

Risk Analysis in the NASA/Air Force Cost Model

Christian Smart, Ph.D., CCEA

NAFCOM Description

- NAFCOM is a **parametric** estimating tool for space hardware.
- Uses cost estimating relationships (CERs) which correlate historical costs to mission characteristics to predict new project costs
- It is based on **historical** NASA and Air Force **space projects**
- It is intended to be used in the very early phases of a development project.
- NAFCOM can be used at the subsystem or component levels and estimates development and production costs.
- NAFCOM is applicable to various types of missions (manned spacecraft, unmanned spacecraft, and launch vehicles).
- There are two versions of the model: a government version that is restricted and a contractor releasable version.

NAFCOM Evolution • Since 1990, nine versions of NAFCOM have been developed and distributed across NASA and other government agencies. • Since 1990, nine versions of NAFCOM have been developed and distributed across NASA and other government agencies. • Since 1990, nine versions of NAFCOM have been developed and distributed across NASA and other government agencies. • Since 1990, nine versions of VAFCOM have been developed and distributed across NASA and other government agencies. • Since 1990, nine versions of VAFCOM have been developed and distributed across NASA and other government agencies. • Since 1990, nine versions of VAFCOM have been developed and distributed across NASA and other government agencies. • Since 1990, nine versions of VAFCM • Since 1990, nine versions of VAFCOM have been developed and been developed across versions of the since t

		NASCOM			C C C C C C C C C C C C C C C C C C C	NAFLOM Persin 61	June 2000		
•	NASCOM Books 1990 NASCOM database in hardcopy only Estimators hand-entered data into spreadsheets Database contained 65 data points	NASCOM Automated DB 1992 • Allowed online searches and copying of data • Cost estimates developed in spreadsheets with CERs created by individuals • Database contained 70 data points	NASCOM NASC Ver. 3.0 Ver. 4 1994 Fully functional cost model with user defined WBS and data access CERs built automatically within NASCOM using "1 st Pound" method Database contained 91 data points	OM 4.0 1996 • Com NAS Forc • Enha sear filter • Stan WBS elem crea • Data cont data	NAFCOM96	NAFCC 1998 • First non- weight based CERs for five subsystems (Complexity Generators) • Government and contractor versions distributed • Database contained 114 data points	20 20 1	00 2002 Total re-write of all NAFCOM program code Complexity Generators for all subsystems Major user interface improvements Database contains 122 data points	 AFCOM Versions 2002 & 2004 2004 Cost Risk Analysis Module CER Improvements SOCM Component level Complexity Generator

Rationale

- Previously the NASA/Air Force Cost Model (NAFCOM) provided a point estimate as opposed to a probabilistic range estimate requiring external third party risk tools
- The addition of a probabilistic cost risk analysis module in NAFCOM v2004:
 - Integrates a comprehensive risk capability into NAFCOM including technical risk, cost equation uncertainty, and correlation
 - Provides a seamless and simple interface for accomplishing complete risk analysis of NAFCOM estimates

Development

- Experts in the risk field, including representatives from MCR, Aerospace, NASA, IPAO, and Mitre participated in the methodology development.
- Dr. Steve Book and Erik Burgess of MCR worked directly with SAIC and NASA to ensure that the best possible approaches were considered for integration into NAFCOM and to consult on the methodology implementation.

Model Selection

- Choice between Analytic approach (similar to FRISK) or Monte Carlo-based sampling approach
- We chose an analytic method because we wanted a method that:
 - Is computationally as simple as possible while still providing accurate estimates
 - Calculates the correct top-level means and standard deviations
 - Is faster than Monte Carlo
 - Allows full access to the correlation matrix
 - User can set individual inter- and intra-subsystem correlations to any desired value in the range (-1,1), unlike PRICE, SEER and others

Technical Risk – Step 1

- For each WBS element (D&D and flight unit cost):
 - For each CER input*, define a triangular distribution using minimum value, most likely value, and maximum value

Note: NAFCOM multivariate CERs estimate cost at the subsystem or component level and have the general form:

Cost = C * Weight^V*New Design^W*Technical^X*Management^Y *Class^Z

Technical Risk – Step 2

 Use appropriate CER to estimate costs for three cases: all complexity generators set to minimum (optimistic) values, all set to most likely, and all set to maximum (pessimistic) values

> Low Cost = $a \cdot W_L^{b_1} \cdot D_L^{b_2}$ Most Likely Cost = $a \cdot W_M^{b_1} \cdot D_M^{b_2}$ High Cost = $a \cdot W_H^{b_1} \cdot D_H^{b_2}$

