Get to the Point. What’s the Deal with Different Function Points Methodologies?

A Preliminary Empirical Comparison
Authors and Collaborators

Anandi Hira
AHira@Tecolote.com

Katharine Mann
Katharine.Mann
@hq.dhs.gov

Paul Cymerman
Joe VanDyke
{Pcymerman,
JVanDyke}@quaterni
on-consulting.com

Avantus

Ian Brown
Ibrown@avantus
federal.com

Dave Seaver
David.P.Seaver
.civ@mail.mil

Kevin McKeel
Kevin.McKeel
@logapps.com
Presentation Agenda

- Motivation and size methods explored
- Research methodology and dataset
- Results
- Conclusions

Table of Contents

Abstract .. 3
Introduction .. 3
Functional Size Metrics (FSMs) ... 5
 IFPUG Function Points (FPs) ... 5
 Simple Function Points (SFPs) ... 7
 COSMIC Function Points (CFPs) .. 8
Objective Function Points (OFPs) ... 9
Effective Sizing ... 12
Research Methodology ... 12
 Methodology ... 12
 Dataset .. 13
Calculating the FSMs .. 14
 Objectivity of FSM Sizing ... 16
Prediction Accuracy Statistics ... 17
Analysis Results .. 18
 Comparing FSMs against Effort .. 18
 Using the Objective Function Points (OFPs) Methodology .. 29
Conclusions .. 33
Future Research ... 34
Acknowledgments ... 35
References .. 35

Get to the Point (paper) – table of contents
MOTIVATION AND SIZE

METHODOLOGIES EXPLORED
Software Size Metrics

<table>
<thead>
<tr>
<th>Source Lines of Code (SLOC)</th>
<th>Function Points</th>
<th>Agile Metrics (Story Points, T-shirt sizes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pros</td>
<td></td>
<td>Pros</td>
</tr>
<tr>
<td>Objective</td>
<td></td>
<td>Easy to calculate early in lifecycle</td>
</tr>
<tr>
<td>Easy to calculate at completion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cons</td>
<td></td>
<td>Cons</td>
</tr>
<tr>
<td>Difficult to estimate</td>
<td></td>
<td>Tedious to calculate</td>
</tr>
<tr>
<td>Agile programs moving away from SLOC</td>
<td></td>
<td>Difficult to get actual sizes at project completion</td>
</tr>
</tbody>
</table>

Software Size Metrics

- **SLOC**
 - Pros: Objective, Easy to calculate at completion
 - Cons: Difficult to estimate, Agile programs moving away from SLOC

- **Function Points**
 - Pros: Objective, Easier to calculate early in lifecycle
 - Cons: Tedious to calculate, Difficult to get actual sizes at project completion

- **Agile Metrics (Story Points, T-shirt sizes)**
 - Pros: Easy to calculate early in lifecycle
 - Cons: Highly subjective, Team-dependent

Presented for the ICEAA 2021 Online Workshop - www.iceaaonline.com
IFPUG Function Points (FPs)

- EI: External Input
- EO: External Output
- EQ: External Queries
- ILF: Internal Logical File or “Internal storage”
- EIF: External Interface File or “external data”

3, 4, 6
5, 7, 10
4, 5, 7
7, 10, 15
3, 4, 6
Issues with FPs

Tedious - Start
Calculating FPs requires:
• Identifying all functional transactions
• Determining correct complexity levels for each

Solution: Simple Function Points

Granularity
Transactions are limited to low, average, and high complexities.
• Very Low and Low get same sizes
• Very High and High get same sizes

Solution: COSMIC Function Points

Tedious - End
• Requirements, architecture, etc. documentation don’t match implemented solution.
• Getting actual sizes requires updating doc’s

Solution: Objective Function Points
Standard Sizing

- IFPUG and COSMIC have methods to size enhancements: sizes of the changed functional processes
 - Does not account for amount of change required (% redesign, recode, retest)
 - Does not make the modified size equivalent to new development size

Effective Sizing

- Multiply FPs with weighted average of rework %’s
- Weights:

<table>
<thead>
<tr>
<th></th>
<th>Cadence /NSA</th>
<th>Ian Brown</th>
</tr>
</thead>
<tbody>
<tr>
<td>% requirements</td>
<td>10%</td>
<td>40%</td>
</tr>
<tr>
<td>% redesign</td>
<td>30%</td>
<td>40%</td>
</tr>
<tr>
<td>% recode</td>
<td>30%</td>
<td>25%</td>
</tr>
<tr>
<td>% retest</td>
<td>30%</td>
<td>35%</td>
</tr>
</tbody>
</table>
RESEARCH METHODOLOGY AND DATASET
Research Methodology

Utilize data from USC (Unified Code Count (UCC) enhancement tasks)

Data

IFPUG FPs
Ian Brown

COSMIC FPs

Simple FPs
DHS, NSA

Objective FPs
ODNI

Compare
SMC

Use tools to calculate Simple FPs from requirements, Objective FPs from code, compare to IFPUG and COSMIC FPs

Determine which method describes software size better
Dataset – Unified Code Count (UCC)

Overview
- Enhancement projects
- Code metrics tool
- Command line program
- Implemented in C++, Java
- Each project by new team
- 32 data points

