Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com

Improving Software Estimating Relations for Army Software Sustainment Data DASA-CE

Presented to ICEAA May 2020

May 2020

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com **Presentation Overview**

- Objectives and Strategy
- Summary of Accomplishments
- Army Software Sustainment WBS
- Data Demographics
- New Cost Estimating Relationships (CER)
 - Annualized Capability Release CERs
 - Causal Relationship Driven CER
- Next Steps

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com SWS Initiative Objective and Strategy

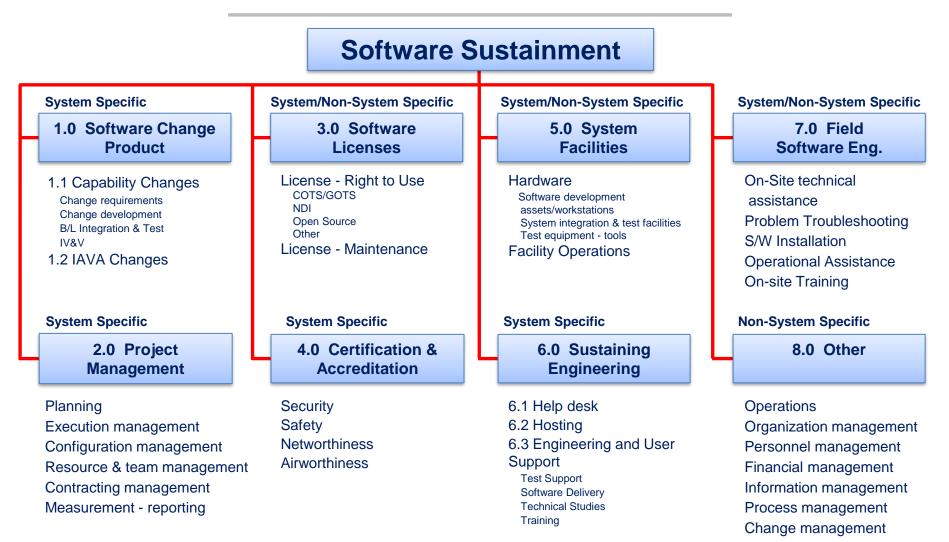
Accurately estimate Army system Software Sustainment (SWS) costs to:

- Effectively estimate and justify software and system life cycle costs
- Objectively evaluate Army system software sustainment execution costs
- Inform and optimize the allocation of available sustainment resources across the Army

Collect and evaluate SWS cost and technical data for all Army operational systems (Phase I and Phase II data call) Generate and validate cost estimating relationships from Phase I and Phase II data collection Implement systemic Army SWS data collection via the SRDR-M: Populate cost and technical data repository

Improve Army SWS policy, business, and technical requirements

Effective software sustainment cost estimation is the basis for Army system software life cycle cost management

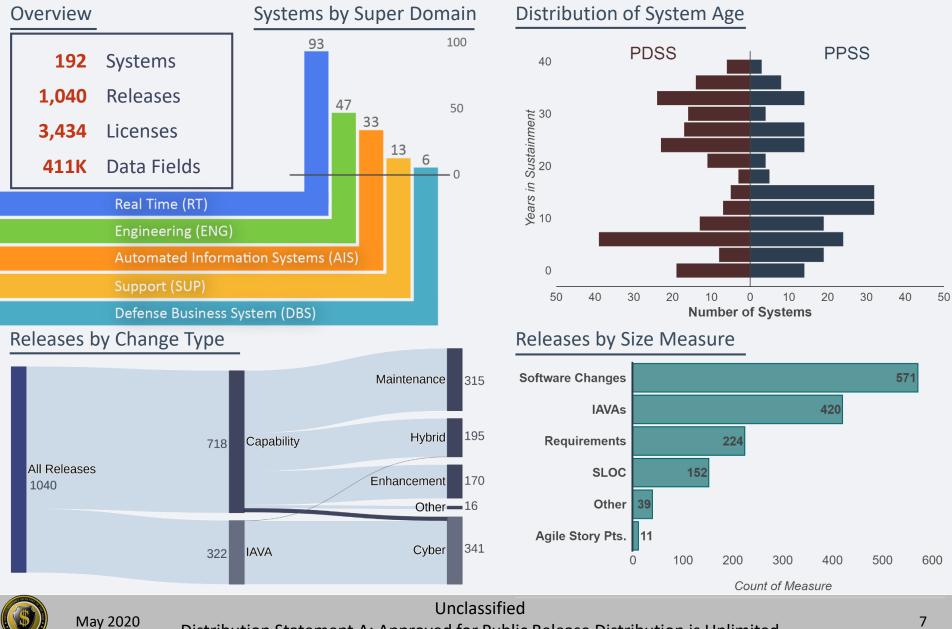

Unclassified May 2020 Distribution Statement A: Approved for Public Release Distribution is Unlimited

