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During the early stages of a project, it is beneficial to have an accurate preliminary estimate of
its cost. One way to make those estimates is by determining the amount of construction material
quantities that are required and then multiplying the estimated construction material quantities by
the corresponding unit cost. One advantage of making estimates in this way is that it allows for the
segregation of quantities and costs. This way they can be updated separately as new information
becomes available. They can also be tracked separately allowing decision makers to make better
decisions about the project during its conceptual phase. There are several techniques that can be
used to develop estimation models. The most common include regression analysis and artificial intel-
ligence, such as neural networks. Work has been done, however, in a non-standardized way, leaving
practitioners without guidance as to how to develop and evaluate models for their specific purposes.
This can be seen in particular in the many different types of metrics used for the evaluation of mod-
els. The goal of the work presented in this article was to create a process to (1) develop models to be
used to prepare preliminary estimates of construction material quantities taking into consideration
the available data during the early stages of a project, and (2) evaluate the developed models using
the Akaike information criterion. The proposed process is illustrated with an example in which data
from 58 storage buildings was used to develop models to estimate the amount of concrete and rein-
forcement required using backward elimination regression analysis and neural network techniques.
The developed models were then evaluated using a second-order correction Akaike information crite-
rion (AICc) to select the most accurate model for each construction material quantity. The proposed
process is useful for practitioners in need of developing robust estimation models in a consistent and
systematic way, and the AICc metric proved to be effective for selecting the most accurate models
from a set.

Introduction

In the conceptual phase of a project, it is beneficial to have an accurate estimate of its cost.
One way to make preliminary estimates is to determine the amount of construction material
quantities (CMQs) to be used in the project (Bakhoum, Morcous, Taha, & El-Said, 1998;
Chou, Peng, Persad, & O’Connor, 2006; Du & Bormann, 2014; Fragkakis, Lambropoulos,
& Tsiambaos, 2011; Kim, Kim, & Kang, 2009; Oh, Park, & Kim, 2013; Singh, 1990, 1991;
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Son, Lee, Park, Han, & Ahn, 2013; Yeh, 1998) and then to multiply these estimates by the
unit costs, which typically include fabrication and delivery, erection, installation, insurance,
site indirect costs, supervision, and overhead and profit. One advantage of making estimates
in this way, as compared to estimating cost directly, is that either the CMQs or their unit
costs can be updated separately as new information becomes available. It also allows man-
agers to make better decisions and keep a better track of the project (Chou et al., 2006; Yu,
2006) by controlling the changes in quantities and costs separately.

During the early stages of a project, CMQs are generally estimated by finding existing
structures that are similar to the structures to be constructed and by adjusting the CMQs
used in the former to estimate the CMQs to be used in the latter. The adjustments are done
based on the differences in the values of key parameters (e.g., height), taking into consid-
eration the experience of the estimator. Similar structures are, however, often difficult to
find, or the required adjustments might become tedious due to the many possible values of
key parameters, all which can have a significant effect on the design of a structure, hence
the amount of CMQs required. Without the use of specific models to deal with the situa-
tions when no similar structures are available, the estimate of the CMQs can vary widely
from estimator to estimator, and as a consequence, many of the estimates are not very
accurate.

One improvement in the estimation of CMQs is the use of models that can recreate real
cases. The main advantage of the use of models is the improvement in accuracy of CMQ
estimates for projects. This leads, in turn, to better decisions as whether or not to proceed
with construction, and if the decision is to proceed, to better decisions as to the type of
structure that should be constructed (e.g., a storage building out of reinforced concrete or
one out of a combination of steel and reinforced concrete), depending on specific project
parameters and other conditions, such as economic ones. The main challenge when devel-
oping models is the availability of sufficient quantities of accurate data. As the number of
independent variables (IVs) that have an effect on the quantity being modeled increases, so
does the amount of data required to develop accurate models.

A sufficient amount of accurate data is difficult to obtain, either because it does not
exist, or because those that have the data would not make it accessible. The former can
happen, for example, when not enough structures of one type have been constructed or
when enough structures of one type have been constructed but not enough data has been
collected. The latter can happen in highly competitive industries.

Several studies have been conducted where the accuracy of models developed using
different techniques using regression analysis (RA), or artificial intelligence, such as neu-
ral network (NN) and case-based reasoning (CBR), have been compared (Cho, Kim, Kim,
& Kim, 2013; Kim, An, & Kang, 2004; Kim, Shin, Kim, & Shin, 2013; Lowe, Emsley, &
Harding, 2006; Smith & Mason, 1997; Sonmez, 2004; Yeh, 1998). None of these, how-
ever, have included a systematic way to develop models to estimate CMQs using different
techniques and to evaluate the developed models to determine the most accurate one from
amongst them.

The objective of the work presented in this article was to fill this gap for models
developed using RA and NN techniques. This was done by developing a process to both
develop such models, taking into consideration the availability of data, and evaluating their
performance or accuracy using an information criterion (commonly referred to Akaike
information criterion, [AIC]; Akaike, 1974). The process is presented in this article and
is illustrated through its use in developing models to estimate, in the conceptual phase of a
project, the amount of concrete and reinforcement to be used to construct storage buildings,
and evaluating the developed models to determine the most accurate one.
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Background

Overview of Literature

Over the last few decades, there have been an increasing number of researchers who have
focused on the development of models to estimate construction costs by first estimating
CMQs and multiplying those estimates by unit costs (Table 1) and the evaluation of the
most suitable models (Table 2) to be used.

A quick look at these tables shows that models have been developed to make construc-
tion cost estimates in a large number of areas, from school buildings to pressure vessels.
This continued push by researchers to make ever better estimates can also be seen as an
indication of the coming use of these models in practice, especially when it is taken into
consideration that this work in numerous cases was funded by infrastructure management
organizations.

It can, however, also be seen that the work has been done in a non-standardized way,
something which is okay for research but leaves practitioners without guidance as to how
to develop and evaluate models for their specific purposes. This can be seen in particular in
the many different types of metrics used to evaluate models.

Model Types Included in Proposed Process

As RA and NN models are the most common types of models (Table 1 and Table 2), the
proposed process has been developed for these types.

RA Models. RA is one of the most commonly used techniques in statistical modeling and
has been used to make both direct (Bowen & Edwards, 1985; Khosrowshahi & Kaka, 1996;
Kim et al., 2004; Lowe et al., 2006) and indirect construction cost estimates based on CMQ
estimates (Bakhoum et al., 1998; Chou et al., 2006; Du & Bormann, 2014; Fragkakis et al.,
2011; Kim et al., 2009; Oh et al., 2013; Singh, 1990, 1991; Son et al., 2013; Yeh, 1998).
Equation 1 shows a generic linear regression model.

Y = βo +
n∑

i=1

βiXi +
m∑

j=1

βn+jXn+j + ε (1)

Where,

Y: Output from the regression equation
βo: Constant term (y-intercept)

β1→ βn: Regression coefficients for continuous variables
βn+1→ β n+m: Regression coefficients for categorical variables

X1 → Xn: Continuous IVs
Xn+1 → Xn+m: Categorical IVs

ε: Error term.