Technical Risk – Step 3

 Define a triangular distribution about each estimate with the minimum, most likely, and maximum values

CER Risk

NAFCOM CERs follow a multiplicative error model:

$$Y = aX^b\varepsilon$$

where e represents the error between the estimated cost $\hat{Y} = aX^b$ and the actual cost Y

The error distribution of the CER is lognormal with median = 1 and standard deviation equal to the standard error of the CER

CER Risk

For each WBS element (D&D and flight unit cost):

- Define a lognormal distribution using the median and standard error for the CERs
- Fit a lognormal distribution to the first two moments (mean, standard deviation) of the technical risk triangular distribution defined on the previous page
- Multiply the lognormal distribution of the CER error and the lognormal distribution defined in the preceding step – this product is a lognormal distribution
- Calculate the DDT&E risk distribution mean and variance for each hardware element using the formula:

 $\mu = \mu_{D\&D} + (\% Flt Unit)^* \mu_{Flt Unit}$

$$\sigma^2 = \sigma_{D\&D}^2 + (\% Flt Unit)^2 \sigma_{Flt Unit}^2 + 0.2 * (\% Flt Unit) * \sigma_{D\&D} \sigma_{Flt Unit}$$

Correlation in NAFCOM

- Set default values of the correlation matrix:
 - > 0.2 for inter-subsystem and inter-system correlations
 - > 0.5 for intra-subsystem correlations
- The user can set any of the correlations to any value between -1 and 1 he/she desires

NASA

Summing Means and Variances

Separately for DDT&E and flight unit cost, sum the mean and variance for all WBS items taking correlations (ρ_{ij}) into account

 $X_1, X_2, ..., X_n$ are costs of WBS elements (considered as random variables)

Total (Hardware) Cost = $\sum_{k=1}^{n} X_k = X_1 + X_2 + \ldots + X_n$

Mean of Total (Hardware) Cost = $E\left(\sum_{k=1}^{n} X_{k}\right) = \sum_{k=1}^{n} E(X_{k}) = \sum_{k=1}^{n} \mu_{k}$

Variance of Total (Hardware) Cost =

$$Var\left(\sum_{k=1}^{n} X_{k}\right) = \sum_{k=1}^{n} \sigma_{k}^{2} + 2\sum_{j=2}^{n} \sum_{i=1}^{j-1} \rho_{ij} \sigma_{i} \sigma_{j}$$

Total Cost Distributions

- Fit a lognormal or normal distribution (chosen by the user) to the top level mean and variance
- Add the means and variances (including correlation) for the DDT&E and flight unit distributions to obtain a total cost distribution
- Outputs are the mean, median, mode, standard deviation, 5th, 10th,15th,..., 95th percentiles for DDT&E, flight unit, and total cost distributions

Users can elect to run NAFCOM in Risk On or Risk Off mode via toolbar

Model Interface

e View V	/BS Help About InsertSubs	system				
	Elements			Weight	Most Likebr	DB #ve
	—Two-Stage Vehicle			o.	1300.0	24900.0 lbs
	-Stage 1			0	589.7	11294.6 kgs
Process	-Stage 1 Subsystems			- Thruputs		11201.0
Based	-Structures & Mech	nanisms			(Enter costs as 71 values in FY 2004\$in Hillions)	
	-Vehicle Structu	ires & Mechanisms		D8D		
	Tank Structures	s & Mechanisms		🗖 STH		
Time	- Thermal Control			Elight Unit		
Phasing	-Environment/Ac	ctive Thermal Control				
	Induced Therma	al Protection		Design Life	240.0	240 Months
	Tank Thermal C	Control				
Notes	Main Propulsion Sy	/stem (less engines)				
	Command, Control	& Data Handling			Most Likely	DB Avg
FBS	Stage 1 System Integr	ration		Manufacturing Methods		_
	-Integration, Assem	bly and Checkout (IACO)			(3) Mod. Mfg Techniques	3
	-System Test Opera	ations (STO)		Engineering Management		
PRICE	-Ground Support Ed	quipment (GSE)		New Dealers	0	
	- Tooling			New Design	(8) New Design	8
	└─M/E GSE					
Globals	-System Engineerin	ig & Integration (SE&I)		Funding Availability		
	Due over Mensor			Test Annmach	(3) Funding is Constrained - Delay	3
	💐 DataView			T Cat Approach	(3) Maximum Testing, Qualificatioi 🔻	3
Risk Off	Mission Sel A	INES Ham	Meight Launch Year	Integration Complexity		
<u>6</u>	Shuttle Orbiter	ihermal Control Subsystem	24900 0 1981		(3) Extensive Major Interfaces Inv	3
1		Thermal Control Subsystem	1553.3 1968	Pre-Development Study	(2) One Study Contract, Between	2
Run Risk	Apollo LM	Thermal Control Subsystem	142.1 1968		(2) One oway Consact - Democen	
	Gemini 🗌 T	Thermal Control Subsystem	114.0 1965	External Cryogenic Storage Ta	nk (2) No 🗾 2	
	Lunar Rover 🗌 T	Thermal Control Subsystem	20.6 1971	Louvers / Heaters	(1) No Louvers / No Heaters 💌 1	
Global	Skylab Airlock 🗌 T	hermal Control Subsystem	532.0 1973	Special Materials / Special Cor	figuration (1) Yes	
Trades	Skylab OWS 🗌 T	hermal Control Subsystem	3345.0 1973			
	Spacelab 🗌 T	fhermal Control Subsystem	985.0 1983	45.6 2.5	48.0 1.9 1.9 49.9	
				D&D Cost STH Cost	DDT&E Cost Flight Unit Cost Production Cost Total Cos	t Help
Stage Trades	Copy 8	Records Returned		Major Inputs Other In	outs CER Methodology Funding Profile	
			F			
Total DDT	E 8,023.6 Total Flight	Unit 1,400.6 Tota	al Production 1,400.6	Vehicle Total 9.424.4	Total Weight (lbs) 224,900.0 FY2004	