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com Summary of Accomplishments

- Established Software Sustainment Data Collection Mechanisms
 - Army Software Data Collection Questionnaire
 - Software Sustainment WBS Used to Collect Sustainment Costs
 - Annual Data Collection
- Created Comprehensive Software Sustainment Data Repository
 - 192 Systems
 - 700 Capability Releases
 - 300 IAVA Releases
 - 3,200 records on software license data
- Established Robust Foundation for Software Sustainment Fact-Based Decisions
 - Allocations of Costs by WBS Elements
 - Continue to improve Software Sustainment Cost Estimating Relationships
- Data and Analysis Results provided to DoD Community

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com DASA-CE SWS WBS

Version 5.0


May 2020

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com Army Software Sustainment Definition

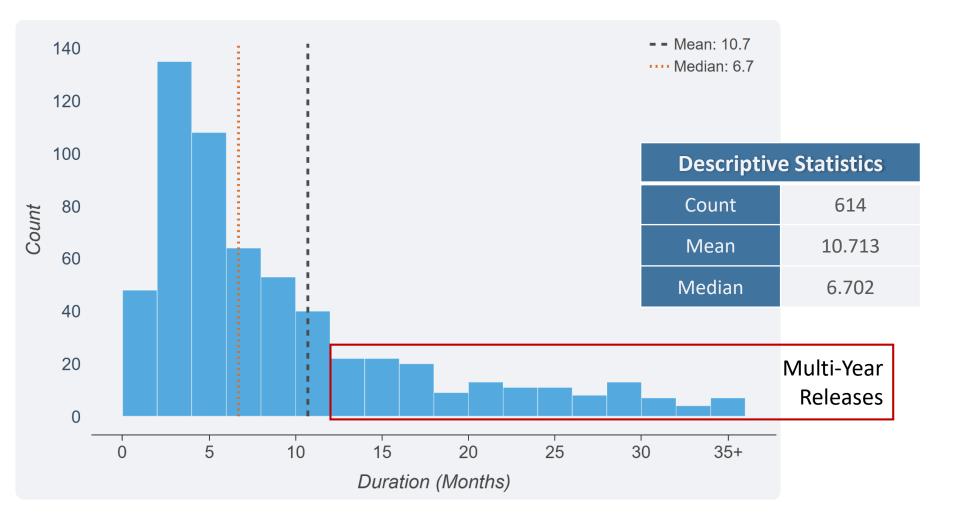
- Software sustainment (SWS) includes all software change activities and products associated with modifying a software system after a software release has been provided to an external party
- The release is the primary SWS change product a composite of one or more changes - it can be either a formal release or an engineering release
- SWS includes software enhancements, software maintenance, and cybersecurity updates
- Software maintenance includes defect repair, rehosting, adaptations, updates, and reconfiguration
- SWS may be funded by multiple funding sources
- Costs include both Fixed and Variable costs accrued at both the system and organizational levels
- Costs include both organic (government) and contractor resources

