

Minimize risk. Maximize potential.

Deep Dive into Input Distribution Selection with @RISK

Part III: Turning Expert Opinion into Defensible Distributions

Dr. Steve Van Drew August 13, 2020

ICEAA Technology Showcase Webinar Series Deep Dive: Input Distribution Selection with @RISK

Part I – Distribution Fitting of Univariate Data Fri, Jun 19th, 10am EDT

Part II – Revisiting the Triangular and PERT "Three Point" Distributions Thurs, Jul 16th, 10am EDT

Part III – Turning Expert Opinion into Defensible Distributions Thurs Aug 13th, 10am EDT

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com Part III Webinar Objectives

- Provide ICEAA members with:
 - an awareness of difficulties associated with subjective probability assessment, especially how the heuristics experts may be using can lead to biases
 - a technique for interviewing experts that attempts to minimize these biases
 - a demonstration of how to use @RISK to identify the best fitting distribution from interview results

Heuristics Used in Subjective Probability Assessment

People use heuristics (rules of thumb) to cope with the complexities of subjectively estimating probabilities. These heuristics can lead to systematically biased judgments.

- Availability
- Representativeness
- Anchoring and Adjustment

Tversky, A., and D. Kahneman (1974) "Judgment under Uncertainty: Heuristics and Biases." *Science*, 185, 1124 – 1131.

Five-Point Fractile Specification Technique

- Assess a lower bound (defined as the 0.01 fractile) and an upper bound (defined as the 0.99 fractile). Select these values so that there is only a 1% chance that in each case the true value of the uncertain quantity is more extreme than the fractile.
- Assess the median of the distribution (the 0.5 fractile)
- Assess the interquartile values (the 0.25 and 0.75 fractiles)

... or 0.05 & 0.95; 0.5; and 0.33 & 0.67

Five-Point Fractile Specification Technique

Fractile Specification Assessment Table			
Cumulative Probability		Representative Value	
0	0.01		
3	0.25		
2	0.50		
3	0.75		
0	0.99		

Hypothetical X Values

Identify best fitting distribution using @RISK Distribution Fitting feature with "Cumulative (X,P) Points" as Data Type. Fit ranking based on Root Mean Squared Error (RMSE).

Questions?

https://www.palisade.com/trials.asp

sales@palisade.com

Back Up Slides

Availability Biases

- Retrievability of instances
- Effectiveness of search set
- Imaginability
- Illusory correlation

Representativeness Biases

- Insensitivity to prior probability of outcomes
- Insensitivity to sample size
- Misconceptions of chance
- Insensitivity to predictability
- Illusion of validity
- Misconceptions of regression

Anchoring and Adjustment Biases

- Anchoring in the assessment of subjective probability distributions
- Insufficient adjustment
- Evaluation of conjunctive and disjunctive events
 - Overestimating conjunctive event probabilities, e.g., components in serial (and)
 - Underestimating disjunctive event probabilities, e.g., components in parallel (or)

Methods for Assessing Subjective Probabilities

- Indirect assessment methods
 - Graphing techniques
 - Betting techniques
- Direct assessment methods
 - Fixed probability techniques
 - Fixed value techniques
 - Fractile specification techniques

Fixed Value Techniques

Fixed Value Assessment Table		
Representative Value Range { $\Delta = (X_H - X_L)/5$ }	Cumulative Probability	
X_{L} to $(X_{L} + \Delta)$		
$(X_L + \Delta)$ to $(X_L + 2\Delta)$		
$(X_L + 2 \Delta)$ to $(X_L + 3 \Delta)$		
$(X_L + 3 \Delta)$ to $(X_L + 4 \Delta)$		
$(X_L + 4 \Delta)$ to X_H		

With this template five subjective probability assessment questions are asked, one from each representative value range. If time (and the expert being interviewed) permits, obtaining more value/cumulative probability data pairs is preferred.

Fixed Probability Techniques

Fixed Probability Assessment Table		
Cumulative Probability Range	Representative Value	
0.0 - 0.2		
0.2 - 0.4		
0.4 - 0.6		
0.6 - 0.8		
0.8 - 1.0		

With this template five subjective probability assessment questions are asked, one from each cumulative probability range. If time (and the expert being interviewed) permits, obtaining more cumulative probability/value data pairs is preferred.

