”) regression method was used 

(Smart 2017). MRLN will be further discussed in 

the next section to demonstrate how to apply 

optimization to determine the optimal 

coefficients, for the regression 

equation. With a Pearson’s R2 equal to 74%, the 

resulting CER had the following nonlinear power 

equation:  

In the software program example, the schedule 

dataset did not result in any statistically 

significant SERs. With a significant amount of 

categorical data such as development process 

type (e.g., waterfall, incremental, agile, 

evolutionary, etc.), operating environment, and 

application domain, a regression tree with a 

Pearson’s R2 equal to 50% was developed using 

the R statistical programming platform.  

Step 3: Cost and Schedule Analysis. This step 

represents the parametric results of the cost and 

schedule analyses developed in Step 2. 

Step 4: Cost and Schedule Risk Analysis. 

Conduct a cost and schedule risk analysis on the 

cost and schedule estimate results, respectively. 

To achieve this step, a brief discussion of how to 

apply uncertainty analysis to regression 

equations is necessary. Regression equations have 

two forms of uncertainty that need to be 

accounted for: input and estimating.  

Input uncertainty represents variability in the 

independent variables in a CER/SER regression 

equation. One approach to computing input 

uncertainty, X, is to assume a triangular 

distribution on input variables and run low (L), 

most likely (ML), and high (H) values through the 

CER/SER to obtain L, ML, and H estimates. 

Calculate the mean, , and standard deviation, 

, of the triangular distribution. The 

calculations of the mean and standard deviation 

are: 

Estimating uncertainty is inherent to regression 

equations because, regardless of the parametric 

method used, even if the independent variables 

are known precisely, the CER/SER equation will 

return a result that is not certain. The error of the 

regression equation scales with the CER/SER 

result, making multiplicative error terms the 

preferred approach to modeling CER/SER 

estimating uncertainty. Regression estimating 

uncertainty represents uncertainty about the 

estimate’s residual ε, (e.g., Y = aXbε). The farther 

the input variable is from the center of mass data 

used to derive the CER/SER, the greater the 

uncertainty of the CER/SER. The prediction 

interval or standard error provided by the 
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regression analysis can be used to determine the 

CER/SER uncertainty bounds. The Standard Error 

of the Estimate (SEE) converts to a prediction 

interval to account for the distance of the 

estimate from the center of the CER/SER dataset. 

Figure 3 shows a CER example of cost as a 

function of weight where 

uncertainty increases (standard 

deviation gets larger) as the point 

estimate moves towards the data 

boundaries (JA CSRUH, 2014).  

One approach to computing 

estimating uncertainty, Y, is to 

treat uncertainty as a lognormal 

distribution and calculate the 

mean and standard deviation. 

Compute the mean and standard 

deviation in log space and then 

convert the values to unit space. 

The formulas to convert the mean, 

, and standard deviation, , 

from log to unit space are shown 

below:  

To compute the total uncertainty of the 

regression equation, input and estimating 

uncertainty can be combined using propagation 

of errors. Assuming input and estimating 

uncertainty are independent and the residuals 

are multiplicative, the total uncertainty is 

obtained by multiplying the means and standard 

deviations of the input and estimating 

uncertainty calculated in (1) and (2). The 

formulas to combine input, X, and estimating, Y, 

are shown below: 

Figure 4 shows a graphical representation of 

combining input and estimating uncertainty of a 

CER/SER calculated in (3) referenced from the 

2014 JA CSRUH. 

If a regression tree was the method employed in 

Step 2 to derive a parametric relationship, as with 

the SER analysis done for the software program 

example, uncertainty analysis should be 

conducted on the regression tree. Input 

Figure 3. CER/SER Uncertainty Bounds  
(Source: Joint Agency Cost Schedule Risk and 

Uncertainty Handbook, 2014).  

Figure 4. Combining Input and Estimating Uncertainty of a CER/SER. 
(Source: Joint Agency Cost Schedule Risk and Uncertainty Handbook, 2014).  
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uncertainty is modeled the same way as a 

regression equation using a triangular 

distribution on the input variables. To derive 

regression tree input and estimating uncertainty, 

assume they are independent. Depending on the 

data, the errors may be additive or multiplicative. 

In examining the data, we found the residuals best 

fit an additive model with a Gaussian/normal 

distribution. The input variables such as peak 

staff and software development hours are varied 

and simulated. For each trial, the simulation also 

sampled from the Gaussian for the regression tree 

residuals. For each of the 1,000 trials, the results 

from the varied input variables, and the 

estimation uncertainty from the residuals were 

added to yield total uncertainty. 

Step 5: Cost and Schedule Confidence Levels. 

This step represents the results of the cost and 

schedule risk analyses (CRA/SRA) developed in 

Step 4. The results would reflect separate 

cumulative probability distributions or S-Curve 

results from the cost and schedule risk analyses. 

Step: 6: Joint Confidence Level. The final step is 

to combine the CRA and SRA developed in Step 5 

into a joint probability distribution to calculate 

the JCL. The reasons being are because they 

directly incorporate correlation between cost and 

schedule for programs and these distributions 

provide at least some probability of a cost or 

schedule overrun (lognormal distribution having 

a larger skew to the right while the normal 

distribution is not skewed). In accordance with 

Paul Garvey’s method to combine cost and 

schedule as a joint probability model, we provide 

the following distributions to model the behavior 

of program cost and schedule: bivariate normal, 

bivariate lognormal, and bivariate normal-

lognormal distributions. Figure 5 provides 

graphical depictions of a normal distribution. 

 

 

 

In the authors’ experience and results from the 

Air Force, Cost Risk Uncertainty Analysis Metrics 

Manual (CRUAMM), cost uncertainty is rarely 

normally distributed. When it comes to cost 

estimating the so-called normal is anything but 

normal! Cost estimating uncertainty is typically 

best modeled with a lognormal distribution. 

Schedule distribution uncertainty is typically 

lognormal, but in some instances, as in our 

example, the normal distribution is a good fit. The 

lognormal distribution is a skewed distribution. 

The lower bound is never less than zero meaning 

the cost and schedule cannot become negative 

and has an upper bound of infinity. The 

probability is skewed right providing at least 

some probability of a large cost or schedule 

overrun. These characteristics make the 

lognormal appealing for cost modeling and a best 

choice in the absence of better information (JA 

CSRUH, 2014). Figure 6 provides graphical 

depictions of lognormal distributions. 

Figure 5. Gaussian/Normal Distribution.  

Figure 6. Lognormal Distribution.  
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The bivariate normal-lognormal has two different 

marginal distributions. One marginal is normal, 

and the other is lognormal. Situations may arise 

when normal and lognormal distributions 

characterize a program’s cost and schedule 

distributions.  

To calculate a joint confidence, assume lognormal 

or normal risk distributions on cost and schedule 

using the mean and standard deviation as the 

parameters derived from the cost and schedule 

analyses in Step 5. Assume a positive linear 

correlation value between cost and schedule (e.g., 

correlation value equal to 0.6 or 

0.7). Figure 7 is a screenshot of the 

MS Excel JCL calculator developed 

by one of the authors, Dr. Christian 

Smart, to take values derived from 

the top-down parametric approach 

and provide a JCL. The calculator 

uses a macro that numerically 

approximates the bivariate 

probability distribution, aka JCL, 

values. 

In the notional example provided in 

Figure 7, the target budget of the 

given program is $600M and target 

schedule is 40 months. Using the 

results of the CRA and SRA, the mean and 

standard deviation is $530M and $159M 

respectively for cost, and 45 months and 6.75 

months respectively for schedule. Cost is 

assumed to be lognormally distributed while 

schedule normally distributed. The correlation 

value between cost and schedule was selected to 

be 0.6. Based on the author’s experience and data 

analysis, this is a reasonable value. The resulting 

JCL is 21.7%, meaning there is a 21.7% chance 

that the program cost will be equal to or less than 

$600M and that the schedule will be equal to or 

less than 40 months. If schedule was not 

Figure 7. MS Excel JCL Calculator (Top-Down Parametric Method).  

Figure 8. Example JCL Iso-Curves.  
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considered, the cost confidence level was 71.5% 

and if cost was not considered, the schedule 

confidence level was 22.9%.  

Figure 8 shows the resulting JCL iso-curves with 

cost on the x-axis and schedule on the y-axis. As 

“iso” is a prefix meaning “equal”, each cost and 

schedule joint iso-curve in the graph represents a 

specific JCL confidence level percentile. You can 

determine the current JCL level of your project by 

looking at the position of the budget and project 

planned schedule.  

Figure 9 shows another example of a JCL output 

that would be presented to management.  

The example program has a current project plan 

of a $435M budget and a 43-month schedule. 

Looking at the graph, this project plan position is 

at the 24% JCL. If management were interested in 

how much funding and schedule was needed to 

achieve the 50% JCL, you would look at the 50th 

percentile JCL iso-curve and see that an additional 

$90M and 6 months would be required. As there 

are multiple pairs of cost and schedule on each iso

-curve, depending on the relative importance of 

schedule versus cost, an analyst can determine 

the amount of cost reserves and additional 

schedule duration needed to achieve the agency’s 

JCL goal. 

Machine Learning Techniques for Parametric 

Estimating 

Machine learning methods can be a powerful 

mechanism to determine estimating relationships 

in a dataset when conducting the top-down 

parametric JCL. Machine learning is a collection of 

mathematical methods and computer algorithms 

for prediction and classification that represent a 

more modern way of conducting analysis on 

datasets that incorporates the use of computer 

programming with statistical analysis. Modern 

machine learning methods include decision trees, 

deep learning, and text analytics. As mentioned, 

machine learning techniques can be 

applied when developing a cost and 

schedule analysis during the top-down 

parametric JCL approach when 

traditional regression methods do not 

provide meaningful results, such as a 

regression equation with a low R2, for 

example. For the purposes of this 

paper, we will focus on how to apply 

optimization and regression trees to 

develop cost and schedule estimating 

relationships when conducting a top-

down parametric JCL analysis.  

 

Optimization Technique for 

Parametric Estimating 

Regression analysis as performed in Step 2 of the 

top-down JCL method, is a form of optimization. 

Optimization is a collection of mathematical 

principles and methods used for solving 

quantitative problems. The goal is to minimize or 

maximize a function in pursuit of finding the 

“best” solution. As previously mentioned, we will 

discuss the application of maximum likelihood as 

a regression approach to develop unbiased, 

optimal estimates of the mean when the errors 

are lognormally distributed. MRLN was developed 

by one of the authors, Dr. Christian Smart (Smart, 

2017).  

Figure 9. Example JCL Result.  
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Let a1,…, an represent the observed data and x1,

…,xn represent random variables where ai results 

from observing the random variable xi. The 

likelihood function, which represents the 

likelihood of obtaining the sample data, is: 

The vector, , maximizes the likelihood function 

in the likelihood function. This consistent and 

efficient method is advantageous because 

maximizing the likelihood of finding the true 

underlying parameters of this distribution is 

exactly what we hope to accomplish in 

developing a CER. Other advantages of maximum 

likelihood are that it is always available to use, 

and it uses all the available data, where other 

methods such as percentile matching and method 

of moments do not.  

Recall in the software program example, we 

estimated the following CER power equation 

model form:  

The goal for MRLN is to maximize the function: 

Using the MRLN method, MS Excel Solver can be 

used to find an optimal value in a cell. Decision 

variables are used to compute the formulas 

defined in the objective to converge on a solution 

that maximizes values for to form 

the power equation, . When 

using Excel Solver to optimize the coefficients in 

the software program using the MRLN regression 

method, recall that it resulted in the following 

CER with a Pearson’s R2 equal to 74%: 

Regression Tree Technique for Parametric 

Estimating 

Regression trees are an effective way to visualize 

the relationships between features within 

datasets, particularly when there is a large 

amount of categorical data such as historical 

schedule datasets. Regression trees can be used 

in preliminary data exploration to understand the 

most significant variables within a dataset. 

Regression trees can also be used to show the 

relationships within a dataset in Step 2 of the top-

down JCL method when traditional regression 

analysis does not produce any good results. 

Pairwise analysis combined with regression trees 

can help shorten the time running regression 

models in search of significant relationships. Two 

of the authors, Kimberly Roye and Dr. Christian 

Smart, provided an overview of regression trees 

in a 2019 ICEAA presentation (Roye and Smart, 

2019). 

In a regression tree, the data are split into 

homogenous groups, and the graphs present 

splits with the use of branches (called decision 

nodes) and leaves (terminal nodes). The goal of a 

regression tree is to partition data into smaller 

regions where interactions are more manageable. 

They are useful when there is a non-linear and 

complex relationship 

between dependent and 

independent variables 

that cannot otherwise be 

represented by a 

regression equation. Figure 10 illustrates the 

structure of a regression tree.  

The root node represents sample dataset that is 

being analyzed. The method asks its first yes or 

no question and splits the data into two groups 

based on the answer. The decision nodes 

represent the first set of homogenous groups 

discovered within the dataset. On the left, another 

yes or no question is asked, and the group splits 

into two nodes: one terminal and one decision 

node. The criterion for splitting is the choice that 

reduces the sum of squared errors by the biggest 
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amount. This 

process is 

recursively 

applied to each 

of the subsets 

produced until 

the reduction 

in error is 

smaller than a 

pre-specified 

limit, such as 

1x10^-5. When 

a decision node be can split no further, the 

branch ends in a leaf, or terminal node. Each 

terminal node is a subset of the data set, and the 

estimate at each terminal node is the average of 

the data points in that subset.  

In our software program example, since no SERs 

were significant in Step 2 of the top-down 

parametric approach, the schedule dataset was 

used to develop a regression tree using the R 

statistical programming platform. In the software 

program schedule dataset, total software 

development hours proved to be the most 

important factor. With a Pearson’s R2 

approximately equal to 50%, Figure 11 shows an 

abbreviated version of the resulting schedule 

regression tree for the software program. 

To explain this software program regression tree, 

we start with the total (100%) schedule dataset. 

Next, we ask if the total number of development 

hours is more 

than or less 

than a duration 

value. If the 

answer is yes, 

then the data is 

split into a 

branch to the 

left and if the 

answer is no, 

then the data is 

split into the 

branch on the right. In this example, 70% of the 

data satisfied the condition for number of hours 

and 30% did not. Total software development 

hours best minimize the squared error when 

estimating schedule duration. There are three 

decision nodes that ask questions about the value 

of total software development hours. Based on 

the value of total software development hours, 

we end at one of the terminal nodes of the tree. 

The estimate at the terminal, or leaf, node is the 

average duration of the subset included in that 

node. Each split is labeled with a condition and 

the branches between them are labeled with the 

average duration for that dataset split. An 

example interpretation of the first decision in the 

tree is, “if the total software development hours is 

more than 50,000 hours, my estimate is 60 

months, otherwise it is 40 months.” The 

regression tree produces a point estimate. 

Just like with traditional regression analysis, 

the regression tree uncertainty analysis is 

conducted by assessing the residuals, fitting a 

distribution, and combining this with 

parameter uncertainty, which provides an 

overall uncertainty distribution for the 

parametric schedule estimate. 

For each node in the tree, the regression tree 

split is chosen by the algorithm to minimize 

the sum of squared errors. The algorithm 

chooses the variable and the associated value 

based on what reduces the sum of squared errors 

the most. 

 

Figure 10. Regression Tree Layout.  

Figure 11. Software Program Example Regression Tree.  
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Case Study 

To advocate for 

and demonstrate 

the effectiveness 

of the top-down 

parametric 

approach, we 

highlight a success story for the NASA MAVEN 

spacecraft program. In 2009, one of the authors 

developed a JCL using the top-down parametric 

approach. At the time, with the project plan cost 

and schedule, the JCL was estimated at 23% and 

if a year was added to the development schedule, 

the JCL was estimated at 44%. With the current 

project plan, to achieve a JCL of 50%, an 

additional $50M and eight months would be 

needed, while to achieve a 70% JCL, an additional 

$77M-195M and 11-21 months would be needed. 

In 2013, the actuals for cost and schedule for the 

Maven program came in at the 50% JCL that was 

estimated in 2009. This is one of the few 

programs to show no cost growth, demonstrating 

an estimate that actually “hit the mark” when 

funded to the predicted 50% JCL. Table 3 

summarizes the JCL results estimated in 2009 

and the actual results in 2013. 

Figure 12 shows the iso-curves calculated for the 

MAVEN program.  

 

 

MAVEN was 

the mission in 

Table 2 

presented 

earlier for 

which the 

actual cost was 

below the 90th 

percentile of the cost risk analysis. While only 

one data point, it provides evidence that 

parametric JCLs can help ensure credible risk 

ranges. 

 

Conclusion 

NASA is the only known government agency that 

currently has a JCL policy. Very few organizations 

perform JCL analysis routinely as part of project 

management decision making. The more 

informed and holistic cost and schedule risk 

analysis results of a JCL should be considered by 

the cost analysis community and project 

managers when making decisions about 

programs.  

Traditional bottom-up joint confidence level 

analysis can be cumbersome and resource 

intensive. This paper offers a proven 

top-down parametric JCL approach as 

a more manageable approach for cost 

analysts, while just as accurate as a 

bottom-up JCL approach based on the 

author’s experience.  

Machine learning techniques such as 

optimization and regression trees provide an 

analytical method to develop cost and schedule 

estimating relationships when traditional 

regression methods do not provide significant 

results. 

Table 3. MAVEN Program JCL Results.  

Figure 12. NASA Maven Spacecraft Program JCL Estimate.  
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13 Reasons a Cost Estimate Could Go Wrong  

During a Concurrent Engineering Study  

(and How to Avoid Them) 

Andy Braukhane 

 

Abstract: During early phase spacecraft design, the concurrent engineering (CE) approach is proven to be 
very efficient. But the compressed and iterative nature of CE sessions can make life difficult for a cost 
estimator due to immature data, many design changes, and an intense workflow, among other issues. This 
work discusses 13 problem areas that have been encountered or observed mainly during one-week-long, 
interdisciplinary space system design studies at the German Aerospace Center. It provides practical 
examples on how to tackle them, e.g. how to deal with rapid data changes, false expectations and a 
heterogeneous engineering team. 

Introduction 

Concurrent Engineering (CE) is an efficient 

Systems Engineering approach which is 

increasingly applied in early phase spacecraft (S/

C) design due to the involvement of all relevant 

disciplines, including the customer, and is often 

supported by data models and tools as well as by 

a communication fostering infrastructure.  

During several moderated sessions, the latest 

results and problems are shared with the entire 

team, which supports the convergence towards a 

common solution. This exchanged information is 

a key input for the cost estimator and provides 

guidance on what to further discuss, to research, 

or how cost models should be used or adapted. 

But the data is constantly changing due to the 

iterative approach. Moreover, the space sector is 

not famous for public data, making research and 

comparisons often difficult. With predominantly 

technical people in the room, the cost estimate 

may also be perceived disconnected.  

Based on the study context, managers expect 

either rough order of magnitude (ROM) cost or a 

detailed estimate following an elaborated work 

breakdown structure (WBS). These and other 

reasons why cost estimation could go into the 

wrong direction are discussed within the paper, 

based on experience and observations related to 

systems, concurrent and cost engineering. It 

includes real-world examples, ideas for solutions 

and some anecdotes which shall round off this 

lesson learnt compilation. 

This paper has been prepared to discuss and 

raise awareness about particularly significant 

stumbling stones which can be encountered 

during otherwise very efficient and 

recommendable Concurrent Engineering 

activities for space missions and systems in the 

early phase (here so-called CE studies). We use 

the German Aerospace Center (Deutsches 

Zentrum fu r Luft- und Raumfahrt) Concurrent 

Engineering (DLR CE) approach as our example. 

The potential problems mentioned are not 

exclusively applicable for CE, nor for the cost 

domain. As for CE studies in general, the 

approach for Cost Engineering in such an 

environment varies amongst different 

institutions. This relates to tools, data available, 

time available and likely even the objectives and 

expected outcomes. 