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com **Data Demographics**

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com

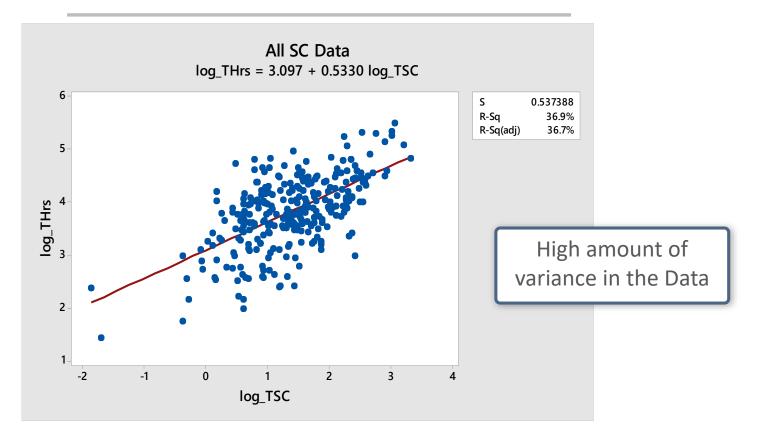
Annualized Capability Release CERs

May 2020


Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com Annualizing Data

- Data for WBS elements 2 to 8 were collected for each Fiscal Year (FY)
- Capability release data was collected by release
- Start and end dates for a significant number of releases spanned multiple years (next slide)
- Multi-year release data was proportioned into corresponding FYs creating annualized release data
- Annualized data was re-evaluated for annual CERs
- Benefits

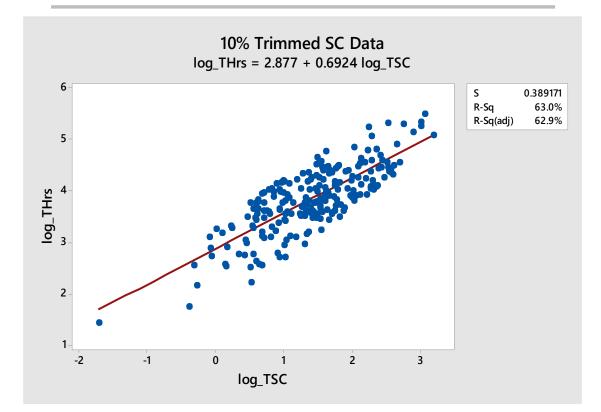
- Annualized data is compatible with other WBS data
- Future data collection will be collected annually and the annualized data will be compatible
- New CERs match annual funding cycle



Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com Release Duration Distribution

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com All Annualized Data CER

Equation		Variable	Coef.	Std Err	T-Value	P-Value
THrs = 1,249 * TSC	0.53	Constant	3.0967	0.063	49.45	0.000
R-Squared	36.9%	Log(SC)	0.533	0.0399	13.34	0.000
Adj. R-Squared	36.7%					
Observations	306					
		Unclassifie	d			


May 2020

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com CER Analysis Approach

- Two strategies were employed to reduce variability in the data
 - The upper and lower 10% of the data was trimmed from the dataset Trimming was based on unit cost (total release hours / #software changes)
 - Meta-data was used to segment the release data
 - Super Domains
 - Real-Time (RT)
 - Engineering (ENG)
 - Automated Information Systems (AIS)
 - Support (SUP)
 - Acquisition Category (ACAT) Level
 - o Commodities (13)

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com Strategy 1: Trimmed Data CER*

Equation		Variable	Coef.	Std Err	T-Value	P-Value
THrs = 754 * TSC ^{0.0}	59	Constant	2.877	0.0538	53.45	0.000
R-Squared	63.0%	Log(SC)	0.6924	0.0341	20.32	0.000
Adj. R-Squared	62.9%					
Observations	244	* Data recor	ds trimmed	by 10%		
		Unclassifie	d			

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com Assumptions

- Used 10% upper & lower trimmed data
- Removed records with:
 - Defense Business Systems (DBS) super domain
 - Hour data outliers or missing data
 - Records with no dependent variable, e.g., SW Change (SC) counts
- Aggregated Acquisition Category (ACAT) Levels
 - ACAT I
 - ACAT II
 - ACAT III+ consists of ACAT III, ACAT IV and non-Programs of Record
- Both Dependent and Independent variables were transformed using \log_{10}
 - Zeros were represented with 0.1
- All categorical variables were represented as dummy variables (0,1)
- Adjusted R² was used for model performance comparisons

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com Annualized CERs vs Previous CERs