When linear relationships exist between the dependent variable (DV) and IVs, then
linear RA should be used. Otherwise, attempts should be made to use nonlinear equations
(Gerrard, Brass, & Peel, 1994; Yeh, 1998) or transform the data to improve its behavior
and taking advantage of nonlinear forms (Chou et al., 2006). The general function used to
generate the RA models for the transformed dataset (taking the natural log of the dataset)
has the following form (Equation 2):
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TABLE 1 Examples of research in which models were developed to make cost estimates
based on CMQs

Source Model Estimate for Output No. of IVs

Singh (1990,
1991)

RA High-rise
commercial
buildings

Quantities and cost of
reinforced concrete
beam and slab
construction

61

Yeh (1998) Regression
and NN

Steel and RC
buildings

Total weight of steel
in steel buildings
and reinforcing in
RC buildings

82 for steel and
103 for RC
buildings

Bakhoum et al.
(1998)

NN and
RA

Pre-stressed
concrete
bridges

Quantity of concrete,
reinforcement and
pre-stressing in
concrete approaches
and the navigable
span of bridges

64 for regression
models and 55

for NN models

Chou et al.
(2006)

RA Highway repair
projects

Quantities of different
work categories
from a typical work
item breakdown
structures (WBS;
e.g., Earthwork and
Landscape)

Depend on work
category6

Kim et al. (2009) RA Pre-stressed
concrete
beam bridges

Standard work
quantities (e.g.,
manufacturing PSC
beam, rebar
fabrication/placing)

37

Fragkakis et al.
(2011)

RA Foundations of
concrete
bridges

Volume of concrete
and weight of
reinforcing steel

48

Du & Bormann
(2014)

CBR Power plants Quantities of 20 work
items (e.g., volume
of concrete pouring,
finishing and
curing)

129

Oh et al. (2013) RA Substructure of
steel box
girder bridges

Quantities of
materials for
substructure
components of steel
box girder bridges
to estimate cost.

710

(Continued)
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TABLE 1 (Continued)

Source Model Estimate for Output No. of IVs

Son et al. (2013) RA Mixed-use
residential
buildings

Quantity of ready-
mixed-concrete,
reinforcement and
formwork of
4 components (i.e.,
foundation,
basement, ground
floor, and upper
floor)

4 for foundation
and 2 for
basement,
ground/upper
floor11

1Grades of concrete, grid locations, number of stories, different structural schemes, grid sizes, section
of beams;
2Number of stories, number of bays along and across frame, typical bay length along and across
frame plane, seismic zone factor, live and dead load;
3Number of stories, total height of the building, number of bays along and across frame, typical bay
length along and across frame plane, seismic zone factor, live and dead load, compressive strength
of concrete;
4Maximum span length, superstructure type, structure system, superstructure construction method,
contract type, and design type;
5Main navigable span length, superstructure type, structure system, construction method of super-
structure, and contract type;
6E.g., for quantity of excavation: project length, project width, rehabilitation of existing road, per-
centage of trucks, vehicles per day, bridge widening or rehabilitation, interchange, new location
non-freeway;
7Length of bridge, width of bridge, and the length of span;
8Height of pier, the width and length of the supported deck, and the type of the pier connection with
the deck;
9Including megawatt reading, nature of the job, Engineering company, mechanical equipment config-
uration, total number of mechanical equipment, job site layout classification, measurement of center
line (feet) of outside stacks in a multiple unit configuration, the vendor of steam turbine, installation
of a project is at an existing facility, among others;
10Overall height of the bridge abutment, the number of piers, the overall height of the piers, the types
and numbers of bridge bearings, the number of locations where steel pipe piles were used, and the
length of the steel pipe piles;
11Area, perimeter and thickness of foundation; wall-to-floor ratio and floor area of basement; wall-
to-floor ratio and floor area of ground floor; wall-to-floor ratio and floor area of typical upper floor.

ln(Y) = βo +
n∑

i=1

βi ln(Xi) +
m∑

j=1

βn+j Xn+j + ε (2)

However, interpretation of the transformed models can be tricky. Since these mod-
els are for natural logarithmic data, and the desired DV is not represented by a natural
logarithm, the developed models need to be transformed back. This back transformation
requires taking in account the nonlinear relationships between the DV and IVs by using
linear regression. The back-transformed equation (Equation 3) is a particular type of nonlin-
ear relationship, also known as a constant elasticity of multiplicative relationship (Albright,
Winston, & Zappe, 2003).

Y =
(

Xβ1
1 Xβ2

2 · · · Xβn
n

)
e

[
βo +

m∑
j=1

βn+jXn+j+ SEE2

2

]
(3)



T
A

B
L

E
2

E
xa

m
pl

es
of

w
or

k
us

ed
to

ev
al

ua
te

m
od

el
s

us
ed

to
es

tim
at

e
co

ns
tr

uc
tio

n
co

st
s

M
od

el
ty

pe
M

et
ri

cs
us

ed
fo

r
m

od
el

se
le

ct
io

n/
ac

cu
ra

cy

So
ur

ce
E

st
im

at
e

fo
r

R
A

N
N

C
B

R
SV

M
∗

M
A

PE
R

M
SE

M
SE

R
2

A
N

O
V

A

Sm
ith

&
M

as
on

(1
99

7)
Pr

es
su

re
ve

ss
el

s
1

1
–

–
1

1
–

–
–

Y
eh

(1
99

8)
St

ee
la

nd
R

C
bu

ild
in

gs
1

1
–

–
1

1
–

–
–

So
nm

ez
(2

00
4)

C
on

tin
ui

ng
ca

re
co

m
m

un
ity

fa
ci

lit
ie

s
1

1
–

–
1

–
1

–
–

K
im

et
al

.(
20

04
)

R
es

id
en

tia
lb

ui
ld

in
gs

1
1

1
–

1
–

–
–

1
L

ow
e

et
al

.(
20

06
)

B
ui

ld
in

gs
(u

ns
pe

ci
fie

d
ty

pe
s)

1
1

–
–

1
–

–
1

–
K

im
et

al
.(

20
13

)
Sc

ho
ol

bu
ild

in
g

1
1

–
1

1
–

–
–

1
C

ho
et

al
.(

20
13

)
E

le
m

en
ta

ry
sc

ho
ol

s
1

1
–

–
1

–
1

–
–

∗ S
up

po
rt

V
ec

to
r

M
ac

hi
ne

(i
.e

.,
a

ro
bu

st
cl

as
si

fic
at

io
n

an
d

re
gr

es
si

on
te

ch
ni

qu
e

th
at

m
ax

im
iz

es
th

e
pr

ed
ic

tiv
e

ac
cu

ra
cy

of
a

m
od

el
w

ith
ou

t
ov

er
-fi

tti
ng

th
e

tr
ai

ni
ng

da
ta

.
It

is
pa

rt
ic

ul
ar

ly
su

ite
d

to
an

al
yz

e
da

ta
w

ith
a

la
rg

e
nu

m
be

r
of

in
de

pe
nd

en
tv

ar
ia

bl
es

;S
PS

S,
20

10
).

185



186 B. García de Soto et al.

Models using this theory have already been applied for quantity-based preliminary cost
estimates (Chou et al., 2006).

The linear models using the transformed data are unbiased (i.e., mean of the residuals
is zero); however, once back-transformed, the mean of the residuals is no longer equal to
zero. Therefore, a bias is introduced to the back-transformed model to bring the mean of
the residuals to zero. The nature of this bias has been explored by several authors (e.g.,
Baskerville, 1972; Wood, 1986), and it is beyond the scope of this study. A correction
factor (CF) addressing the transformation to address this bias must be added to the back-
transformed model. When the back transformation is based on natural logarithms and the
errors are normally distributed, the CF is eSEE2/2, where e is the exponential constant and
SEE is the standard error of the estimate (Smith, 1993; Sprugel, 1983).

The RA models included in the proposed process are developed using the backward
elimination technique (BET), a stepwise regression technique that uses statistical con-
straints to determine if a variable is kept or removed from the regression equation. Stepwise
techniques have been criticized (Flom & Cassell, 2007) mostly because they are seen as an
automated process in which analysts do not think the problem through thoroughly; how-
ever, they are justified as a tool to help in the identification of representative parameters
(Abdul-Wahab, Bakheit, & Al-Alawi, 2005, Al-Alawi, Abdul-Wahab, & Bakheit, 2008;
Chan & Park, 2005; Gray & Kinnear, 2012; Kim et al., 2004; Lowe et al., 2006).