- NAFCOM's Risk

 On Mode provides
 capability to
 define triangular
 distributions for
 all cost driver
 inputs and for
 cost thruputs
- These distributions are combined with CER errors to produce distributions for nonrecurring and recurring cost for each subsystem

Model Interface

e View V	VBS Help About InsertSubsystem									
	Elements		<u> </u>	Weight	Low		Most Likely	High	DB Ava	
	- Two-Stage Vehicle			•	20500.0		20500.0	20500.0	82505.0	lbs
	-Stage 1			0	9298.8	_	9298.8	9298.8	37424 3	kgs
Data View	Stage 1 Subsystems				3230.0		3230.0	3230.0) 57424.5	
_	Structures & Mechanisms	5		Thiapats		Æn	ter costs as T1 values in FY 2004\$in H	illions)		
	Vehicle Structures & I	Mechanisms	;	D8D					-	
Cost	Tank Structures & Me	STH		_			-			
0031	- Thermal Control					_			-	
	Environment/Active Th	Flight Un	Flight Unit							
	-Induced Thermal Prote	ection		Structural	54.0		54.0	54.0	54	
Process Based	Tank Thermal Control		_	Efficiency					,	_
	-Main Propulsion System (less engine	s)							
203	-Electrical Power and Dist	ribution								
Time	Command, Control & Data	Handling			Low		Most Likely		High	DB Avg
Phasing	Stage 1 System Integration			Manufacturing	Methods	_				
	Integration, Assembly and	d Checkout i	(IACO)	(3) Mod. Mfg	Techniques	•	(3) Mod. Mfg Techniques	(3) Mor	1. Mfg Techniques	▼ 3
	-System Test Operations I	(STO)		Engineering N	lanagement					
Notes	-Ground Support Equipme	nt (GSE)		(4) Significar	t Req. Ghanges	•	[4] Significant Req. Changes	[4] Sign	nficant Req. Changes	_ 5
Notes	- Tooling			New Design	1		(0) Maus Danius		. Danim	
	M/E GSE			[[0] Neou Des	agn	_	(o) Neou Design		o Design	
	-System Engineering & Inte	egration (SE	8I)	Funding Avai	ability					
FBS	Due over Mee evene et /Dt	~		(3) Funding	s Constrained - Dela	a: 💌	(3) Funding is Constrained - D	elay 🔽 (3) Fun	ding is Constrained - De	a 🔻 3
				Test Approac	1					
	膏 DataView	[3] Maximur	n Testing, Qualificat minlexity		(3) Maximum Testing, Qualific	ation 🚬 🛛 (3) Max	kimum Testing, Qualifica			
PRICE	Mission	Sel 🛆 🔽	WBS Item	(3) Extensiv	e Maior Interfaces In		(3) Extensive Major Interfaces	Ing 🔽 (3) Ext	ensive Maior Interfaces I	
	Shuttle Orbiter (includes Landing Gear)	~	Structural/Mechanical Group	Pre-Developn	e nagor interfaces in ient Study		(0) Extensive inajor intenaces		charoc lolajor interlaces i	
<u> </u>	Apollo LM		Structural/Mechanical Group	(2) One Stud	y Contract - Betwee	er 🔻	(2) One Study Contract - Betw	een 🔻 (2) One	Study Contract - Betwe	er 🔻 2
Globals	Apollo CSM		Structural/Mechanical Group			_	, r			
	Gemini		Structural/Mechanical Group	Deployed			(3) Multiple Deployed Structure	s 💌 3		
	Lunar Rover		Structural/Mechanical Group	Large Inert St	ucture?		(2) No	• 2		
Risk On	Skylab Airlock		Structural/Mechanical Group							
<u>C4</u>	Skylab OWS		Structural/Mechanical Group			_				
3	Spacelab		Structural/Mechanical Group	303.0	55.4	3	58.4 42.6	42.6 4	101.0	
Run Risk				D&D Cost	STH Cost	DDTa	E Cost Flight Unit Cost Prod	uction Cost Tot	al Cost H	elp
	Copy 8 Records	Returned		Major Inpu	s Other Inpu	rts C	ER Methodology Fund	ling Profile		
╚╬╗╸			F				<u>, , , , , , , , , , , , , , , , , , , </u>			
Total DDT	E 8.532.0 Total Eligitit Linit 1	420.2	Total Disduction 1,420.3	Vehic	a Total 9 902 3		Total Illeight (lbs) 224 900 0	EVO	004	
TOTAL DUT	E 0,002.0 j Totar Hight Ohit T	,400.0	Total Production 1,430.3	a enic	io rotar 0,002.0		rotar weight (iws) 224,300.0	F12		