Annua	lized Data Model	Conditions	Obs	Adj R ²	Prev Obs	Prev R ²
THrs = 1,249 * (TSC) ^{0.53}	All data	306	0.37	329	0.36
THrs = 754 * (TS	C) ^{0.69}	10% trimmed data	244	0.63	263	0.57
AIS ENG RT SUP	THrs = $459 * (TSC)^{0.69}$ THrs = 703 * (TSC)^{0.69} THrs = 869 * (TSC)^{0.69} THrs = 1,208 * (TSC)^{0.69}	10% trimmed & Super Domains (Categorical)	244	0.63*	263	0.62
Aviation Business C5ISR ChemBio Comms Fire Intel Missiles MissionCmd Network SATCOM Simulation Vehicles	THrs = $656 * TSC^{0.71}$ THrs = $348 * TSC^{0.71}$ THrs = $704 * TSC^{0.71}$ THrs = $174 * TSC^{0.71}$ THrs = $650 * TSC^{0.71}$ THrs = $724 * TSC^{0.71}$ THrs = $781 * TSC^{0.71}$ THrs = $1,460 * TSC^{0.71}$ THrs = $1,600 * TSC^{0.71}$ THrs = $1,600 * TSC^{0.71}$ THrs = $1,484 * TSC^{0.71}$ THrs = $1,484 * TSC^{0.71}$ THrs = $368 * TSC^{0.71}$ THrs = $411 * TSC^{0.71}$	10% trimmed & Commodities (Categorical)	244	0.70*	263	0.68*
THrs = 787 * SC	_Total ^{0.90} / Req_T ^{0.17}	10% trimmed	32	0.81	32	0.84
THrs = 808 * SC_	_Total ^{0.81} / Req_Imp ^{0.11}	10% trimmed	104	0.70	65	0.74

* High P-Values for one or more coefficients

Unclassified

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com New Annualized CERs -1

A	Annualized Data Model	Conditions	Obs	Adj R ²
ACAT I ACAT II ACAT III+	THrs = $769 * SC_Total^{0.68}$ THrs = 1,124 * SC_Total ^{0.68} THrs = $713 * SC_Total^{0.68}$	10% trimmed & ACAT Levels (Categorical)	244	0.64*
THrs = 483 * 9	SC_Total ^{0.80}	10% trimmed, ACAT I	59	0.79
AIS ENG RT	THrs = 573 * SC_Total ^{0.79} THrs = 409 * SC_Total ^{0.79} THrs = 577 * SC_Total ^{0.79}	10% trimmed, ACAT I & Super Domains	59	0.79*
THrs = 359 * 9	SC_Total ^{0.90}	10% trimmed, ACAT I & RT	35	0.85
THrs = 1,563	* SC_Total ^{0.40}	10% trimmed, ACAT I & ENG	19	0.63
THrs = 2,805	* SC_Total ^{0.43}	10% trimmed, ACAT I & AIS	5	0.87
THrs = 1,265	* SC_Total ^{0.65}	10% trimmed, ACAT II	34	0.65
AIS ENG RT	THrs = 3,428 * SC_Total ^{0.62} THrs = 1,648 * SC_Total ^{0.62} THrs = 1,125 * SC_Total ^{0.62}	10% trimmed, ACAT II & Super Domains	34	0.68*
THrs = 2,742	* SC_Total ^{0.0.34}	10% trimmed, ACAT II & RT	18	0.05
THrs = 1,545	* SC_Total ^{0.64}	10% trimmed, ACAT II & ENG	10	0.84
THrs = 794 * 9	SC_Total ^{0.91}	10% trimmed, ACAT II & AIS	4	0.36

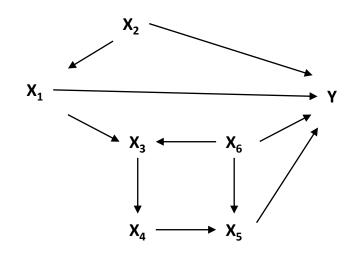
Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com New Annualized CERs -2

	Annualized Data Model	Conditions	Obs	Adj R ²
THrs = 851 *	SC_Total ^{0.64}	10% trimmed, ACAT III+	151	0.55
AIS	THrs = 479 * SC_Total ^{0.65}			
ENG	THrs = 951 * SC_Total ^{0.65}	10% trimmed, ACAT III+ & Super	151	0.55
RT	THrs = 851 * SC_Total ^{0.65}	Domains	131	0.55
SUP	THrs = 706 * SC_Total ^{0.65}			
THrs = 1,076	* SC_Total ^{0.58}	10% trimmed, ACAT III+ & RT	60	0.49
THrs = 583 * SC_Total ^{0.87}		10% trimmed, ACAT III+ & ENG	49	0.58
THrs = 386 * SC_Total ^{0.73}		10% trimmed, ACAT III+ & AIS	28	0.59
THrs = 2,673	* SC_Total ^{0.34}	10% trimmed, ACAT III+ & SUP	17	0.33

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com Conclusions on Annualized CERs

