
Journal of Cost Analysis and Parametrics, 7:160–179, 2014
Copyright © ICEAA
ISSN: 1941-658X print / 2160-4746 online
DOI: 10.1080/1941658X.2014.982232

An Assumptions-Based Framework for TRL-Based
Cost and Schedule Models

BERNARD EL-KHOURY1 and C. ROBERT KENLEY2

1The Boston Consulting Group, Dubai, United Arab Emirates
2Purdue University, West Lafayette, Indiana

The Technology Readiness Level scale has been used to assess progress and provide a framework for
developing technology. Many Technology Readiness Level-based cost and schedule models have been
developed to monitor technology maturation, mitigate program risk, characterize transition times, or
model schedule and cost risk for individual technologies as well technology systems and portfolios.
We present a four-level classification of models based on the often-implicit assumptions they make.
For each level, we clarify the assumptions made, review evidence that supports the assumptions, and
propose alternative or improved models. Our results include a justification of the recommendations of
the US General Accounting Office on Technology Readiness Level, two new methodologies for robust
estimation of median transition times and for forecasting transition times using historical data, and
a set of recommendations for Technology Readiness Level-based regression models.

Introduction

Innovation and technology are key elements to maintaining a competitive edge and sustain-
ing growth. Companies as well as state agencies must develop new technologies that are
timely and cost-effective and that reduce the risk of schedule and cost overruns. Technology
development is highly unpredictable: Not only is a project manager faced with “known
unknowns” (i.e., uncertainties that can be roughly estimated and controlled), the man-
ager also has to deal with “unknown unknowns,” which are completely unforeseeable
uncertainties due to the very nature of developing a new technology. Industry has adopted
many technology management frameworks to address this challenge, such as technology
roadmapping, technology benchmarking, technology watches, and technology risk man-
agement (Foden & Berends, 2010). The aim of these frameworks is to control key factors
such as cost, schedule, technology maturity, and manufacturability.

The US Government Accountability Office recommended, “Maturing new technol-
ogy before it is included on a product is perhaps the most important determinant of the
success of the eventual product—or weapon system,” and GAO encouraged the use of
“a disciplined and knowledge-based approach of assessing technology maturity, such as
TRLs, DoD-wide” (GAO, 1999). Technology Readiness Levels (TRLs) are a 1-to-9 scale,
as shown in Table 1, developed by NASA (Mankins, 1995) that describes the maturity
of a technology with respect to a particular use. The scale captures the maturity of the
technology by looking at major milestones in the technology development process and is
intended to be consistent across technologies. GAO suggested the use of TRLs to make
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TABLE 1 NASA TRL scale definitions

TRL NASA TRL Definition

1 Basic principles observed and reported
2 Technology concept and/or application formulated
3 Analytical and experimental critical function and/or characteristic proof of concept
4 Component and/or breadboard validation in laboratory environment
5 Component and/or breadboard validation in relevant environment
6 System/subsystem model or prototype demonstration in a relevant environment

(ground or space)
7 System prototype demonstration in a space environment
8 Actual system completed and “flight qualified” through test and demonstration

(ground or space)
9 Actual system “flight proven” through successful mission operations

sure that technologies are mature enough before integrating them into systems. Within
Department of Defense (DoD), organizations that perform research and development use
TRLs to understand a technology’s riskiness by looking at its maturity (Graettinger, Garcia,
& Ferguson, 2003), and organizations that acquire systems use TRLs in Technology
Readiness Assessments (TRAs) to make sure the technology has matured enough to pass
certain milestones (DoD TRA Deskbook, 2009).

Azizian, Sarkani, and Mazzuchi (2009), Cornford and Sarsfield (2004), Nolte (2008),
and Fernandez (2010) pointed out that TRL is not well integrated into cost, schedule, and
risk modeling tools. Many models have been proposed to use TRLs for cost and schedule
modeling for individual technologies (e.g., Conrow, 2011; Dubos, Saleh, & Braun, 2008;
GAO, 1999; Smoker & Smith, 2007) as well as technology systems and portfolios (e.g.,
Dubos & Saleh, 2011; Lee & Thomas, 2003; Sauser, Ramirez-Marquez, Magnaye, & Tan,
2008). These models are based on different assumptions that can lead to different results.