The reason for choosing the BET over the forward selection one was based on prelim-
inary findings from our work which showed similar findings from other researchers. For
example, the study by Lowe et al. (2006) showed that the RA models developed using the
BET performed better and used more significant variables than the ones using the forward
selection technique. Koo, Hong, Hyun, and Koo (2010) also found that the best RA models
were developed using the BET Field (2009) also indicated that in general, the BET is more
preferred than the forward selection one. The main reasons for that are that in the forward
elimination technique it is more likely that an IV that has a significant effect on the value
of the DV is excluded from the RA model. This can happen, for example, if there are two
correlated IVs that have a significant effect on the DV. In such a situation, it can happen
that once the first IV is integrated into the regression equation, the integration of the second
does not lead to a substantial improvement to the model. This does not happen when the
BET is used because the process is reversed (i.e., all IVs are originally included and then
sequentially removed; Field, 2009; Lowe et al., 2006).

There are software packages (e.g., MATLAB, 2012; SPSS, 2010) that can be used for
the development of models using RA. The RA models for this study have been developed
using the backward elimination function in SPSS (SPSS, 2010) with a default probability
of F (p-value) for removal set at 0.1.

NN Models. The use of NN models in cost estimation was driven by the difficulty of deter-
mining the shape of the function in any parametric estimation using the RA technique, in
particular, complex non-linear ones. NN models eliminate the need to define that function
(Kim et al., 2004), and they are a good tool for the development of complex non-linear
systems (Yeh, 1998). A NN model is constructed by creating connections between pro-
cessing elements. The organization of the network, its activation function, and the weights
of the connections in the network determine the output of the NN model, or in this case the
estimated CMQs.

The most common NN models are fully connected feed-forward network with three
layers (one hidden layer) and back-propagation supervised learning algorithm (Bishop,
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1994, 1995; Hegazy & Ayed, 1998; Hegazy, Fazio, & Moselhi, 1994). A typical single-
layer NN model contains an input layer consisting of p number of input variables plus a
bias, a hidden layer consisting of m number of neurons plus a bias, and an output layer with
the desired output (Figure 1).

The bias neurons are added to facilitate modeling, and they always have an input value
of 1. While changes in the weights of non-biased neurons cause changes in the steepness
of the activation function (Figure 2 a), the changes in the weight of biased-neurons allow
the horizontal shiftiness of the activation function (Figure 2 b). In Figure 2, w1, w2, and
w3 are the weights between the input and the processing neurons, and B1, B2, and B3 are
the weights between the bias and the processing neurons. This horizontal shift from the
origin to match the connections to the neurons is something critical for successful learning
(Hegazy et al., 1994).

The NN learned relationship among sets of input–output data (training data) by adjust-
ing network parameters (connection weights and activation functions). The number of
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hidden layers and number of neurons in each hidden layer can also affect the perfor-
mance of the NN model. The basic algorithm used for NN training is the back propagation
algorithm, through which the NN model with the lowest error is identified. This process
can be done manually or automatically. The NN models used in the proposed process are
developed as described below.

Input and output layers. The size of the input layer is determined from the IVs from
the selected RA model. The output layer contains one neuron, that of the CMQ being
estimated. The input layer is normalized by scaling it to match the range of the activation
function (see section “Activation function”); hence the result of the output layer is scaled
back. Equation 4 shows the general equation to normalize the data by scaling it to a given
range.

Norm(x) = ScaleLB + (X − Xmin) × (ScaleHB − ScaleLB)

Xmax − Xmin

{for [−1 : 1], if Xmax = Xmin → Norm(x) = 0

(4)

Where,

Norm(x): normalized value of x (scaled between low and high bounds)
ScaleLB: low bound of scaling range (e.g., –1)
ScaleHB: high bound of scaling range (e.g., 1)

x: value to be normalized by scaling it to a selected range
Xmin: minimum value for variable X
Xmax: maximum value for variable X.

Number of hidden layers and processing neurons. The hidden layer consists of neu-
rons, also referred to as processing neurons, which perform summation and function. One
hidden layer is typically sufficient. NN models with one hidden layer provide reliable map-
ping between the input and the output, provided that sufficient connections are available
(Hegazy & Ayed, 1998; Hegazy et al., 1994; Owusu-Ababio, 1998). NN models with two
hidden layers or more are more prone to fall into a local minimum, and their estimating
capabilities have been shown to be similar to NN models with one hidden layer (De Villiers
& Barnard, 1993). As suggested by Hegazy et al. (1994), the number of neurons in the hid-
den layer is initially set as half of the number of input variables plus the output. The number
of neurons is then determined by increasing and decreasing it until no improvements in the
CMQs estimates are achieved during the training process (see section on Training of the
NN model and determination of weights).

Activation function. The behavior of the neurons (i.e., the weights of the NN model) is
determined by the activation function. Sigmoid-curve type functions are generally preferred
for the development of NN models. Karlik and Olgac (2011) carried a comparative study
on five conventional and monotonic activation functions (including the hyperbolic tangent
function [tanh] as shown in Equation 5) and found that the hyperbolic tangent function
performs better than other conventional activation functions used in their study. It has also
been proved beneficial for the learning of the NN model to normalize the input by scaling
it to match the range of the activation function (Hegazy et al., 1994). The output of the
hyperbolic tangent function lies in the range –1 to +1 (Figure 3); hence, the input of the
model needs to be normalized accordingly (e.g., using Equation 4).

tanh x = ex − e−x

ex + e−x
(5)
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FIGURE 3 Graphical representation of the hyperbolic tangent (tanh) function.

Training of the NN model and determination of weights. To complete the construction
of the NN model, the neurons among the different layers are connected, and those con-
nections are weighted. The value of those weights is calculated during the training of the
network by using a learning algorithm (e.g., back-propagation) that minimizes the objec-
tive function (e.g., sum-of-squares error) used by comparing the output of the network with
the true values of the training set (supervised learning) using the information sent through
the network (feed-forward). For the training of the NN model, the data are divided into
a training set and a testing set. This helps to avoid over-fitting and to make generalization
possible (Bishop, 1994, 1995). A random data split of 80%:20% was used, as recommended
by Hegazy and Ayed (1998). The output of the neurons is forwarded to the next layer until
the final output is calculated. The weights obtaining after training the network are recorded
in two weight matrices, one between the input and the hidden layer (WA) and one between
the hidden layer and the output layer (WB).

Following that process, the value of each processing neuron is calculated from the
combination of the input and the connection weights (Equation 6).

Hj = tanh

(
p∑

i=1

(Ii × Wij)+1.0 × B1j

)
(6)

Where,

p: number of input parameters
Hj: output of neuron j from input to hidden layer (for j = 1 to the number of neurons m in

the hidden layer)
Ii: scaled input i (for i = 1 to p)

Wij: weight of neuron j corresponding to input I (for j = 1 to the number of neurons m in
the hidden layer)

B1j: weight of input bias of neuron j.

The value of each processing neuron is feed forward, becoming the input of the neuron in
the output layer. The output of the NN model is calculated as shown in Equation 7. The
output of the NN (O) is then scaled back to determine the estimated CMQ. Figure 4 shows
the process between the input/hidden/output layers.

O = tanh

⎛
⎝ m∑

j=1

(Hj × Wj) + 1.0 × B2

⎞
⎠ (7)
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FIGURE 4 Graphical representation of the NN based on the selected RA model.

Where,

m: number of neurons
O: output of NN from hidden layer to output (scaled between –1 and 1)
Hj: output of neuron j (for j = 1 to the number of neurons m in the hidden layer)
Wj: weight of neuron j (for j = 1 to the number of neurons m in the hidden layer)
B2: weight of output bias.