Model Interface

- The final result is uncertainty distributions for DDT&E, Flight Unit, Production and Total Cost.
- Result data includes summary statistics, probability densities, and cumulative distributions for each major estimating element (i.e. stage, bus)

Risk Results Statistics – Example

Risk Results - Vehicle (2004 \$ Millions)	DDTE	FU	Prod	Total
Mean	2374.2	465.2	673.8	3048.0
Median	2293.0	418.6	638.1	2962.2
Mode	2138.9	339.0	572.3	2797.8
Standard Deviation	637.4	225.5	228.5	738.8
5th Percentile	1485.8	196.6	370.9	1999.5
10th Percentile	1635.2	232.3	418.1	2180.8
20th Percentile	1836.4	284.4	483.4	2422.6
30th Percentile	1996.8	329.0	536.7	2613.3
40th Percentile	2144.8	372.6	586.9	2788.2
60th Percentile	2451.5	470.3	693.7	3147.1
70th Percentile	2633.3	532.7	758.6	3357.6
80th Percentile	2863.1	616.3	842.3	3622.1
90th Percentile	3215.5	754.3	973.8	4023.5
95th Percentile	3538.9	891.3	1097.8	4388.4

Saving Risk Output - Statistics

Statistics	DDT&E F	light Unit Pr	oduction T	otal Costs 🛛	^				
	2,374.2	465.2	673.8	3,048.0					
Median	2,293.0	418.6	638.1	2,962.2					
Mode	2,138.9	339.0	572.3	2,797.8					
Standard Deviation	637.4	225.5	228.5	738.8					
5th Percentile	1,485.8	196.6	370.9	1,999.5					
10th Percentile	1,635.2	232.3	418.1	2,180.8	_				
20th Percentile	1,836.4	284.4	483.4	2,422.6	=				
30th Percentile	1,996.8	329.0	536.7	2,613.3					
40th Percentile	2,144.8	372.6	586.9	2,788.2					
60th Percentile	2,451.5	470.3	693.7	3,147.1					
70th Percentile	2,633.3	532.7	758.6	3,357.6					
80th Percentile	2,863.1	616.3	842.3	3,622.1					
Distribution Type • Log Normal • Normal 2,374.2 DDT&E Cost	Exp 465.2 Flight Unit G	ort Statistics 673.8 st Production	3 Cost To	,048.0 tal Cost					
Click "Export Statistics' To save to Excel									

Generating Risk Reports

ence to Solutions

NASA

Risk Allocation to WBS Elements

- NAFCOM also provides the ability to determine which elements have the most cost risk associated with them and allocating risk dollars back to those WBS elements.
 - User may select a percentile (70th, 80th or 90th) to be used to determine the amount of risk dollars to be allocated to the WBS elements

Reference: NSA Cost Performance Office Presentation, "Allocating 'Risk Dollars' Back to Individual Cost Elements," by Stephen A. Book, 2003

