Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com

The FlexFile Framework: Preparing for Powerful Analysis in R

The FlexFile Framework: Preparing for Powerful
Analysis in R

Ben Berkman, Justin Cooper
Technomics, Inc.
February 24, 2020

Table of Contents

1.1 ADSEITACE oottt e 1
1.2 ACKNOWIEAZGEIMENTES. ... bbb 1
30 N 00U oo Yo 10 U 0 10) o S0P 3
1.4 The FlexFile and Quantity Data REPOIt......cuireninenirssisessesssssssessssssssssssesssssssssesnes 4
1.5 What R We TalKing ADOUL? ... sssssssssssssssssssssssssssssssssssssssases 4
1.6 CSATTOOIS ittt 5
1.6.1 IIMNPOTIT e 6
0/ 1 U |25 TP 9
OIS TG 1 1= 0 3 () o o VPP 10
1.6.4 VISUALIZE oo snsssssssnsnssnans 16
3R 00 Vol 11 1] () o 10T 21

1.1 Abstract

The Cost and Hour Report (“FlexFile”) is a new Contractor Cost Data Reporting (CCDR)
format that promises to change the world of Department of Defense (DoD) cost analysis by
delivering significantly more granular cost and hour data than its predecessor, the DD 1921
series of reports. The volume of the FlexFile requires a more thoughtful approach to
importing, wrangling, transforming, and ultimately communicating data than Microsoft
Excel (Excel) may offer. This paper introduces the R package csdrtools that helps the
analyst exploit the FlexFile to its fullest extent.

1.2 Acknowledgements

The authors would like to acknowledge the following individuals:

Adam James (Technomics, Inc.) provided technical guidance in the development of
csdrtools.

Marc Stephenson (Technomics, Inc.) is the contractor lead for the OSD CAPE FlexFile
initiative, and served as a valuable resource for many FlexFile-specific matters.

Technomics, Inc. 1

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com

The FlexFile Framework: Preparing for Powerful Analysis in R

Dan Germony (Cost & Systems Analysis Office, USA TACOM LCMC) has championed the
use of R in the cost community, and has developed tools for working with DD 1921 reports.

Technomics, Inc. 2

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com

The FlexFile Framework: Preparing for Powerful Analysis in R

1.3 Introduction

The cost estimating and analysis (Cost) profession and the value of its advice to decision
makers is largely dependent on the cost, technical, and programmatic data that underlie
analyses. The most common tools that the profession uses to organize and manipulate data
are Excel and Excel add-ins. The appeal of Excel is obvious. Every government and industry
workstation is Excel-equipped, it is easy to use and, with the right amount of practice, it is
possible to become a self-taught power-user capable of exploiting Excel’s full potential.
Unfortunately, the downside of Excel is becoming increasingly obvious to even the most
advanced users. Some of the core problems are summarized below.

1. Lack of consistency. Excel offers extreme flexibility. This necessarily means that the
workbook is only as organized as the creator’s thoughts. The outcome can range from
a very well organized workflow to an incomprehensible one.

2. Lack of object language. Excel has a weak (at best) object language. This means that
workbooks are customized to every problem. Reusing analysis becomes very difficult,
if not impossible.

3. Lack of statistical features. Excel is not a statistical platform. Model (e.g., CER)
development is limited to basic factors and linear regression (with even the latter not
performed to satisfaction without custom add-ins).

4. Lack of scalability. Excel struggles with large, diverse data. Complex data sets of the
present and the future (e.g., FlexFile, O&S datasets) will simply not fit in Excel.

5. Lack of graphical features. Excel graphics are custom made for each application. It is
hard (but not impossible) to reuse a stock graphic for alternative datasets. In addition,
graphics are static and lack visual appeal.

6. Fixed state. Excel models exist in a singular state. For example, a single cell can only
have one value. A user cannot allow vector inputs without the help of an outside tool
(e.g., Crystal Ball and other tools to support a Monte Carlo use case).

Some of these issues can be mitigated by extensive training in data analytics, Excel, and
workflow development. Others are impossible for even the expert user. Cost must adopt
new tools and techniques to turn large, complex datasets into actionable information for
analysts and decision makers.

We present an alternative approach to handling cost data, specifically CCDRs. This paper
describes that alternative - the csdrtools package within R, an existing open source data
analytics framework.

As the first adopters of the FlexFile, we rely on tools such as R. Soon, the cost community
will, too. We strongly believe that the community will not only benefit from, but in fact rely
upon packages such as csdrtools as it transitions into an age of bigger and more complex
datasets.

Technomics, Inc. 3

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com

The FlexFile Framework: Preparing for Powerful Analysis in R

1.4 The FlexFile and Quantity Data Report

CCDRs, a subset of Cost and Software Data Reports (CSDRs), are the standard for actual
cost and hour data collection for Major Defense Acquisition Programs (MDAPs). Over the
past three decades, cost reporting formats in the defense sector have remained largely
unchanged. However, in May, 2019, the Defense community replaced the DD 1921 series
with the FlexFile and Quantity Data Report for all new contracts with CSDR reporting
requirements.!