We have developed a framework to explain these differences. When evaluating a model
from the literature on approaches of using TRL to model cost and schedule risk, we often
identified another model that had more useful results, but at the price of stronger (often
unstated) assumptions. We have grouped the into four levels of increasingly strong assump-
tions, which facilitate comparing, developing, and improving TRL-based cost and schedule
models using the most relevant characteristic: the assumptions that they make.

Figure 1 shows our unifying framework for models that use TRL based on the assump-
tions that they make. For each level in the framework, we will (1) state the assumption,
(2) review the literature relevant to that level of assumption, (3) describe evidence support-
ing this assumption, and finally, we will (4) propose new methodologies that make better
use of the assumptions whenever possible. The level-1 assumption that TRL is a time-
ordered scale is relatively weak, whereas the level-4 assumption that TRL is a metric scale
is the most strong. Lower levels in our framework permit simple, but robust models, and
higher levels permit more advanced and more useful models, but that are less robust due to
the strong assumptions.

At level 1, we will answer the question:
Does available evidence support or contradict GAO’s recommendation on pre-production

maturation?
At level 2, we will answer the questions:
Does it make statistical sense to look at the distribution of each TRL transition time

separately?
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4. TRL
is a

measure of
maturity and risk

3. Maturity variables are
consistently related across

technologies

2. Maturity variables are significantly
differentiated for different TRL

transtions

1. TRL marks consectuive points of progression
in technology development

FIGURE 1 The four-level framework for TRL-based cost and schedule models.

If yes, is there a way to improve the accuracy and fidelity of the estimates and confidence
intervals?

At level 3, we will develop a model that answers:
If we use historical data of a technology’s development, can we significantly improve the

accuracy of the technology schedule forecast over level-2 models?
And at level 4, we will answer:
Out of the available methodologies, what is the best one to use in performing regression of

cost and schedule against TRL?

Transition Variables and Schedule Transition Datasets

We define a “transition variable” as a management-relevant variable that is associated with
the transition between two TRLs. The schedule transition variables will be noted Xi–j and
the cost transition variables Ci–j (both are considered random variables). For example, X3–4

corresponds to the time the technology takes to transition from TRL 3 to TRL 4, and C3–8

is the cost incurred in transitioning the technology from TRL 3 to TRL 8.
We used two schedule transition datasets: a NASA dataset is a relatively high quality

dataset, but it has only 19 technologies; and an Army dataset is larger (582 technologies),
but with lower quality.

The NASA Dataset

The first dataset is from a case study done by the Systems Analysis Branch at NASA’s
Langley research center which looked at typical times that aeronautical technologies take
to mature (Peisen, Schulz, Golaszewski, Ballard, & Smith, 1999). They collected the data
through interviews with NASA personnel. Table 2 shows the full data set. The columns
constitute different NASA technologies that were selected for the study. The first eight
rows correspond to the TRL transitions (the values of the variables are the durations in
years of the technology TRL transition times).

The dataset does suffer some drawbacks:

1. There are a rather small number of technologies (only 19), and seven of those data
points have only the first five transitions.
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2. The sample suffers from selection bias since it only contains the technologies that
made it to TRL 9 or 6. Many projects may be abandoned at early TRLs. The nega-
tive effect of this phenomenon is that it reduces the representativeness of our work
so that it cannot forecast program termination risk and is limited to programs that
make it to TRL 9 or 6. Its positive effect however, is that it eliminates one source of
uncertainty, so that we will not have to worry about modeling highly unpredictable
external variables (such as budget cuts, program termination, requirement changes,
etc.) that can lead a program to stop.

3. The data comes from retrospective interviews based on descriptions of TRLs (as
opposed to rigorous TRL calculators), which means it could contain measurement
errors. Furthermore, the authors say that they had to do some smoothing when the
interviewees did not remember the exact transition time; and that “some” points
were at a one-year resolution level but did not indicate which points were at this
resolution.

Inspection of the data reveals one clear outlier: Titltrotor Technology (which is the
technology used in the V22 osprey) took 22 years to transition from TRL 5 to TRL 6,
which is significantly larger than the other transitions in the dataset. Further inspection of
the data reveals a positive skewness of the data: While most values are very small, a few
transitions take relatively larger times, thus clustering the bulk of the data around zero.
A log-transformation is natural in such cases of positive data with clear positive skew-
ness. Three transitions had a duration of zero, and we performed a simple smoothing by
assuming that this transition happened so quickly because of extra development effort in
the preceding transition. We changed the preceding step to 80% of its original value and
gave the remaining 20% to the “zero” step. We had two justifications for this modification.
A theoretical one—a phase cannot be finished instantaneously—and a practical one—it is
necessary to eliminate zero to perform a log-transformation on the data.

