The Art of Judgment

Andy Nolan - Chief of Project Estimating

Introduction

Key Messages

- 84% of people reported that they relied on judgement at some point when estimating.
- When using judgement, 70% of people tended to under estimate, especially when unsure.
- When using judgement, 66% of people quote a narrow Min - Max range i.e. they are too precise.
- The Wisdom of the Crowd method is an effective way to improve judgement accuracy
- Judgement Accuracy = Crowd Size * Confidence
- Where it is not possible to form a group, the Calibration Test will determine an individuals judgement style
- Judgement Accuracy = Calibration * Confidence

Presented for the International Cost Estimating \& Analysis Association - www.iceaaonline.com

2014 Research

84\% of people reported that they relied on judgement at some point when estimating.

What estimating techniques do we use?

According to a 2014 study of 158 estimates, it showed that judgement was one of the most commonly used techniques. We have to use judgement sometimes, even if it is an expression of our experience.

If we have to use judgement we need to determine who and when we can rely on it.

2017 Research

When using judgement, 70\% of people tended to under estimate, especially when unsure.

The research

The research was to see if there was a relationship between peoples Confidence in their guess and the guess accuracy

1. People were given a range of general knowledge questions where they had to guess a numerical value like the height of buildings, populations of countries and so on
2. For each guess, the participants were asked to score their Confidence in their answer from 0 (no confidence) to 100 (certainty)

Accuracy correlates with Confidence

Based on 3760 answers, there is a $0.8 \mathrm{R}^{2}$ correlation between a "groups" Confidence and the accuracy of their median guess.

We can probably assume that Confidence is related to a groups knowledge or experience of a topic

Median \% Error vs Confidence

70\% of us under estimate!

The results of 3760 guesses showed that 70% of people tended to under estimate, especially when unsure.

The red line on the chart is the median \%error plotted against Confidence ($0=$ no confidence) to 100 (certain).

The level of under estimating increased as people became less Confident.

2020 Research

When using judgement, 66% of people quote a narrow Min - Max range i.e. they are too precise.

Can we learn to be unsure?

In 2020, we performed research to see if people can express an adequate Min - Max range for their estimates. A guess was considered to be accurate when the real answer lay inside the Min to Max range.

1. They were given 4 quizzes, each quiz having 10 general knowledge questions. For each question, the participant had to quote a Min and Max that they believed would span the right answer.
2. The estimators were asked to complete quiz 1, learn from their results, then see if they can improve their accuracy on subsequent quizzes. Quiz 1 was therefor used as a "datum" to assess for relative improvement.
3. Participants were also split into groups. The control group were given no instructions, the other groups were given different types of incentive. The theory was that incentivised groups would perform better than the control group.

Most people can learn to be unsure

We got 191 completed quizzes containing 7640 guesses. Despite having immediate feedback, 42% of people showed no signs of improvement from Quiz 1 to Quiz 4. Some people prefer to be precise than accurate!

Of the 58% that showed improvement (see graph), we see that for Quiz 1, they were on average 34% accurate, showing a general difficulty in expressing an adequate Min to Max range. However, this group of people went on to double their accuracy by Quiz 4.
The green line represents a sub-group that were incentivized with a reward. They showed little improvement over the "control" group. The red line were people who would be "penalised" for a wrong answer. They showed a slight improvement over the control group

Presented for the International Cost Estimating \& Analysis Association - www.iceaaonline.com

In summary

The 2017 research showed that we tend to under estimate. The 2020 research shows that we also under estimate the Min Max range.

It seems that when using judgement, many of us are too
 precise and inaccurate - we are "precisely wrong".

The Wisdom of the Crowd

Judgement Accuracy = Crowd Size * Confidence

The Wisdom of the Crowd

Based on the 3760 guesses, we randomly formed groups. For each group, we calculated the median error and the groups average Confidence. This chart is based on 20 million simulations.