The FlexFile provides significantly more granular data than the DD 1921 reports.2 For
example, the FlexFile includes the following elements that were not included in its
predecessor:

e Dollars and hours tagged to an Account. This is intended to be the level (e.g., work
package, control account, charge code) at which the contract subject to the cost
reporting requirement incurs costs.

e Atime-phased reporting period

e Reporting by CLIN

e The reporting company’s Functional Categories and Functional Overhead Categories,
which align with their internal pricing categories.

1.5 What R We Talking About?

R was developed as a purpose-built statistical analysis tool. As a result, its foundational,
base capabilities are rooted in data manipulation and statistical methods. However, the
true power of R is its extensive library of packages curated and maintained in the
Comprehensive R Archive Network (CRAN).3

R was originally used solely by statisticians to solve fairly specific problems. In the mid-
2000s, personal computing power exploded, signaling the arrival of the Data Age. This led
to the rapid adoption and the mainstream use of R by a new user base - the “data scientist”.

In the early years, packages evolved quickly and users frequently changed how they did
things. In the early 2010s, a certain user base started to evolve and superstar developers
began to consolidate and define the standard packages and workflows for an efficient,
effective, and scalable data science work stream. Almost more importantly, they stabilized
the “wild west” culture and introduced a standard approach to a macro set of problems.

1 “Implementation of Cost and Hour Report (FlexFile) and Quantity Data Reports Within
the Cost and Software Data Reporting (CSDR) System”, OSD CAPE

2 For more information on the FlexFile and the DD 1921 Reports, “FlexFiles: The Next
Generation in Contractor Cost Data Reporting” (Berkman and Stephenson, ICEAA 2019)
provides a detailed overview and history.

3 https://cran.r-project.org/

Technomics, Inc. 4

https://cran.r-project.org/

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com

The FlexFile Framework: Preparing for Powerful Analysis in R

Today, a large amount of work is being led and funded by the private company RStudio.*
Their namesake product is the standard integrated design environment (IDE) for R users.
They also have designed, developed, and are maintaining a robust collection of packages
known as the “tidyverse”.> In some circles, the tidyverse has become so popular that it is
almost synonymous to R itself. Many data science courses teach solely from this
framework. The tidyverse is the creation of RStudio’s Chief Scientist Hadley Wickham and
his team.b It is, in Wickham’s words, “a collection of R packages that share a high-level
design philosophy and low-level grammar and data structures.””

The tidyverse has changed the way many R users operate. The packages are both lightning
quick and user friendly. They include the standards for data graphics (ggplot2, RShiny),
data wrangling (dplyr, tidyr, tibble), custom package development (devtools, testthis), and
workflow development and documentation (rmarkdown and RStudio). Additionally, they
are developing and maturing frameworks for topics such as machine learning (tidymodels).

The general tidyverse workflow is demonstrated below3:

Visualise

Import — Tidy — Transform) —— Communicate

Understand

Program

tidyverse/data science workflow

1.6 csdrtools

The tidyverse provides a general framework for efficiently working with data. However,
there are still repetitive and tedious tasks that must be performed when working with a
custom data format such as the FlexFile.

4 https://rstudio.com/
5 https://www.tidyverse.org/
6 http://hadley.nz/

7 Wickham, H., et al. 2019. “Welcome to the Tidyverse.” The Comprehensive R Archive
Network. https://cran.r-project.org/web/packages/tidyverse/vignettes/paper.html

8 Hadley Wickham and Garrett Grolemund. 2017. R for Data Science: Import, Tidy,
Transform, Visualize, and Model Data (1st. ed.). O'Reilly Media, Inc.

Technomics, Inc. 5

https://rstudio.com/
https://www.tidyverse.org/
http://hadley.nz/
https://cran.r-project.org/web/packages/tidyverse/vignettes/paper.html

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com

The FlexFile Framework: Preparing for Powerful Analysis in R

To achieve this, we’ve created an R package, csdrtools, which handles the tasks of
importing, tidying, transforming, and visualizing the FlexFile. csdrtools contain the
following core functions:

e Theread_ff() and read_folder() functions import the FlexFile.

e The stack_ff(),add_id_col(), and listindex_to_col() functions help tidy the
FlexFile.

e The flatten_ff() function transforms the FlexFile by joining the up to 20 tables of
cost, hour, and metadata information into one. The table_*() functions produce
summary tables.

e Theplot_ff() and sankey_ff() functions visualize the FlexFile with pre-built
graphics.

The csdrtools package is built under the tidyverse philosophy. Functions are intended to
be strung together with the pipe (%>%) operator. This represents a powerful benefit of the
tidyverse. Pipes allow the analyst to clearly express a sequence of multiple operations, in
which the output of the prior operation is fed into the input of the next operation. The
functions within csdrtools support this capability.

The csdrtools package is also designed to interact with other tidyverse packages, such as
dplyr. The dplyr package is the tidyverse standard for data manipulation, such as filtering
and subsetting data, and transforming variables. This will be discussed in more detail in
section 1.6.2: Tidy.