One of the disadvantages of using NN models is that they do not directly show how
each IV (i.e., input) is related to the DV (i.e., output). It is, however, possible to use statis-
tical software tools, such as SPSS (SPSS, 2010) or NeuroSolutions (NS, 2012), to perform
sensitivity analyses to extract the cause and effect relationships between the inputs and
outputs of the network, thereby determining the effect that each of the inputs has on each
of the outputs (Koo et al., 2010). Other researchers (Olden & Jackson, 2002; Olden, Joy,
& Death, 2004) use the connection weight approach and the Garson’s algorithm to assess
the importance of the connection weights and the contribution of the input variables to the
output of the NN model. Often NN models are perceived as black-boxes (Kim et al., 2004),
something that reduces the confidence in the results when compared to more traditional
model types. There are, however, transparent ways to develop NN models, such as the one
proposed by Hegazy et al. (1994), Hegazy and Ayed (1998), and Olden and Jackson (2002).

There is software (e.g., MATLAB, 2012; NS, 2012; SPSS, 2010) specialized for devel-
oping NN models. They allow certain flexibility and control by allowing the user to select
among the different parameters that affect the network’s performance (i.e., type of activa-
tion function, number of neurons in the hidden layer, type of objective function). Also, NN
models can be done simulated using Generalized Reduced Gradient (GRG) nonlinear opti-
mization to determine network weights using the Solver1 add-in in MS Excel as explained
by Hegazy and Ayed (1998). However, the simulation using the spreadsheet has limitations
regarding the number of data points than can be used to generate the NN. For example,
Solver, without special add-ins, is limited to 200 variables cells and 100 constraints;
therefore, when more than 100 training data are used, the problem is too large for Solver
to handle, and other software should be used to determine the weights of the NN. To avoid
the data limitation of the Solver function, while giving control of the network functionality,
the NN models for this study have been created using the manual configuration in SPSS.
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Assessment of Model Performance

The concept of “model performance” is typically used very loosely and in general terms.
For this study, the model performance was related to the accuracy of the model, (i.e., the
error between the estimated and the actual quantities). There are many types of metrics
to assess the performance of a model, and there is not a single one that provides an unam-
biguous indicator for model accuracy (Armstrong, 1985). In the literature reviewed, several
metrics are used (e.g., Mean Absolute Percentage Error [MAPE], Root Mean Square Error
[RMSE], Mean Square Error [MSE], coefficient of determination [R2]), and in all cases,
more than one metric was employed, the MAPE being the most popular one, used in all the
studies (Table 2). These metrics are briefly covered in more detail in the following sections.
The notation used in the equations below is the following:

CMQe: estimated value of the CMQ
CMQa: actual value of the CMQ

n: sample size.

MAPE. The mean absolute percentage error (MAPE) (Equation 8) is based on percentage
errors. It is the most popular metric used to assess the performance of a model; how-
ever, despite its popularity, some researchers (Armstrong & Collopy 1992; Foss, Stensrud,
Kitchenham, & Myrtveit, 2003; Makridakis, 1993) have pointed out some flaws about
MAPE and indicated that it is a bias metric, as it puts a heavier penalty on equal errors
when the estimate is greater than the actual, hence favoring low estimates.

MAPE (%) = 100

n
×
∑( |CMQe − CMQa|

CMQa

)
(8)

A study by Foss et al. (2003) showed that when using MAPE for choosing between
two models, one would select the worst model. They found that the MAPE of the true
model was higher (i.e., worst) than the MAPE of a model that consistently underestimated,
yielding the selection of models that underestimate over the true model. To correct this flaw,
a modified MAPE, referred to as adjusted or symmetric MAPE, was proposed (Armstrong,
1985), in which the difference between the actual and estimated amount are divided by the
average of the actual and the estimated amount; however, for large errors, this correction
makes the modified MAPE asymmetric (Goodwin & Lawton, 1999), treating large positive
and negative errors very differently, so when large errors are expected, they recommended
against using it.

ANOVA. Some researchers (Kim et al., 2004; Kim et al., 2013) have used an analysis
of variance (ANOVA) to test the null hypothesis that the MAPEs of the different models
are the same (H0: µ1= µ2= . . . = µn; i.e., there is not a statistically significant difference
among the MAPEs of the different models being compared).

MSE and RMSE. The Mean Square Error (MSE) (Equation 9) and the Root Mean Square
Error (RMSE) (Equation 10) are scale-dependent metrics. The MSE was the preferred
metric for comparing estimation models for a long time because of its computational con-
venience and theoretical relevance to statistics (Armstrong, 1985). In general, the RMSE is
preferred to the MSE, as it is on the same units as the estimations (Hyndman & Koehler,
2006). The RMSE is also known as the standard error of the estimate (SEE) and typically
calculated by most statistical packages when used to perform a simple RA2. However,
empirical research (Armstrong & Collopy, 1992) has shown that the MSE and RMSE are
unreliable, give more weight to larger errors than smaller errors, and are very sensitive to
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outliers, and hence are inappropriate for the evaluation of estimate accuracy and model
selection (Armstrong & Collopy, 1992; Collopy & Armstrong, 2000).

MSE =
∑

(CMQe − CMQa)2

n
(9)

RMSE = √
MSE (10)

R2. The coefficient of determination (R2; Equation 11) is a metric of how well the regres-
sion equation fits the sample data. It is a very useful metric in RA but has not quite found
its place in estimation (Makridakis & Hibon, 1995). R2 is not a good metric to use for eval-
uating models because its value increases as more variables are included in the model. This
means that the largest R2 is simply obtained by including all IVs in the model, even though
this is not necessarily the model that yields the most accurate estimates (Armstrong, 1985;
Triola, 2001).

R2 = 1 −
∑

i
(yi − ŷi)2

∑
i

(yi − ȳ)2 (11)

Where,∑
(yi – ŷi)2: unexplained variation or the sum of squared errors (SSE)∑
(yi – ȳ )2: total variation or total sum of squares

yi: actual values
ŷi: estimated y-value
ȳ : mean of the actual values.

In the case R2-related metrics were to be used, the adjusted R2 would be preferred. The
adjusted R2 penalizes a model based on the number of IVs used and the sample size (Field,
2009). The adjusted R2 can be calculated in different ways, depending on the interest of the
user. For example, the modified Wherry’s formula (as cited in Armstrong, 1985), used in
many standard software packages (e.g., Data Analysis in MS Excel, SPSS, R), is considered
adequate to develop population expectations (Leach & Henson, 2003). However, the Lord’s
formula (Equation 12; Newman et al., 1979; Uhl & Eisenberg, 1970; Yin & Fan, 2001)
should be used if estimation accuracy for future estimates is the main interest (Armstrong,
1985; Leach & Henson, 2003).

Adj R2(L) = 1 −
(

n + k + 1

n − k − 1

) (
1 − R2) (12)

Where k is the number of IVs.

An Information Criterion

Although an AIC was not used in any of the studies shown in the literature review, it
has been used by several researches (Blair, Lye, & Campbell, 1993; Burnham, Anderson,
& Huyvaert, 2011; Castle, Qin, & Robert Reed, 2013; Jafarzadeh, Wilkinson, González,
Ingham, & Amiri, 2013; Myung & Pitt, 1997; Panchal, Ganatra, Kosta, & Panchal, 2010;
Posada & Buckley, 2004; Wagenmakers & Farrell, 2004;) in many fields (e.g., environ-
mental science and ecology, economics, phycology, engineering) for model selection and
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can be used to overcome the disadvantages of the most common metrics addressed in the
previous section.

The comparison of models using this metric is based on information theory. AIC is
a measure of the amount of information lost when using a model as opposed to reality
(Burnham et al., 2011). AIC can be used then to evaluate models and to select the one
with the lowest AIC value. The model with the lowest AIC value is the one with the lower
information loss, hence the one more likely to be the most accurate model from a set of
models (Motulsky & Christopoulos, 2003).

AIC can be determined using the SSE (Equation 13) (Burnham et al., 2011). Although
a second-order correction (AICc) (Equation 14) should be used with small samples, (i.e.,
when the ratio of the sample size to the maximum K in a set is less or equal to 40), it is
recommended to always use it, since as the sample size increases, AICc ≈ AIC.