This work is based on experiences and 

observations gathered during several DLR CE 

studies, during which a particular approach is 

applied, but also common rules and practices are 

followed. Please note that throughout the entire 

paper, the term CE is exclusively used for 

Concurrent Engineering and not for Cost 

Engineering. 
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Concurrent Engineering at DLR 

The German Aerospace Center (DLR) is the 

national aeronautics and space research 

center. It performs extensive research and 

development (R&D) activities related to 

aeronautics, space, energy, transport, 

security and digitalization. Furthermore, DLR 

contains the German Space Administration, 

acting on behalf of the Federal Government, 

which is responsible for the implementation 

of Germany’s Space Program, on national and 

international level. In 2007 the Institute of 

Space Systems was inaugurated within the 

Space R&D branch, with the objective to 

perform analysis, design, development, 

testing, integration and management of space 

systems, including e.g. satellites, probes, 

habitats and launch vehicles.  

In order to conduct efficient feasibility and 

preliminary design studies for internal and 

external space missions and systems, the DLR 

Concurrent Engineering Facility (CEF) has been 

established as part of the Institute build-up [1]. It 

is shown in Figure 1. 

According to a definition from the European 

Space Agency (ESA), Concurrent Engineering is a 

systematic approach to integrated product 

development that emphasizes the response to 

customer expectations. It embodies team values 

of co-operation, trust and sharing in such a 

manner that decision-making is by consensus, 

involving all perspectives in parallel, from the 

beginning of the product life-cycle [2]. 

The major elements of CE, as it is applied in the 

space sector, are a guided and structured process, 

an infrastructure which fosters communication 

and collaborative working, a central data model 

to enable instant and simultaneous data 

exchange, as well as a team representing all 

relevant disciplines, including the customer [3].  

CE in space has been applied already in the U.S. 

for more than 20 years, initially by the Aerospace 

Corporation and NASA’s Team-X. ESA also 

implemented this approach in 1998. It clearly 

proved the efficiency and high quality for early 

space system and mission studies. Nowadays, 

many international organizations apply CE in one 

way or another as part of their Systems 

Engineering activities. These organizations 

include agencies (e.g. NASA, ESA, DLR), system 

integrators (e.g. Airbus), private or governmental 

organizations (e.g. Aerospace Corporation, NRO) 

and universities (e.g. Utah State University, ISU 

Strasbourg) [3]. More details on the general CE 

approach and existing facilities can be found for 

example in [1], [2] and [3]. 

With initial support of the ESA Concurrent Design 

Facility team, the DLR CEF adapted the 

Concurrent Engineering process and all related 

elements such as the actual infrastructure, 

required data models and software tools, and also 

the team (regarding size and compilation) to 

their own needs. With currently more than 70 

studies completed, the CE process is already well 

established, but also continuously improving due 

to the on-going challenges of new customers, 

Figure 1: DLR Concurrent Engineering Facility (CEF) 
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study topics, support technologies or team 

members. 

Whereas the overall study timeline including 

initiation, preparation and also post-processing 

phases can last several weeks, the actual CE study 

phase at DLR typically lasts one full week [4]. 

Figure 2 shows the overall timeline including the 

different parties involved and information 

products generated. Figure 3 presents a typical 

schedule for the actual one-week study phase. In 

this phase, there is a mixture of moderated 

(indicated in red) and non-moderated sessions 

(blue), in which either general and system-

relevant or more specific trades and tasks are 

carried out.  

As a different example, ESA organizes their 

sessions over several weeks with only one or two 

moderated sessions per week [2], while Team-X 

at NASA Jet Propulsion Laboratory compresses all 

study sessions into less than one week, as 

indicated amongst others in [5].  

A common set of domains and their 

representatives covers the moderator, the 

Figure 2: DLR Concurrent Engineering study, overall timeline  

Figure 3: DLR Concurrent Engineering study phase schedule example (one-week approach)  
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customer, Science/Payload Engineering, 

Systems Engineering, Mission Analysis, 

subject matter expertise for Structure, 

Thermal, Power, Command and Data 

Handling, Telecommunication and 

Telecommand, Attitude and Orbit control, 

Propulsion, Accommodation, Mission 

Operations, Risk/Product Assurance and 

also Cost Engineering/Analysis. 

At the end of the preparation phase, the CE 

study organizers distribute a study scope 

document to the entire team to create a 

common foundation. In the beginning of 

the actual study week, when everybody 

comes together in the CEF, the key information is 

presented again to the team. Afterwards, the 

work starts immediately with discussing the 

impact of the top-level requirements for the 

mission and system design, and with initial 

definitions of the product tree, preliminary 

subsystem (S/S) sizing and operational modes. 

That is when the fun part for all participants 

including the cost estimators begins. 

 

Cost Estimation in a Concurrent Engineering 

Environment 

In not so serious terms, one has to imagine to 

have a counter on the desk with 32 to 40 hours 

counting backwards, approximately 20 people in 

one single room (thereof at least 15 purely 

technical experts), a challenging mission 

statement displayed on the screen, and the only 

one who is interested in things like fiscal year or 

full accounting cost is the cost estimator. This is 

cost engineering within a CE environment in a 

nutshell. 

In more serious terms, depending on the level of 

preparation, time and experience of the cost 

estimator, a typical set of activities during such 

kind of CE study looks like this: 

 

 

• gather project-related data to establish 
technical and programmatic baseline, 

• identify similar missions (if data available) 
and derive analogy-based specific ROM cost 
values as starting point, 

• check what methods and tools should be 
further used, and discuss this with project 
manager and customer, 

• use available data, perform estimates, iterate 
as the data becomes more mature, 

• support the technical team and managers with 
cost expertise during system trades, 

• compare and cross-check estimates amongst 
different methodologies and tools, if possible, 
and 

• identify and present what cost have been 
elaborated in detail, and which are estimated 
with more simple rules of thumbs, or even 
have not been included at all. 

Methods and tools used in the CEF cover amongst 

others the Small Satellite Cost Model (SSCM) 

2014, TransCost, internal Excel tools based on 

Cost Estimation Relationships (CERs), WBSs and/

or the T1 Equivalent Units approach [6], and 

formerly also the Unmanned Space Vehicle Cost 

Model. Central data models used at DLR include 

mainly the Virtual Satellite (VirSat) shown in 

Figure 4, but also the ESA Open Concurrent 

Design Tool and the former ESA Integrated 

Design Model workbooks as complementary and 

optional models [7]. 

 

Figure 4: DLR Virtual Satellite data model  
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13 Reasons Why… 

In the following, the selected 13 reasons why a 

cost estimate during a Concurrent Engineering 

study could go wrong are discussed. For sure, 

there are plenty of others which could lead to 

tough work or even wrong results, but these are 

most prominent reasons according to the 

author’s experience. Moreover, most of them are 

intertwined and also not exclusively applicable 

during CE studies but also in any other cost 

estimation activity, some are even very obvious, 

but these selected reasons may increase the level 

of impact when they come true. For each of the 

aspects there are some ideas, lessons learnt or 

recommendations provided on how problems 

could be reduced or even avoided. 

 

Wrong expectations (#1) 

Customers in a CE study at DLR come from totally 

different areas. They could be project managers, 

department/group/directorate heads in charge 

of a space program, Principal Investigators or 

entire science teams. Depending on the type and 

number of stakeholders, their background and 

interests as well as their expectations with 

respect to the cost estimation results may 

extremely vary from study to study but also 

amongst the estimator and the customer within 

one particular study.  

The CE approach is very suitable for 

early design activities. That is why 

these multi-disciplinary studies 

take place most often in Phase 0 or 

A of a project. This results in a 

certain granularity of the estimate, 

with cost usually presented on 

segment or subsystem level.  

However, often it is expected to 

provide already a bottom-up 

estimate on work package level, 

showing even labor cost, material 

cost, facility and operational cost 

(see also problem area #11). Other 

customers rather want to see a split between non

-recurring development and recurring 

production cost. Most of them expect the results 

(without knowing them in advance of course) to 

meet their available budget, which is often fix and 

constant per year, within the available time. 

Almost all study customers would like to get a 

single, final number at the end of week which 

they can take home and which is rarely 

considered a subject for further correction or 

increase afterwards.  

The expected level of detail is often not consistent 

with the time available to provide the results, nor 

with what the estimator believes should and 

could be done at this early stage. Moreover, it 

might not be understood that even the cost 

estimation tools available can barely be applied 

to all of the missions to be studied, particularly 

for new designs. 

To avoid bad surprises at the end, the cost 

estimator needs to iterate with the study leader 

and customer the expectations already during the 

preparation phase, i.e. prior to the first study 

session. Part of such discussion should be how 

the standard cost estimation process, as 

described for example within the NASA Cost 

Estimating Handbook [8] and shown in Figure 5, 

could be tailored. It has to be agreed on what the 

most relevant and possible cost breakdown might 

be. For instance, if and how production and 

Figure 5: Random example of tailoring the NASA cost estimating process, 
adapted from [8]  
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development cost, systems and subsystem 

engineering, labor and material cost, investments 

and facilities are broken down. Moreover, it shall 

be clarified, if the focus is set on space segment 

cost or e.g. operations cost. These discussions 

support the decision which methods and tools 

could be an option for the estimator, and the 

identification on how the final format for the 

representation of the cost can be set up in a most 

suitable way. 

 

International and multi-disciplinary Team (#2)  

The CE study team is not only multi-disciplinary 

but also very international, particular in 

European entities such as ESA or DLR. Various 

nationalities are working together in one room, 

which brings in different cultures, different ways 

of thinking, working and communication, as well 

as different languages and levels of English. This 

is a very powerful basis to boost creativity and it 

also provides a vast range of knowledge due to 

the different educational backgrounds and maybe 

previous international company experiences. On 

the other hand, for a one-week CE study this 

compiled team has to be harmonized somehow, 

which is a challenge for all domains and subject 

matter experts (and not only cost). 

In addition to the team working on the design 

within the CEF, if the CE study is part of a bid 

preparation, the potential industry consortium 

planned for implementation may significantly 

affect the labor rate or productivity assumptions 

to be considered. This is true for parametric and 

other estimation methodologies.  

During one study there was an engineer who 

considered the involvement of Greek institutions 

for building a formation of CubeSats. Although 

the currency for most countries in Europe is euro 

(€), labor rates can be completely different when 

comparing e.g. northern with southern European 

countries. In this study case it was required to 

decide which work packages (or S/S) should be 

assessed with a labor rate of 200,000 € per work-

year and which ones with 100,000 €. 

Prior to the study, even if not a single detail is 

available for the technical baseline, a cost-

internal stakeholder analysis should be 

performed. It needs to cover all aspects related to 

the different team members and maybe their 

different attitude in terms of supporting a cost 

estimate. It also shall identify how different 

international contributions for the mission could 

affect the estimation process, and what elements 

(e.g. labor) might need adjustments. This exercise 

last only minutes but it can save a lot of time, 

hassle and last-minute corrections during the 

study sessions. 

 

Tools not available or applicable (#3) 

Concurrent Engineering follows an iterative 

approach which requires rapid assessments and 

analyses, quick engineering tools, intensive 

communication, the ability to think out of the box, 

but also a systematic way of performing the tasks 

as much in parallel as it could be. But space 

missions are often characterized by unique 

designs. Space system cost and also technical data 

is barely available, especially if the own company 

does not have a large record of building space 

systems itself.  

The time do develop dedicated CERs, maybe even 

based on a poor data set, is often simply not given 

during a CE study (see also #7 and #8). 

Therefore, the remaining solution is typically to 

use an already established tool which supports 

the estimate with historical underlying data and 

CERs gathered and developed by others that are 

not transparent to the end user.  

There are some tools out there which are 

accessible for everyone on no cost. In many cases 

they cover a special mission or system type, for 

example the Small Satellite Cost Model [9], which 

covers the S/C bus cost (which is the full satellite 

without the payload), roughly in the 100-1000 kg 

range. More detailed or more powerful tools can 

be in-house developments (such as several NASA 

ones) or commercially available. Unfortunately, 
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not all institutions are able to afford commercial 

tools or even to invest in extensive internal 

developments.  

However, sometimes the space mission to be 

designed and analyzed is so special that even no 

tool is applicable. This leads to a lot of modelling 

during the dense set of CE sessions by the cost 

estimator, which is already challenging. By using 

as a starting point freely available CERs, a 

parametric tool, or specific ROM cost factors from 

former missions for the basis of estimate (BoE), 

still a lot of adjustments have to be made. Most 

cost data are captured in US dollar ($), and might 

force the estimator to convert the results into the 

required currency. Then the question still 

remains which inflation scheme should be 

applied, the NASA inflation index, European 

annual average inflation or a national one. 

Compared to the overall uncertainties, especially 

for the very specific space missions, such aspects 

could potentially be neglected. Furthermore, the 

desired cost breakdown is not fully possible, or 

the tools/CERs do not capture the latest 

technologies, or some parameters are out of 

range.  

The lack of full applicability could be 

compensated by following an amalgamation 

approach as described in [10] and substitute e.g. 

certain parametric estimates with dedicated 

analogy or bottom-up estimates on S/S or unit 

level, or by performing benchmarking [11] and 

combing cost references from different other 

missions where some elements are similar in one, 

and some elements are similar in another mission 

(or system). Ultimately, the decision has to be 

made whether the available support tools are 

fully or partly applicable, whether they can be 

made applicable or not. If the latter is the case, 

then do not use it. 

 

Specific / ROM cost (#4) 

CE studies could be hectic events from time to 

time. The fact that one can hardly compensate 

with working over-hours, given the short and 

intense study phase, may lead to too quick and 

hence too dirty assessments. For example, in 

order to have an initial feeling on the overall cost, 

the cost estimator could do a quick ROM cost 

assessment using a simple analogy estimate or 

specific cost factors from literature, such as cost 

per S/C mass (e.g. in k€/kg). However, due to 

lack of time, data clarity, understanding or 

precision, both the estimator and the customer 

could simply have wrong interpretations of such 

a factor, which was identified or given. 

Specific costs are often not equipped with a fiscal 

year, which should be carefully considered if the 

developed/found value is old. But even more 

important are the correct contextual assumptions 

for the mass and cost contributors. If they are 

unclear, following situation could occur: Imagine 

a mission with a S/C dry mass of 250 kg and 

launch mass of 350 kg, with a cost of 50,000 k€ 

for the S/C itself and 100,000 k€ for the entire 

project lifecycle (incl. launch and operations). If it 

is not completely clear what the specific cost 

value in k€/kg is referring to, this can lead to 

significant differences up to a factor of 2.8 in our 

example (i.e. 400/143), as can be seen in Table 1. 

Additionally, the term S/C is sometimes used for 

the service segment (bus) only, but sometimes 

for the full satellite including the payload (P/L).  

The estimator needs to make sure what values 

shall be taken, and explain this in front of the 

entire study team. And if someone else is arguing 

during the study that the specific cost number 

from another source is different, first it has to be 

agreed on the correct interpretation of this initial

-quick-look reference number. 

 

 

Table 1: Different interpretations of specific cost in k€/kg  
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Use of margins and 

contingencies (#5) 

In the early design phase, 

there is still a lot of 

uncertainty carried along, 

and therefore, a proper 

margin and contingency 

philosophy has to be applied. 

There are several standards 

and guidelines, for instance 

the Concurrent Design Facility 

Studies Standard Margin 

Philosophy Description 

compiled by the European 

Space Agency [12]. 

In CE studies there is an 

interdisciplinary and multi-cultural team (as for 

most projects in general) which has been called in 

to support the present study. And this team is not 

necessarily used to work together. This means 

that the systems engineer and team leader have 

to make sure that everyone has the same 

understanding related to the application of 

contingencies and margins. This is to avoid 

double-counting or forgetting them, or piling 

them up in an unfortunate way, as shown e.g. in 

[13]. Furthermore, for using the technical 

parameters and requirements as input for 

parametric cost models, it must be clear exactly 

what values are to be taken. When using for 

instance mass-based CERs, there are in principal 

three major options.  

Table 2 presents a mass budget on subsystem 

level for a small satellite, where the masses are 

the sum of the respective equipment, with and 

without margins. Out of these three options listed 

in the following, it has to be decided which mass 

values should be used: 

1) S/S mass (as sum of the equipment masses) 
without any margin, i.e. best guess only, 
shown in the 2nd column from the left, 

2) S/S mass including design maturity margins 
(DMM), displayed in the 4th column from the 
left, 

3) S/S mass including DMM, plus the system 
margin portion on top, i.e. the values from the 
4th column and additionally 20% extra for 
each S/S. 

Usually, the tools and CERs are primarily based 

on actual data. Furthermore, mass growth is a 

typical phenomenon in space system 

development which eats up contingencies and 

margins throughout the phases. Hence, it is 

recommended to use option (3) if nothing else is 

explicitly requested, which is the S/S mass 

including DMM and the system margin portion on 

top. Alternatively, option (2) could be used, but 

the additional uncertainty shall be clearly 

reflected in the cost-risk analysis or at least 

within the documentation of the results.  

Depending on the data model used for the CE 

study (or project in general), the S/S mass values 

may need to be recalculated at some stage, e.g. 

with factor 1.2 in our case. Looking at our 

example, this means that the Thermal S/S mass to 

be taken for the CER or tool is not 10 kg, nor 12 

kg, but 14.4 kg. Please see also reason #9 (rapid 

data changes) for further discussions on data 

model value utilization. 

During the tool selection process, which should 

take place prior to the actual study phase, the use 

and application of technical margins not only for 

Table 2: Satellite mass budget example on subsystem level, showing 3 options for 
mass values to be used as potential inputs for parametric cost estimation tools  
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mass but also for other parameters should be 

clear, documented and agreed on. During the 

rapid and iterative estimation loops within the CE 

environment these details may be easily 

overlooked. 

 

Heritage & Complexity (#6) 

As for any other study or project, the cost 

estimation has to consider factors for heritage 

and complexity adjustments. Particularly for 

parametric estimates, which are based primarily 

on CERs with mass as independent variable, the 

results would not capture how much of the 

design and test effort and models could be saved 

or needed due to heritage, nor how complex 

either the design, assembly and integration or 

control of the space system could be. In an early 

phase CE study, the team has likely an 

understanding whether they design something 

new or just a derivation of an existing system. But 

for the cost estimator the question remains, how 

strong this would affect the results. Some CERs 

and tools account for one or both factors already. 

Some do not consider them at all. Moreover, there 

are big differences on how heritage and 

complexity are addressed within these tools.  

The estimator has to make sure whether the data, 

tools, models or CERs account for this already, or 

if these factors have to be applied on top of the 

given outcomes. The key assumptions in the 

SSCM 2014 User’s Manual [9] for example state an 

average amount of heritage and an average level 

of technological complexity, stressing the fact 

that a proper cost-risk assessment is required. 

Alternatively, a certain percentage, a linear or an 

exponential factor could be used as done for 

several CERs. However, this has to be selected 

and defined with care. These factors can vary 

from only a few additional percentages to 

doubling or tripling of cost when comparing an 

average heritage (e.g. 50%) to a completely new 

development. The same is true for similarly 

subjective assessments of complexity. 

Such adjustments, either manually or as a part of 

a tool, should be factored in at the very end of the 

study, when most technical data are available. 

During the CE study itself the team or at least 

systems engineer will usually strive for highest 

possible heritage and lowest complexity. As an 

estimator, keep an eye on it, try to support the 

discussions and trades along the way, but work 

this out in detail as late as possible. If possible, 

this exercise should be done on S/S-level to 

reflect a potential high or low re-use and 

complexity per S/S of the space system, 

compared to others. 