The FlexFile provides significantly more granular data than the DD 1921 reports. There
does not exist a tool to interact with the entirety of the FlexFile. This is especially apparent
when working with multiple FlexFiles.

The csdrtools package solves this problem. This package was not developed as a “science
project”, but as a need-driven solution to eliminate the barrier to entry for using the
FlexFile.

The following sections describe each function within csdrtools in more detail. This
information is also contained in each function’s help file.?

1.6.1 Import

The FlexFile Data Exchange Instructions defines the standard format of the FlexFile as a
collection of tables.1? These tables are stored as JavaScript Object Notation (JSON) files in a
compressed archive (.zip).

9 Help files in R can be accessed with the ? followed by the function name. For example,
?read_ff will load the help file for read_ff().

10 For more information, refer to the FlexFile Data Exchange Instructions here:
https://cade.osd.mil/policy/flexfile-quantity

Technomics, Inc. 6

https://cade.osd.mil/policy/flexfile-quantity

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com

The FlexFile Framework: Preparing for Powerful Analysis in R

JSON is intended to be a machine-readable format. Excel is able to open such files, but the
process is a bit complex. CADE provides several exports that convert JSON to an Excel flat
file. This is helpful because it provides a dataset with which to work. However, JSON
remains the rawest format of the data. In order to work with the file directly, you will need
to use another tool.

R has a number of functions available to import data, typically prefixed with the word
“read” (e.g., read_csv(), read_excel(), read_json()). Sticking with this convention,
csdrtools provides read_ff() and read_folder() to read the FlexFile data into R.

read_ff()

The read_ff() function loads a given FlexFile (.zip) into R. The function returns a list of
data frames - one for each JSON file.

Usage and Arguments
read_ff(file, .clean_names = TRUE)

e file: Path to a FlexFile .zip archive.

. .clean_names: Logical whether to clean the names using clean_names() or not. If
TRUE, all column names will be converted to lower snake case (i.e., account_id). This
follows the tidyverse style guide. If FALSE, column names are kept in the default upper
camel case (i.e., AccountID). This follows the FlexFile data model format.

Example

Minimal code is required to run this function and store the data as list aircraft_ff:

Load the csdrtools package
library(csdrtools)

Read an example from the package

example_file <- system.file("extdata",
"example data/Aircraft_first FlexFile.zip",
package = "csdrtools")

Read in the example FlexFile
aircraft_ff <- read_ff(file = example_file,
.clean_names = T)

The function names () provides an overview of the data frames within this list. Each data
frame contains the data of its respective JSON file in the native FlexFile.

names (aircraft_ff)

[1] "filetype" "reportconfiguration”

[3] "reportmetadata" "ordersorlots”

[5] "clins" "enditems"

[7] "wbs" "accounts"

[9] "functionalcategories™ "functionaloverheadcategories"”

Technomics, Inc. 7

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com

The FlexFile Framework: Preparing for Powerful Analysis in R

[11] "unitsorsublots™ "reportingcalendar"”
[13] "summarycostdata" "actualcosthourdata”
[15] "forecastatcompletioncosthourdata™

read_folder()

Loading multiple FlexFiles into one list enables comparing or aggregating multiple
contracts, contractors, programs, and commodities. The function read_folder() loads all
FlexFiles (.zip) within a folder into R.

Usage and Arguments

read_folder(folder, read_function, .clean_file names = TRUE, .id = NULL, ...)

e folder: Path to a folder of FlexFiles (.zip) archive.

e read_function: The function to use to read each file. read_ff() will be used in most
cases in this paper.

. .clean_file names = TRUE: Logical to clean names into lower snake case or not.

e 1id: Optionally add an ID variable to each file table as this name. This allows an analyst
to break out data discretely by FlexFile.

Example

Much like read_ff(), minimal code is required to read in a folder of FlexFile submissions.
This example reads in a folder of two FlexFiles into R.

example folder <- system.file("extdata",
"example data",
package = "csdrtools")

flexfiles <- read_folder(folder = example_folder,
read_function = read_ff,
.clean_file names = T)

class(flexfiles)

[1] "list"

length(flexfiles)

[1] 2

The list flexfile contains two separate lists — one for each zipped FlexFile located within
the folder. The read_folder() function applied the read_ff() function to every (.zip) in

the folder location. Each of the lists contain identically structured data frames, with unique
data respective to the individual FlexFiles.

With the data now in the R environment, organizing the dataset (“tidying”, in tidyverse
speak) will help format the FlexFile into a more useable structure.