AIC = n × ln

(
SSE

n

)
+ 2K (13)

AICc = AIC +
(

2K (K + 1)

n − K − 1

)
(14)

Where,

SSE: sum of squared errors
K: number of parameters in the model.

The value of the AICc of a given model by itself has no meaning. It becomes interesting
when it is compared to the AICc of a series of models (Mazerolle, 2004). However, its
interpretation might not be straightforward. To assist with that, the AICc can be used to
determine the probability that the selected model is more likely to be the model with the
least amount of information loss. Therefore, the probability (P) that one has chosen the
correct model can be determined using Equation 15 (Motulsky & Christopoulos, 2003).

P = e−0.5(�AICc)

1 + e−0.5(�AICc)
(15)

When comparing two models using Equation 15, say model A and model B, model A
being the one with the lower AICc, (�AICc =AICc B–AICc A), there is an x% probability
that model B is the better model, and a (100–x)% probability that model A is the better
model; in other words, model A is (100–x)/x times more likely to be the model that loses
the least amount of information, hence the preferred model.

Process for Development and Evaluation of Estimation Models

Although many studies (e.g., Cho et al., 2013; Kim et al., 2004; Kim et al., 2013; Lowe
et al., 2006; Smith & Mason, 1997; Sonmez, 2004; Yeh, 1998) have been conducted to
develop estimation models using different techniques (e.g., RA, NN, CBR) and comparing
them to determine which one performs better using different metrics (e.g., MAPE, RMSE,
MSE, R2), no systematic way has been proposed to determine the most suitable model for
the estimation of CMQs.

A process (Figure 5) is proposed to be used for the development of estimation models,
in this case using RA and NN techniques, as the two most prominent model types used to
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FIGURE 5 Process for the development and selection of models.

estimate CMQs and construction costs. For the evaluation of the models, AICc was used in
lieu of the popular MAPE. Models with the lowest AICc were selected.

It is assumed that prior to starting this process, all the available data (e.g., dimen-
sions, capacities, special characteristics, specific site characteristics, design parameters)
have been gathered, and the structures, with the corresponding CMQs, have been carefully
analyzed and selected by the estimator for their significance in the project for which models
to estimate CMQs are to be developed and used in future projects.
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From this gathering of data, all the possible structures for which models are to be
developed (e.g., storage building type 1, storage building type 2, tall framed building 1,
tall frame building 2) are identified. These structures can be grouped by type (e.g., stor-
age buildings, tall framed building), which can be beneficial when developing the CMQ
estimation models. There would be a total of P structure subtypes, referred to just as struc-
tures in the proposed process. Each identified structure contains J number of CMQs, which
may be different from structure to structure (e.g., for storage building type 1, the CMQs
might be concrete and reinforcement, while for storage building type 2, the CMQs might
be concrete, reinforcement, and structural steel).

The proposed process includes both the situations where there are sufficient data
and where there are not sufficient data. In the latter, data are to be generated using
robust design models (Singh, 1990, 1991). To address this, a sub-process for data gen-
eration by developing simplified design models through Monte Carlo (MC) simulation is
included.

Step 1: Select Structure m and CMQi

The structures and CMQs for which CMQ estimates are developed and evaluated depend
on the specific project and is something to be determined by the estimator before starting
this process. This process was done for the different selected structures (from structure
m to P), such as storage buildings, framed buildings, and so on, and their correspond-
ing CMQs (from CMQ i to J), such as concrete, reinforcing steel, structural steel, and
so on. From this step, the required structures and corresponding CMQs should be clearly
identified.

Step 2: Prepare Data

The collected data have to be prepared for further analysis. This step can consist of several
components, including normalizing the data. The main purpose of normalizing the data is
to make it homogeneous and consistent, hence checking it for consistency and adjusting it
to eliminate any bias. There are guidelines available as to how data are collected and how it
should be treated for further analysis (e.g., 2008 NASA Cost Estimating Handbook, 2008
International Society of Parametric Analysts Parametric Estimating Handbook, 2009 GAO
Cost Estimating and Assessment Guide). Once the complete data for the selected structure
and CMQ (N) have been prepared, the process can continue.

Step 3: Identify Potential Parameters

The identification of the potential parameters should be based on the information avail-
able to the estimator at the time of preparing the preliminary estimates and should use
expert knowledge or information from previous research. The potential parameters should
be selected to avoid redundancy; otherwise, the developed models might have problems
with collinearity.

These parameters are further evaluated during the development of the models (see
section “Step 4.1: Create Simplified Design Models”) and finalized during the selection of
the RA model (see section “Step 6: Calculate the AICc for RA Models and Select the One
With Lower AICc”). In this step, all the potential parameters (k) to be used in the estimation
of CMQi for structure m are identified.



196 B. García de Soto et al.

Step 4: Determine Sample Size Required for Model Development

A determination needs to be made to make sure that the gathered data (N) is sufficient to
develop reliable models from a statistical point of view (Dupont & Plummer, 1998; Green,
1991; Kelley & Maxwell, 2003) so that N is greater than or equal to the minimum amount
of data required for model development (n). Although there is not a consensus about the
determination of n, it is agreed that the number of variables that can be used is limited by
the sample size (Field, 2009). Therefore, it is important to ensure that there is enough data
for the variables to be used and the reliability of the model.

Multiple rules of thumb to determine n have been developed (Bartlett, Kotrlik, &
Higgins, 2001; Green, 1991; Mead, 1990); however, in many cases, their use could
yield wrong determinations of the appropriate sample size (Brooks & Barcikowski, 2012;
Field, 2009). It is proposed that the minimum sample size required be determined using
Equation 16. This equation is derived by solving for the sample size n in the adjusted
coefficient of determination equation by Lord (Equation 12) (Newman, 1979; Uhl &
Eisenberg, 1970; Yin & Fan, 2001). It accounts for the shrinkage from R2 to Adj R2

(Equation 17) and the percentage of data to be used for training (i.e., developing) the
model.

n = (k + 1)(R2 × z + R2 − 2)

S × R2(z − 1)
(16)

Adj R2 ≥ z × R2 (17)

Where,

n: minimum sample size (accounting for training and testing of model)
k: maximum number of IVs expected in the model

R2: minimum desired coefficient of determination, in decimal form (i.e., amount of the
total variation explained by the IVs)

z: allowable shrinkage from R2 to Adj R2, in decimal form (i.e., Adj R2/R2 or the
reduction from R2 expected to be captured in the Adj R2)

S: percentage of data to be used for training the model, in decimal form.

Once n has been calculated, it is to be compared to N to determine if the existing data
are enough or if more data should be generated (i.e., development of simplified design mod-
els). It is important to point out that when using this equation, preliminary values for the
expected R2 and allowable shrinkage (z) should be checked by recalculating the minimum
sample size (nactual) using the actual R2, z, and number of IVs (k) from the selected model
(see section “Step 6: Calculate the AICc for RA Models and Select the One With Lower
AICc”).

Step 4.1: Create Simplified Design Models. When data are not sufficient (n > N), consid-
eration should be made to decide if additional work should be made carried out to collect
more data or, if more data are not available, if it should be generated using appropriate
design models. The development of such design models might require a fair amount of time
and effort. For this reason, a decision should be made at this point whether or not the added
work in development of simplified deign models is worthwhile. If it is not, the structure
for which not sufficient data are available should be dropped from the list of significance
structures for the project.
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Simplified design models can be developed in several ways. All of them require an
experienced structural engineer who can prepare the models in a way that they could be
later automated to generate data that can be used for the development of models to estimate
CMQs. The simplified design models should be validated using the existing data when pos-
sible. The data generated using simplified design models (see section “Step 4.2: Generate
Data”) should be enhanced, and eventually the estimation models should be replaced with
models using real data when it becomes sufficient, as the data from simplified design
models does not capture all aspects of the real constructions.