 

Lack of time (#7) 

This is a major, but self-explaining issue, 

probably partly also a self-made problem of the 

DLR CE approach or institutions with similarly 

dense study timelines. Although this approach is 

very efficient, the absolute time for analysis and 

potential re-work is short. First, within one week 

plus maybe some days before and afterwards, 

one cannot perform the complete cost estimation 

process as stated e.g. within the NASA Cost 

Estimating Handbook [8] in full detail, simply due 

to the lack of resources and the early stage of 

most studies. 

The lack of time is a central reason for potential 

cost estimation errors or incompletion. It is 

critical for all domains, but the cost domain is 

heavily dependent on the outputs from others, 

which are used as input for the cost analyses, and 

hence the estimator is rather busy during later 

design iterations. 

Therefore, it is imperative to use a tool, 

calculation, CER, or a model template the 

estimator is familiar with. There won’t be much 

time for experimenting. Implementing a proper 

process and adapting the tools for it, 

standardizing them and connecting them to a 

data base could turn the problem into an 

opportunity, and enable a very efficient design 

process and cost estimation. This is the case for 

example during NASA Team-X studies, where 

costing at the speed of light [5] is commonly 

performed. 
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Lack of data (#8) 

Cost estimation relies heavily on data. This 

includes technical data to establish the technical 

baseline for an estimate, as well as cost data from 

previous missions, designs or equipment 

selected. Often the estimator is lacking both, due 

to the technical immaturity of the present 

mission/system at that stage, and also due to low 

(or no) comparability to former missions or 

simply lack of access to previous mission data. 

Unfortunately, in Europe there is no public 

database available such as CADRe or ONCE [14] 

in the United States. 

This is again one of the reasons why parametric 

tools with a few technical input parameters are 

essential and of great help during this early stage 

of mission design. CERs and related tools making 

use of them (if available and applicable) contain 

already a large set of data points, which do not 

have to be researched again. If there are 

technological or operational differences apparent 

between the CERs used and the spacecraft to be 

designed for instance, effort shall be made to 

replace or adjust the cost of particular 

subsystems which differ most. This can be done 

by using e.g. benchmarks from other subsystems 

of more suitable space 

missions where cost may 

be known, as also 

proposed in [11] (see also 

#3). At least the unknowns 

have to be known and 

clearly documented in any 

case. 

 

Rapid data changes (#9) 

Concurrent Engineering 

and its highly iterative 

nature involving every 

discipline early on in the 

project is a big advantage. 

However, the rapid 

evolution of data leads to a 

couple of challenges.  

During one week, the total launch mass may 

change dramatically after each session. We look 

at following example: There is a requirement for 

a small satellite mission with a maximum launch 

mass of 300 kg. At the end of study day one, with 

an initial version of the product tree available, the 

preliminary mass budget indicates a launch mass 

of 225 kg. However, not every engineer adds the 

relevant data into the data model already in the 

beginning, so maybe the structural mass is still 

missing entirely, the harness mass is not yet 

considered, and the propellant mass is 

completely unknown. In the course of the second 

day, subject matter experts close some design 

gaps, discuss and re-iterate with comfortable 

contingencies. This results in a total launch mass 

of 410 kg. During day 3, the team identifies that 

the P/L and the S/C bus both included an optical 

bench and Star Trackers within their budgets, 

that the operational modes are not fully 

consistent, and that there is no need for an X-

band system anymore. This leads to an updated 

launch mass of 340 kg. Day 4 is typically the day 

reserved for refinements. The amount of data 

needed as input for an e.g. parametric cost  

 

 

Figure 6: Example of mass variations over time during a  
Concurrent Engineering study, taken out of the data model history  
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estimation model is mostly complete, and – in our 

example – the total launch mass deceased to 290 

kg, which is compliant to the requirement.  

However, during the final presentation session on 

day 5, one engineer figures out that the 

redundancy scheme for the avionics is not 

compliant to the failure-tolerance requirement 

for this mission. Now the mass increases up to 

320 kg again, which won’t be a show stopper at 

this stage, but shall indicate that there is always 

changes to be expected. Another example of these 

changes is presented in Figure 6. In order to 

constantly build up and update the cost estimate, 

by e.g. using amongst others the SSCM for this S/

C size, the available cost model needs to be 

updated easily without mixing up numbers or 

forgetting something. 

As for many other problems, preparation is also 

the key here. The cost estimator needs a good 

understanding of the potential cost drivers 

already prior to the study, make first and robust 

assumptions for the technical baseline, and 

perform initial sensitivity analyses. Furthermore, 

the selected tools should be usable for such a 

series of iterations. As an example, Figure 7 

shows the SSCM 2014, where an input sheet has 

been modified accordingly. On the left side is the 

original input area for the tool, while on the top 

right the technical parameter values are checked 

to see whether they are in the permissible range 

or not. Manually added, there is a box on the 

lower right side, in which the mass budget on S/S 

level can directly be taken from the CEF data 

model. 

In Figure 7, the S/S masses are converted to 

masses including design maturity margins plus 

the system margin portion (as discussed in #5), 

and then linked to the actual input area. 

Moreover, the system masses (dry, wet, launch) 

are organized in such a way that a quick 

comparison with the actual system mass budget 

is easily possible to identify gaps or overlaps.  

It would be even better, however, if such an 

adaptation effort would not be necessary, but 

unfortunately most cost tools or calculations are 

difficult or inconvenient to connect to the central, 

multi-accessible data model, and vice versa. This 

brings us to the next reason why a cost estimate 

in a CE environment could go wrong. 

 

 

Figure 7: Screenshot of an adapted SSCM 2014 [9] input sheet  
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Disconnection to central data model (#10)  

Using a central data model, which acts as a single 

source of truth is great. It can be used in any 

project, but a CE study is a good event for which 

the data model could be initiated or initially be 

prepared for. In principle there is nothing 

negative but only positive: a bit of consistency is 

better than no consistency, thus we are talking 

about a luxury problem. But the cost domain is 

typically not included in these data models. This 

is also true in many cases for some domains, 

which use powerful commercial software, such as 

computer-aided design (CAD) or orbital 

simulations tools. There are attempts to interface 

these tools to the central data model but this is 

still not very common.  

For the cost estimator this means that an effort 

could be made to somehow link the estimation 

templates (e.g. spreadsheets), CERs, or own 

databases to such a model, if confidentiality or 

other non-technical aspects allow it. Since rapid 

data changes occur (see #9), it is mandatory to 

make robust, well forecasted assumptions for 

premature technical input data. One needs to 

keep an eye on the data model results and 

organize the relevant model outputs, which are of 

interest for the cost estimation as good and 

efficient as possible. Cost Engineering as part of 

Model-based Systems Engineering (MBSE) is 

definitely an underestimated issue, which 

provides a lot of opportunities for further 

research.  

Figure 4 showed the Virtual Satellite central data 

model used at DLR. It is an eclipse-based and 

open source tool enabling multiple-access (with 

dedicated role management). It uses Subversion 

for version control. It includes features such as a 

product tree, prepared mass budgets, power 

budgets and modes, a preliminary distributed 

CAD functionality, functional diagrams, a 

calculation mask and an Excel interface, but no 

dedicated cost estimation feature. This is just one 

example, which indicates that the concept of cost 

estimation has still not fully arrived in the MBSE 

world. 

DLR is working on this topic and welcomes any 

other activities going into the same direction, 

which seems to be the case by looking for 

instance into the presentation list of the ICEAA 

2020 workshop [15]. 

 

Bottom-up estimates during a CE study (#11)  

CE studies are most suitable for Phase 0/A 

studies, as mentioned already. This means that 

the primary cost estimation methodologies are 

parametric or based on analogies. However, 

similar space missions or systems are barely 

available, either because something comparable 

has never been designed or the data is simply not 

available, which makes analogy assessments 

sometimes difficult. The parametric approach on 

the other hand is not well understood by many 

engineers and sometimes not even accepted (see 

also #1 and #13). This is particularly true when a 

tool or CER is used, which does not really reflect 

the way of computing cost for a certain type of 

mission or for a certain institution or culture. As a 

result, much effort is spent defending the 

methodology selection and respective results, 

instead of improving the estimate itself. 

Besides the managers or customers who want a 

super-detailed cost estimate already in a Phase 0 

study, although it is still not even clear if for 

instance a Propulsion system is needed or not 

(again, see #1), many engineers tend to feel more 

comfortable discussing materials and labor cost 

than to trust a number which is spit out of a 

parametric tool. Unfortunately, the power of 

parametric estimation is not always understood. 

During trade studies, where the estimator could 

easily assess with their CERs the financial impact 

of using e.g. a Star Tracker or not, or the pointing 

accuracy cost sensitivity, many engineers do not 

trust this statistics-based approach. 

Consequently, during many CE studies, a 

preliminary bottom-up estimate shall and has 

been made. The advantage is that the estimate 

makes use of the engineer’s experience in terms 

of materials and labor cost. However, the former 
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may not be properly linked to the model 

philosophies, test and ground equipment. 

Especially the spacecraft operation is often 

drastically under or overestimated, which is due 

to the short time available and the pressure to 

continue iterating rather on the technical 

parameters. As a result, within a CE environment 

which follows more condensed approach of days 

instead of weeks, the disadvantage of bottom-up 

estimates in early phases becomes very apparent.  

One lesson learnt is to have, based e.g. on 

parametric studies, a rough cost distribution per 

S/S at hand, and a preliminary assessment of how 

much additional effort is needed for system 

wraps, such as management or product 

assurance. It could be decided on a case by case 

basis whether or not the domain experts should 

be confronted with these historical and average 

values upfront, to get an idea on the ballpark 

values for their more detailed cost contributions. 

If specific cost factors (e.g. in k€/kg) are available 

and well understood (see #4), they are helpful for 

sanity checks, too. 

Moreover, for a bottom-up estimate there has to 

be a common attitude and set of assumptions 

amongst all contributors, which include the 

subject matter experts, and maybe their 

superiors. It makes a huge difference if someone 

tends to provide a very conservative number to 

already claim a certain work package budget and 

to prepare for upcoming negotiations, or if 

someone does rather the opposite and estimates 

rather at the lower end, with realistic cost 

distributions over time, to ensure that the project 

is more likely to be funded. If bottom-up 

estimates are really necessary or desired, the cost 

breakdown and approach need to be clear to 

everyone (see also #1). 

 

Optimizing in the wrong place (#12) 

A space mission consists of different segments, 

such as the space system (including bus and 

payload), the launch vehicle, and the ground 

segment including operations. Most CERs and 

tools are available for the space system, some 

with, some without payload. Moreover, the 

majority of CE study team members each 

represent one S/C subsystems. This might 

support a more detailed cost estimate on S/C bus 

level, no matter which estimation methodology is 

applied, compared to the other segments.  

There are also holistic tools out there, such as the 

parametric QuickCost tool [16]. The S/C bus and 

P/L cost in version 6 of this tool are estimated 

using CERs. Launch cost are entered directly (if 

desired) while all other NASA WBS elements are 

covered by adding various and suggested 

percentages to the sum of the S/C bus and P/L 

costs. Using the average values shown in [16], the 

space segment is dominating the total project 

cost with approx. 60-80%, depending on the 

launch cost. However, especially for long-

duration science and exploration missions, the 

operations cost can increase significantly. But this 

can also be the case for more regular Earth 

Observation missions if standard components are 

used, or low complexity and a strong heritage 

approach is followed. 

The key message is that while detailing one part 

of the project life-cycle cost, it could be easily 

underestimated that there is significant cost, or 

uncertainties associated to other parts as well. 

Focus should be set on the cost drivers. 

Discussions on 100 k$ level should be saved for 

later, and a rough mission cost breakdown has to 

be prepared, based on the most suitable 

references and most driving requirements. For 

the most likely used CERs, the sensitivity and 

slopes need to be known in order to know better 

on which updated values to focus, and where the 

estimate can survive with rougher assumptions 

(since the cost differences may not be 

significant). 

 

Lack of acceptance or perceived  

relevance (#13) 

As indicated already, the non-technical 

participants of early space mission studies are 
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the absolute minority. Focus is 

often set on the science case 

and technical feasibility. 

However, without an initial 

assessment on the cost, no 

statement regarding a potential 

implementation of this mission 

can be made. Only studies of 

commercial systems (e.g. for a 

new communication satellite) 

might be different, since they 

do not only include the cost but 

also business model 

considerations. On the other 

hand, commercial systems 

usually do not require a pre-

Phase A analysis, since there is 

very likely a reference S/C 

platform available within the 

industry, and the mission-

related aspects are comparably 

simple. 

However, technical models and 

design processes amongst engineers are 

understood, even if one does not exactly know 

how to design another subsystem for example. 

For example, an electrical engineer developing a 

power subsystem has an idea of the steps needed 

to design an on-board computer architecture, and 

should also be able to properly assess the risk 

and potential mitigation strategies. The work 

package leader also might have some cost 

numbers at hand and can provide an estimate of 

the required labor throughout the development 

(with a very big uncertainty for fancy missions 

analyzed in a very early phase). However, if less 

technical terms like confidence levels or fiscal 

years are presented, most engineers often cannot, 

or do not want to understand why this is even 

important, or do not pay attention at all until the 

final magic cost number is shown. 

Experience shows, that the cost estimate 

presented is subject to intensive discussion, much 

more than the maximum power demand during 

an orbit raising maneuver. There is also 

sometimes the tendency, rather from 

management than engineering 

side, to quickly re-assess and 

oversimplify the cost on a 

napkin, with the aim to show 

that the estimate is still too high.  

Having in mind that most of the 

described problem areas in this 

paper are also applicable to 

some other technical domains, 

there simply might not be the 

time left to talk extensively to 

the engineers for proper cost 

and cost-risk assessments, since 

they need (or want) to focus on 

their design tasks.   

As for many other things, it is 

important to properly explain all 

assumptions, processes and 

steps to make them transparent. 

Educating others, and to make 

aware that a decision made by 

someone affects the design of 

someone else is imperative, is one 

of the strengths of the CE methodology.  

For example, in the course of a mission selection 

campaign at DLR, several 3-day CE studies have 

been conducted, with the aim to investigate 

missions and science cases to be realized with a 

small satellite. During the final presentation 

session, cost is usually one of the last talks 

(maybe this should be changed one day). 

Probably due to the above discussed aspects or 

the fact that long days were behind the team, 

almost no one paid attention. For one of the later 

designed missions, another lesson learnt was to 

shock them a bit, with an extreme simplified (i.e. 

very easy to digest) content and presenting solely 

the maximum possible cost which had been 

assessed. 

Figure 8 shows the three slides that were 

presented as a first shot, before the joke was 

confessed and the actual presentation was given 

with all the assumptions and the approach. As a 

result, everyone was awake, paying attention and 

Figure 8: Set of concluding cost 
presentation slides at the end of a study, 

which raised attention before  
true content was shown 
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ultimately well understood how the numbers 

were identified, adjusted and how they could be 

compared with the other missions. 

Summary and Conclusion 

Concurrent Engineering is a very efficient 

approach, well suitable for early phase studies in 

the space domain. It reduces time, cost and risks 

while increasing quality and mutual 

understanding. However, it is not perfect and also 

has some dark sides as discussed in [17], 

depending on the implementation and 

application. 

The presented work discusses 13 problem areas 

and reasons why a cost estimate, which is 

performed in a CE environment, could go wrong. 

The focus was set on the DLR approach to 

Concurrent Engineering. 

As stated, many of these reasons are not 

exclusively limited to the cost domain or even CE, 

but also for early phase projects and 

collaborative efforts in general. They are also not 

self-standing but closely linked to each other, and 

the list is not exhaustive at all. 

Mutual influences 

As indicated within the previous subchapters, 

most of these reasons are linked, mutually 

influenced and even dependent on each other. 

Some are more CE-specific, some apply to the 

cost engineering process basically within all 

projects. Some are more DLR-specific, some 

relate to all similar processes. 

The mutual influences presented in Figure 9 are 

an attempt to highlight what are the most 

dominant reasons, which potentially could create 

or amplify other reasons why cost estimation in a 

CE study could go wrong. The more connections, 

the stronger might be the direct influence on 

other factors. However, this does not relate to the 

actual impact on the cost estimate but shall only 

indicate what should be kept in mind first in 

order to maintain full control over the cost 

estimate performed during a CE study. 

Figure 9: Mutual influences of discussed problem areas  
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Lessons learnt 

Derived from the discussions above, a set of 

lessons learnt is compiled in the following. It 

focused on four main categories, which are: 

Awareness, Preparation, Communication and 

Documentation. These categories are further 

broken down into twelve recommendations to 

fight against the 13 discussed problem areas.  

Awareness 

• Check who is involved 

• Understand potential problems, prioritize 

• Accept to make compromises, be flexible 

 

Preparation 

• Check all available data, tools, methods 

• Adjust, to be fast 

• Tailor, to be in-line with expectations 

 

Communication 

• Clarify and harmonize inconsistencies and 
assumptions 

• Explain what the estimator/analyst wants and 
can do 

• Educate how the estimate is done, and shake 
(or shock) the team if needed 

Documentation 

• Agree on what has been discussed and decided 
by consensus 

• Make transparent what the estimator/analyst 
assumes and is able to provide 

• Try to connect cost data to common data set/
model 

One promising approach to address several of the 

above-mentioned aspects is to use a top-level all-

in-one tool, such as the S-chart [18] used at NASA 

Jet Propulsion Laboratory for rapid, 

comprehensive mission architecting at Team-X. 

The aim is to provide a simultaneous view of all 

major mission considerations, such as the 

programmatic constraints, technical 

performances, capabilities and margins, science 

performances, high-level system descriptions and 

also cost. Such chart, or something along those 

lines, can be permanently displayed in the CE 

environment to keep everyone informed about 

the latest status. If it is already embedded within 

a central data model, this would be even better. 
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In Search of the Production Steady State:  

Mission Impossible?  

Patrick McCarthy, CCEA 

 

Abstract: Learning Curves are a vital tool for cost estimators when predicting the number of direct labor 

hours required for a production run. One challenge of utilizing learning curves is predicting when no 

additional improvement can be expected, otherwise known as the steady state of the production run. This 

paper will address the formal definition of a learning curve, the different types of learning that impact 

production systems and why the steady state plays such a critical role in cost estimates. The steady state 

concept, as well as its importance and impact will be explored. Interpretation of data and causes of the 

steady state, both genuine and artificial, will also be addressed. A sample estimate will be developed that 

utilizes historical data to identify an anticipated steady state and predict direct labor requirements for a new 

system. Lastly, the unique nature of Department of Defense (DoD) acquisition and its impact on production 

environments will help us determine whether the steady state truly exists or not.  

Introduction 

Learning curve theory is one of the most common 

cost estimating and analysis techniques. It is 

critical to estimating direct labor requirements 

and can have substantial impacts on costs that are 

derivatives of direct labor requirements, 

including facility/space requirements and 

support labor staffing. 

As long as learning curve theory has been used in 

cost estimating, a key question asked is: 

“Even though the mathematical model indicates 

that learning will continue indefinitely, is that 

really the case and, if not, when does the point 

where learning stops occur?” 

The state of the process when learning ceases, or 

is mathematically negligible from unit-to-unit, is 

called the steady state. It is critical that cost 

estimators understand how to analyze historical 

production data to determine when a system 

enters the steady state and utilizing that 

determination for estimating future system 

requirements. Not accounting for a steady state 

could result in underestimating direct labor 

requirements. Alternatively, predicting a steady 

state will occur too early could result in an 

overestimation of direct labor requirements. 

Before addressing these scenarios and answering 

the question as to whether the steady state even 

exists, a brief recap of learning curve theory is 

warranted. 