Technomics, Inc. 8

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com

The FlexFile Framework: Preparing for Powerful Analysis in R

1.6.2 Tidy

Data tidying entails structuring datasets to facilitate analysis. Wickham defines data tidying
as: “A standard way to organize data values within a dataset. A standard makes initial data
cleaning easier because you don’t need to start from scratch and reinvent the wheel every
time.”11

James, Cherwonik, and Bryant (ICEAA 2019) discuss common “tidy” data principals in the
context of Cost.12 They include:

e Logically structuring tables (i.e., deciding if dollars and hours should be in one column,
or two)

e Consistently naming variables
e Organizing WBS elements to order correctly and properly roll up to parent elements

Tidy data is designed around the third normal form of data base normalization. The
FlexFile is designed as a collection of database tables. Both tidy data and the FlexFile were
designed under the same normalization principals. Due to their similar design
philosophies, some further tidying functions can be applied to the FlexFile to enhance its
structure for analysis.

stack_ff()

The read_folder() function creates a list of lists - one for each FlexFile. In order to create
a singular data frame containing multiple FlexFiles, one must unpack these lists into one
list of stacked data frames. The function stack_ff() takes care of this.

Usage and Arguments

stack_ff(.data)
e .data: Alist of FlexFile submissions’ data frames converted from JSON format.
Examples

The output of this function is a singular list containing one data frame for each data table in
the FlexFile. For example, the actualcosthourdata data frame stacks the records from
each loaded FlexFile. The ff_id column, created in the 1istindex_to_col() function,
identifies which FlexFile a specific record is from.

Because the output of read_folder() and listindex_to_col() is simply a list, we can pipe
together these two functions and stack_ff() in one efficient snippet of code:

ff stack <- flexfiles %>%
listindex_to_col("ff_id") %>%

11 Wickham, Hadley. “Tidy Data.” Journal of Statistical Software, vol. 10, no. 2, 2014

12“Don’t Just Use Your Data... Exploit It”, Adam James, Jeff Cherwonik, Brandon Bryant,
ICEAA 2019

Technomics, Inc. 9

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com

The FlexFile Framework: Preparing for Powerful Analysis in R

stack_ff()

ff stack is a Llist of 15 data frames.
class(ff_stack)

[1] "list"
length(ff_stack)
[1] 15

In this case, we did not need to define a list as an argument in the stack_ff() function
because it is piped directly in to it from the output of read_ff() and optional
listindex_to_col() functions.

listindex_to_col()

The optional function 1istindex_to_col() adds the list index from the first list of a list of
data frames as an ID column in each of the nested data frames. This provides a unique ID
for each FlexFile in a list of stacked data frames containing multiple FlexFiles. More
descriptive unique identifiers, such as contractor or program name, are added through the
flatten_ff() function, as described in the section 1.6.3: Transform.

Usage and Arguments
listindex_to_col(.nestedlist, var = "listid")

. .nestedlist: A nested list of data frames

o var = "listid": Character name of which to name the ID column. The default is
listid.

Examples

Applying listindex_to_col() to the list of FlexFiles (“flexfiles”) adds a column, ff_id, to
each table with the list index of each FlexFile.

flexfiles <- flexfiles %>%
listindex_to_col(var = "ff id")

"ff 1d" == 1 added to each table in the first indexed List.
flexfiles[[1]]$enditems
A tibble: 2 x 3
ff_id id name
<int> <chr> <chr>
1 11 Variant A
2 12 Variant B

1.6.3 Transform

Data transformation involves creating new variables from existing ones, reorganizing
columns in a more logical manner, and joining together previously separate tables. The
FlexFile requires a certain amount of data transformation due to its relational structure.

Technomics, Inc. 10

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com

The FlexFile Framework: Preparing for Powerful Analysis in R

Often a single flat table is easier to work with. The flatten_ff() function does this, joining
names and IDs, and pulling in metadata (e.g., the program name or the contract number) to
form one data frame for analysis.

flatten ()

The function flatten_ff() transforms the imported FlexFile list object into one data
frame.

Specifically, the FlexFile contains the actualcosthourdata table with dollars and hours
tagged to various IDs. The names corresponding to these IDs are found within the various
ID tables. For example, the account_id column in the actualcosthourdata table ties to the
id column in the accounts table. Each ID represents a plain English name that should
replace the id in the actualcosthourdata table.

To create this large data frame, flatten() does the following:
e Joins IDs from the actualcosthourdata and forecastatcompletioncosthourdata to

names in its corresponding lookup tables.

e Stacks the actualcosthourdata and the forecastatcompletioncosthourdata to
create a table of all costs and hours. Creates a new column, atd_or_fac, to indicate if a
specific record is incurred (“ATD”) or forecasted (“FAC”).

e Normalizes the standard category field.
Completing the above three tasks in Excel requires a substantial amount of time, including:

1. Writing “vlookups” to join each ID column with its respective name column.

2. Manually appending one table to another, while ensuring columns are ordered
identically.

3. Developing a mapping table between the standard category fields, and normalizing
them with “vlookups”.

Doing this for every FlexFile is a significant resource strain. The flatten_ff() function,
and csdrtools more generally, provides an instant, repeatable solution to these tasks. This
saves time organizing data, and provides more for analysis.

Usage and Arguments
flatten_ff(flexfile)
e flexfile: A FlexFile created from the read_ff() function.