The Army Dataset

The Army dataset is larger than the NASA dataset, but of lesser quality. It contains partial
TRL transition times of 582 technologies that were commissioned between FY 2005 and
FY 2009. We extracted the data from Army Acquisition Technology Objectives brief-
ings, which contained charts with the projected milestone and TRL dates for the critical
components.

As a result, the dataset has two major quality problems:

1. It is based on contracts (promises) and projected schedules (as opposed to historical
results). The final cost and schedule in DoD acquisition programs is often different
from the initial estimates. Hence, instead of having a set of technology transition
times, we only have a set of initial estimates of transition times.

2. Since the data was recorded visually from low-resolution graphs (values rounded to
quarters of the year), it also suffers from low precision. Given the manner in which
the TRL steps were extracted from the graphs, the error can be as high as 0.5 years.

The dataset also suffers from a minor issue. Although it contains transition information
for a high number of technologies, the dataset does not contain a large number of transitions
for a single technology. The dataset mostly contains one or two transition variables per
technology (typically transitions from TRL 3 to TRL 6). This makes it harder to use the
data to look for trends in the development of a single technology; however, it did allow us
to evaluate the distribution of specific TRL transitions across technologies.
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Analysis of the Level-1 Assumption

This first-level assumption is that “TRL marks consecutive points of progression in tech-
nology development” (Figure 1). While this assumption might sound very basic and trivial,
it has important managerial implications since it directly relates to a recommendation by
GAO (1999) on technology transition risk. This influential report advocating for the use of
TRLs is the major example in the literature using this assumption. Furthermore, GAO rec-
ommended in the report that the maturing of technologies to at least TRL 7 to reduce risks
and unknowns adequately before proceeding with engineering and manufacturing devel-
opment. Other sources that specifically mention this basic reverse relation between TRL
scores and technology risk include Legresley et al. (2000) and Nolte (2008).

This assumption comes from two basic properties of the TRL scale: The TRL scale is
“complete” and “monotonic.” The scale is “complete” when it covers the entire technology
development space: Every technology has to be at a defined TRL at any point in time; and,
throughout its development, it has to go through all of the 8 TRL transitions. The scale is
“monotonic” when TRL always goes through those transitions in the same increasing order.
When these properties are present, TRL will always mark consecutive points of progression
(in an increasing order) in technology development until the TRL reaches 9 (or until the
level at which the technology stops maturing as in the case of development is halted prior
to TRL 9).

GAO (1999) described risk levels based on the assumption that the higher the TRL,
the smaller the remaining overall uncertainty in managerial variables such as cost, sched-
ule, and performance. A project at TRL 2 is subject to risks (cost, schedule, performance)
on all the transitions from TRL 2 to TRL 9, while a project at TRL 6 is only subject to
risks on transitions from TRL 6 to TRL 9. This is a direct consequence of the fact that
all technologies have to go through all TRL transitions (completeness), and they have to
go through them in order (monotonicity). In particular, the GAO report identified the TRL
6–7 transition as the threshold for going from high risk to low risk.

Using the NASA dataset, it is possible to quantify this uncertainty using the single
maturity variable of schedule. We use the standard deviation of the “time to maturity” as a
proxy for uncertainty, or the remaining schedule risk. In Figure 2, we plotted the standard
deviation of the time to maturity (i.e., the remaining development time) for each TRL. For
example the value indicated at TRL 3 is the standard deviation of X3–9 (the transition time
from TRL 3 to TRL 9), while the value indicated at TRL 4 is the is the standard deviation
of X4–9 (the transition time from TRL 4 to TRL 9), and so on. We can see that the time-to-
maturity risk has very high values (standard deviation larger than 10 years) up until TRL
5. Once the project passes TRL 6, the standard deviation drops sharply to 5.6 years. This
risk continues dropping and supports the GAO-defined threshold of low risk as that beyond
TRL 7, because the transition to TRL 7 corresponds to a significant drop in schedule risk
when compared to earlier stages.