- The CER analysis of the annualized data is not much different in performance than CERs for the multi-year release data
- Using CERs based on annualized data makes cost estimation easier going forward because funding requests are done by fiscal year.
- Using the converted annualized data will make it possible to combine the new and old datasets.
- Previous CERs used categorical data resulting in all members in the category having the same exponent but different constants
- Changing the CER approach to sub-setting the data and allowing each CER to have its own constant and exponent provides more insight into weaker performing members of the category

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com


Causal Relationship Driven CERs

May 2020

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com Correlation versus Causation

- It is well known that *correlations* among factors does not necessarily mean *causation*.
 - For example, an increase in ice cream sales is correlated with shark attacks
- Because of this, regression models are often the wrong tool to use for causal search, i.e., identifying which factors affect the outcome.
- These models may use predictor variables that are influenced by variables outside the model, *confounding* variables. The model may have a good fit to the data but will not be accurate making estimates

Confounding Variable Example

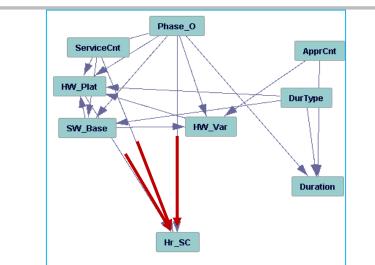
- X₂ influences both X₁ and Y and X₁ influences Y. A change in X₂ will produce a change in both X₁ and Y
- X₆ influences Y as does X₅ but X₆ also influences X₅. A change in X₆ will produce a change in both X₅ and Y
- Conclusion: choose only 2 of the 4 influencing factors on Y

May 2020

Unclassified

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com Causal Relationship Analysis

- The Army Software Maintenance Initiative collaborated with the Software Engineering Institute (SEI), Pittsburgh, PA, to investigate cause and effect relationships in collected maintenance data.
- The large number of factors in the software maintenance data make it challenging to identify which ones are useful for grouping data
- As a result of causal analysis, the data was segmented into two tiers
 - First tier was data segmented by Super Domain
 - Second tier was segmented by ACAT level within each super domain
- Unit cost (total release hours per software change) was used as the variable of interest, Y, in the analysis
- Different factors appear in different groups meaning different predictors are used in CERs
- This presentation only shows the causal relationship graphs and CERs for the Real-Time super domain and the three ACAT level releases

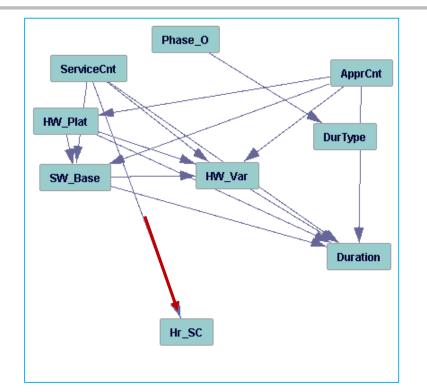

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com Causal Analysis Influencing Factors

Super Domain	ACAT I	ACAT II	ACA III+
RT	Phase	Inter-Service	Hardware Variants
	Inter-Service	Partner Count	Maintenance Phase
	Partner Count		Software Baseline
	HW Platforms		
ENG	(None)*	Number of	Duration Type
		Appropriations	Hardware Variants
		Hardware Variants	Maintenance Phase
		 Maintenance Phase 	
		Inter-Service	
		Partner Count	
		Software Baseline	
AIS	Inter-Service	(No info)	Duration Type
	Partner Count*		Inter-Service Partner Count

* There were very few observations in two of three ACAT I datasets making casual effects harder to analyze.

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com Real-Time ACAT | Releases