Examples

ff flat <- flexfiles %>%
stack_ff() %>%
flatten_ff()

Like the other functions, flatten_ff() is pipeable - it takes the output of stack_ff() (a
list of FlexFiles), and uses that as its only argument. The outputs of read_folder() and

Technomics, Inc. 11

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com

The FlexFile Framework: Preparing for Powerful Analysis in R

stack_ff() were lists. The output of flatten_ff() is a data frame. Note how
flatten_ff() also replaced all IDs with their corresponding names.

library(dplyr)

ff_flat_accounts <- ff_flat %>%
select(ff_id, account_name, value_dollars, value_hours)

head(ff_flat_accounts)
A tibble: 6 x 4

ff_id account_name value_dollars value_hours

<int> <chr> <dbl> <dbl>
1 1 AAF-QBXW-YYQD-SGWR 366. 14.4
2 1 AAF-QBXW-YYQD-SGWR 359, 14.3
3 1 AAF-QBXW-YYQD-SGWR 12632. 379.
4 1 AAF-QBXW-YYQD-SGWR 332. 13.1
5 1 AAF-QBXW-YYQD-SGWR 25738. 840.
6 1 AAF-QBXW-YYQD-SGWR 38543. 1324.

We now have a data frame to work with. The tbl_*() functions use this data frame to
create a number of summary tables for streamlined analysis.

tbl_*() family of functions

Many different summaries of the FlexFile can be produced - each with their own purpose.
Examples include pivoting costs to create separate columns for recurring and
nonrecurring, or actuals and forecasts. This may also entalil filtering the data to include only
specific dates, or only the CLINs or accounts that are the highest cost drivers. These quick
yet effective transformations are the purpose of the tbl_*() group of functions.

The FlexFile is a departure from the familiar DD 1921 and 1921-1 report formats. The
tbl_1921() and tb1l_1921_1() functions recreate these reports directly from the flattened
FlexFile data frame. In addition, tbl_direct_rates() calculates direct labor rates for the
standard categories found on the DD 1921-1 report.

Other functions leverage the added fields of the FlexFile.

e tbl _top_n_clins() and tbl_top_n_accounts() identify the largest accounts and
CLINSs.

e tbl wbs_by_date() phases WBS level costs by the FlexFile’s reporting periods.

e tbl wbs_by account() creates areport similar to the DD 1921 with insight down to
the account level.

Usage and Arguments

e tbl 1921(flattened ff, value = c("Dollars"”, "Hours"))

e tbl_1921_1(flattened_ff, value = c("Dollars", "Hours"))

e tbl direct rates(flattened ff)

e tbl wbs by date(flattened_ff, timeframe = c("Year", "Month"))

Technomics, Inc. 12

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com

The FlexFile Framework: Preparing for Powerful Analysis in R

e tbl top_n_accounts(flattened ff, n = 10)
e tbl top_n_clins(flattened_ff, n = 10)

Where,

e flattened_ff is a flattened FlexFile created from the flatten_ff() function.
e value selects either “Dollars” or “Hours” to summarize in the data frame.

e timeframe selects either “Year” or “Month” to summarize the actual dollars by in the
data frame.

e nisaninteger for the top n values to select.
Examples
tbl 1921() and tbl 1921 1()

Here, we've created the DD 1921 report, filtering to only the actuals incurred to date, and
printing the first six WBS elements.

DD_1921 <- tbl_1921(ff_flat, value = "Dollars")

DD_1921 actuals <- DD_1921 %>%
dplyr::select(wbs_element_id, wbs_name, ATD_NONRECURRING, ATD_RECURRING)

head(DD_1921 actuals)
A tibble: 6 x 4

Groups: wbs _element_id, wbs name [6]

wbs_element_id wbs_name ATD_NONRECURRING ATD_RECURRING

<chr> <chr> <dbl> <dbl>
11.0 Aircraft NA NA
2 1.1 Air Vehicle NA NA
31.1.1 Airframe NA NA
41.1.1.2 Fuselage NA 516500536.
51.1.1.3 Wing NA 102600101.
6 1.1.1.4 Empennage NA 11876578.

The tb1_1921() and tb1l_1921_1() functions provide some flexibility while maintaining
the core structure of the DD 1921 and 1921-1 reports. In this example, we’ve elected to
print hours. Using functions from dplyr, such as select (), we can further manipulate the
table to only include the forecasts columns.

DD 1921 1 <- tbl_1921 1(ff flat, value = "Hours")

DD_1921 1 actuals <- DD 1921 1 %>%
select(detailed_standard_category id, FAC_NONRECURRING, FAC_RECURRING)

head(DD_1921 1 actuals)

A tibble: 6 x 3
Groups: detailed standard category id [6]
detailed_standard_category_ id FAC_NONRECURRING FAC_RECURRING

Technomics, Inc. 13

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com

The FlexFile Framework: Preparing for Powerful Analysis in R

<chr> <dbl> <dbl>
1 DIRECT_ENGINEERING_LABOR 4544220. 5979339.
2 DIRECT_MANUFACTURING_SUPPORT_LABOR NA 4595914.
3 DIRECT_MANUFACTURING_TOOLING_ LABOR 1957962. NA
4 DIRECT_MANUFACTURING_TOUCH_LABOR NA 112325344,
5 DIRECT_PROGRAM_MANAGEMENT_LABOR NA 17567157.
6 DIRECT_SERVICES 9845. 1502289.