Learning Curve Theory Recap 

The universally agreed upon definition of 

learning curve theory is that it is a measure of 

efficiency gained by the act of repetition in a 

constant system over time. A critical component 

of this definition, and ultimately our search for 

the existence of a steady state is the phrase 

“constant system”. In manufacturing, learning 

curve analysis in its truest form entails tracking 

the rate of reduction with regards to resources 

required (e.g. labor hours) over a period of time 

with the following variables remaining the same 

throughout: 

• Production rate or throughput 

• The employees performing the work 

• The facility, tools and equipment used 

• The scope of work being performed (including 
the materials and sub-assemblies used) 

• Quality requirements 

• Safety Requirements 

• Labor Laws 
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Albeit with slightly different techniques, Wright1 

and Crawford2 both sought to capture this 

improvement mathematically by theorizing that 

as the quantity of items produced or tasks 

completed double there will be constant rate of 

reduction in terms of resources required. Their 

techniques reflect the mathematical 

representations presented below. 

 

Crawford’s Unit Improvement Curve Theory 

Y = aXb, where: 

Y = Cost of the Xth unit 

a = Theoretical cost (T1) of the first unit in the 

production run 

X = Sequential unit number of unit being 

calculated 

b = log2(LCS), a constant reflecting the rate of cost 

decrease from unit to unit 

LCS = Learning Curve Slope  

 

Wright’s Cumulative Average Curve Theory 

Y = aXb, where: 

Y = Cumulative average cost of X units 

a = Theoretical cost (T1) of the first unit in the 

production run 

X = Sequential unit number of unit being 

calculated 

b = log2(LCS), a constant reflecting the rate of cost 

decrease from unit to unit 

LCS = Learning Curve Slope 

 

Both theories address “learning” in terms of the 

reduction of resources required. However, Konz3 

points out that in production environments, there 

are actually two distinctly different types of 

learning that take place. This concept can have a 

substantial impact on how we utilize learning 

curve theory in the search of the steady state, so 

we address each learning type below. 

 

Individual Learning vs.  

Organizational Learning 

Konz defines individual learning as the 

improvement demonstrated by an individual 

worker or entire workforce while utilizing a 

“constant product design and constant tools and 

equipment”. In contrast, Konz defines 

organizational learning as the learning attributed 

to modifying the product design, tools and 

equipment. Individual learning clearly echoes our 

definition of learning in the previous section. 

However, and as discussed later in this paper, 

organizational learning must be considered in 

determining the existence and timing of the 

steady state in a specific production environment. 

 

Individual Learning 

Individual learning can be represented by two 

distinctly different scenarios: 

1. Suppose a manufacturer wins a U.S. Army 

contract that will require the company to 

build 1,000 units of a particular ground 

vehicle system. The manufacturer typically 

builds commercial items, so it is starting up a 

separate assembly line specifically for this 

weapon system that will have ten dedicated 

workstations. The manufacturer does not 

want to disrupt its commercial business, so it 

hires brand new staff and purchases all new 

tooling, machines and fixtures in order to 

deliver the Army vehicles. The Army has 

indicated that the delivery schedule is 

somewhat flexible, so the manufacturer 

decides that it will hire 100 workers who will 

start on the first day of the project and work 

in one, 8 hour shift per day to accomplish the 

work. As time passes and the workers 

become more experienced, improvement will 

be achieved in the number of hours required 
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to assemble and deliver each unit. As the 

delivery schedule will not be firm, 

improvement will also be achieved in the 

number of vehicles completed in a single day 

(i.e. the production rate will be variable as a 

function of individual learning). 

2. Konz provides another scenario that only 

involves a single person to help further 

demonstrate individual learning. Suppose a 

novice golfer decides to learn by playing one 

hundred rounds this year using only a driver, 

5-iron and putter. The golfer will play the 

exact same course at noon each day and use 

the exact same type of golf balls for each 

round. For the first round, the golfer takes 

135 strokes to complete the round. The 

second round, he takes 127 strokes. Over the 

course of the year he sees his stroke total 

starting to level out around 100, plus or 

minus a few strokes each round. 

In both scenarios, the environment and resources 

available to those performing the work remain 

constant. 

 

Organizational Learning 

Konz introduces the idea of organizational 

learning by defining it as improvement that 

results from “changing product design, changing 

tools and equipment, and changing work 

methods”. We again use the two scenarios from 

above to demonstrate organizational learning. 

1. Returning again to the new contract for 1,000 

Army vehicles, suppose that instead of hiring 

all 100 workers on the first day, the 

workforce increases ten employees at a time 

over the first several weeks. Also, assume that 

after completing the first 100 units, the 

tooling and equipment purchased to complete 

this effort is not optimal. Then new 

equipment to increase efficiency is purchased. 

In addition, after 500 units are completed and 

delivered, the Army notifies the manufacturer 

of some design changes that will be 

incorporated into the assembly in order to 

improve survivability. Each of these changes 

represent the potential for organizational 

learning to occur as it would be anticipated 

that these changes would impact the hours 

required to build the end item when 

compared to the system when production 

commenced.  

2. Konz introduces organizational learning in 

the golfer example by proposing that during 

the year, the golfer decides to add additional 

clubs to his bag (e.g. a 7 iron and sand 

wedge). The golfer may also decide to switch 

the brand of balls he is using and also move 

his tee time to 8:00 AM because he found it to 

be too hot playing at noon and he would 

become fatigued. 

In both scenarios, substantial changes were made 

to the “systems” while they were active which 

more than likely altered the performance of the 

system and, subsequently, the measurable output 

or results. This is a very important concept as you 

will recall that one of the major tenets of learning 

curve theory is that the system, and the 

parameters that define the system, remain 

constant.  

 

The Steady State Defined 

Now that we have revisited learning curve theory 

and explored the two different types of learning, 

we will focus on what the steady state should 

look like and how we can test whether the system 

has truly reached that state. Gagniuc4 provides a 

general definition of a steady state by stating that 

if the variables which define the behavior of the 

system are unchanging over time, the system has 

reached a steady state. In continuous time, this 

means that for those properties p of the system 

that we are interested in measuring or analyzing 

(e.g. performance), the partial derivative with 

respect to time (t) is zero and remains so:  

 

https://en.wikipedia.org/wiki/Continuous_time
https://en.wikipedia.org/wiki/Partial_derivative
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  = 0, 

for all present and future t. 

In discrete time, it means that the first difference 

of each property is zero and remains so:  

pt − pt−1 = 0, 

for all present and future t.  

The term steady state is used in several fields and 

can mean many different things to many different 

individuals, organizations and environments. We 

will attempt to define what a steady state means 

in a DoD production environment. In doing so, we 

will also consider examples in non-DoD 

environments in order to demonstrate how and 

why the steady state occurs in other walks of life.  

 

Production Steady State Causes 

While there are several variables and influences 

within production systems that could cause 

individual learning to level off, we consider three 

of the most common.  

 

1. Time/Repetition 

This is the most easily understood cause of the 

production steady state because we all 

experience this phenomenon in various aspects 

of our lives. For example, consider commuting to 

work. Given constant system parameters, we all 

eventually reach a best case commute time. 

Assuming we travel to work by car, our system 

parameters would be as follows: 

• Home and workplace location 

• Car functionality 

• Speed limits  

• Lack of construction 

• Stop signs/Traffic lights 

• Traffic patterns 

• Time of day 

Assuming these parameters are held constant, the 

learning we experience would come in the form 

of identifying the fastest route to take and the 

improvement is measured in the time it takes us 

to commute to work form day-to-day. Over time, 

the best route will be identified and the 

improvement will eventually cease.  

 

2. Achievement of Quality Thresholds 

Another steady state forcing function within 

production systems is the influence of quality 

control on the behavior of the system. Up to this 

point, our discussion has focused solely on the 

measurement and reduction of direct labor hours 

from unit-to-unit relative to a defined delivery 

schedule. However, the majority of projects are 

also concerned with the quality of the end-items 

being produced. Quality thresholds and standards 

can be a major forcing function. When they are 

not met, cost can increase and schedule can be 

delayed. Because of this, quality receives quite a 

bit of attention (and deservedly so). 

When production quality standards are not being 

met, the end-item is often “re-worked”. This 

additional work can either occur at the station 

where the work content being corrected initially 

occurred, or, there can be a station at the end of 

the assembly line where all rework is performed. 

Either way, additional hours are incurred and 

recorded for each unit that required rework. As 

learning and quality increase, the amount of 

rework decreases and hours required per unit 

tend to level off. If management sees that the 

quality standards are being met, less emphasis 

may be placed on the need to improve efficiency. 

 

3. Physical Space Limitations 

The third forcing function for reaching the steady 

state in a production environment is the 

limitation of physical space to complete the work. 

A production manager may decide that if each 

employee is responsible for completing less work 

content for each unit, they are likely to increase 

https://en.wikipedia.org/wiki/Discrete_time
https://en.wikipedia.org/wiki/First_difference
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their rate of individual learning and cost savings 

will be realized earlier in the production run. In 

addition, if there are more employees completing 

less work content per unit, throughput can be 

increased.  

However, there is certainly an upper bound to 

this strategy. For instance, management might 

consider analyzing a station on an assembly line 

that requires 20 hours of work content per unit 

that is currently being performed by 5 workers 

over an 8 hour work day and has a throughput of 

2 units per day. The manager might then say, if 

my 5 workers are each performing 4 hours of 

work content apiece per unit and I doubled my 

staff to 10, then I could have them each do 2 

hours of work content per unit and double my 

throughput for the 8 hour shift. This thought 

process could continue by adding staff and even 

having multiple shifts. However, the station might 

eventually get to a point where there is physically 

not enough room for workers to effectively 

maneuver and complete their processes without 

getting in each other’s way, effectively slowing 

the process back down. 

 

The Production Steady State Defined 

Hopp and Spearman5 address the concept of 

steady state in manufacturing, production or 

assembly environments using intriguing 

terminology. First and foremost, they define the 

steady state as just that – a concept. Secondly, 

they use the following, two part statement to 

define steady state that will be impactful to us as 

cost estimators: 

“For a system to be in steady state, the 

parameters of the system must never change 

and the system must have been operating long 

enough that the initial conditions no longer 

matter.” 

Production steady state is the point during a 

production run when the difference between the 

labor hours required from unit-to-unit is zero and 

remains unchanged until the end of the 

production run. It also means that at a certain 

point the starting parameters of the system no 

longer matter. Given the mathematical construct 

of Wright’s Cumulative Average theory and its 

reliance on all data points on the curve until it 

ends (1 through n), a steady state could never 

truly commence as the cumulative average would 

always rely on the behavior of the system when it 

began. Because of this, we will utilize the 

Crawford’s unit curve theory throughout the 

remainder of this paper.  

Now, anyone who has spent a substantial amount 

of time in production facilities with a low-to-

moderate production rate (a typical situation for 

DoD weapon systems) knows that finding a point 

where labor hour requirements remain exactly 

constant until the end of production is next to 

impossible. This impossibility exists not so much 

from individual learning ceasing and then 

starting again, but from the seemingly endless 

number of variables that can impact low-to-

moderate rate environments. Below we identify 

just a fraction of the issues that can occur at any 

point of a production run: 

• Facility/Equipment/Tooling Issues 

• Staffing Irregularities (sick, vacation, etc.) 

• Supplier Quality Defects 

Instead, we will modify the definition of 

production steady state to account for the unique 

nature of the defense production environment: 

“In weapon system production environments, 

the steady state commences at unit n when the 

probability of unit n+1’s hours being higher 

than those required for unit n are equal to the 

probability of unit n+1’s hours being lower than 

those required for unit n”.  

For this to be true, both of these probabilities 

would be 50%.  We define these as follows: 

Pn+1,h = Pn+1,l = 0.5, for: 

Pn+1,h = Probability of Unit n+1 requiring the same 

amount or more direct labor hours than unit n 
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Pn+1,l = Probability of Unit n+1 requiring same 

amount or less direct labor hours than unit n 

This definition is critical to us as estimators when 

attempting to identify and confirm the steady 

state. Below we look at a plot of direct labor hour 

requirements for a commercial ground vehicle 

program (Figure 1) to get a better idea of what a 

steady state typically looks like. 

Note how the curve begins to level off at unit 200, 

albeit with a reasonable amount of variation still 

occurring from unit-to-unit until we get out past 

unit 500. Figure 2 is presented to help us explain 

what is occurring between unit 200 and the point 

around unit 550 (it is actually unit 539) where 

the curve spikes back up.  

The plot seems to indicate that we are in steady 

state for these 338 data points. However, it is 

important to perform statistical analysis and 

testing to help confirm that observation.  

 

Statistical Analysis and Stationarity Testing 

Descriptive statistics for the data (Table 1) tell us 

that the mean of the 338 data points is 364.16 

hours per unit. However, we still see some 

variance within the data (albeit not much since 

the coefficient of variation is only 0.039), so we 

remain uncertain about this being the steady 

state. 

Figure 3 gives us a much better graphical 

representation of how the data is behaving for 

these 338 units, in revealing that the system 

appears to be behaving as a stationary process. A 

stationary process, or system, consists of time-

series data that does not have any upward or 

downward trend or seasonal effects, if applicable. 

Consequently, the statistical properties of the 

system, such as mean and variance, also do not 

change over time.  

 

Figure 1 

Figure 2 

Table 1 
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Before getting to a formal statistical test, we can 

also perform a quick sanity check of the data to 

see if it meets the definition of a stationary 

process as defined above. We can quickly check 

to see if metrics such as the mean and variance 

stay relatively constant by dividing the dataset 

into bins. In Table 2 we break the data up into ten 

(almost) equal sized bins and calculate the mean 

and variance for each sub-set of data. 

While the mean stays relatively constant, we do 

still notice a fair amount of change in the variance 

across the bins. So we turn to statistical testing to 

further support our observation that the system 

is stationary. One statistical test that can help us 

determine whether or not the system is 

stationary, and subsequently whether our 

production system is in steady state, is the Dickey

-Fuller test. The Dickey-Fuller test considers a 

stochastic process (yn): 

yn = fyn-1 + en, 

where |f| ≤ 1 and en is white noise. If |f| = 1, we 

have what is called a unit root. In particular, if f = 

1, we have a random walk (without drift), which 

is not stationary. In fact, if |f| = 1, the process is 

not stationary, while if |f| < 1, the process is 

stationary. We will not consider the case where 

|f| > 1 further since in this case the process is 

called explosive and increases over time. The null 

hypothesis for the Dickey-Fuller test is that a unit 

root is present in a time series sample. The more 

negative the Dickey-Fuller statistic is, the 

stronger the rejection of the hypothesis that there 

is a unit root and the system is stationary: 

Null Hypothesis (H0): If accepted, it suggests the 

time series has a unit root, meaning it is non-

stationary and has some time dependent 

structure. 

Alternative Hypothesis (H1): The null hypothesis 

is rejected; it suggests the time series does not 

have a unit root, meaning it is stationary. 

The first step in applying the Dickey-Fuller test is 

calculating the difference for consecutive data 

points (Dy = yn - yn-1). 

We can use the usual linear regression approach 

to calculate our Dickey Fuller statistic, except that 

when the null hypothesis holds, the t coefficient 

doesn’t follow a normal distribution and so we 

can’t use the usual t test, and subsequently, the t 

tables. Instead, this coefficient follows a tau 

distribution. Therefore, we are testing to 

determine whether the tau statistic τ (which is 

equivalent to the usual t statistic) is less than τcrit 

based on a table of critical tau statistics values 

shown in the Dickey-Fuller Table (Table 3). 

If the calculated tau value is less than the critical 

value in the table of critical values, then we have 

a significant result. Otherwise we accept the null 

hypothesis that there is a unit root and the time 

series is not stationary. 

 

Figure 3 

Table 2 
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We perform regression analysis on the following 

data set in Excel (Table 4) to determine the t 

statistic for our test: 

Dy = yn - yn-1, for n = 202-538 

From Table 4, we see that the t statistic for the 

coefficient is -18.1263. Comparing this with the 

tau critical values in Table 3, we can reject the 

null hypothesis and safely conclude with a high 

degree of confidence that the system is stationary 

and in steady state, beginning with unit 201. 

Before moving on, we end with a couple of notes: 

1. One parameter of the analogous system that 

was not explored was the production 

schedule and the rate that was needed to 

fulfill delivery requirements. For simplicity 

purposes, we assume that the analogous 

system had a comparable delivery schedule 

and rate. However, if the rate for the 

analogous system was substantially different 

than the future system, it may impact the 

suitability of utilizing the conclusion that the 

steady state starts at the 201st unit for future, 

similar systems. 

2. The high level of variance occurring within 

the system could be driven by something 

occurring on the assembly line that is driving 

the peaks and valleys. For instance, there 

could be one or multiple bottlenecks in the 

system that are causing disruptions and/or 

reassignment of resources to keep the line 

moving. Below we address how finding the 

steady state can help us in addressing issues 

such as this. 

 

Why Should We Care About the Production 

Steady State? 

In order to stress the importance of predicting 

when the steady state will occur on an estimate, 

we return to our example involving 1,000 Army 

vehicles. Based on analysis of production data for 

five commercial vehicles, we determine that the 

typical learning rate is approximately 85% and 

assume this slope for the new vehicle. The data 

for some of these vehicles indicates the steady 

state starts around 50 for some and 1000 for 

others. We decide to analyze how impactful the 

prediction of our steady state 

could be in increments 

between the units of 50 and 

1,000. For the purposes of 

exhibiting the significance, we 

assume a theoretical first unit 

value (T1) of 1,000 hours.  

We begin by plotting this curve 

for all 1,000 units with no 

steady state being reached 

(Figure 4). 

 

 

Table 3 

Table 4 
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The resulting total hours required for all 1,000 

units would be 215,978. We then decide to look 

at the other extreme – what if our system were to 

reach a steady state at the 50th unit as is true for 

at least one of our commercial items? We 

compare this curve with our curve from Figure 4 

in Figure 5: 

If we assume steady state begins at the 50th unit, 

our total hours required would increase to 

405,155. The gray shaded area in Figure 5 depicts 

this 57.1% increase. Table 5 provides the 

sensitivity of total hours to changes in the steady 

state starting unit. 

Clearly, when the steady state is estimated to 

begin can have a big impact on the direct labor 

estimate as a whole. If the learning curve slope is 

estimated to be lower (i.e. our curve is steeper), 

this impact becomes even more significant. 

In addition to impacting the amount of direct 

hours that are estimated, identifying when the 

learning curve will happen and at what the direct 

labor hours will be at that point can provide 

substantial benefits with regards to how we 

predict the system will behave. As Hopp and 

Spearman3 point out, analyzing a system in 

steady state, or one that we will assume to be in 

steady state, can help us in analyzing other key 

metrics of the system including cycle time, work 

in process (WIP), bottleneck rates and also help 

in optimizing the design and layout of the system. 

In addition, McCarthy6 introduced the concept of 

utilizing the steady state to enhance the analysis 

and increase the quality of estimates in 

integrated production environments (i.e. 

environments where two or more products with 

at least some common work content are being 

produced concurrently with the same resources). 

The concepts presented in that research utilized 

the identification of the point where the steady 

state commences to recognize commonality 

across all end items or any subsets of end items 

being produced in the integrated environment. 

The commonality identification and subsequent 

extraction of common work content enabled inter

-product learning curves to be developed and 

more accurately depict how learning would occur 

in the environment. By analyzing work content 

Figure 4 

Figure 5 

Table 5 
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from a static perspective, which is what the 

steady state provides, the direct labor 

requirements that were deemed to be duplicative 

for two or more end items could be extracted and 

analyzed for anticipated rates of learning 

separate from end-item unique work content.  

 

A Sample Estimate with the Steady State 

Now that we have established the importance of 

identifying the steady state, we return to the 

1,000 Army vehicles described in the sections 

above on individual and organizational learning. 

When defining individual learning, we held the 

number of employees constant and let their rate 

of learning dictate the delivery schedule. As this 

is almost never the case, we introduce the 

following monthly delivery schedule requested 

by the Army (Table 6). 