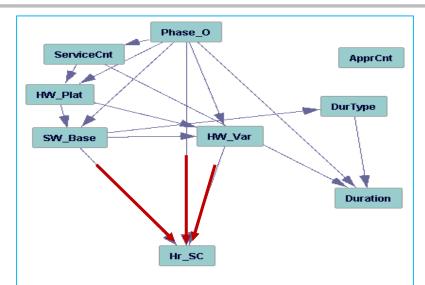
	Data Model	Conditions	Obs	Adj R ²
ACAT I ACAT II ACAT III+	THrs = 544 * $(TSC)^{0.74}$ THrs = 544 * $(TSC)^{0.74}$ THrs = 544 * $(TSC)^{0.74}$	10% RT ACAT Levels	68	0.71*
THrs = 577 * (T	SC) ^{0.81}	10% RT ACAT I	23	0.74
THrs = 164 * (T	SC) ^{1.0} * ServCnt ^{1.10}	10% RT ACAT I ServCnt	23	0.84
THrs = 91 * (TS	C) ^{0.94} * HW_Plat ^{0.18}	10% RT ACAT I HW_Plat	22	0.80
MS C MS C - FRP O&S	THrs = 260 * (TSC) ^{0.74} THrs = 394 * (TSC) ^{0.74} THrs = 787 * (TSC) ^{0.74}	10% RT ACAT I Phases (Ordinal)	23	0.71
THrs = 161 * (T HW_Plat ^{0.0011}	SC) ^{1.00} * ServCnt ^{1.05} *	10% RT ServiceCnt HW_Plat	22	0.84*


* High P-Values for one or more coefficients

May 2020

Unclassified

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com Real-Time ACAT II


D	ata Model	Conditions	Obs	Adj R ²
ACAT I	THrs = 544 * (TSC) ^{0.74}			
ACAT II	THrs = 544 * (TSC) ^{0.74}	10% RT ACAT Levels	68	0.71*
ACAT III+	THrs = 544 * (TSC) ^{0.74}			
THrs = 308 * (TSC) ^{0.95}		10% RT ACAT II	23	0.75
THrs = 287 * (TSC) ^{0.94} * ServCnt ^{1.86}		10% RT ACAT II ServiceCnt	23	0.75

* High P-Values for one or more coefficients

May 2020

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com Real-Time ACAT III+

Data Model		Conditions	Obs	Adj R ²
ACAT I	THrs = 544 * (TSC) ^{0.74}			
ACAT II	THrs = 544 * (TSC) ^{0.74}	10% RT ACAT Levels	68	0.71*
ACAT III+	THrs = 544 * (TSC) ^{0.74}			
THrs = 467 * (TSC)	0.99	10% RT ACAT III+	22	0.61
THrs = 280 * (TSC)	^{1.02} * SW_Base ^{0.46}	10% RT ACAT III+ SW_Base	22	0.65
THrs = 252 * (TSC)	^{1.01} * HW_Var ^{0.74}	10% RT ACAT III+ HW_Var	22	0.64*
MS C - FRP	THrs = 272 * (TSC) ^{0.92}	10% RT ACAT III+ Phases		
MS C - LRP	THrs = $465 * (TSC)^{0.92}$	(Ordinal)	22	0.67*
O&S	THrs = 776 * (TSC) ^{0.92}	(orunal)		
MS C - FRP	THrs = 138 * $(TSC)^{1.07}$ * SW_Base ^{0.51}	10% RT ACAT III+ SW_Base		
MS C - LRP	THrs = $70 * (TSC)^{1.07} * SW_Base^{0.51}$	Phases (Ordinal)	22	0.67*
O&S	THrs = 328 * $(TSC)^{1.07}$ * SW_Base ^{0.51}			

* High P-Values for one or more coefficients

Unclassified

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com Conclusions on Causal-driven CERs

- Causal relationship analysis provided insight into which independent variables should be examined for predicting total release hours
- This saved a lot of random analysis time.
- The discovered relationships also suggested other relationships that could answer different information needs such as which data does not contribute to CER formulation and can be eliminated from data collection
- Segmenting data as suggested by causal analysis generally shows more CER accuracy in each segment versus trying to find a one-size-fits-all CER.
- It also highlights poor performing members in the segment that need further investigation.
- Causal analysis should proceed regression analysis to save time and eliminate confounding variables

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com Next Steps

- Next Steps
- Annual data collection
 - Collection of FY18 PPSS actual execution data by Army G4
 - Development of Army OSMIS data repository for data collection and storage
 - The Software Resources Data Reporting for Maintenance (SRDR-M*) closely aligns to the DASA-CE SWS WBS and data requirements
 - Moving forward, the SRDR-M will be utilized to collect SWS data from Army programs and perform analysis
- Annualized release data will continue to be analyzed for benchmarks, annual changes in software changes, and for estimating relationships with the other WBS elements
- The causal relationships will be updated using both new and old data and the CERs will be revised based on the discovered relationships