Step 4.2: Generate Data. Once the simplified design model has been developed and vali-
dated, it can be used to generate CMQ data (e.g., Figure 6). To do that, the possible values
of the input parameters are determined based the available information, expert opinion, or
previous research. The design calculations for the design model are done using the different
load combinations used to calculate the required size of each of the elements in the struc-
ture. Once the sizes of the elements have been determined so that all code requirements are

i=0

i=i+1

i<=1,000

Determine column size and 
beam size (calculate CMQs)

Generate input parameters  (e.g., 
wind, height, ground acc., soil 

bearing capacity)

Assign input parameters (e.g., 
wind, height, ground acc., soil 

bearing capacity)

Design calculations
(simplified design model)

End

Start

i>1,000

FIGURE 6 Sample process for data generation using simplified design models.
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met, then CMQs for each structural element is determined (e.g., columns, beams, slabs).
The input/output data set can be used to develop the estimation models.

Step 5: Develop RA Models

Using all the potential parameters identified in the section “Step 3: Identify Potential
Parameters,” develop RA models using the BET.

Step 5.1: Pre-Screen Developed RA Models. In addition to the standard checks made on
the developed RA models (e.g., assumptions related to RA, such as significance of vari-
ables, collinearity, no correlation between IVs and residuals, residuals are homoscedastic,
uncorrelated, and normally distributed; Field, 2009), it is recommended to check that the
described relationships, seen through the coefficients of the variables, behave as expected.
Sometimes, especially if the data used for model development has a lot of noise, the models
may show relationships that are nonsensical (e.g., the larger a building, the less concrete
it requires). Constrained RA models should be developed if models have nonsensical rela-
tionships. The constraint consists on controlling the sign of the variable that is causing the
nonsensical relationship while running the regression.

Step 6: Calculate the AICc for RA Models and Select the One with Lower AICc

Once the set of RA models derived from the section “Step 5: Develop RA Models” have
been screened (see section “Step 5.1: Pre-Screen Developed RA Models”) the AICc for the
remaining models is calculated using Equation 14 (see section “An Information Criterion”).
The variable of K should include also the constant and error terms (i.e., number of IVs plus
2). The RA model with the lowest AICc is selected as the RA model with the lowest amount
of information loss (i.e., the RA model that is more likely to be correct for the structure and
CMQ being evaluated). Equation 15 (see section “An Information Criterion”) is used to
determine the relative probability of the models being the model with the least amount of
information loss, when compared to the model with the lower AICc.

Step 7: Check Sample Size Determined in the section “Step 4: Determine Sample Size
Required for Model Development”

Using the RA model with the lowest AICc, the assumptions made to determine the min-
imum amount of data needed (see section “Step 4: Determine Sample Size Required for
Model Development”) shall be checked by recalculating the minimum sample size (now
referred to as nactual) using Equation 16 with the same variable for S and the actual values
for R2, Adj R2 and the number of IVs (k) from the selected RA model. The nactual is then
compared with the data used to develop the model (N).

If the sample size is sufficient (nactual ≤ N) then the selected RA model is confirmed
and the process can continue. If the sample size is not sufficient (nactual > N) then the
models developed in the “Step 5: Develop RA Models” section should be discarded and the
values assumed in the “Step 4: Determine Sample Size Required for Model Development”
section should be revised and the process restarted from there.
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Step 8: Develop NN Model

The NN model is developed based on the selected RA model. The NN models considered
in this process are the feed-forward NNs with three layers (one hidden layer) and back-
propagation learning algorithm, using the SSE as the objective function. The characteristics
of the NN models developed in this process are:

1. Input neurons = IVs (dummy coding not required)
2. Input scaled between –1 and +1
3. Hyperbolic tangent activation function between input/hidden and hidden output

layers
4. One hidden layer (with number of neurons determined heuristically)
5. Objective function to optimize weights = sum-of-squares error
6. Use data split during the learning process
7. One output

To avoid over fitting and ensure generalization of the NN model, several NN models should
be developed, each with a different number of neurons in the hidden layer.

Step 9: Calculate the AICc for (Each) Developed NN Model (and Select the One with
Lower AICc)

For the NN models derived from the “Step 8: Develop NN Model” section, the AICc is then
calculated using Equation 14 (see section “An Information Criterion”). When Equation 14
was used to select among different NN models, the variable K shall be modified to be the
total number of weights in the NN model. The NN model with the lowest AICc is selected
as the NN model with the lowest amount of information loss (i.e., the NN model that is
more likely to be correct for the structure and CMQ being evaluated).

For the selected NN model, or when only one NN model has been developed in the
“Step 8: Develop NN Model” section, the AICc should be calculated by using K as the
number of IVs, including the bias neuron. This AICc should be used when comparing it to
the AICc from the RA model in the next step.

Step 10: Compare Selected RA and NN Models and Use the One with Lower AICc

The evaluation of the RA and NN models is based on the AICc.
The model with the lowest AICc value is the one with the least amount of information

loss, or the model more likely to be the correct model. The selected model was used to
estimate the CMQ of the structure being evaluated.

Next CMQ or Structure

Once the process is completed for a given CMQ, the next CMQ for the structure evaluated
was used. If all the CMQs for a given structure have been completed then, the next structure
with its corresponding CMQs is introduced in the process.

The process ends when models for all the CMQs for all the structures have been devel-
oped and evaluated. At the end of the process, the estimator has developed and selected the
models for the estimation of CMQs for the structures identified for the project.
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Example

The proposed process for the development and evaluation of RA and NN models, as
described in the “Process for Development and Evaluation of Estimation Models” section
and illustrated in Figure 5, is implemented in this example assuming that an estimator
is going over this process. Models for the estimation of concrete and reinforcing steel
(reinforcement) required in the construction of storage buildings are developed. A total
of 58 storage buildings from eight plants located around the word were used. The storage
buildings were classified based on the density of the material they stored, as it would affect
the configuration and characteristics of these structures (Table 3).

In the interest of space, both CMQs for which models are to be developed (concrete
and reinforcement) have been presented and discussed simultaneously. The estimator using
the proposed process, however, would be doing one CMQ at the time.

Step 1: Select Structure m and CMQi

For this example, models to estimate the amount of concrete and reinforcement required in
the construction of storage buildings (of the types shown in Table 3) are developed.

Step 2: Prepare Data (Define N)

Data from a total of 58 storage buildings was collected. The information is related to the
general site characteristics for the different plants (e.g., design wind speed, soil bearing
capacity, spectral response acceleration; Figure 7) and specific structure characteristics
(e.g., storage material, dimensions, capacity, type, CMQs; Figure 8), all of which would be
readily available during the early stages of a project. The information related to the CMQs
(i.e., concrete and reinforcement) was obtained from the final bill of quantities reported
by the contractors, and total concrete and reinforcement quantities were used (Figure 9).
The data went through several checks (e.g., investigation of outliers, uniformity of units)
to ensure it was suitable for further analysis. The reinforcement area/concrete area ratios
(As/Ag) for all the structure used ranged between 1.72 and 2.68% with an average value
of 2.13% (SD = 0.23 percentage points). All within the code specified maximum values of
1-3% (based on ACI codes; Figure 10).

Data transformation was considered to improve the relationship between the different
variables. Data transformation by taking the natural logarithm of all continuous variable
values was performed. When RA models developed using the raw datasets (i.e., with-
out transformation) were compared to RA models developed using the transformed (LN)
datasets, an improvement in the normality of the data and the coefficient of determination
(R2) was observed. Similarly, the Pearson correlation coefficient improved in all cases.

TABLE 3 Summary of storage capacities for the different storage
building types

Storage building type Number

Type A 18
Type B 24
Type C 16
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FIGURE 7 Histograms of variables for general site characteristics.
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FIGURE 8 Histograms of variables for specific structure characteristics.

Step 3: Identify Potential Parameters

From the data collected, the proposed parameters were identified. Seven IVs were selected
taking into consideration the limited information available to the estimator when preparing
the preliminary estimates. The maximum, minimum, and average values for the variables
related to storage buildings are summarized in Table 4.