The delivery schedule indicates production 

ramps up to 50 units per month and stays there 

from months 7-22. As mentioned above, we will 

assume that the commercial item used to identify 

a steady state point of the 201st unit had a 

comparable schedule and rate. Before estimating 

direct labor hour requirements we must identify 

some more characteristics about our system, 

including: 

• Learning Curve Slope 

• Budgeted Work Standards 

 

Learning Curve Slope 

The learning curve slope for a production 

environment can easily be estimated by looking 

at actual data for an analogous system produced 

the same environment with more or less the 

same parameters (e.g. workforce, material, and 

tooling). We again return to the commercial 

system and, as shown in Figure 6, use the first 

200 units of our system (i.e., where it was clear 

learning was taking place) to identify a 

representative rate of learning: 

Fitting a power model trend line to the data 

results in an R2 value of 0.9276 and model 

equation of 1252.6x-0.235. For the purposes of 

predicting the rate at which we can expect future 

systems with comparable parameters to learn, we 

now know that our learning curve slope is 2-0.235, 

or, 85.0%. 

 

Budgeted Work Standards 

Developing budgeted work standards can be a 

very beneficial tool in managing a facility and 

help cost estimators predict future costs. The true 

definition of what a standard hour means varies 

Table 6 

Figure 6 
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by industry. Some industries set the standard to 

be “the lower bound” amount of time that an 

operation should take to complete. Others define 

the standard as the time an operation should take 

to complete, but operator’s performing at greater 

than 100% efficiency can perform it in less time. 

Either definition is acceptable, but must be 

consistently applied. Labor and time standards 

can be developed using a variety of methods: 

• Time and motion studies can be used to 
develop work standards by measuring how 
long it takes an operator to complete a 
specified task or series of tasks. The person 
performing the time study can then “rate” the 
operator in terms of the level of efficiency 
achieved. Multiplying these values and then 
normalizing for established personal fatigue 
and delay allowances provides us with the 
standard.  

• Industry established, pre-determined time 
measurements, such as Methods Time 
Measurement (MTM) or Maynard Operation 
Sequence Technique (MOST), break down 
work content into very specific, measurable 
motions that have specific times associated 
with them that are then adjusted for other 
parameters (e.g. weight lifted, degrees the 
body will turn during a movement). 

Regardless of how budgeted work standards are 

developed, they can often be re-used from system

-to-system based on commonality. However, it is 

critical that the standards be updated as 

production proceeds for the new system. For our 

commercial item in the section above, if our BWS 

for that system was 330.0 hours per unit and the 

mean hour requirement in steady state was 

364.16, we can infer that our steady state 

efficiency was 90.6%. For our new system, we 

have established a BWS of 258.75 total hours per 

unit for assembly, paint, test and delivery of the 

new system. Assuming the same steady state 

efficiency for the DoD environment means we 

will require 285.6 hours per unit. 

 

 

 

Developing the Estimate 

Based on the information we have gained from 

our commercial item data, we can now estimate 

our direct labor requirements for a system that 

we expect to reach steady state at the 201st unit 

and have a direct labor requirement of 285.6 

hours per unit from units 201-1,000. For units 1-

200, we assume learning will take place at a rate 

of 85.0%, culminating in the 201st unit requiring 

285.6 hours. We compute for our theoretical first 

unit hours as follows: 

285.6 = T1*201(ln(0.85)/ln(2)), 

T1 = 990.3 hours 

The resulting learning curve for predicting total 

direct labor hour requirements (302,543 total 

hours for 1,000 units) is shown in Figure 7. 

Beware of False Alarms: the Impact of 

Organizational Learning on the Steady State 

Recall from Figures 1 and 2 the large spike that 

occurred in labor requirements at unit 539 before 

returning to what appears to be another steady 

state unit after unit 550. The lead manufacturing 

engineer for that system indicated that a new 

machine was integrated into the assembly line 

that enabled increased throughput at one of the 

highly staffed stations. The same engineer 

explained that it took the staff a few days to learn 

how to operate the machine (hence the spike in 

Figure 7 
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hours), but thereafter 

less staff were needed 

at the station due to the 

new machine’s 

capability. This 

explains why the 

system was able to 

return to a steady state 

so quickly and why less 

hours were required. 

This is a perfect 

example of production 

data alerting us to 

explore the root cause 

of the data’s behavior. 

A lot of times, this alert 

is not so evident. 

As cost analysts and 

estimators, we are 

trained to collect, 

normalize and analyze 

data in helping us make 

sound decisions or 

develop reliable 

estimates. However, 

analysis of direct labor data can pose a unique 

challenge. Manufacturing and assembly facilities 

are complex, dynamic environments with many 

variables at play that can impact our data and 

potentially mislead or misinform us. These 

variables can lead us to believe that a production 

system or environment is behaving one way and 

that is truly not the case at all. Figure 8 depicts a 

system that appears to be in steady state. 

However, the individual learning that is still 

taking place is being offset by a series of changes 

impacting the system parameters, leaving the 

system in a unique state of equilibrium. 

Below we discuss several scenarios that can alter 

the parameters of our system and leave our 

system experiencing what amounts to a false 

alarm (i.e. believing that we are in steady state 

when we are not). The majority of the scenarios 

relate to what was defined as organizational 

learning earlier. Whether these scenarios occur 

by themselves or in 

conjunction with each 

other, they can have a 

substantial impact on 

what is occurring in a 

system and, more 

importantly, impact the 

data that is recorded 

for the system. 

 

1. Modifications to 

Scope 

Rarely, if ever, does the 

configuration of a 

particular weapon 

system remain the 

same during a 

production run, much 

less its lifecycle. As the 

needs of the user for 

the end item evolve, so 

too will the 

configuration of the end 

item and subsequently 

the scope and effort required to produce it. 

Depending on the modification, work content and 

the direct labor requirements can either increase 

or decrease. More often than not, the work 

content will increase due to something that has 

been learned about the performance, safety, 

reliability or maintainability of the system. 

 

2. Variable Production Rates 

The rate at which end items are built generally 

varies over a production run. Once a production 

contract is awarded, a manufacturer will typically 

start out with a Low Rate Initial Production 

(LRIP) phase to help the staff ease into the 

production process in order to track lessons 

learned and not overload the system with too 

much staff too early. As more staff become 

increasingly familiar with the work content they 

are responsible for, and as the production 

Figure 8 
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process becomes more defined, the amount of 

expected throughput will increase. In order to do 

this and meet delivery schedule requirements, 

the manufacturer will be required to add staff. So 

long as new staff is being added, there will be 

individual learning taking place. 

 

3. Business Base Additions/Subtractions 

As McCarthy4 addressed, when dealing with 

integrated production environments, parameter 

modifications to other systems could 

subsequently impact our system or end-item of 

interest. For example, it is not uncommon for a 

DoD system to be produced on the same line as 

other DoD systems or even commercial items that 

have common work content or operations. 

Variations in the delivery schedules, and 

subsequently rates, for other systems could then 

impact the performance of our system of interest 

by influencing the number of times an operator 

accomplishes a certain task where there is 

commonality. Additionally, if new systems/end-

items are introduced to the assembly line or even 

the facility, the impact could be felt by 

management reassigning members of our staff to 

the new program, either for experience or 

capability purposes, leaving our system 

parameters modified.  

 

4. New Technology 

As production runs evolve, we often learn quite a 

bit about our system. We learn which workers 

are most efficient, we learn how to re-order 

operations in order to enable higher efficiency/

maximize throughput and we also learn about 

alternative tools, equipment and technology that 

can improve our system’s performance. These 

upgrades could be the result of either new 

technology being developed during our run or 

perhaps the result of cost benefit analysis being 

performed during our run (i.e. an upgrade to a 

piece of machinery may initially require training 

and additional individual learning, but it will 

eventually double throughput through efficiency 

gains experienced by the employees or the 

capability of the machinery itself). Regardless of 

what inspires management to invest in new 

technology, the performance and subsequent 

output of operations impacted by that technology 

could experience significant variance in data 

reported. 

 

5. Attrition 

Organizations rarely, if ever, experience a 

production run with the exact same staff from 

start to finish. Team members get promoted, 

retire, rotate and leave the organization 

constantly throughout a production run. 

Depending on the size of the organization and 

resource requirements needed for a particular 

end-item, the impact of staff churn may be 

negligible, but it may also be quite significant. 

Simply put, for every person that leaves an 

organization, so does their individual learning. It 

is possible that an equivalent amount of learning 

that has been lost via attrition must be gained by 

a replacement. 

Another phenomenon that occurs in production 

organizations is bumping, a process used by 

companies to retain high-valued or longer 

tenured staff members when downsizing. 

Typically, the employee being retained “bumps” 

another employee from their position. Ironically, 

despite the seniority of the retained employee 

and their experience within the organization at 

large, their new assignment may require 

substantial individual learning. In some cases, the 

employee doing the bumping may be getting 

moved to a new role with which they have no 

familiarity. Small scale bumping likely does not 

have a large impact. However, mass bumping 

prompted by a variety of factors (e.g. other 

programs ending, contracts not being won) 

would likely have a substantial impact on the 

performance of a particular production run. 
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Potential Remedies 

As the last section demonstrated, organizational 

learning can (and will!) occur in DoD production 

environments. This begs the question - Is it 

reasonable to assume that individual learning 

will continue, unimpeded by various 

organizational learning impacts, long enough to 

reach a steady state? The short answer to this is 

yes, but not always. Delivery schedule and 

production rate is usually the best place to look 

for this answer. If a new system had a rate of 1.0 

unit per day, the chance of organizational 

learning impacting the system prior to the steady 

state being reached is much higher than for a rate 

of 20.0 units per day. To fully explore the 

reasonableness of a steady state being reached in 

a future system, analysis of how often and when 

various cases of organizational learning occurred 

in analogous systems should be performed. 

In order to accomplish this analysis, 

communication with key team members with 

direct experience in the analogous systems is 

critical. For instance, we could talk to the 

following organizations regarding the type of 

organizational learning listed: 

1. Human Resources: Attrition statistics, 

including labor category/level of expertise 

and dates that people left, as well as any 

bumping due to down-sizing. 

2. Industrial Engineering/Production 

Management: Production rate data, including 

staffing levels and efficiency reports relative 

to the BWS at particular times. 

3. Manufacturing Engineering: New technology 

and modifications to scope. As manufacturing 

engineers typically develop and update work 

instructions, they represent the most reliable 

resources in terms of identifying when scope 

and/or technology took place. 

4. Program Management: Business base 

changes. Plant management will be aware of 

all programs occurring at a particular facility 

and to what extent resources were shared 

between systems. 

Conclusions & Recommendations 

Throughout this paper, we have explored several 

facets of the learning and improvement that 

occur in production environments. We have also 

identified the significance of the impact that 

comes from estimating when a system will enter 

into steady state as well as the criticality of 

predicting the steady state will occur too early or 

not at all. Unfortunately, the volatility that occurs 

within and around the system parameters for 

DoD production environments makes the 

likelihood of a system remaining in such a state 

for an extended period highly unlikely. Moreover, 

even though we know that parameters are going 

to change, it will still be next to impossible to 

predict when those parameters will change and 

what the subsequent impact on the system will 

be. 

Despite these challenges, all estimators are 

strongly advised to study the behavior of 

analogous systems and attempt to identify when 

a steady state will occur for a particular 

production environment. Simply assuming that 

organizational learning will continuously impact 

individual learning and negate the presence of a 

steady state can lead to direct labor hours being 

drastically underestimated. 

Our analysis of the commercial system in Figure 1 

led us to a three step approach for identifying 

whether a system is in steady state: 

1. Analyze a visual display of the data 

2. Divide the data into bins and check for low 

variance in system parameters across bins 

3. Statistical Testing (i.e. Dickey-Fuller Test) 

In analyzing the analogous systems, we must 

stress the importance of not solely relying on 

production data to determine how future systems 

will perform. Only by performing root-cause 

analysis on key system parameters in conjunction 

with the data analysis will we be able to 

distinguish system improvement caused by 

individual learning from improvement driven by  
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organizational learning. As discussed, a system 

operating under a constant set of parameters will 

eventually reach a steady state as a result of 

individual learning due to either time/repetition, 

quality thresholds, facility constraints or any 

combination of these forcing functions.  

In order to identify when steady states have 

commenced in analogous systems, it is critical to 

account for modifications to system parameters 

whenever feasible. As cost estimators, it is 

imperative that we conduct the necessary 

research and go beyond just data collection and 

analysis in doing so. By digging deeper into these 

parameters, we gain an enhanced understanding 

of how the manufacturing system is behaving, 

what causes it to behave that way and how that 

behavior impacts the data. This additional 

research is what can help us take a good 

manufacturing cost estimate and turn it into a 

great one. 
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Introduction 

Background 

A dummy variable is used to capture a 

characteristic that is not directly quantifiable, but 

exerts an important influence on the behavior of 

the dependent variable. For example, the cost of 

high-power amplifiers may vary because some 

are airborne while others are ground based. For 

another example, data may be collected by 

different analysts, or arise from different 

factories. In such a case, a continuous scale 

cannot be assigned to the qualitative variable 

“analyst” or “factory.” In other words, within a 

class of items there may be an attribute that 

explains the separate effects on the response. 

These effects can be captured in a regression 

model by the use of a dummy variable. The 

dummy variable is simply another variable in the 

regression except that it can only take on discrete 

values. In the case of amplifiers that are either 

airborne or ground based, the values of the 

dummy variable would only take on one of two 

values: a zero for airborne amplifiers and a one 

for ground-based amplifiers or vice versa. 

 

Purpose 

The objectives of this paper are threefold. 1) 

Explain the purpose of using dummy variables 

and their properties in a regression equation. 2) 

Identify several common mistakes when using 

dummy variables in an equation. 3) Describe the 

Chow test and dummy variable t-test, which are 

used to validate the application of dummy 

variables. Some general cautionary notes are also 

recommended. These objectives are illustrated in 

several examples.  

Before specifying dummy variables in a 

regression equation, a brief review of additive 

and multiplicative error models is provided. 

 

Additive Error Model 

An additive error model can be stated as follows: 

(1) 

where: 

yi = the observed dependent variable of the 

ith data point, i = 1 to n 
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f (xi, β)  = fi   = the value of the hypothesized 

equation at the ith data vector 

    xi = the ith data vector of the independent 

variables 

    β = the vector of unknown parameters to 

be estimated by the regression equation 

    ℰi = the error term with a mean of 0 and a 

variance σ2 (assumed to be independent 

of the explanatory variables)  

    n = the sample size 

 

Multiplicative Error Model 

A multiplicative error term is preferred in the 

cost analysis field because the error of an 

individual cost observation is generally 

proportional to the magnitude of the hypothetical 

function. A multiplicative error model can be 

specified as follows: 

  

  (2) 

 

The definitions of yi, f (xi, β), etc. are the same as 

given in Equation 1. Unlike the additive error 

model (Equation 1), the standard deviation of the 

dependent variable (e.g., cost) in Equation 2 is 

proportional to the size of the hypothetical 

function rather than some fixed amount across 

the entire data range.  

There are three popular methods to fit 

multiplicative error models: Log-Error, Minimum

-Unbiased-Percentage-Error (MUPE) and 

Minimum-Percentage Error Regression under 

Zero-Percentage Bias (ZMPE) methods. Both 

MUPE and ZMPE methods model the CER where 

the multiplicative error term e is assumed to have 

a mean of one and a variance s2. The MUPE 

method is an Iteratively Reweighted Least 

Squares (IRLS) regression technique (Hu, 2001; 

Seber & Wild, 1989; Weisberg 1985; Wedderburn 

1974). For a detailed explanation of the ZMPE 

method, see Book and Lao (1999). 

Log-Error Model. If the multiplicative error term 

(i) in Equation 2 is assumed to follow a log-

normal distribution with a mean of zero and a 

variance of 2 in log space, then the error can be 

measured by the following: 

      (3) 

 

where ln is the natural logarithm function. In this 

situation, the objective is to minimize the sum of 

squared ℰis (i.e., ((ln(ei))2). If the transformed 

function is linear in log space, then ordinary least 

squares (OLS) can be applied in log space to 

derive a solution for β. In this situation, the CER is 

termed a log space OLS equation (LOLS) or a log-

linear CER. If not, a non-linear regression 

technique should be applied to derive a solution.  

 

Model Form with a Single Dummy Variable 

Linear Model 

Consider a linear model using one ordinary 

independent variable X and one dummy variable 

D:  

  

          (4) 

 

where: 

D = 1 if observation ni is from category #1 

D = 0 if observation ni is from category #2 

α, β, δ, θ = coefficients to be estimated by the 

regression equation 

Equation 4 is equivalent to fitting two separate 

linear equations to the two categories. This 

specification allows regression of both categories 

simultaneously. The estimated coefficients 

derived by this regression model (Equation 4) 

will be precisely the same as when the two 

equations are fitted separately. If all the 

coefficients in Equation 4 are significant at a 

certain significance level (say 5%), then this 

implies that the two populations (with and 
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without the attribute D) behave totally different 

and they should be estimated by two separate 

regression equations. 

If a regression analysis indicates the coefficient θ 

is insignificant, then a reduced model can be 

considered: 

          (5) 

 

Equation 5 is the usual form when applying a 

dummy variable. It indicates that these two 

populations exhibit only a difference in the 

response level, but share the same sensitivity 

(rate of change) for the independent variable X. 

If coefficient δ is insignificant in Equation 4, a 

reduced model is given by: 

  (6) 

 

Equation 6 indicates that two populations have 

different sensitivity reactions to the relative 

change in the independent variable X, but share 

the same fixed cost, which would not be of great 

interest to us. In other words, if θ is significantly 

different from zero in Equation 4, then the two 

populations are statistically different and should 

be analyzed separately. 

 

Log-Linear Model 

The respective log-linear equation form using one 

ordinary independent variable X and one dummy 

variable D is given by: 

  

            (7) 

 

Similarly, if a regression analysis indicates the 

coefficient θ is insignificant, then a reduced 

model can be considered: 

                  (8) 

 

Similar to Equation 5, Equation 8 is the usual 

form of applying a dummy variable for log-linear 

models. It indicates that these two populations 

exhibit a difference in response levels only. They 

share the same sensitivity in the exponent for the 

independent variable X.  

However, if the coefficient λ is found to be 

insignificant in Equation 7 (i.e., δ is not 

significantly different from one), a reduced model 

is then given by: 

              (9) 

 

Equation 9 indicates that the two populations 

have a different sensitivity reaction towards the 

relative change in the independent variable X, but 

share the same cost at unit one. Just like Equation 

6, Equation 9 is also not of great interest to us. 

Similar to Equation 4, if θ is significantly different 

from zero in Equation 9, then the two populations 

are statistically different and should be analyzed 

separately. 

 

Model Form with Multiple Dummy Variables 

The method of Equation 4, as well as Equation 7, 

can be extended to include more than one 

dummy variable in the equations. First, ensure 

the dummy variables are not linearly related 

among themselves; otherwise, it will result in a 

singular design matrix. Handle m different 

responses levels by introducing (m-1) dummy 

variables. Create the basic allocation pattern for 

m dummy variables by writing down an (m-1) x 

(m-1) identity matrix, Im-1, and then adding a row 

of (m-1) zeros as a comparison baseline: 

 

 

 

 

See Draper and Smith (1981) for details. 

Note that the dummy variable’s representation is 

not unique. There are different ways of choosing 

dummy variables for a given regression situation.  

(10) 
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(11) 

One common mistake when specifying m 

different levels is specifying the relative distance 

between the levels using a discrete variable, e.g., 

D = 1, 2, …, m, rather than letting the regression 

equation estimate the separations. The following 

example demonstrates this common error. 