*See <u>http://cade.osd.mil/policy/dids</u> for more information

May 2020

Unclassified

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com Contributors

Cheryl Jones	James Doswell	Dr. Bradford Clark
Software Measurement Analyst	Senior Operations Research Analyst	Vice President
US Army AFC	ODASA-CE	Software Metrics, Inc.
973-724-2644	703-697-1572	(703) 754-0115
James Judy	Dr. Robert Charette	Paul Janusz
NISEC Division Chief	President	Software Measurement Analysis
ODASA-CE	ITABHI Corporation	US Army AFC
703-697-1612	(540) 972-8150	973-724-2644

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com

Acronyms -1

AISAutomated Information System super domainBLSoftware Change BacklogBYBase YearC&ACertification and AccreditationC5ISRCommand, Control, Communications, Computers, Cyber, Intelligence,	ACAT	Acquisition Category
BYBase YearC&ACertification and AccreditationC5ISRCommand, Control, Communications, Computers, Cyber, Intelligence,	AIS	
C&ACertification and AccreditationC5ISRCommand, Control, Communications, Computers, Cyber, Intelligence,	BL	Software Change Backlog
C5ISR Command, Control, Communications, Computers, Cyber, Intelligence,	BY	Base Year
, , , , , , , , , , , , , , , , , , , ,	C&A	Certification and Accreditation
Surveillance, and Reconnaissance	C5ISR	Command, Control, Communications, Computers, Cyber, Intelligence,
		Surveillance, and Reconnaissance
CADE Cost Assessment Data Enterprise	CADE	Cost Assessment Data Enterprise
CER Cost Estimating Relationship	CER	Cost Estimating Relationship
COTS Commercial Off The Shelf	COTS	Commercial Off The Shelf
CRED Uncertainty Estimation Determination	CRED	Uncertainty Estimation Determination
CSCI Computer Software Configuration Item	CSCI	Computer Software Configuration Item
Cyber% Percent of the release that is Cybersecurity updates	Cyber%	Percent of the release that is Cybersecurity updates
DASA-CE Deputy Assistant to the Secretary of the Army for Cost and Economics	DASA-CE	Deputy Assistant to the Secretary of the Army for Cost and Economics
DBS Defense Business System commodity	DBS	Defense Business System commodity
DIACAP DoD Information Assurance Certification and Accreditation Process	DIACAP	DoD Information Assurance Certification and Accreditation Process
DISA Defense Information Systems Agency	DISA	Defense Information Systems Agency
DoD US Department of Defense	DoD	US Department of Defense
DSLOC Delivered Source Lines of Code	DSLOC	Delivered Source Lines of Code
ECP Engineering Change Proposal	ECP	Engineering Change Proposal
El_Mod External Interfaces Modified	El_Mod	External Interfaces Modified
ENG Engineering super domain	ENG	Engineering super domain
Enh% Percent of the release that is Enhancements to the system	Enh%	Percent of the release that is Enhancements to the system
EW Electronic Warfare	EW	Electronic Warfare

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com A cronyms - 2

FSE	Field Software Engineering
FTE	Full Time Equivalent
IAVA	Information Assurance Vulnerability Alert
IAVM	Information Assurance Vulnerability Management
ICEAA	International Cost Estimating and Analysis Association
Maint%	Percent of the release that is Maintenance changes
NVD	National Vulnerability Database
O&S	Operations and Sustainment
ODC	Other than Direct Costs
OMA	Operations and Maintenance Army funding
OPA	Other Program Army funding
OSMIS	Operation/Sustainment Management Information System
PDSS	Post-Deployment Software Support
PEO	Program Executive Office
POM	Program Objective Memorandum
PPSS	Post-Production Software Support
PTR	Problem Trouble Report

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com

Acronyms - 3

RDT&E	Research, Development, Testing, and Evaluation
RMF	Risk Management Framework
RT	Real-Time super domain
SC	Software Changes
SEC	Software Engineering Center
SER	Schedule Estimating Relationship
SLOC	Source Lines of Code
SRDR	Software Resources Data Report
SRDR-M	Software Resources Data Report for Maintenance
STIG	Security Technical Implementation Guides
SUP	Mission Support super domain
SW	Software
SWBase	Software Baseline SLOC
SWS	Software Sustainment
TDEV	Time to Develop
THrs	Total release hours
TReqts	Total Requirements in a system
TReqts_Imp	Total Requirements Implemented in a release
TSC	Total Software Changes for a release
WBS	Work Breakdown Structure