Judgement Accuracy = Crowd Size * Confidence

The table shows the number of people needed to achieve an estimate that meets a desired +/- precision. As confidence drops, the crowd size needs to increase. The +/- values shown along the title axis of the table is used to express a moor appropriate Min - Max range, with a confidence interval of 95%,

Median		Required Estimate Precision								
		-93\%-1280\%	-87\%-640\%	-77\%-320\%	$-62 \%-160 \%$	-45\% -80\%	-29\%-40\%	-17\%-20\%	-9\%-10\%	-5\%-5\%
	100	1	1	1	1	2	3	4	5	5
	90-100	1	1	1	2	3	3	4	5	12
	80-90	1	1	2	3	5	5	7	11	41
	70-80	1	2	2	4	6	10	17	40	185
	60-70	1	2	2	4	8	16	41	117	X
	50-60	1	2	3	6	14	30	101	X	X
	40-50	1	2	2	6	16	44	X	X	X
	30-40	2	2	6	12	39	162	X	X	X
	20-30	2	4	8	21	115	X	X	X	X
	10-20	3	6	12	47	X	X	X	X	X
	0-10	4	8	22	168	X	X	X	X	X

Calibration

> Judgement Accuracy = Calibration * Confidence

\section*{| ROLLS |
| :---: |
| PI |
| ROL |
 Do we know ourselves?}

In the previous research, we asked people to score their Confidence that they were accurate. We saw a correlation between accuracy and Confidence. But can we trust peoples self assessment of their Confidence?
The research was to see if we could develop a simple way to test for self-awareness and then to see how self-awareness related to judgment accuracy.

1. We asked each person to complete a 20 question test.
2. Each question needed a yes/no response
3. Each person had to score their Confidence that they got the right answer.

Calibration-Factor

1. Average Confidence: We take the average confidence for the 20 questions. In this case the average confidence is 65%
2. Accuracy: We calculate the \% of questions they answered correctly. In this case 13 questions were accurate $=65 \%$
3. A persons Calibration Factor = Average Confidence / Accuracy - $65 \% / 65 \%=1$

Non-confidential
No export control
Presented for the International Cost Estimating \& Analysis Association - www.iceaaonline.com

Calibrated, Humble \& Bold

The ideal calibration factor is 1 . We set the upper and lower bands at 1 sigma.

Someone is considered Humble if their Calibration Factor < 0.8
Someone is considered Bold if their Calibration Factor > 1.2

Humble
Calibration Factor < 0.8. A person whose Confidence is lower than their Accuracy and this means a person got more answers right then they believed they should. For example, if they had a Confidence of 40% but got 80% of the questions right, they would have a Calibration Factor of 0.5

Calibration Factor

Calibrated
Calibration Factor between 0.8 and 1.2 A person whose Confidence matches their Accuracy. If a person had an average Confidence of 50% and they got 50% of the answers right, they would have a Calibration Factor of 1. So would a person who was 30\% Confident and 30\% Accurate. Also for a person who was 80% Confidence and 80% Accurate

Bold

Calibration Factor > 1.2. A person whose Confidence is higher than their Accuracy and this means a person got less answers right then they believed they should. For example, if they had a Confidence of 80% but got 40% of the questions right, they would have a Calibration

Judgement Accuracy = Calibration * Confidence

The chart shows the guesses from 578 people, split into the 3 groups of Bold, Humble and Calibrated. The chart shows $\frac{\text { ² }}{0}$ horizontally Confidence and Σ vertically the absolute \% median error of the group (people with the same Confidence)

Most people can calibrate themselves

Like an archer that learns from each shot, it is possible to improve your Calibration by learning from your results and taking another test.

Of the 44 volunteers, we saw an overall improvement in Calibration scores from repeated testing.

Conclusions

Conclusions

84\% of us rely on Judgement when estimating

70\% of us will under estimate, especially when unsure
66% of us will be too precise in our 3-point ranges

The Calibration Test Accuracy = Calibration * Confidence

The Wisdom of the Crowd Accuracy = Crowd Size * Confidence

-www.iceaaonline.com

Links to associated papers

- How Many Estimators Does It Take To Change A Lightbulb
- The wisdom of the crowd
- The Good, The Bad \& The Ugly
- Calibration test