tbl direct_rates() and tbl wbs by account()

The relationship between standard category and functional category, as well as WBS
element and account, are of interest when analyzing the FlexFile. These provide insight into
how a contractor is mapping their internal pricing categories and work packages to the
standard elements on the DD 1921 and 1921-1 reports. The tbl_direct_rates() and
tbl_wbs_by_account() functions provide these mappings.

head(tbl_direct_rates(ff flat)) %>%
select(detailed_standard_category id, functional category name,
direct_rate)

A tibble: 6 x 3
Groups: detailed_standard_category_id [1]
detailed_standard_category id functional_category name direct_rate

<chr> <chr> <dbl>
1 DIRECT_ENGINEERING_ LABOR Engineering AAB 64.7
2 DIRECT_ENGINEERING_LABOR Engineering AAE 54.1
3 DIRECT_ENGINEERING_LABOR Engineering AAI 34.7
4 DIRECT_ENGINEERING_ LABOR Engineering AAJ 32.3
5 DIRECT_ENGINEERING_LABOR Engineering ABG 51.0
6 DIRECT_ENGINEERING_LABOR Engineering ABI 38.7

Both are called in largely the same manner.

head(tbl_wbs_by_account(ff flat)) %>%
select(wbs_name, account_name, value_dollars)

A tibble: 6 x 4

Groups: wbs_element_id, wbs_name [1]

wbs_element_id wbs_name account_name value_dollars

<chr> <chr> <chr> <dbl>
11.1.1.2 Fuselage AAF-QBXW-YYQD-SGWR 948169.
2 1.1.1.2 Fuselage AAG-TKRM-SQJID-GPRT 25808.
31.1.1.2 Fuselage AAH-CWCV-PWRG-QFJX 18595.
4 1.1.1.2 Fuselage ABF-SSHF-DGQD-WGZM 154846.
51.1.1.2 Fuselage ACA-GGNK-DBDD-NLYV 95200.
6 1.1.1.2 Fuselage ACD-MCNF-NQSY-XGTJ] 69414.

tbl wbs by date()

The FlexFile is time-phased. This is an advantage over the DD 1921 reports, which
represented only a snapshot from a point in time. Function tbl_wbs_by date() details

Technomics, Inc. 14

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com

The FlexFile Framework: Preparing for Powerful Analysis in R

WBS element expenditures over the report’s reporting periods. The resulting table can be
viewed at either an annual or monthly level.

head(tbl_wbs_by date(ff flat, timeframe = "Year"))
A tibble: 6 x 5

Groups: wbs_element_id, wbs_name [6]

wbs_element_id wbs_name T2012° T2013° t2014°

<chr> <chr> <dbl> <dbl> <dbl>
11.1.1.2 Fuselage 186937029. 281469622. 48093886.
2 1.1.1.3 Wing 38252606. 54825982. 9521513.
31.1.1.4 Empennage 2067114. 6836780. 2972684.
41.1.1.5 Nacelle 55494206. 155665283. 71051634.
51.1.12 Vehicle Subsystem 71460094. 116155020. 32995887.
6 1.1.2 Engine/Propulsion 84179560. 161436529. 53969217.

tbl top_n_accounts and tbl_top n_clins

These two functions identify accounts and CLINs that drive costs. One can specify the
number of rows it filters, with 10 as the default. In this example, we leverage the scales
package to apply formatting to the dollars, hours, and percentages.

library(scales)
top_five <- tbl_top_n_accounts(ff_flat, n = 5)

#Reformat values to dollars, integers, and percentages
top_five <- top_five %>%
mutate(value_dollars = dollar(value_dollars),
value hours = comma(value_hours),
dollars_pct = percent(dollars pct))

top_five

A tibble: 5 x 4

account_name value_dollars value hours dollars pct

<chr> <chr> <chr> <chr>
1 AEA-BNJT-BGTQ-LWXR $292,830,880 ©O 10.67%
2 AFJ-JSZJ-ZZYJ-SPQN $273,753,601 © 9.98%
3 AHE-FZPQ-NNQD-ZVRR $195,966,922 2,930,578 7.14%
4 ADE-YTZY-CMVC-DSFW $177,357,151 2,654,302 6.46%
5 ADG-ZQCZ-NRJP-SHJQ $155,896,797 2,438,443 5.68%

The design philosophy of csdrtools enabled the functions to interact nicely with tidyverse
packages. In this example, they also work with packages outside of the tidyverse. For
example, we can present a stylized version of the data frame by throwing it into the pander
package with minimal additional code. This reformats the data from a data frame (useful
for data analysis) to a formatted table (useful for presentation and decision making). The
table printed below is the same data as the data frame printed above, but easier on the
eyes.