Consider three stratification dummy variables to 

identify different guidance mechanisms in missile 

programs: 

 
Listed below is a basic representation using the 

above-defined dummy variables: 

 

However, the following representation is not the 

same as the representation given above: 

 

 

 

 

Equation 12, which is a common practice for 

applying dummy variables, does not let the 

regression equation freely estimate the true level 

of the response from the category D3 = 1 (both 

active radar and MC guidance). It simply assumes 

the level of D3 is the product of the levels of D1 

and D2. It is difficult to evaluate the validity of 

using dummy variables in Equation 12 and the fit 

statistics could be misleadingly significant. See 

McDowell (2012) for illustrative examples of 

using two dummy variables. 

 

In summary, the representation of dummy 

variables should: 

• account for different levels of responses 

• use the regression equation (rather than an 
assumption) to derive the different levels of 
response (compare Equation 11 with  
Equation 12) 

• make sure the design matrix is not singular 

 

Chow Test and Dummy Variable t-Test 

Although most analysts are familiar with the F-

test, the Chow test is not as well-known. The 

Chow test is used for testing the significance of 

the overall model that includes dummy variables. 

The F-test and the related F-Statistic are 

introduced before explaining the Chow test. 

 

F Test for the Overall Model  

Consider a linear model with an intercept where 

the dependent variable Y can be estimated by k 

independent variables; namely, X1, X2, ..., Xk: 

 
 

for i = 1, 2, …, n 

This model can be written using matrix notation: 

                 (13) 

where: 

Y is the n by 1 vector of observations (i.e., the 

dependent variable), 

X is the n by (k+1) design matrix, which consists 

of the independent variables, 

β is the (k+1) by 1 vector of unknown 

coefficients, i.e., β = (β0, β0, …, βk)t 

ℰ is the n-by-1 vector of error terms with a 

variance matrix, Var(ℰ) = V[σ2],  

V is an n-by-n diagonal matrix with the non-

negative value vi in the diagonals (for i = 1, …, n) 

and zeros elsewhere,  

(12) 
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[σ2] is used to denote a diagonal matrix where its 

diagonal element is σ2, and 

n is the sample size. 

Note that the matrix V is assumed to be an 

identity matrix I for OLS. The discussion in this 

paper can be applied to weighted least squares 

(WLS). OLS is used to demonstrate the use of 

dummy variables. 

The F-Statistic (F-Stat) is used in a hypothesis 

test to determine whether the overall regression 

model is significant. It is defined as the ratio of 

the regression sum of squares to the error sum of 

squares adjusted by their own degrees of 

freedom (DF) in the fit space: 

   

         (14) 

 

where SSR is the sum of squares due to 

regression, SSE is the error sum of squares, and k 

is the total number of independent variables, not 

including the intercept. MSR is the mean squares 

due to regression, while MSE is the mean squares 

due to error. 

To check the significance of the overall model, the 

null hypothesis (Ho) is tested against the 

alternative hypothesis (Ha): 

         vs.  

for at least one slope parameter 

Using the vector notations, it is given by: 

Ho: β = 0    vs.   Ha: β ≠ 0  

where not including the 

intercept. 

If Ho is true, the two statistics SSR and SSE are 

independent and the F-Stat follows an F 

distribution with k and n-k-1 DF, respectively, i.e., 

F-Stat ~ F(k, n-k-1). Intuitively, if the model is 

adequate (i.e., Ho can be rejected), then SSE will 

be small and F-Stat will be large. Therefore, if the 

F-Stat is greater than or equal to Fα(k, n-k-1), it is 

concluded that there is a significant relationship 

between the dependent variable and independent 

variables at a (100α)% significance level. Note 

that Fα(k, n-k-1) denotes the upper (100α)% cut-

off point of an F distribution with k and n-k-1 DF, 

respectively. For a no-intercept model, compare 

the F-Stat with Fα(k, n-k) instead of Fα(k, n-k-1). 

The decision rules are summarized below. 

Reject Ho: 

Model with Intercept: if F-Stat ≥ Fα(k, n-k-1) 

Model wo Intercept: if F-Stat ≥ Fα (k, n-k) 

Alternatively, the p-value for the F-Stat can be 

used to test the null hypothesis Ho versus Hα: 

Reject Ho: 

if p-value for the F-Stat ≤ α (the significance level 

of the test) 

 

Chow Test (F Test) for the Overall Model 

Given a simple linear model Y = Xβ + ℰ (see 

Equation 13), if there are two groups, (A) and (B), 

in which the parameters are not necessarily the 

same, the linear model can be rewritten as 

follows: 

Now test the null hypothesis (Ho) against the 

alternative hypothesis (Ha):  

Ho: θ = γ  vs.  Ha: θ ≠ γ 

If the null hypothesis Ho is false, then analyze two 

regression equations separately as given in 

Equation 15. Their error sums of squares are 

denoted by SSE1 and SSE2 for Group (A) and 

Group (B), respectively. The “unrestricted” sum 

of squares due to error (USSE) for Equation 15 is 

then given by: 

                (16) 

 

Let p denotes the total number of estimated 

parameters (coefficients) in the equation. If there 

(15) 
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are n1 observations in Group (A) and n2 

observations in Group (B), then the total number 

of observations is n = n1 + n2 and USSE has (n1 – 

p) + (n2 – p) = (n –2p) DF.  

But if the null hypothesis Ho is true, use a single 

equation (i.e., Equation 13) to model all the data 

points. In this case, the SSE for Equation 13 is 

termed the “restricted” sum of squares due to 

error (RSSE), which has (n – p) DF. Intuitively, if 

the null hypothesis is true, there should not be 

any significant difference between USSE and 

RSSE. Consequently, an F statistic for the Chow 

test is formulated below: 

  

if Ho is true.  

 

           (17) 

The decision rule is as follows:  

if FChowTest < Fα (p, n – 2p), then there is no sample 
evidence to reject the null hypothesis. On the 
other hand, if FChowTest ≥ Fα (p, n – 2p), then it is 
concluded that Groups (A) and (B) respond 
differently to the relative change in the 
independent variable X at a (100α)% significance 
level. Note that p = k + 1 if there is an intercept in 
the model; otherwise, p = k, where k stands for 
the number of independent variables. 

 

Dummy Variable t-Test, Individual Parameters 

A dummy variable t-test is used for testing the 

significance of individual parameters. Here is an 

alternative approach to test the following model: 

                 (18) 

 

where the dummy variable D is given by: 

 

 

 

The hypothesis Ho: θ = γ for Equation 15 is the 

same as the hypothesis Ho: δ = 0 for Equation 18. 

Since both tests lead to the same conclusion, use 

either Equation 15 or Equation 18 to test the 

validity of pooling data from various categories to 

analyze them together. However, the Chow test 

(an F-test) is used for testing the significance of 

the overall model. If the Chow test result is 

significant, it does not indicate which parameters 

between the two groups are significantly 

different. The dummy variable t-test can further 

examine which specific parameters in both 

groups are statistically different. As a result, the 

dummy variable t-test (e.g., Equation 18) 

provides more detailed information than the 

Chow test. 

If there are m different groups in the data set, use 

the F-stat given by Equation 17 to test the null 

hypothesis with the following: 

 

 

 

DF for USSE = n – m(k+1) 

DF for RSSE = n – (k+1) 

where ni is the sample size and SSEi is the error 

sum of squares for each group, respectively  

(i = 1, …, m). Based upon Equations 17 and 19, an 

F test statistic for the Chow test is derived 

accordingly. 

The alternative approach (t-test) can also be 

applied to test m different groups in a given data 

set by including (m – 1) dummy variables. The 

process is a generalization of Equation 18. See the  

example section below for using dummy variable 

t-test in a CER. 

 

General Cautions and Statistical Tests When 

Using Dummy Variables 

Some general guidelines and cautionary notes to 

consider before adding dummy variables to an 

equation are provided in this section. 

 

Analyze individual groups first.  

Examine whether different categories (or groups) 

should be analyzed by separate regression 

equations before pooling them together using 

(19) 
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dummy variables. Specifically, analyze separate 

regression equations (by Equation 4 or 7) before 

choosing a parallel relationship (e.g., Equation 5). 

 

At least three data points for each category  

If there are only one or two data points left in a 

particular category (indicated by a dummy 

variable, D), the t-statistic associated with the 

dummy variable D tends to be artificially large 

and hence misleading. The general rule is to have 

at least three data points in a particular category 

before using a dummy variable.  

 

Do not use many dummy variables to answer 

yes/no questions 

If there are five categories in the data set, an 

analyst can create four (4 = 5 – 1) dummy 

variables to capture the five categories (see 

Equation 10). However, if a CER contains four 

dummy variables to answer yes/no questions 

about the data points, there are actually 16 

possible combinations of the four yes/no answers 

(24 = 16). In other words, it creates 16 different 

categories in the CER. The number of categories 

can grow rapidly as the number of yes/no 

questions grows. For example, five dummy 

variables create 32 (=25) categories in a CER; six 

dummy variables create 64 (=26) categories, etc. 

Analysts should make sure that they have enough 

observations for the respective regression 

analysis. 

 

Do not single out specific program.  

Dummy variables should not be abused. There 

can be a temptation to use several dummy 

variables to account for various aspects of a class 

of systems to the point where there are no (or 

few) degrees of freedom left in the overall 

regression equation. If a dummy variable is used 

to capture a single data point in a different level, 

the regression result is the same as when that point 

is left out. Hence, a category of one point is the 

same as eliminating the point. The general rule is 

to do data plotting and data analyses before using 

dummy variables.  

 

Examine if all groups have the same variance  

The last caution is to ensure that data associated 

with a particular attribute act no differently from 

those without it. In other words, the noise term 

associated with the dependent variable (i.e., cost) 

should be the same for all items with or without 

the attributes. F and χ2 tests can be used for 

testing the equality of the variances of different 

categories. 

If there is only one dummy variable hypothesized 

in the model, then a simple F-test comparing the 

mean squared errors (MSE) of these two separate 

regression lines will be adequate 

Test Ho: σ1 = σ2 vs. Ha: σ1 ≠ σ2 

Test Stat:  
 

Decision Rule:  

Reject Ho if                (20) 

where Fα(df1, df2) indicates the upper (100α)% 

cut-off point of an F distribution with DF df1 and 

df2, respectively, while df1 and df2 are the DF 

associated with the corresponding MSE. 

If several dummy variables are used in a 

regression model, a joint hypothesis of the 

equality of several variances should be considered 

in addition to the simple F-test (Mood et al., 

1974). Dummy variable analysis will be valid 

when these tests are insignificant. 

 

Demonstration of Dummy Variables in a 

Spline 

In mathematics, a spline is a numeric function 

that is piecewise-defined by functions such as 

polynomials (see Wikipedia). In many practical 

situations, dummy variables can be used to 

account for two distinct trends occurring in the 

response data, i.e., segmented lines and splines. 
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The application of splines 

can be classified into two 

categories: (1) it is known 

which data points lie on 

which trends and (2) it is 

not known. This paper only 

addresses category (1). 

 

It is known which data 

points lie on which trends  

If data points (x1, y1), (x2, 

y2), ..., and (xm, ym) are in 

one straight line, while data 

points (xm+1, ym+1), ..., and (xn, yn) are in another, 

discuss two subcases: (1a) the intersection of 

these two lines is a given number between xm and 

xm+1, say xo, and (1b) the intersection of the two 

lines is not known and the regression is used to 

estimate the intersection. 

(1a) The intersection of the two lines is at x0 

(x m < x0 < xm +1). In this case, set up two dummy 

variables Z1 and Z2 to take account of the 

specifications (see Table 1). 

Consider the following equation: 

           (21) 

 

The regressed estimates should have the 

following properties: 

 = intercept of line 1 

  = slope of line 1 

  = slope of line 2 

(1b) The intersection of the two lines is 

somewhere between xm and xm +1. In this case, a 

third dummy variable D (in addition to Z1 and Z2) 

is created to take care of the unknown point of 

intersection (see Table 2). 

Given a regression line as follows: 

                (22) 

The estimated parameters will have the following 

interpretations: 

 = intercept of line 1 (same as above) 

 = slope of line 1 (same as above) 

 = slope of line 2 (same as above) 

 = the vertical distance between line 1 

and line 2 at the (m+1)th observation 

Table 1: Dummy Variables Z1 and Z2 for Spline (Case 1a) 

Graph 1: Intersection of two lines is at x0 where xm < x0 < xm+1 (Case 1a) 
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The point of intersection can be found by writing 

both lines in terms of the Z1 scale. The first fitted 

line is given by: 

          (23) 

The second fitted line is given by: 

     (24) 

Since Z2 = 0 when Z1 = xm+1,  

substitute Z2 = Z1 – xm+1 into Equation (24): 

          (25) 

The intersection of the x-axis is then derived 

using both Equations 23 and 25: 

                 (26) 

 

For more information about splines, see Ahlberg 

et al. (1967); Bacon & Watts (1971); Beckman & 

Cook (1979); Bellman & Roth (1969); Ertel & 

Fowlkes (1976); Greville (1969). 

 

Example Section 

Two sample data sets are used in this section. 

Several examples are derived using these two 

data sets to demonstrate some common errors 

when applying dummy variables in CER 

development. For illustration purposes, all CERs 

are generated by the LOLS method so the test 

results can be easily verified in Excel. 

 

Rocket Propulsion CER 

The database is given in Appendix A. Below is a 

log-linear CER to predict the cumulative average 

cost for a solid rocket motor: 

           (27) 

where: 

CAC(Q) = cumulative average unit cost of Q units, 

FY17$K, no fee 

NWlbs = weight of nozzles and thrust vector 

control hardware 

NNZ = number of nozzles 

D1, D2 = stratification dummy variables for 

motor case material, where 

Note that Equation 27 is fit in log space. Equation 

27 can be interpreted as a cost improvement 

curve (CIC) under the disjoint theory. It can also 

be viewed as a rate curve using the production 

quantity as the surrogate for rate. The cost 

improvement (CI) slope (or the rate slope) for 

Equation 27 is 87.6% (i.e., 2-0.19), which is very 

significant (see the regression output below for 

details).  

Since there are three levels of the motor case 

material, two dummy variables (D1 and D2) are 

adequate to account for the different levels of 

Table 2: Dummy Variables Z1, Z2 and D for Spline (Case 1b) 
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response. As shown by Equation 27, a solid 

rocket motor made of glass at a given 

specification (quantity, nozzle weight, number of 

nozzles) costs 26% more than a rocket motor 

made of steel at the same specification. Similarly, 

a rocket motor made of Kevlar on the average 

costs 109% more than a rocket motor made of 

steel. Analysts should verify whether these 

factors are reasonable by engineer’s logic. If the 

regressed coefficients are nonsensical, the fitted 

equation cannot be accepted regardless of the 

statistical measures. 

 

Regression Output. Detailed regression outputs 

for the fit measures, along with the summary 

predictive measures, are given in Table 3. 

Based upon the fit measures, all the regressed 

coefficients are significant at the 5% significance 

level (all the p-values are less than 0.05). This 

equation does not have the problem of 

multicollinearity; no outliers are identified in the 

report. This CER appears to be a very solid 

equation.  

 

 

However, there is a downside of using dummy 

variables in this CER. If the data points are 

analyzed separately by their individual material 

types, the motors made of steel have very little 

cost improvement (CI) with quantity. Their CI 

slope is 97% (3% decrease in cost each time the  

quantity doubles). The motors made of glass have 

a moderate CI, with a slope of 93%. Most of the CI 

is, in fact, coming from the five motors made of 

Kevlar and their CI slope is at 61%. This finding 

demands further investigation (61% slope is 

rather unusual). Note: this example is simply 

used to point out the danger of combining 

different categories by using dummy variables 

without first analyzing their separate regression 

equations. 

 

Receiver CER 

This hypothetical CER is 

derived from a suite-level 

Unmanned Space Vehicle 

Cost Model, Ninth Edition 

(USCM9) database (Nguyen 

et al., 2010), but sanitized 

to retain the desired 

behaviors while protecting 

the source of the data. (See 

Appendix B for the “fake” 

data set.) 

 

 

 

 
Table 3: Fit Measures for Equation 27 

Table 4: Summary of Predictive Measures for Equation 27 
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Listed below is a suite-level recurring CER for 

receivers using two dummy variables: 

             (28) 

where: 

T1 = first unit cost 

X = receiver suite weight in pounds 

EHF = a dummy variable to indicate if the 

receiver is operating at Ka-band (EHF) or 

higher 

Gov = 1 for government programs, 0 for 

commercial programs  

At first glance, this CER appears to be a solid 

equation since it is derived by 51 data points with 

a standard error (SE) in log space of 33%. All the 

regressed coefficients are significant and the 

factors for the two dummy variables are also 

reasonable. Additionally, its Adjusted R2 is 84% 

(evaluated in log space), while the Pearson’s 

correlation coefficient between the actual and the 

predicted value is 0.87 (evaluated in unit space).  

As shown by Appendix B, however, there are four 

categories in this data set: Gov = 1, EHF = 1; Gov = 

1, EHF = 0; Gov = 0, EHF = 1; Gov = 0, EHF = 0. Be 

sure to use three (not two) dummy variables to 

identify these four categories. Furthermore, four 

different CERs are given below when analyzing 

them by their individual categories: 

Gov = 1, EHF = 1: 

T1 = 608.93X0.660 

(n = 9; SE = 0.28; R2Adj =0.89)        (29) 

Gov = 0, EHF = 1: 

T1 = 245.3X0.678    

(n =11; SE =0.15; R2Adj =0.84)        (30) 

Gov = 1, EHF = 0: 

T1 = 69.43X0.938  

(n =13; SE =0.33; R2Adj =0.90)        (31) 

Gov = 0, EHF = 0: 

T1 = 35.77X0.944 

(n =18; SE =0.32; R2Adj =0.55)        (32) 

According to the above equations, there seem to 

be two different levels of the weight exponent for 

these four categories: one is at 0.67, versus the 

other at around 0.94. (The weight exponent 0.83 

in Equation 28 behaves like an average of these 

weight exponents.) In fact, the dummy variable t-

test shows these two weight exponents to be 

significantly different. Consequently, this data set 

should be grouped by the EHF dummy variable: 

one group for EHF = 0; the other for EHF = 1. In 

each group, the Gov dummy variable is significant 

and the CER meets the requirement of using a 

dummy variable by the t-test. 

EHF = 1: 

T1 = 271.2X0.6634 2.206Gov 

(n = 20; SE = 0.21; R2Adj = 0.88)        (33) 

EHF = 0: 

T1 = 36.98 X0.9389 1.869Gov 

(n = 31; SE = 0.32; R2Adj = 0.88)        (34) 

 

Chow test and Dummy Variable t-test. This 

receiver data set is used to demonstrate how to 

use the Chow test and dummy variable t-test. 

Listed below are the USSE numbers and sample 

sizes for the two unrestricted CERs, Equations 29 

and 30: 

Gov = 1, EHF = 1 (Equation 29): 

USSE1 = 0.5395; n1 = 9         (35) 

Gov = 0, EHF = 1 (Equation 30):  

USSE2 = 0.1953; n2 = 11         (36) 

If Equations 29 and 30 are combined into a 

restricted model, Equation 37 is derived: 

EHF = 1: 

T1 = 1642.54X0.4275 

(RSSE = 2.5145, R2Adj = 0.61)        (37) 

Equation 38 is derived when using the Gov 

dummy variable to combine Equations 29 and 30 

into one CER: 

EHF = 1: 

T1 = 271.16X0.663 2.206Gov 

(RSSE = 0.7355, R2Adj = 0.88)         (38) 
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The test statistic for the Chow test is then given 

by: 

 

Since the test statistic FChowTest is greater than  

F0.01 (2, 16) = 6.23 , it is concluded that there is a 

significant difference between the government 

and commercial programs at the 1% level. 

However, the Chow test (an F-test) does not 

indicate which parameters (slope, scale, or both) 

are significantly different between these two 

groups.  