Groupings
- Enhancement Type
 - Add new features/modules (9)
 - Modify existing features/modules (23)
- Complexity Levels
 - Low/Average: Language Parsers, Differencing (12)
 - Very Low: Additional Metric, Input/Output (20)
Calculated Sizes

<table>
<thead>
<tr>
<th>Actual Functionality</th>
<th>Requirements based on Actual Functionality</th>
<th>Actual Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anandi + Colleagues</td>
<td>Ian Brown (SME)</td>
<td>DHS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LogApps/NSA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ODNI*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manual Process</th>
<th>Excel</th>
<th>Cadence</th>
<th>UCC-G</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSMIC</td>
<td>IFPUG</td>
<td>Simple</td>
<td>Objective</td>
</tr>
<tr>
<td>CFPs_AH</td>
<td>FPs_AH</td>
<td>FPs_IB</td>
<td>EFPs_IB</td>
</tr>
<tr>
<td>Makefile Parser</td>
<td>5</td>
<td>4</td>
<td>12</td>
</tr>
</tbody>
</table>

Several size metrics due to different inputs and methods or perspectives.

Sample Datapoint:

<table>
<thead>
<tr>
<th></th>
<th>CFPs_AH</th>
<th>FPs_AH</th>
<th>FPs_IB</th>
<th>EFPs_IB</th>
<th>SFPs_DHS</th>
<th>SFPs_Cad</th>
<th>ESFPs_Cad</th>
<th>EOFPs</th>
<th>EOMPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Makefile Parser</td>
<td>5</td>
<td>4</td>
<td>12</td>
<td>2.49</td>
<td>20.8</td>
<td>16.2</td>
<td>4.5</td>
<td>28.44</td>
<td>4.88</td>
</tr>
</tbody>
</table>

* NRO provides Configuration Management (CM) for UCC-G. NGA has been backing the development of the Objective method by granting access to run UCC-G on a large SW effort which provided calibration opportunities.
What We’re Comparing

Compare to Effort

- How well do these functional size metrics correlate with effort (and therefore cost)?
- Does the loss/increase in detail used to calculate size hurt/improve effort estimates?
- Which of these methods is better/more accurate for effort estimation?
- If any, what are the drawbacks to using functional size metrics for effort estimation?

Compare to Actual Effective Sizes

- Use actual reuse %'s for CFPs_AH, FPs_AH, FPs_IB, and ESFPs_Cad
- How well does this methodology predict actual, effective functional size?
SW Estimation Life Cycle

1. Requirements
2. Project start
3. Code maturity
4. Project completion

Function Point calculations

Get Effort Estimates

Effort Estimation Model

Objective Function Points

Continuously and iteratively update/calibrate models after programs complete with actuals
RESULTS
FPs Variants against Effort

- Sizes stacked with large variance in effort
 - Outputs are of same size
 - Complexity and number of algorithms differ
- Takeaway: lack of distribution and accounting for algorithmic complexity → low correlation

- Reduced granularity compared to IFPUG FPs caused insignificant reduction in correlations
- Takeaway: lack of distribution and accounting for algorithmic complexity → low correlation

- Stronger positive trend between size and effort due to higher distribution
- Takeaway:
 - better correlation (except for Low CPLX)
 - fewer outliers/anchor points

Presented for the ICEAA 2021 Online Workshop - www.iceaaonline.com
Objective FPs against FP Variants

- Removed 5 outliers (new code, input functionality), and Average complexity projects (only 2)
- Standard % Error: 6-15%
- **Takeaway**: Promising. Not enough data for types represented in outliers

- Lack of correlation even after removal of outliers
- Not surprising – not using similar counting methodologies
- **Takeaway**: lack of correlation due to difference in methodologies

- Lack of correlation even after removal of outliers
- Not surprising – not using similar counting methodologies
- **Takeaway**: lack of correlation due to difference in methodologies
CONCLUSIONS
1. **Useful? Yes**, but reduced granularity and algorithmic complexity are problematic
 - Grouping by project/complexity type helps

2. **Simple Function Points** – does the loss in granularity reduce effectiveness? **No**, not in this case

3. **COSMIC Function Points** – does increase in granularity increase effectiveness? **Yes**, except for the Low complexity group

4. **Which is the best method?**
 - **COSMIC** has the highest level of granularity
 - Automated counting from requirements for **Simple** Function Points simplifies estimation process
Can the Objective Function Points method estimate actual functional size?

- Group by complexity levels, and remove projects not reusing code or creating/modifying input options ← may need more exploration
- Standard % Error for IFPUG between 6-15%
- Lack of trend for Simple and COSMIC
- Could be due to UCC atypical for Function Points

Demonstrated the technique that would be used across a more general sample or within an organization

Objective Function Points methodology still in development phase
 - Improve through exposure of different software types
Future Research

- Using Function Points methodologies for Effort Estimation
 - Continue comparing estimation effectiveness across larger, varied datasets

- Objective Function Points methodology
 - Continue calibrating the method with larger and varied software products (currently working with NGA)
 - Come up with general conversions from OFPs to FPs

Acknowledgments

Portions of this work were funded by the Air Force Space and Missile Systems Center (SMC), contract FA8802-16-F-0002, and the Office of the Director of National Intelligence (ODNI) RC&E, through the CARRS contract. The authors thank Ms Adriana Contreras, Mr. Raj Palejwala, Mr. Jim Fiume, and Ms Michal Bohn for their support of this effort.