Technomics, Inc. 15

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com

The FlexFile Framework: Preparing for Powerful Analysis in R

library(pander)

pander(top_five)

account_name value_dollars value_hours dollars_pct
AEA-BNJT-BGTQ-LWXR $292,830,880 0 10.67%
AFJ-JSZ]-ZZY]-SPQN $273,753,601 0 9.98%
AHE-FZPQ-NNQD-ZVRR $195,966,922 2,930,578 7.14%
ADE-YTZY-CMVC-DSFW $177,357,151 2,654,302 6.46%
ADG-ZQCZ-NR]JP-SHJQ $155,896,797 2,438,443 5.68%

These functions allow the user to efficiently reorganize the data set from a large flat file to
useful summary tables. Sometimes, it is helpful to plot the data, as well. We can do this with
the plot_ff() functions.

1.6.4 Visualize

Well-conceived visualizations serve many purposes in Cost. Hierarchical relationships,
trend analysis, and comparative visuals help an analyst better understand the data set, and
communicate the data set to decision makers. The csdrtools package contains two
primary plotting functions. The plot_ff() function returns two different area charts and
one bar chart. The sankey_ff() function returns a Sankey diagram, useful for visualizing
relationships. The following sections describe these two functions.

plot_ff()

The plot_ff() function delivers a set of visualizations of the FlexFile. The function returns
different graphics based on the arguments described below.

Usage and Arguments
plot ff(file, type)

e file: Data frame of a flattened FlexFile.
e Type: A numeric value representing the visual to print.

- Type = 1:Stacked area chart of incurred costs over time, by recurring and
nonrecurring.

- Type = 2:Stacked area chart of incurred costs over time, by WBS element ID.

- Type = 3:Bar chart of labor rates by functional category.

Example

plot_ff(Type = 1)

Time-phased dollars and hours are an important aspect of the FlexFile. A natural way to
view time phasing is through an area (or sand) chart, where the x-axis represents the date
costs are incurred and the y-value depicts those costs. plot_ff(Type = 1) presents costs

Technomics, Inc. 16

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com

The FlexFile Framework: Preparing for Powerful Analysis in R

over time, colored by nonrecurring (NR) or recurring (R) effort. This helps readily
distinguish the ratio of NR to R costs.

ff_flat %>%
plot_ff(Type = 1)

Costs Over Time, by Nonrecurring and Recurring

5a0

560

Collars ($1)
2

520

50

2012-01 2012-07 2013-01 2013-07 2014-01
Date

I nonrecurring] RECURRING

plot_ff(Type = 2)

The plot_ff(Type = 2) function uses the same structure as plot_ff(Type = 1), but
instead breaks the colors out by WBS element ID. This demonstrates, for example, cost
growth for certain elements at specific points throughout a contract lifecycle. In this
example, we’ve filtered down to select aircraft hardware elements: the wing and the
nacelle.

ff_flat_hardware <- ff_flat %>%
filter(stringr::str_detect(wbs_name, 'Wing') |
stringr::str_detect(wbs_name, 'Nacelle'))

ff_flat_hardware %>%
plot_ff(Type = 2)

Technomics, Inc. 17

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com

The FlexFile Framework: Preparing for Powerful Analysis in R

Costs Over Time, by WBS Element

510

Collars (M)

55

50

2012-01 2012-07 2013-1 2013-07 2014-01
Date

O EEEEN EEEE

plot_ff(Type = 3)

The functional category field in the FlexFile lends insight into contractor’s internal direct
and overhead pricing categories. The plot_ff(Type = 3) function offers a bar chart of
these direct pricing rates, ordered from highest to lowest and colored by the standard
categories that they map to.

ff_flat %>%
plot_ff(Type = 3)

Technomics, Inc. 18

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com

The FlexFile Framework: Preparing for Powerful Analysis in R

Rates by Functional (Pricing) Category

80

B0
=
Ly
&
=40
1]
=
L]
i
0
Discrete Pricing Categories
. DIRECT ENGREERMNG LABOR . DIRECT MAMNUFACTURING TOOLMNG LABOR . DIRECT FROGRAM MUOMAGEMENT LABOR
. DRECT MANUFACTURIMNG SUFFORT LABOR . DRECT MANUFACTURIMNG TOUCH LABOR . DIRECT SERVICES
sankey_ff

Sankey diagrams display flows from one variable (node) to another. The FlexFile includes
dollars and hours tagged to both contractor-native tags (e.g., pricing categories, CLINSs,
accounts), as well as government-defined categories (e.g., standard category, WBS
element). Insight into the mapping between industry and government categories is a
unique benefit of the FlexFile. A Sankey diagram can effectively illustrate these
relationships.

Usage and Arguments
sankey ff(file, type)

e file: Data frame of a flattened FlexFile.
e Type: A numeric value representing the different pre-canned visuals.

- Type = 1:Visualizes the flow of cost from contractor category to functional
category.
- Type = 2:Visualizes the flow of cost from account to WBS element.