On the other hand, the dummy variable t-test can 

be used to further examine whether some specific 

parameters (coefficients) in both groups are 

statistically different. Given below is a full model 

using the dummy variable on both the scale and 

exponent coefficients: 

EHF = 1: 

T1 = 245.3X0.678X)-0.018Gov 2.482Gov       (40) 

Based upon the dummy variable t-test, the 

exponent -0.018 (which captures the weight 

difference between the government and 

commercial programs) is not significant because 

its t-ratio is only -0.12.  

Since no significant difference is found between 

the weight exponents of these two groups, use 

the Gov dummy variable to combine Equations 29 

and 30 into one equation (i.e., Equation 38). Note 

that the Coefficient 2.206 in Equation 38 is 

significant. 

Similarly, for the government programs (Gov = 1), 

it can be shown that both the exponent and scale 

parameters associated with the EHF variable are 

significant using the dummy variable t-test (as 

their p-values are less than 0.05): 

Gov = 1: 

T1 = 69.43X0.938 X-0.278EHF 8.77EHF       (41) 

 

Consequently, the two groups, EHF = 1 and EHF = 

0, should be analyzed separately; namely, they 

should not be pooled together using a dummy 

variable. 

 

Conclusions 

Analysts should consider general guidelines 

before adding dummy variables to an equation. 

The main purpose of using dummy variables is to 

conserve DF for small sample analysis. However, 

the full model hypothesis should be tested before 

using the reduced model. Besides checking the fit 

measures of the regressed coefficients, analysts 

should run appropriate tests first to determine 

the relevance of applying dummy variables to 

their equations. Listed below are a few basic rules 

for using dummy variables in CER development:  

1. Analyze individual groups first. Examine 

whether different groups (or categories) should 

be analyzed by separate regression equations 

before pooling them together using dummy 

variables. To be more specific, analyze separate 

regression equations (e.g., Equations 4 and 7) 

before choosing a reduced model (e.g., Equations 

5 and 8). 

2. Use Chow test and dummy variable t-test to 

determine whether a reduced model is 

appropriate. 

3. Use (m-1) dummy variables to specify m 

different groups. In addition, do not specify the 

relative distance between the group levels using a 

discrete variable, e.g., D = 1, 2,…, m. Instead, let 

the regression equation estimate the separations. 

4. Use the rule of three points. If there are only 

one or two data points left in a particular 

category (indicated by a dummy variable, D), the t

-statistic on the slope or exponent coefficient of 

the dummy variable D tends to be artificially 

large and hence misleading. The general rule is to 

have at least three data points in a particular 

category before using a dummy variable.  

(39) 
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Appendix A: Solid Rocket Motor Data Set 

5. Do not single out a specific program. It can be 

tempting to use several dummy variables to 

account for various aspects of a class of systems 

to the point where there are no (or few) degrees 

of freedom left in the overall regression equation. 

If a dummy variable is used to capture a single 

data point at a different level, the regression 

result is the same as when that point is left out.  

6. Check whether all groups have the same 

variance to ensure that data associated with a 

particular attribute act no differently from those 

without it. In other words, the noise term 

associated with the dependent variable (i.e., cost) 

should be the same for all items with or without 

the attributes. F and χ2 tests can be used to check 

the equality of the noise band (i.e., variance) of 

the dependent variable (Mood et al., 1974). 

 

7. Select dummy variables by engineer’s logic. 

Dummy variables based upon sound logic and 

solid technical grounds are more likely to have 

merit. For example, the dummy variables chosen 

in USCM9, such as "communication mission" (yes 

or no), "agency type" (1 = government program, 0 

= commercial program), etc. are based upon 

engineer's logic, so they have practical meaning. 

Selecting dummy variables by engineer’s 

judgement is as important as the statistical 

considerations in CER development. 

Finally, dummy variables can be used to find the 

intersection between two lines (splines). This can 

be a useful application in cost improvement curve 

(CIC) analysis. For example, in a CIC data set, if 

the first few data points appear to follow one CIC 

slope, while the remainder follows another CIC 

slope, use dummy variables to model the two 

distinct trends.  

Data Point CAC$K  Quantity Nozzle Weight Number of Nozzles D1 D2 

Obs 1  1,411.7  2,249  948.0 4 0 0 

Obs 2  951.7  925  390.0 4 0 0 

Obs 3  1,025.4  1,324  350.0 4 0 1 

Obs 4  670.7  1,547  169.0 4 0 1 

Obs 5  520.0  698  227.0 1 0 1 

Obs 6  1,241.8  350  604.0 4 0 0 

Obs 7  1,077.5  350  309.0 4 0 1 

Obs 8  1,802.6  667  1,440.0 4 0 1 

Obs 9  901.9  667  172.0 4 0 1 

Obs 10  993.6  547  761.0 1 0 1 

Obs 11  957.4  547  424.0 1 0 1 

Obs 12  4,248.1  71  1,535.0 1 1 0 

Obs 13  5,084.4  103  1,485.0 2 1 0 

Obs 14  3,693.8  71  479.0 2 1 0 

Obs 15  635.6  85  176.0 1 0 1 

Obs 16  209.4  524  92.5 1 0 0 

Obs 17  286.2  546  114.0 1 0 0 

Obs 18  733.7  184  157.2 1 1 0 

Obs 19  603.0  184  151.0 1 1 0 

Obs 20  734.1  1500 520.0 2 0 0 

Obs 21 1,112.5 1230 750.0 3 0 0 

Obs 22 536.6 1680 256.0 2 0 0 



89 Journal of Cost Analysis and Parametrics: Volume 10, Issue 1. October 2021 

Using Dummy Variables in CER Development  Dr. Shu Ping Hu, Alfred Smith 

Appendix B: Receiver Data Set 

Observation T1 X (Weight) EHF Gov 

Obs 1         6,600.21             254.37  0 1 

Obs 2         1,424.00               28.26  0 1 

Obs 3      25,364.46             782.09  0 0 

Obs 4      28,902.57             685.42  0 0 

Obs 5      11,084.69             737.25  0 0 

Obs 6      17,456.22             628.53  0 0 

Obs 7      18,174.66             791.46  0 0 

Obs 8      24,701.53             358.18  0 1 

Obs 9         5,320.50             122.18  0 1 

Obs 10         7,826.23             204.68  0 1 

Obs 11         2,764.87               43.69  0 1 

Obs 12      45,021.55          1,184.43  0 0 

Obs 13      19,083.38             652.19  0 0 

Obs 14         8,172.09               39.39  1 1 

Obs 15      57,801.60             621.18  1 1 

Obs 16         1,957.13               29.80  0 1 

Obs 17      23,130.17             359.39  0 1 

Obs 18      18,262.27             345.47  0 1 

Obs 19      26,415.75             348.59  0 1 

Obs 20         7,993.50             120.96  0 1 

Obs 21      16,727.47             791.46  0 0 

Obs 22      63,784.22          2,410.84  0 0 

Obs 23         9,289.77             654.11  0 0 

Obs 24      25,737.49          1,162.01  0 0 

Obs 25      17,697.46          1,067.34  0 0 

Obs 26      15,631.43             934.49  0 0 

Obs 27         2,251.56               49.04  0 1 

Obs 28      20,497.51             637.93  0 1 

Obs 29      22,645.97             888.16  0 0 

Obs 30      25,812.86             920.00  0 0 

Obs 31      16,975.38             533.64  1 0 

Obs 32      36,001.45          1,676.22  1 0 

Obs 33      21,145.31             618.80  1 0 

Obs 34         7,677.11               38.36  1 1 

Obs 35      12,051.18             359.50  0 0 

Obs 36      15,607.81             737.75  0 0 

Obs 37      11,138.75             209.80  1 1 

Obs 38      38,767.66             548.44  1 1 

Obs 39      41,176.09             566.80  1 1 

Obs 40      11,228.76               93.08  1 1 

Obs 41      33,248.99          1,228.50  1 0 

Obs 42      28,903.69          1,035.00  0 0 

Obs 43      20,381.97             957.30  1 0 

Obs 44      50,546.40          2,539.59  1 0 

Obs 45      27,160.39             713.67  1 0 

Obs 46      13,891.36             522.49  1 0 

Obs 47      20,687.47             680.32  1 0 

Obs 48      18,438.14             173.89  1 1 

Obs 49      51,652.59             752.67  1 1 

Obs 50      20,834.76             752.22  1 0 

Obs 51      22,756.41             678.87  1 0 
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Improvements on the Development of  

Correlated Input Variables for Monte Carlo Simulation 

Douglas Henke 

 

Abstract: In this paper, the development of model inputs with specified correlation is explored. Input 

variable correlation is an influential driver of final cost risk distributions; especially so for highly positively 

or negatively correlated inputs. If not captured appropriately between inputs, significant errors in resultant 

cost risk distribution will occur. In general, the further away from a 50% confidence level cost value, the 

greater the error will be when input data does not reflect accurate correlation. The widely adopted Iman-

Conover (IC) Method for inducing desired rank correlation on a multivariate input for modeling by Monte 

Carlo simulation is reviewed. The IC method culminates in the re-ordering of the values of each input vector 

such that the resultant correlation of the vectors is close to the desired correlation. This paper provides 

insights into how the IC Method, devised as a method for inducing a desired rank correlation, can be equally 

if not more powerful for inducing desired Pearson product-moment (linear) correlation on inputs. 

Spearman’s rank correlation and linear correlation values that result from the IC Method are compared to 

the desired correlation values ranging from -1 to 1. Insights into the mechanics of the algorithm are 

presented in order to provide a richer understanding of the process and to inform aspects of work when the 

algorithm is employed. Extending this IC method to an iterative process described in this paper shows that 

the resulting set of variates would more accurately reflect the desired correlation in all cases for the 

calculated linear correlation. Conversely, for highly skewed distributions, the iteration process resulted in 

increasing the error of the calculated Spearman’s rank correlation. The iteration process is explained with 

examples to illustrate improved linear correlation accuracy for both symmetric and highly skewed 

distributions. 

Most cost risk and statistical software platforms 

on the market today permit the user to define the 

distribution type of each input variable as well as 

the correlation between these variables. Common 

forms of quantifying correlation include Pearson 

product-moment (linear) correlation and 

Spearman’s rank correlation. Using linear 

correlation with input variables that have outlier 

or clustered data; or have unusual forms of 

distribution may not appropriately quantify the 

relationship between variables (Tamhane, 2000). 

For those input relationships that are not 

monotonic or which depart significantly from a 

linear relationship, Spearman’s rank correlation 

metric may be the more appropriate measure. 

Accurately quantifying the correlation of input 

variables of the phenomenon, stochastic process 

or estimate being modeled is a well-recognized 

and necessary element of increasing the accuracy 

and realism of resultant risk distributions and 

cost estimating results. Inaccurate correlation 

values exacerbate cost risk distribution errors 

that are further away from 50% confidence level. 

In the simplest terms, the final cost risk variance 

is inflated or contracted with inaccurate input 

correlation. It is important to note that the IC 

method culminates in the reordering of the 

original set of input variates based on the rank 

order of a resultant linear transformation they 

undergo. This linear transformation is based on 

the desired correlation matrix of the inputs; 

which may be defined as either linear or rank 

correlation. In either case, the efficacy of the IC 

method is considered in this paper by how close 

the resultant linear and rank correlation is to the 

specified desired correlation. The ability to 
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perform this work independent of embedded 

software features can be useful; as well as 

beneficial to understanding any limitations of the 

process that apply in practice. 

Richard L. Iman and W. J. Conover published a 

paper in 1982 entitled A Distribution-Free 

Approach to Inducing Rank Correlation Among 

Input Variables. Consider, for example, M input 

vectors to represent M variables in a cost model. 

Each of the M vectors contain N values for a 

model run to be performed with N iterations. 

Assume the correlation between all M input 

vectors is known. Iman and Conover devised a 

powerful and effective methodology that 

culminates in the reordering of values of all but 

the first input vectors such that the resulting 

correlation of these reordered vectors is very 

close to the desired correlation. Once reordered, 

these vectors are then used as appropriate inputs. 

The following summarizes the steps of the IC 

Method. Of note, Stephan J. Mildenhall provides 

an expanded treatment of the IC Method in his 

paper, Correlation and Aggregate Loss 

Distributions With An Emphasis On The Iman-

Conover Method presented in 2005. 

Assume a model requires M input variables; each 

with N values for a model run of N iterations. Let 

[A] represent the set (or matrix) of input 

variables of size N (rows) by M (columns). For 

illustrating the IC method, the distribution type of 

each input is not significant. In this paper, the 

inverse of the cumulative distribution function of 

each input variable is known. This is used to 

determine the elements of each input vector as 

van der Waerden scores where the ith element of 

the jth variable in [A] is initially determined as 

follows. 

 

The desired correlation matrix must be positive 

semi-definite to enable a tractable 

decomposition. Define the desired input vector 

correlation matrix as [S]. It is of dimension M by 

M. Zero-mean and scale each of the input vectors 

such that the variance is 1. This transforms [A] to 

what is now defined as [X]. At this point, each 

vector is ordered from lowest to highest rank by 

virtue of their derivation as van der Waerden 

scores. The IC method requires linear 

independence of the input vectors. To invoke this 

linear independence, randomly permute each of 

the input vectors. This is not necessary for the 

first vector as it is unaffected by the IC method. 

Now define a new matrix [E] as the covariance of 

[X]. 

 

Since the vectors of [X] have zero mean and 

variance of 1, [E] represents the linear 

correlation matrix of [X] and should have low 

absolute values off-diagonal due to the prior 

random permutation of the vectors that induced 

linear independence. The next step is to apply a 

Cholesky Decomposition to [E]. 

 

[F] is an upper triangular matrix and represents 

the square root of [E]. As a square symmetric 

matrix, [E] can be transformed to [L][D][L]T 

where [L][D(.5)] is the lower triangular matrix of 

the decomposition and equals [F]T. Cholesky 

decomposition would fail with any of the 

diagonals of [D] less than zero (i.e. Not positive 

semi-definite). A significant facet of this 

decomposition can be shown as follows: 

 

 

 

This shows that pre-multiplying the covariance 

matrix of [X] by the inverse of the [F]T and post-

multiplying by the inverse of [F] give the identity 

matrix. 
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To incorporate the desired correlation, a similar 

Cholesky decomposition is performed on the 

desired correlation matrix [S] where 

 

Now consider inserting the identity matrix 

between the two [C] matrices without effect. 

 

It was shown above that pre and post multiplying 

[X]T[X]/N by the inverses of the Cholesky 

decomposition of [X] results in the identity 

matrix, [I]. Replacing [I] in the equation above 

with that identity gives the following. 

 

This shows us that multiplying the randomly 

permuted starting vectors of [X] by [F]-1[C] 

results in a set of vectors with a calculated linear 

correlation that exactly matches the desired 

correlation, [S]. 

For convenience, the new transform matrix [T] is 

defined as follows. 

 and define , 

then 

 

However, since each vector (column) of [X’] is a 

linear combination of the vectors of [X], the 

original distributions are no longer preserved. 

That is, the desired correlation is achieved, but no 

longer with the original values that comprised 

the vectors of [X]. It is noteworthy that the 

variance of each vector of [X’] is 1 since the 

covariance of the [X’] matrix is [S]. 

At this point, Iman and Conover capitalize on the 

connected relationship between Spearman’s 

Rank correlation and linear correlation where the 

rank correlation is the linear correlation of the 

ranks of the values that comprise the vectors. As 

the next step in the IC method, the elements of 

each of the variates of [X] are reordered to have 

the same rank ordering of the corresponding 

vectors of [X’]. This generally results in a 

correlation of the re-ordered vectors that is close 

to the desired correlation prescribed in [S]. Since 

these data were zero-meaned and rescaled to 

have a variance of 1 for the IC method, one needs 

to simply reverse the process to regain the 

original distribution that is now re-ordered for 

the desired correlation. 

By way of example, consider a matrix [A] that 

contains three input vectors of 30 elements each 

(not shown). Each are sampled as van der 

Waerden scores from a normal distribution with 

zero mean and are normalized to have a variance 

of 1. With a zero mean and variance of 1, [A] 

becomes [X], and is of dimension 30 X 3. In this 

case, each input vector of [X] is identically 

distributed. 

The second and third vector are randomly 

permuted so that columns of [X] are linearly 

independent. Once accomplished, determine the 

linear correlation matrix of [X], defined as [E].  

The upper Cholesky decomposition of this 

correlation matrix, [E], and its inverse are as 

follows. 
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A positive-definite desired correlation matrix, [S], 

is developed for this example and its upper 

Cholesky decomposition are shown as follows. 

We now have the information to produce the 

transform matrix [T] where [T] = [F]-1[C]. 

The next step is to multiply [X] by [T]; resulting in 

[X’]. The resulting covariance matrix of [X’] (1/N * 

[X’]T[X’]) now equates to [S] precisely.  

As discussed before, [X’] is a linear combination 

of the vectors of [X] and all but the first vectors of 

[X’] now have a different distribution than that of 

the [X] vectors. Per the IC method, each vector of 

[X] is reordered to have the same rank order as 

the corresponding vector of [X’]. 

The following shows the Resultant linear and 

Spearman’s rank correlation matrices based on 

the reordered vectors of [X]: 

 

 

 

The resultant rank correlation of [X’], and by 

process, the rank correlation of the reordered 

vectors of [X] are close to, but do not match the 

desired correlation, [S], precisely. Similarly, the 

linear correlation of the reordered elements of 

[X] is close to, but does not match [S] precisely. As 

will be seen, larger values of N, which are 

typically employed in practice, result in much 

closer alignment with the desired correlation 

matrix. 

 

Exploring the IC Method 

In the following, the IC method is applied to two-

vector input matrices (i.e. two input variables) of 

various sizes (N). This facilitates a more tractable 

analysis and the concepts apply to M dimensional 

input matrices. The difference between the 

desired correlation as prescribed in [S] and 

resultant correlation (both linear and rank 

correlation) from the reordered elements of [X] 

will be considered; as well as means to reduce 

this difference. 

A 4 X 2 input matrix is considered first. From a 

Euclidean space construct, [X] spans 4 

dimensions (N) and is of rank 2 (M=2); provided 

the vectors are linearly independent. There are 4 

factorial (4! or 24) different permutations of the 

second vector that is reordered in the process. 

When the values of each input vector are viewed 

as coordinates, each of the permutations of the 

second vector occupies a discrete point in N-

dimensional space and each also has its own 
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correlation value with the first vector. In this case 

of input vectors, the first is derived from a normal 

distribution and second is a skewed distribution. 

There are 24 unique linear correlation values and 

11 unique rank correlation values with the first 

vector from all possible permutations of the 

second vector. These permutations represent a 

constellation, as it were, of 24 discrete points at a 

Euclidean distance of the square root of N from 

the origin due to a variance of 1. 

Consider a randomly permuted second vector of 

[X] and the notion that the IC method can be 

applied for any desired correlation value between 

the vectors of [X]. Recall that [X’] = [X][T] gives 

the exact desired correlation, but no longer 

possesses the original distribution of values. 

There is a continuum of the second vectors of [X’] 

associated with each value within the range of 

desired correlation values from -1 to 1 since. The 

second vector of [X’] is a linear combination of 

the two vectors of [X] as determined by [T]. This 

continuum of [X’] spans a plane (or arc) of the 

continuous N dimensional space subtended by 

the vectors of [X]. This subspace is referred to 

herein as the [X] subspace. In the last step of the 

IC method, the re-ordered second vector of [X] 

becomes one of the 24 possible permutations 

(and one of the 24 possible linear correlations) 

that is near the [X] subspace because the re-

ordering is based on the rank of the second 

vector of [X’]. This does not allow for a 

permutation that may result in a correlation 

value closer to the desired correlation but is in a 

region away from the arc of the [X] subspace. 

Accordingly, the initial random permutation of 

the vectors of [X] pre-determine the [X] subspace 

and possible resultant correlation values.  

