$P \textcircled{\begin{tabular}{ll} @ \label{eq:powerserver} P \textcircled{\begin{tabular}{ll} @ \label{eq:powerserver} P @ \label{eq:powerserver} P$

СЕВоК			
Module	formula	parameters	usage / comments
8	y = a + bx	a (y-int), b (slope)	linear CER
8	$y = ax^b$	a (coeff), b (exponent),	learning curve
	$y = ax^b + c$	c (y-int); plot ln Y vs. ln X	power CER
5	$y = ae^{bx} = ak^x = a(1+r)^n$	a (y-int), b (slope), r (rate);	exponential growth
8	$y = ae^{bx} + c$	plot ln Y vs. X	exponential CER
8	$y = a + b \ln x$	a (y-int), b (slope, log space);	logarithmic CER
		plot Y vs. ln X	
3	$y = a + bx + cx^2 + \cdots$		polynomial CER
8	SSE + SSR = SST	Error + Regression = Total	ANOVA sums of
			squares

Formulae You Should Already Know

Formulae You Will Be Given (or not)

CEBoK ref	formula	parameters	usage / comments
8	$b = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$ $b = \frac{\sum_{i=1}^{n} X_i Y_i - n \bar{X} \bar{Y}}{\sum_{i=1}^{n} X_i^2 - n \bar{X}^2}$	"four-column table": X, Y, X ² , XY	OLS regression slope ("easy to remember") OLS regression slope ("easy to compute")

Test-Taking Tips

- **Time management**: Work quickly but not hastily. Skip tough problems and come back to them later.
- Eliminate answers: If you can eliminate certain answers as implausible, you'll increase your chances, even if you have to guess.
- Work backward from answers: On a multiple-choice test, it is sometimes easier to test each answer to see whether it works than to solve directly for the correct answer.
- Look for "sanity checks": Is your numerical answer reasonable when compared with the problem inputs? Use intuition, numeracy, or rules of thumb. If you're doing inflation, costs should be higher in the future and lower in the past; weighted indices should be greater than raw indices. If you're doing learning curve, CUMAV should produce steeper learning than Unit Theory with the same nominal LCS.
- Always guess! There is no penalty for guessing. Never leave a question blank.

$P \textcircled{}{} E A^{\mathbb{R}} \ \text{ICEAA Exams Formulae \& Study Tips} \ C \textcircled{} E A^{\mathbb{R}}$

Formulae to Memorize for the Exam

СЕВоК			
Module	formula	parameters	usage / comments
5	$DT \cdot r \approx 70 \ (or \ 72)$	DT = doubling time	the "Rule of 70" or
		r = interest rate (in	"Rule of 72"
		percentage points)	
6	$\sum_{i=1}^{2} \sum_{i=1}^{n} (X_i - X)^2$	"two-column table":	sample variance
	n-1	X, X^2 ; n = number of	("easy to remember")
	$s^2 = \frac{\sum_{i=1}^n X_i^2 - nX^2}{\sum_{i=1}^n X_i^2 - nX^2}$	data points, n-1 =	sample variance
	n-1	degrees of freedom	("easy to compute")
/	$LCS = 2^{b}$	LCS = learning curve	improvement factor
	$b = \log_2 LCS$	slope, b = log space	applied for doubling
	F + I —	Slope	Lat Midnaint houristic
/	$LMD \approx \frac{1+L}{2} + \sqrt{FL}$	E = first unit # of lot	
	$LMP \approx \frac{2}{2}$	I = last unit # of lot	
	$IMP \sim \frac{F + L + 2\sqrt{FL}}{FL}$		
	$LMT \sim -4$		
7	LMP	LMP = lot midpoint	Lot Midpoint
	$\left[\left(L+\frac{1}{2}\right)^{b+1}-\left(F-\frac{1}{2}\right)^{b+1}\right]^{\frac{1}{b}}$	N = L + + 1 = # units in	approximation (aka
	$\approx \left \frac{(-1)^{2}}{N(h+1)} \right $	$h = \log \cos \alpha \sin \alpha$	Asher s
	N(b+1)	b = log space slope	Approximation
8	$R^2 = \frac{SSR}{SSR}$	R = Pearson's product	ANOVA Coefficient of
	SST SSF	moment coefficient	Determination
	$\frac{R^2}{R^2} = 1 - \frac{35L}{SST}$	SSX = sums of squares	
8	$\hat{Y} + t_{c} \rightarrow \infty$	Y-hat = regression line	Confidence Interval
	$-(n-1)-k,\overline{2}$	prediction at X	(OLS Regression)
	$\sum EE \begin{bmatrix} 1 & (X - \overline{X})^2 \end{bmatrix}$	t = right-tail probability	
	$\sqrt{\frac{n}{n}} + \frac{1}{\sum_{i=1}^{n} X_i^2 - n \overline{X}^2}$	n = # data points	
8	$\hat{Y} + t$, ∞	k = # ind. variables	Prediction
	$=$ $\frac{1}{(n-1)-k, \frac{1}{2}}$	alpha = significance	Interval(OLS
	$(X - \bar{X})^2$	SEE = std err of	Regression)
	$(SEE) = \frac{1+n}{n} + \frac{1}{\sum_{i=1}^{n} X_i^2 - n\bar{X}^2}$	estimate	
10	$C_{02}(X, Y) = E[(X - \mu)(Y - \mu)]$	X-Dar = mean of X	Covariance of two
10	$Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)]$	mu-sub-Y = mean of Y	random variables
10	$Var(X) = (a^2+b^2+c^2+-ab-ac-bc)/18$	a=low. b=most likely.	Variance of triangular
		c=high	distribution
11	Measured Time · Pace	PF&D = Personal	time standards
	$5ta I tme = \frac{1 - PF \& D}{1 - PF \& D}$	Fatigue and Delay	
15	$EAC - ACWP + \frac{BAC - BCWP}{BAC - BCWP}$	BAC = Budget At Compl	general EAC formula
	$\frac{DAC - ACWI + TCPI}{TCPI}$	TCPI = future cost	-
15	$TCPI_{IBF} = \frac{BAC - BCWP}{EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE$	performance:	rearrangement of
	LRE - ACWP	CPI ("best case"),	general EAC formula
		CPI * SPI ("worst	