Allocating Risk Dollars Based on "Need"

§ For each WBS element k = 1,...,N, the risk dollars are calculated as:

$Risk \ Dollars(k) = \frac{ElementNeed(k)}{Need \ Base} * Risk \ Dollars$

Reference: NSA Cost Performance Office Presentation, "Allocating 'Risk Dollars' Back to Individual Cost Elements," by Stephen A. Book, 2003

' Analytic Approximation Vs. Monte Carlo

 While there is no consensus on whether or not Monte Carlo is more accurate than analytic approximation, recent tests by Tecolote, MCR, and SAIC suggest that both methods provide similar results

Comparison of Risk Model Output

Figure 12: Comparing Risk Simulation Tools Based Upon 10,000 LHC Iterations.

Reference: SCEA Presentation "Cost Risk Analysis 'For the Masses'" by Tecolote Research, 2004.

Comparative Risk Model Outputs for 2002 MCR Case Study

Table 6: MCR Case Study

	Sđ	5%	10%	50%	90%	95%
ACE	487.2	1,043	1,156	1,708	2,438	2,630
CB	486.1	1,044	1,157	1,704	2,441	2,626
@Risk	489.9	1,039	1,150	1,705	2,448	2,640
Normal	491.8	947	1,126	1,756	2,386	2,565
FRISK	491.8	1,076	1,189	1,691	2,405	2,657
Beta	491.8	994	1,121	1,729	2,431	2,610

Reference: SCEA Presentation "Cost Risk Analysis 'For the Masses'" by Tecolote Research, 2004.

NAFCOM Case Studies

- SAIC worked with Erik Burgess of MCR to compare the NAFCOM analytic approximation algorithm with Monte Carlo simulation
- We compiled four test cases and analyzed each using both Monte Carlo and analytic approximation
- Monte Carlo simulations were performed in @Risk, using 10,000 trials
- @Risk uses rank correlation, so the Monte Carlo results underestimate the standard deviation and thus slightly underestimate the risk

Results Summary

- Comparisons are very favorable
 - Even for the case with the most variance, the differences in means is less than 1%
 - All percentiles are within 12%
- Results for tails are as expected
 - Monte Carlo tails are thinner than NAFCOM
 - Expected because @Risk uses rank correlation
- Nothing significant would be gained from implementing Monte Carlo approach

Test Case 1

- Single Stage Vehicle
- Hardware Only
- Four Subsystems
 - Structures
 - Thermal Control
 - EPD&C
 - CC&DH

* The green line represents the Lognormal distribution from NAFCOM and the histogram represents the Monte Carlo simulation results.

Test Case 1 Overlay Comparison – Flight Unit

Test Case 2

- Consists of the same hardware subsystems as Test
 Case 1
- Also includes systems engineering

Test Case 2 DDT&E Overlay Comparisons

Test Case 2 Flt. Unit Overlay Comparisons

Test Case 2 DDT&E Percentile Comparisons

Test Case 2 Flight Unit Percentile Comparisons

Test Case 3

- Consists of a single stage vehicle, subsystem hardware plus systems engineering.
- **D** The hardware elements include 7 subsystems
 - Structures
 - Thermal control
 - Electric power
 - Command control and data handling
 - Guidance navigation and control
 - Reaction control/auxiliary propulsion
 - Main propulsion (less engines) subsystems.

Test Case 3 DDT&E Overlay Comparisons

Test Case 3 Flight Unit Overlay Comparisons

Test Case 3 DDT&E Percentile Comparisons

Test Case 3 Flight Unit Percentile Comparisons

Test Case 4

- Consists of a single stage vehicle, subsystem hardware plus systems engineering
- □ The hardware elements are the same as for test case 3
- □ Test case 4 is similar to test case 3
 - The only difference is that the inputs vary more than in test case 3

Test Case 4 DDT&E Overlay Comparisons

Test Case 4 Flight Unit Overlay Comparisons

Test Case 4 DDT&E Percentile Comparisons

NAFCOM Risk Capabilities Summary

- Uses well-documented analytical method to calculate risk
- User can input low, most likely, and high values for all NAFCOM complexity generator and conventional CER inputs
- Incorporates both technical and estimating uncertainties
- Incorporates correlation between subsystem costs
- Results displayed to the user are summary statistics, probability densities, and cumulative distributions for DDT&E, Flight Unit, Production, and Total Costs for each major estimating element (i.e. stage, bus, etc.)
- User can select either the Normal distribution or the Lognormal distribution to approximate the final results
- Provides similar results to Monte Carlo simulation