There are three categorical variables, one for each structure type (Type A, Type B, and
Type C). When using these variables in the regression models, the variables were recoded
(Storage Type I, Storage Type II, and Storage Type III) as 0 and 1, with 1 indicating that
the associated observation has the given categorical value. Any two of the three recoded
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variables should be included in the model. In this case, Type III was excluded and used as
the reference variable.

Step 4: Determine Sample Size (n) and Check Data Sufficiency

Equation 16 was used to determine the sample size required for the development of models.
In this case, the maximum number of IVs (k) that could be used in the models is nine
(out of the three categorical variables, Type III was excluded from the model and used as
the reference variable). The expectation is that the variables used should explain not less
than 90% of the variation in the model (R2 ≥ 0.9), and the reduction of R2 that should
be captured in the Adj R2 is at least 90% (i.e., Adj R2 ≥ 0.81; z = 0.9). A typical 4/1, or
80%:20% random data split for training and testing the models, respectively, was used (S =
0.8). Using this information in Equation 16, the following is obtained:

n = (9 + 1) (0.9 × 0.9 + 0.9 − 2)

0.8 × 0.9(0.9 − 1)
= 40.3 (18)
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From Equation 18 it is determined that the total minimum sample size required for
model development is 40.3 (say 41), from which 33 would be used for the development
of models and the rest for testing them. Since there are 58 storage buildings available,
n < N and the process can continue with the development of models without the need of
developing simplified design models to generate additional data.

The 58 structures were combined and assigned a random generated ID (unique between
1 and 58). That process was done for a random number of times, after which the random
generated IDs were locked and sorted from smallest to largest. Once that was done, four
structures from the top, middle, and bottom of the randomly sorted dataset were selected
(i.e., structures with the following random generated IDs: 1–4, 28–31, 55–58). That is,
12 structures (approximately 20%) were randomly selected and used to test the models
(structure IDs T1 through T12 in Figure 10) and 46 structures (approximately 80%) were
randomly selected and used for model development (i.e., training; structure IDs 1 through
46 in Figure 10). The assumptions made here (e.g., k, R2, and z) to determine the sample size
requirements must be checked once the RA model has been selected (see section “Step 7:
Check Sample Size Determined in the Section ‘Step 4: Determine Sample Size (n) and
Check Data Sufficiency’”).

Step 4.1: Create Simplified Design Models. As n < N (see section “Step 4: Determine
Sample Size (n) and Check Data Sufficiency”), this step is not applicable in this example.

Step 4.2: Generate Data. As n < N (see section “Step 4: Determine Sample Size (n) and
Check Data Sufficiency”), this step is not applicable in this example.

Step 5: Develop RA Models

The RA models were developed using transformed data (Equation 2). Using the BET, a
total of nine models were developed for both concrete and reinforcement quantities, four
for concrete and five for reinforcement. The unstandardized coefficients for the different
models are summarized in Table 5. All the variables were within the specified significance
level (α = 0.05) and acceptable variance inflation factors (i.e., multicollinearity was not an
issue; O’Brian, 2007).

From Table 5, one can see that the backward regression technique eliminates the same
continuous variables at each step. This indicates that for the concrete and reinforcement
models, the variables used have a similar effect. In general, as the amount of concrete
increases, the amount of reinforcement is expected to increase as well. This was antici-
pated based on the As/Ag values (see section “Step 2: Prepare Data (Define N)”) and the
relationship between concrete and reinforcement for the structures used (Figure 11).

For the subsequent steps, the back-transformed models were used (Equation 3). All
the statistics used and reported (e.g., R2, z, AICc) are then corresponding to the back-
transformed models.

Step 5.1: Pre-Screen Developed RA Models. The developed models are checked to ensure
that the described relationships, seen through the coefficients of the variables, behave as
expected. For example, the unstandardized coefficient for wind speed (LN_Wind) in mod-
els CO-RA1, CO-RA2, and CO-RA3 is negative (–0.028), indicating that a 1% increase
in the wind speed would decrease the CMQ of concrete by 0.028%. Hence, models where
the coefficient for wind speed is negative should be constrained (i.e., by controlling the
sign of the coefficients) or not considered. In this case, only CO-RA4 should be consid-
ered. However, for illustration purposes, in this example, all the models were used for the
required calculations (i.e., AICc) in subsequent steps.
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FIGURE 11 Relationship between concrete and reinforcement for the structures used.

Step 6: Calculate the AICc for RA Models and Select the One with Lower AICc

Table 6 shows the AICc for the different models, as well as the actual k, R2, and z val-
ues for the back-transformed datasets. From the set of models analyzed, the one with the
lowest AICc are CO-RA4 (592.86) and RE-RA5 (461.33) for concrete and reinforcement,
respectively.

As stated in the section “An Information Criterion,” the AICc value by itself has
no meaning. It becomes useful when it is compared to the AICc of other models in
a set (�AICc). To assist with the interpretation of the AICc, the probability that the
selected model is more likely to be the model with the least amount of information loss
is determined.

To determine �AICc, the minimum AICc is kept fixed when determining the proba-
bility of all the models in Equation 15. For example, when comparing the CO-RA2 model
with the CO-RA4 model (�AICc =601.7–592.9), one can see that there is a 1.213% prob-
ability that the CO-RA2 model is the correct model and a 98.79% probability that the
CO-RA4 model is the correct model; in other words, the CO-RA4 model is 81 times more
likely to be the correct model (i.e., the one with the least amount of information loss) than
the CO-RA2 model.

Step 7: Check Sample Size Determined in the Section “Step 4: Determine Sample Size
(n) and Check Data Sufficiency”

Plugging in the actual values for k, R2, and z (Table 6) for the selected models (i.e., for
CO-RA4 [k = 6, R2 = 0.9531, z = 0.9822] and for RE-RA5 [k = 5, R2 = 0.8863, z =
0.9613]) into Equation 16, the nactual is obtained. The value for the percentage of data to be
used for training the model is kept the same (S = 0.8).

The nactual for the concrete and the reinforcement models is 57, hence nactual ≤ N.
Since for both of the selected models the sample size requirements are met, the selected
RA models are confirmed. The process can continue.
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Step 8: Develop NN Model

Using the selected RA model to determine the input variables, the NN models for concrete
and reinforcement were developed with the characteristics determined in the “Develop NN
Model” section. The number of neurons in the hidden layer of the NN model was deter-
mined empirically. For the estimation of concrete and reinforcement quantities, the NN
models with the lowest generalization error and AICc had 3 neurons in the hidden layer.
Table 7 shows the weights between the input and the hidden layer and the hidden layer and
the output for the NN models for concrete and reinforcement.

Step 9: Calculate the AICc for (Each) Developed NN Model (and Select the One with
Lower AICc)

The AICc for the NN model is calculated using Equation 14 with K equal to the number
of inputs and the bias neuron (6). The AICc for the concrete and reinforcement NN models
are 613 and 474, respectively.

Compare Best RA and NN Models and Use the One with Lower AICc

The AICc for the RA and NN models is summarized in Table 8. The AICc for the RA
models is lower than the NN models; hence, the models selected for the estimation of
concrete and reinforcement for storage buildings are CO-RA4 and RE-RA5, respectively.

Next CMQ or Structure

As indicated at the beginning of this example, both CMQs for which models are to be
developed (concrete and reinforcement) have been presented and discussed simultaneously;
therefore, for this example, this step is not applicable.

The estimator using the proposed process, however, would be doing one CMQ at the
time.

Validation

Using the proposed process to develop and evaluate RA and NN models led to the selection
of the CO-RA4 and RE-RA5 models for the estimation of the amount of concrete and
reinforcement for storage buildings, respectively.

The validation of the selected models was done using the 12 data points not utilized for
model development. The testing data were fed into the developed RA and NN models and
the accuracy ratio (Equation 19) (Armstrong, 1985) was determined. The accuracy ratio is
unit free, simple to calculate, and easy to understand. The closer the accuracy ratio is to 1,
the more accurate the model is in terms of its deviation between the estimated and actual
quantity (Q).