Similar to the vectors of [X] and [X’], consider 

now all other possible points in the continuum of 

N dimensional space that are a distance from the 

origin of square root of N and whose mean is 

zero. This continuous collection of points is 

comprised of bounded and connected regions of 

all possible coordinate rank orders. Since there 

are N factorial possible permutations of a vector 

(or set of coordinates) of dimension N, there are 

N factorial regions whose coordinates have the 

same rank order. Each of these regions is referred 

to as a rank order region. Each rank order 

region is defined by the rank order of the values 

in the vector that map to that region. For 

example, where N = 4, the vector comprised of 

the following values in the order shown is 1423, 

{-0.780, 1.724, -0.575, -0.439}. Provided that all 

values are unique in a vector of [X], each 

permutation resides as a discrete point within 

each of these regions. The IC method determines 

in which regions the re-ordered vectors of [X] 

reside by virtue of the rank order of vectors in 

[X’].  

To illustrate these concepts, principal component 

analysis was employed for the dimensional 

reduction of all possible permutations of the 

input vector that spans 4 (N) dimensional space. 

The points were mapped to 3 dimensions and are 

shown below from a perspective angle with the 

background walls and floors aligning with the 

Cartesian coordinates. There was no loss of 

information in the dimensional reduction 

because each vector has a mean of zero and 

variance of 1. Hence, each vector represented as 

point in 3-D space is equidistant from the origin. 

Further, all possible vectors of N equals 4, of zero 

mean and variance of 1 occupy the surface of a 

sphere of radius 2 in this 3-D space. In general, all 

possible real numbered vectors of dimension N 

with zero mean and constant variance will 

occupy an N-2 dimensional subspace. 

Figure 1 below is a graphic that shows the 

boundaries of all 24 rank order regions. Figure 2 

shows only the front facing rank order regions for 

illustrative purposes. The points shown represent 

permutations of a single vector. In this example, 

the vector is {-0.710, -0.575, -0.439, 1.724}. Of 

note, these permutations derived from a skewed 

distribution are located near a corner of each 

region. Each of the 24 permutations occupies one 

point in each of the rank order regions. 
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Figure 3 is a plot of four different vectors of N = 4 

with rank order 1234. Figure 4 shows where each 

of these map to a point in the rank order region 

1234. It is then shown where each of these map 

to a point in the rank order region 1234. Of note: 

the point in the center is the geometric center of 

the corners of the rank order region. It was 

determined that the four values of the vector 

associated with this point are very close to those 

values derived as van der Waerden scores from a 

normal distribution. 

Using the construct developed above, the 

following is a graphical illustration of the IC 

method starting with [X] comprised of 2 vectors 

of N = 4. The first vector is derived from van der 

Waerden scores from a normal distribution and 

the second vector, as shown above, is comprised 

of {-0.439, 1.724, -0.575, -0.780} with starting 

rank order 3421. The desired correlation is -

0.2225. The linear correlation of the starting 

vectors of [X] is -0.326; reflecting an absolute 

error from desired correlation of .103.  

Figure 1 

Figure 3 Figure 4 

Figure 2 
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• The blue vector emanating from the center 

represents the first vector in [X]. As a vector 

derived from van der Waerden scores from a 

normal distribution, this point is in the center 

of the region with rank order 1234. 

• The second vector of [X] is represented as the 

lower of the two red vectors. It occupies the 

lower left rank order region shown of rank 

order 3421. 

• The green curve is the locus of all points 

mapped from the second vector of [X’] through 

correlation values ranging from -1 to 1. Recall 

that [X’] = [X][T] in the IC method where the 

second vector of [X’] is a linear combination of 

the vectors of [X]. This is the [X] subspace. 

• The yellow marker is the point on the locus of 

points that satisfies the desired correlation 

value of -0.2225 exactly. This solution of the 

second vector of [X’] is {-0.607, 1.732, -0.546, -

0.578} and is of rank order 1432. This point 

lies in a different rank order region than the 

second vector of [X]. 

• In the IC method, the second vector of [X] is 

then reordered to have that same rank order 

as the second vector [X’]. This is depicted as 

the upper of the two red vectors and is merely 

the permutation of the second vector of [X] 

with the new desired rank order. 

• The resultant correlation of the reordered 

second vector of [X] with the first vector is -

0.175; an absolute error from desired 

correlation of 0.048. 

• The following shows a clearer view of the 

region of interest. 

[X] Subspace 

To demonstrate the constraint of the reordered 

second vector or [X] to points near the [X] 

subspace, the IC method was performed on the 

4x2 input matrix over a range of desired 

correlation values from -1 to 1 in increments 

of .00125 (1/800). The first and second vectors of 

[X] applied here are the same as those used in the 

above illustration of the IC method. Now, define 

the resultant correlation error as the difference 

between the resultant correlation value and the 

desired correlation value (input to the [S] 

correlation matrix). The following graphs show 

both the resultant correlation and the resultant 

correlation error for both linear and Spearman’s 

rank correlation measures. 

Figure 5 

Figure 6 
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With only 4 values in each vector, a large error 

across much of the correlation range from -1 to 1 

would not be unexpected. However, more 

noteworthy as it relates to the [X] subspace 

constraint is that of the possible 24 linear and 11 

rank correlation values associated with all 

possible permutations of the second vector, there 

were only 7 distinct correlation values that 

resulted from the desired correlation values 

evaluated between -1 and 1. 

 

Correlation with N = 10, 30, 100 and 1000 

Resultant linear and rank correlation were 

evaluated in four other cases where M=2 and the 

number of values in each vector was 10, 30, 100 

and 1000. As before, the desired correlation 

ranged from -1 to 1 by .00125. These starting 

vectors were also derived as van der Waerden 

scores from a normal distribution. The starting 

vectors of [X] remained the same through the 

range of desired correlation values. The following 

shows the resultant correlation and resultant 

correlation error for N = 100. The results from 

Figure 8 

Figure 7 
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the other cases are available as supplemental 

material for this paper. 

Observations: 

• In the case of N = 10, there are 45 distinct 

resultant correlation values that are derived 

by the IC method. This is based on the same 

second vector in [X] for all desired 

correlations between -1 and 1 (evaluated at 

increments of 1/800). There are 10 factorial 

(3.63 million) possible permutations of the 

second vector of [X]. Each has a linear 

correlation value with the first vector. In this 

case, there are hundreds of thousands of 

unique linear correlation values associated 

with the 3.63 million different permutations of 

the second vector; yet only 45 resultant 

correlation values are revealed across the 

range of correlations evaluated with the IC 

method in this example; emphasizing the 

resultant correlation’s constraint to the [X] 

subspace. 

Figure 9 

Figure 10 
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• A global error is defined as the root mean 

square of each of the 801 error values for the 

linear and rank resultant correlation. The 

following table shows those results. The linear 

correlation global error is less than rank 

correlation global error for each case of N. 

Heuristically, the notion that there are more 

possible linear correlation values associated 

with all possible permutations than there are 

rank correlation values would support a lower 

global error with linear correlation. Notably 

the ratio of global errors (i.e. Rank divided by 

linear global error) increases significantly 

with N. 

Improvement over the [X] Subspace 

Constraint. 

For a given desired correlation, the reordered 

vectors of [X] can be considered to subtend a new 

[X] subspace and may be used as the starting 

point for another iteration. Recall [T] transforms 

the vectors of [X] into a set of vectors, [X’], which 

have the exact linear correlation prescribed in the 

desired correlation matrix [S]. Re-ordering the 

vectors of [X] based on the rank order of the 

vectors of [X’] is equivalent to selecting the 

permutations of the vectors of [X] that have the 

closest possible alignment to the vectors of [X’]. 

That is, the closest possible alignment to a set of 

vectors whose correlation is exactly [S] (“closest 

possible alignment” implies maximum inner 

product of the vector of [X’] and the 

corresponding re-ordered vector of [X]). 

Conversely, any permutation of a particular [X] 

vector that does not lie in the rank order region 

of the corresponding [X’] vector would be less 

aligned (lower inner product) with the [X’] 

vector; resulting in linear correlation values 

further from the desired correlation. 

Consider an input matrix of N X 2. After 

performing the IC method, the reordered second 

vector of [X] resides in a rank order region that 

results in a correlation value close to that 

prescribed in [S]. With a new [X] subspace 

defined by the reordered second vector of [X], the  

IC method is applied once more. Two alternatives 

may occur: 

• The rank order of the resulting second vector 

of [X’] remains unchanged and so there would 

be no change to the rank ordering of the 

second vector of [X]; or, 

• Based on the new [X] subspace, the rank order 

of the second vector of [X’] changes. The first 

iteration resulted in a good solution. However, 

since the second vector of [X] no longer has 

the same rank order of the recalculated 

second vector of [X’], it is less correlated with 

the revised exact solution second vector of 

[X’]. Once reordered, it becomes better 

correlated with the second vector of [X’]. As a 

result, the revised permutation of the second 

vector in [X] has a resultant linear correlation 

value even closer to the desired correlation. 

Any other permutation (particularly the 

previous one) would be less linearly 

correlated with the second vector of the 

revised [X’]. Hence, the iteration results in a 

reduction in resultant linear correlation error. 

For NX2 input matrices, iteration until 

convergence always yields resultant linear 

correlation values closer to desired with each 

iteration (when more than one iteration is 

necessary for convergence). However, it was 

found that for input matrices of N X M, M>2, 

improvements with each iteration for each 

resultant correlation matrix value does not 

always hold. It will be shown that iterating until 

convergence reflects improvements for resultant 

linear correlation; but not necessarily for 

resultant rank correlation. 

The iterative process is described as follows; 

where the subscript denotes the iteration 

number: 

 

Table 1 
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[X1][T1] = [X1’], [X1] is re-ordered based on the 

ranks of [X1’] and becomes [X2]. 

[T2] is recalculated from [X2] and [S]. 

[X2][T2] = [X2’], . [X2] is re-ordered based on the 

ranks of [X2’] and becomes [X3]. If there is no 

change in resultant correlation of the vectors of 

[X3], stop. Otherwise… 

[Ti] is recalculated based on [Xi] and [S]. 

 [Xi][Ti] = [Xi’], [Xi] is re-ordered based on the 

ranks of [Xi’] and becomes [Xi+1]. Continue 

iterating until there is no change in resultant 

correlation of the vectors. 

To illustrate this notion, the previous example 

illustrated in figure 5 serves as the starting point 

for this iterative process.  

Referring to figure 11 , the blue vector emanating 

from the center represents the first vector of [X] 

and its point lies in rank order region 1234. The 

second vector of [X1] is the represented as the 

lower of the 3 red vectors and is mapped to a 

point in rank order region 3421. The green arc 

represents the linear combinations of the first 

and second vectors of [X1] as determined by [T] 

through the range of desired correlation values 

from -1 to 1. The desired correlation remains -

.2225. 

The figure 12 provides a closer view of the area of 

interest. 

• The correlation between the starting vectors 

of [X1] is -0.326; yielding a absolute 

correlation error of 0.103. 

• The far right yellow marker represents second 

vector of [X’1] whose correlation with the first 

vector is exactly -0.2225. 

• The second vector of [X’1] lies in a different 

rank order region (1432). Thus the second 

vector of [X] is reordered to have the same 

rank order. This solution is depicted by the 

upper three red vectors, [X2]. The correlation 

of the vectors of [X2] is -0.175; yielding an 

improved absolute resultant correlation error 

of 0.048 

• Once again, [X2] is used to calculate [X’2] 

where the correlation between the first vector 

of [X] and [X’2] is exactly -.2225. In this case, 

the second vector of [X’2] has a rank order of 

2431; different than that of the second vector 

of [X2]. 

• Thus, the second vector of [X] is reordered to 

that of the second vector of [X’2]. This is 

depicted as [X3]. The resultant correlation 

with this iteration is -.2663; yielding an 

absolute resultant correlation error of 0.0438; 

lower than the previous iteration error. 

Figure 11 

Figure 12 
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• Another iteration 

yields [X’3]; whose 

second vector’s rank 

order remains 

unchanged. 

• Hence the final 

solution after 

iteration, [X3], 

represents the 

optimal solution for 

linear correlation. 

Importantly, this is 

predicated on the 

starting vectors of 

[X1] where possible 

solutions are 

confined to this 

subspace. However 

with iteration, 

regions beyond the 

initial [X] subspace 

may be encountered 

as was the case in this 

highly simplified, but 

wholly 

representative 

instance. 

 

Correlation with N = 

10, 30, 100 and 1000 

and Iterating 

Similar to before, 

resultant correlation and resultant correlation 

error was evaluated for desired correlation 

values ranging from -1 to 1 in increments 

of .00125. This now includes results of the 

iteration process described above for the same 

four cases of N=10, 30, 100, 1000. Each case used 

the same starting [X] to equitably compare the 

single iteration IC method to the iterative 

process. The following shows the resultant 

correlation error and number of iterations to 

convergence for N = 100. The results from the 

other cases are available as supplemental 

material for this paper. The chart legend indicates 

“Single” for applying the IC method once, or 

“Iterated” which indicates iteration until 

convergence. 

It was found that for all cases where more than 

one iteration was performed to achieve 

convergence of the reordered vector, an 

improvement in linear correlation error resulted. 

There are, however, ranges of desired correlation 

where rank correlation error (absolute value 

implied) worsened (e.g. -.1, .75). The following 

table shows global error, as previously defined, 

for all cases and the change in global error from 

the single IC method to the iterative process 

discussed here. 

Figure 14: Results for N = 100, Number of Iterations 

Figure 13: Results for N = 100, Correlation Error Combined 
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The Iteration Method with Skewed 

Distributions 

To stress test the iterative process, three highly 

skewed input vectors were used as the second 

vector of [X] for N = 10, 30 and 100. These 

distributions have a population skewness of 2.62, 

3.14 and 8.36; respectively. As before, the first 

input vector values were derived from the normal 

distribution. The following graph is a plot of 

values of the rank ordered second versus the first 

vector of [X]. Linear correlation of the rank 

ordered vectors is shown in the legend; 

quantifying the dissimilarity of the distributions. 

  

Table 2 

Table 3 

Figure 15 Figure 16: Results for N = 30, Linear Correlation  

Figure 17: Results for N = 30, Rank Correlation Figure 18: Results for N = 30, Number of Iterations 
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Results are shown for N = 30. The results from 

the other cases are available as supplemental 

online material for this paper. 

Observations: 

• In all instances, resultant correlation error 

(absolute value implied) for linear correlation 

was reduced with more than one iteration 

until convergence. 

• With very few exceptions, resultant 

correlation error for rank correlation 

increased with more than one iteration until 

convergence. 

• There is significant error with linear 

correlation toward the ends of the desired 

correlation range because of the dissimilarity 

between the distributions of the vectors of [X]. 

Higher Dimensional [X] Subspace: Input matrices 

with 2 variables have been used for illustrating 

improved linear correlation results of the IC 

method with iteration. The following considers 

an input matrix with 16 vectors (i.e. M = 16) for 

cases of N = 30 and 100. Once again, values are 

derived from a normal distribution as van der 

Waerden scores. By virtue of the transform 

matrix [T] being of upper triangular form, the 

vectors of [X’] are linear combinations of the 

corresponding vector of [X] and those to the left. 

(e.g. the 11th vector of [X’] is 

a linear combination of the 

first 11 vectors of [X].) The 

[X] subspace has expanded 

to a higher order subspace 

for input vectors further to 

the right in the [X]; 

potentially enabling reduced 

resultant correlation error. 

The following steps were 

taken to assess the effect of 

the higher dimensional [X] 

subspace. 

• The desired correlation 

matrix, [S], has all values 

in the first column and 

first row the same. That 

is, all vectors will be seeking the same 

correlation value with the first vector in order 

to assess any effect of the higher dimensional 

[X] subspace. The remaining values of the 

desired correlation matrix were chosen to 

ensure positive definiteness. 

• Linear correlation error was evaluated with 

single iteration and with iteration to 

convergence for desired correlation values 

ranging from -1 to 1 by .00125. From these 

results, global error was evaluated for each 

vector. 

• In order to ensure linear independence of the 

vectors of [X], the 2nd through 16th vectors of 

[X] were randomly permuted for each desired 

correlation value. 

• Evaluating linear correlation results of the 

first vector with all others for desired 

correlation values ranging from -1 to 1 was 

performed 30 times to attain data with a 

degree of statistical significance. 

• The average and sample standard deviation of 

the global error from each of the 30 runs, and 

for each of the 2nd through 16th vectors was 

evaluated. 

The following graphs show the global error 

results for the 16 vector input matrix [X] with 

N=30 and N = 100. Also plotted are plus and 

Figure 19 
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minus one sample standard deviation from the 

sample mean for the single iteration global error 

results and for the iteration to convergence 

global error results based on the 30 runs for 

desired correlation from -1 to 1 by .00125. 

Observations: 

• As shown previously in the case of M=2, linear 

correlation global error is reduced with 

iteration to convergence. 

• For both cases of iteration to convergence for 

N=30 and N=100, the global error of the 16th 

vector is approximately one third of that of the 

2nd vector. This suggests that iterating within a 

higher order subspace of N dimensions 

enables reduced global error. In other words, 

vectors more to the right in [X] are more likely 

to have less resultant correlation error than 

preceding vectors with the iteration method. 

• It was observed that while the root mean 

square of all linear correlation errors reduced 

with each iteration, some individual 

correlation errors (i.e. correlation of vector i 

with vector j; j ≠ i) increased during the 

iteration process. 

 

Summary 

The IC method of developing a multivariate input 

variable with prescribed correlation is first 

described and demonstrated. The IC method is 

then applied for the case of two input variables 

where the correlation between the two input 

vectors is prescribed in [S] and the resultant 

linear and rank correlation of the reordered 

vectors is calculated. IC method results are 

evaluated for desired (prescribed) correlation 

values between -1 and 1 by increments 1/800th. 

This assessment is performed for input vectors 

with the number of values (N) ranging from 5 to 

1000. A global error is defined as the root mean 

square of the difference between the desired 

correlation and that calculated from the IC 

method for all 801 instances of desired 

correlation between -1 and 1.  

There are N factorial possible permutations of an 

input vector which span N dimensional space. 

With all permutations viewed as a constellation 

of discreet points in N dimensional space, each of 

these points has a correlation value (linear and 

rank) with the other input vectors. The IC method 

constrains possible outcomes to those near the 

Figure 20 
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subspace in N dimensional space subtended by 

the linear combination of the vectors of [X]. It is 

possible that there are values in the constellation 

of possible resultant correlations that are closer 

to the desired correlation. 

An iterative process is presented where the 

resultant re-ordered vectors of [X] are used as 

the starting point to once again apply the IC 

method. This is repeated until convergence of the 

resultant correlation is achieved. Using the global 

error previously described as a comprehensive 

metric, the iterative method shows marked 

reductions in linear correlation error (i.e. 

absolute value of the difference between 

prescribed and resultant correlation) from that of 

the single step IC method. For highly skewed and 

dissimilar distributions of input variates in [X], it 

is shown that rank correlation error often 

worsens with iteration while linear correlation 

error improves. 

The single iteration Iman Conover method is a 

powerful technique that is likely more than 

adequate given the confidence limits of 

prescribed correlation values. As such the 

practitioner should consider the value of 

improving the correlation accuracy of the input 

variables by iteration.  

Having a practical understanding of the methods 

by which correlated multivariate input variables 

are developed is useful when the software 

platform does not provide what is needed. The 

ability to perform this manually, to understand 

the nature of its limitations and to experiment 

with various distribution types may be useful and 

is certainly instructive for the practitioner. There 

may be special circumstances where increased 

accuracy of the correlation of a set of input 

variables is needed. The author notes that the 

improvement in accuracy with the application of 

the iterative IC method described herein should 

be considered in the context of the confidence 

limits of the desired correlation coefficient value 

derived from sampled data where the Fisher r to 

z transformation has applicability. 
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