Example

sankey ff(Type = 1)

The sankey ff(Type = 1) function illustrates the flow of costs from the standard
functional categories (the government-defined categories in the DD 1921-1 and 1921-5

Technomics, Inc. 19

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com

The FlexFile Framework: Preparing for Powerful Analysis in R

reports) to the contractor’s functional categories (intended to align with internal pricing
categories). This example demonstrates this relationship for the direct and overhead
engineering labor categories.

ff_flat_engineering <- ff_flat %>%
filter(stringr::str_detect(detailed_standard_category_id, 'ENGINEERING'))

ff_flat_engineering %>%
sankey_ff(Type = 1)

Sankey Plot: Standard Category to Functional Category
Engineering AGI .
Engineering ABJ]
Engineering ADI I

Engineering AHA I

ENGINEERING_LABOR_OVERHEAD ! :
Engineering AAE
Engineering ACI

Engineering ABI Wl
Engineering-ACF
Engineering AAB we=
Engineering AFA
Engineering BAE wem
Engineering AAJ =
Engineering AFB w=
Engineering AGG w=m
Engineering AHB
Engineering AJJ s
= Engineering ACG
I Engineering BAD
| 2 -Engineering-AAIL-
! DIRECT_ENGINEERING_LABOR : Engineering ABG——
i Engineering-AGH
- Engineering BAG
Engineering AGJ
Engineering-AJI

sankey ff(Type = 2)

The sankey_ff(Type = 2) function outputs the same plot as sankey_ff(Type = 1), but for
the account to WBS element relationship. Filtering to one WBS element, in this case WBS
#1.1.2 (Engine/Propulsion), the accounts that map to this element are visualized from
highest to lowest cost, denoted by the size of the node. When outputted in R, this visual
leverages an interactive “tool-tip” that displays costs and relationship details as one hovers
over the diagram.

ff_flat_engine <- ff_flat %>%
filter(stringr::str_detect(wbs name, 'Engine/Propulsion'))

ff_flat_engine 7%>%
sankey_ ff(Type = 2)

Technomics, Inc. 20

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com

The FlexFile Framework: Preparing for Powerful Analysis in R

Sankey Plot: Account to WBS Element

I ACA-GGNK-DEDD-MLYV

I AEA-BMIT-BGTQ-LWXR
1.1.2

AFH-YGVM-FGCV-FHSM
ABF-55HFE-DGQD-WGZM

I AFI-1SZ1-ZZY1-SPQN

m—ACD-MCNF-NQSY-XGT]
ACE-BFQK-NHRL-IMFF
AJF-IVHW-DFQY-LTRY
AAH-CWCV-PWRG-QFIX
ACB-PBFT-HYMNY-IJMKL
ACC-YRIH-YEND-YXNX
ADENTZY-CMVC-DSFW

—— AEH-CPXC-FMCI-HHNH
ADD-QYKZ-LVTN-RMNXX
ADG-ZQCZ-MNRIP-SHIQ
AEB-MQDF-KMTN-HHRR
AEI-MSIK-HVZB-KLME
AHC-QQVV-TBWZ-GBHC
AJE-BQTN-SMSR-MKSD
AHE-FZPQ-MNQD-ZVRR
AHF-SMQH-XFXL-CF5Y
AII-DSDD-CQHK-5CTZ

1.7 Conclusion

The csdrtools package provides a set of functions that serve as building blocks for
powerful analysis of the FlexFile in R. Each step in the process outlined above - import,
tidy, transform - is necessary before any analysis or visualization is possible.

R provides the necessary environment for csdrtools. By developing the functions outlined
in this paper, we have created an instantly scalable and repeatable process, capable of
processing one FlexFile, or 100. This is simply not possible with Excel. Therefore, as the
cost community transitions into the big data age, it is necessary that capabilities such as
csdrtools exist and are adopted.

More generally, R will continue to provide a framework to the cost community that is:

e Consistent. Scripts and functions are linear and largely read from top to bottom. Even
poorly documented scripts can be followed.

e Object oriented. Data frames, functions, and many data types can be stored as objects.
This creates an environment which minimizes rework, and reusing scripts is
straightforward.

e Scalable. R handles all sorts of data sets, from simple .csv files to a relational structure
such as the FlexFile JSON model.

e Fully customizable. Visualization packages such as ggplot2 and plotly support
grammars of graphic to create beautiful plots.

Technomics, Inc. 21

Presented for the International Cost Estimating & Analysis Association - www.iceaaonline.com

The FlexFile Framework: Preparing for Powerful Analysis in R

e« Dynamic. R objects can hold vector inputs, unlike Excel in which one value is limited
to each cell.

The FlexFile in its current state is difficult to use within Excel. The growing user base of
tools such as R within the cost community is a critical enabler to using larger data sources.
As the use of the FlexFile grows, so too will the need for a solution to provide faster, more
accurate, and more insightful analysis. csdrtools provides this solution.

The FlexFile is still largely in its infancy, with only a portion of programs submitting their
first FlexFiles to CADE. We envision the csdrtools package evolving with the FlexFile. This
not only emphasizes the flexibility of csdrtools, but also the scalability of cost analysis in
R.

Technomics, Inc. 22