Accuracy Ratio =
∑

Q

n
(19)

Where,

Q =
⎧⎨
⎩

CMQa

CMQe
if CMQa > CMQe

CMQe
CMQa

if CMQe > CMQa
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TABLE 8 Summary of ACIc for RA and NN models for concrete and reinforcement

Model ID AICc

CO-RA4 592.9
CO-NN 613.0
RE-RA5 461.3
RE-NN 474.2

TABLE 9 Accuracy ratio for developed RA and NN models using testing data

Model ID Accuracy Ratio Model ID Accuracy Ratio

CO-RA1 1.039 RE-RA1 1.079
CO-RA2 1.039 RE-RA2 1.079
CO-RA3 1.037 RE-RA3 1.082
CO-RA4 1.036 RE-RA4 1.086
CO-NN 1.111 RE-RA5 1.075

RE-NN 1.132

TABLE 10 MAPEs for RA and NN models developed (training set)

Model ID MAPE (%) Model ID MAPE (%)

CO-RA1 5.495 RE-RA1 9.081
CO-RA2 5.489 RE-RA2 9.078
CO-RA3 5.504 RE-RA3 9.058
CO-RA4 5.497 RE-RA4 9.041
CO-NN 8.057 RE-RA5 9.823

RE-NN 11.44

In addition to the accuracy ratio, and due to its popularity, the MAPE was used to
determine the model accuracy (Equation 20) and as the selection metric for the developed
models. This allowed the AICc to be further checked as the metric used in the proposed
process to select the most accurate model and complement the validation process.

The results of the validation using the accuracy ratio are summarized in Table 9.The
models with the accuracy ratio closest to one for the estimation of concrete and rein-
forcement are CO-RA4 and RE-RA5 with an accuracy of 1.036 and 1.075, respectively.
These models correspond to the models selected during the proposed process (see section
“Compare Best RA and NN Models and Use the One With Lower AICc”). This indicates
that the evaluation of models using AICc is adequate to select the most accurate models for
the estimation of CMQs in future projects.

The MAPE for the different developed models using the training set was calculated
using Equation 8. The results are summarized in Table 10.

Using MAPE as the evaluation metric to select the most accurate models would lead
to choosing CO-RA2 for concrete and RE-RA4 with the lower MAPE in each set with a
value of 5.489% and 9.041%, respectively. The MAPE and the model accuracy for all the
models were determined using the testing data. The results are summarized in Table 11.
The closer the model accuracy is to 100%, the better.
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TABLE 11 MAPE and model accuracy for developed RA and NN models using testing
data

Model ID
MAPE

(%)

Model
Accuracy

(%) Model ID
MAPE

(%)
Model

Accuracy (%)

CO-RA1 3.785 96.22 RE-RA1 7.776 92.22
CO-RA2 3.795 96.21 RE-RA2 7.775 92.23
CO-RA3 3.591 94.41 RE-RA3 7.998 92.00
CO-RA4 3.475 96.53 RE-RA4 8.420 91.58
CO-NN 9.307 90.70 RE-RA5 7.437 92.56

RE-NN 11.80 88.21

Model Accuracy (%) = max(100 − MAPE, 0) (20)

The model accuracy for the CO-RA2 and RE-RA4 models is 96.21% and 91.58%,
respectively; however, there are other models that are more accurate. The models with the
highest model accuracy for the estimation of concrete and reinforcement are CO-RA4 and
RE-RA5, with 96.53% and 92.56%, respectively. These models correspond to the models
with the lowest AICc (see section “Compare Best RA and NN Models and Use the One
With Lower AICc”). This indicates that MAPE would not yield the most accurate model
when used as metric to evaluate different models.

Further investigation of the preferred models using MAPE showed that those models
had more underestimated quantities when compared to the models using AICc; for example,
for the CO models, the preferred model using MAPE underestimated 50% of the cases,
while the preferred model using AICc underestimated 40% of the cases, indicating that
MAPE would favor models that, on average, tend to underestimate. Similar findings were
made by other researchers (Armstrong & Collopy, 1992; Foss et al., 2003; Makridakis,
1993).

Discussion

The proposed process can be used by practitioners to develop estimation models in a
consistent and systematic way. All the key steps, from data collection and analysis to
model evaluation, are considered. Special importance was given to the issue of sample
size required for model development while allowing for data split to test or validate the
developed models. However, a priori assumptions need to be made to determine the sam-
ple size (e.g., k, R2, and z), which is then checked against the available data. The selection
of those variables might not be intuitive at first, but with experience, practitioners would
gain an improved understanding of those variables and, from the outcome of the developed
models, use the ones that best fit their needs.

The selection metric used (AICc) is not as popular as other typically used metrics when
comparing models or determining model performance (e.g., MAPE, RMSE); however, it
has been successfully applied in other fields and shown to be more efficient than MAPE
for the selection of models to estimate the CMQs in future projects. Nevertheless, the cal-
culation of the AICc values are straightforward, and the information required to determine
the AICc values from the developed models is readily available (i.e., most statistical soft-
ware packages used to develop the model types used in the proposed methodology provide
those values by default, so no extra effort is expected to determine the AICc values of the
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developed models). In addition, when comparing models using AICc, the probability that
one model is better than the others can be easily determined.

For the test cases, the developed models perform well and have high generalization
capabilities. For the 12 random structures used for testing the models, the overall MAPEs
from the regression models (Table 10; 5.469% (CO) and 9.216% (RE)) are slightly better
than from the training dataset (Table 11; 3.662% (CO) and 7.881% (RE)). This can be
attributed to the amount of data available for training and testing the models.

Conclusion

The proposed process allows for a systematic way to develop and evaluate models using
RA and NN techniques, taking into consideration the available data and evaluating the
developed models using an information criterion.

The process was illustrated by its use in developing models to estimate, during the
conceptual phase of a project, the amount of concrete and reinforcement required in the
construction of storage buildings, and in determining the most accurate model from those
developed. The required sample size for model development in the example was calculated,
and it was determined that the data available was sufficient to develop robust models. From
the 58 existing structures, 46 were randomly selected and used for model development; the
rest were used to validate the results from the process. All the potential variables, including
the storage building type, were employed when using the backward elimination regression
technique, which led to the development of four models for the estimation of concrete
quantities and five models for the estimation of reinforcement quantities.

The results from the back-transformed regression models were evaluated using a
second-order correction AIC (AICc). From this evaluation, the model with the lowest AICc

was chosen, as it indicated that it was the model with the least amount of information lost
(i.e., the most accurate model). Model CO-RA4 and RE-RA5 for concrete and reinforce-
ment, respectively, were selected and used as basis for the development of feed-forward
network with three layers (one hidden layer) and back-propagation supervised learning
algorithm. The evaluation between the RA and NN models using AICc showed that the
RA models performed better than the NN models, indicating that the selected functional
form for the RA, in combination with the BET, was adequate. Similar findings have been
made where models using RA showed better performance, in terms of accuracy, variability,
model creation, and model examination, than NN models (Smith & Mason, 1997). In addi-
tion, the AICc metric proved to be effective for selecting the most accurate models from a
set and more consistent than the MAPE.

Ongoing work related to this process and the estimation of CMQs includes the devel-
opment of NN models using the same input sets from each RA model developed using the
backward elimination regression technique (not just the selected one) and the implemen-
tation of the proposed process to develop a methodology using CBR for the estimation of
CMQs during the conceptual phase of a project.
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Notes

1. Solver is part of a suite of commands, sometimes called what-if analysis tools, in MS Excel.
Solver uses a variety of methods, from linear programming and nonlinear optimization to genetic
and evolutionary algorithms, to find solutions.

2. For multiple regression, the denominator of Equation 9 would be n–k–1, where k is the number
of IVs in the regression model.
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