POEA® ICEAA Exams Formulae & Study Tips COEA®

			case"), 0.8CPI + 0.2SPI, etc.	
--	--	--	----------------------------------	--

Formulae Not to Memorize (Just Understand the Concept)

CEBoK			
Module	formula	parameters	usage / comments
2	$C = \left(\frac{T_2}{T_2}\right)C$	C = cost	analogy technique
	$c_2 = (T_1)c_1$	T = technical (scaling	
	$C_2 = \left(\frac{C_1}{T}\right)T_2$	parameter)	"dollars-per-ton"
2	$\frac{\langle I_1 \rangle}{y - C + h(x - T)}$		adjusted analogy
2	$y = c_1 + b(x - T_1)$		("horrowed" slope)
3	$y = a + [C_{1} - (a + hT_{2})] + hr$		calibrated CFR
5	weighted average	w = weights (usually	composite index [5]
	$\sum_{i=1}^{n} W_i x_i$	sum to one)	comp. labor rate [11]
	$\bar{x} = \frac{\sum_{l=1}^{n} \sum_{l=1}^{n} w_{l}}{\sum_{l=1}^{n} w_{l}}$		ESLOC [12]
	$\Sigma_{i=1}$		UAC [13]
			Award Fee [14]
7	$(\Sigma^L ib)^{1/b}$	N = L-F+1	Lot Midpoint formula
	$LMP = \left(\frac{\sum_{i=F} l}{N}\right)^{-1}$		(exact)
7	$TC_N = aN^{b+1}$	a = T1	total cost (CUMAV)
7	$UC_k = ak^{b+1} - a(k-1)^{b+1}$	b = log space slope	unit cost (CUMAV)
8	$a = \overline{Y} - b\overline{X}$	a = y-intercept	OLS regression
		b = slope	y-intercept
8	d.f.(SSE) = (n-1) - k	k = # variables	ANOVA degrees of
	d.f.(SSR) = k	(excluding y-intercept)	freedom
	d.f.(SST) = n - 1		
6	$CV = \frac{SY}{\overline{V}}$	s = standard deviation	coefficient of variation
0		SEE - standard arrar of	(univariate)
0	$CV = \frac{SLL}{\overline{V}}$	the estimate	(bivariate)
Q	$\frac{I}{\ln y - \ln q + h \ln r}$	nlot in V vs. in V	
8	$\frac{\ln y - \ln u + b \ln x}{\ln y - a + br}$	plot in Y vs. X	exponential in semi-log
0	$\lim y = u + bx$		snace
9	Final Cost		Cost Growth Factor
	$CGF = \frac{1}{1}$		
9	Final Schedule		Schedule Growth
	$SGF = \frac{1}{Initial Schedule}$		Factor
11	E _ Actuals		Realization Factor
	$\Gamma_R = \frac{1}{Standard}$		
11	$F_{F} = \frac{Standard}{F_{F}}$		Efficiency Factor
12	<u> </u>	R - Popofita C - Costa	Not Procent Value
13	$NPV = PV_B - PV_C$	B = Benefits, C = COSTS	Net Present value

$P \textcircled{\ } EA^{\mathbb{R}} \ \ \text{ICEAA Exams Formulae \& Study Tips} \ \ C \textcircled{\ } EA^{\mathbb{R}}$

13	FV = FV		Present Value
	$PV = \frac{1}{(1+i)^n}$	FV = Future Value	(year-end indices)
13	FV = FV	i = discount rate	Present Value
	$FV = \frac{1}{(1+i)^{n-\frac{1}{2}}}$	n = number of years	(mid-year) indices)
13	$0 - \sum CF_t$	CF = cash flow	Internal Rate of Return
	$0 = \angle \frac{1}{(1+r)^t}$		(solve for r)
14	$PTA - TC + \frac{CP - TP}{C}$	CP = Ceiling Price	Point of Total
	GS_{over}	TP = Target Price	Assumption
		GS = Government Share	
14	MF - TC $MF - TF$	MF = Maximum Fee	Range of Incentive
	$RIL_{low} = IC = \frac{CS_{under}}{CS_{under}}$	mF = Minimum Fee	Effectiveness
	DIF = TC + TF - mF	CS = Contractor Share	
	$RIE_{high} = IC + \frac{CS_{over}}{CS_{over}}$		
14	Marain - Fee		Return On Sales (ROS)
	<u>1 + Fee</u>		
14	Fee = <u>Margin</u>		Return On Cost (ROC)
	1 - Margin		
15	CV = BCWP - ACWP	BCWP = Budgeted Cost	Cost Variance
15	SV = BCWP - BCWS	of Work Performed	Schedule Variance
15	CPL - BCWP	ACWP = Actual Cost	Cost Performance
	$CPI = \frac{1}{ACWP}$	BCWS = Budgeted Cost	Index
15	BCWP	of Work Scheduled	Schedule Performance
	$SPT = \frac{BCWS}{BCWS}$		Index