Analysis of the Level-2 Assumption

The level-2 assumption states, “Maturity variables are significantly differentiated for dif-
ferent TRL transitions.” This means that when we look at one technology transition, the
maturity variables have a probability distribution different from other TRL transitions with
a bounded variance. For instance, Peisen et al. (1999) noted that there is “considerable vari-
ability” in the time that technologies take to mature. The level-2 assumption stipulates that
this variability is low enough to perform statistical forecasting of the technology maturation
time.
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Many papers in the literature fall within this category of models, starting with Peisen
et al. (1999). The authors characterized technology transition times by analyzing their dis-
tributions and by comparing averages and standard deviations of different subgroups of the
sample. Similarly, Dubos and Saleh (2011) evaluated the distribution of every TRL transi-
tion time. They found that TRL transition times have lognormal distributions and used that
to propose average estimators and confidence intervals. Finally, Lee and Thomas (2003)
analyzed the distributions of absolute and relative cost growth at each TRL, and fitted the
Johnson’s distributions to the data (Johnson, 1949).

The very design of the TRL scale supports the level-2 assumption, because each transi-
tion in the scale corresponds to a well-defined action common to technology development.
We should expect each of those transitions to share common properties across technologies,
and thus we should expect each transition to be significantly differentiated from other tran-
sitions. For example, the TRL 1–2 transition that happens when “an application of the basic
principles is found” is different from the 2–3 transition that corresponds to “going from
paper to lab experiments,” which itself is different from the 6–7 transition that happens
when “the prototype is tested in the real environment.”

Analysis of Variance for the Army Dataset

To validate level-2 assumption empirically, we looked at the distribution of different tech-
nology transition variables and tested if the transition times are precise enough to be
statistically distinguishable. For example, transitions X1–2, X2–3 are “distinguishable” if
their variances are small enough so that they are both different from transition X1–3 using an
Analysis of Variance (ANOVA). Otherwise, TRL 2 would be an unnecessary step, because
introducing it would not add any statistically significant information over just using TRLs
1 and 3. In statistical terms, we are testing if the means of X1–2 and X2–3 are equal to that
of X1–3 (Albright, Winston, & Zappe, 2006).

El-Khoury (2012) performed this statistical test for all pairs of TRL transitions where
data was available using the Army dataset. The Army dataset is low resolution (low
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precision), but this does not fundamentally alter the results because the same imprecision
in X1–2 and X2–3 are transferred to the sum in X1–3. The imprecision gets cancelled out
later when X1–2 and X2–3 are subtracted from X1–3 to compare the difference to zero in the
test. The Army data consists mainly of promises as opposed to historical values, and we
know that promises are biased and actual transition times will have higher variances than
the ones agreed upon in the contract. To counter this problem, El-Khoury added random
normal noise to the transition times in line with historical observations reported on DoD
projects. El-Khoury performed eight statistical comparisons and equality hypotheses are
rejected with very low p-values (<0.0001), indicating that the transition times are indeed
significantly differentiated.

These results are beyond the ordinality property that we used in the level-1 assumption
and show that the distance (in terms of maturation time) between the TRLs is statistically
significant. This justifies the TRL definitions with respect to the “resolution” of the scale:
Not only do the TRLs convey information about order on the scale, their definitions divide
the scale in a representative manner such that we would lose information and precision
about managerial variables such as schedule and cost if a TRL step were omitted from the
scale.

Analysis of the NASA Dataset

Level-2 models consist mainly of building an empirical distribution of a transition variable
and then using it to do estimations of important statistics.

The NASA dataset is less than 30 in size, and it is skewed, which also means that the
population does not follow a normal distribution. As a result, we would have to make strong
parametric assumptions about the distribution of the transition variable, assigning it to a
specific known distribution with fixed parameters (e.g., “TRL transition time X4–6 follows
a lognormal distribution with mean μ and standard deviation σ ). Since TRL data is typi-
cally scarce, and because of its high skewness, we evaluated a more robust non-parametric
measure such as the median for the average (we selected the median over the average
because the latter is very sensitive to outliers and skewness, especially in small datasets).

El-Khoury (2102) evaluated three methods of non-parametrically generating median
confidence intervals. First, Conover (1999) recommended using an approach for small
datasets that is based on the binomial distribution. It ranks the values in the sample and
then uses a table of values that he calculated to determine the confidence interval. Using
the NASA dataset of 19 technologies, the 95% median confidence interval would sim-
ply be defined by the fifth value and the fifteenth one. Second, Olive (2005) proposed
another technique as a modification of large-sample confidence interval formulation to
improve the performance of the interval for small samples. Third, the bootstrap was recom-
mended by Mooney and Duval (1993) especially in cases of asymmetrical data, even more
so when the data is truncated and skewed (which is the case for all maturity variables).
Figure 3 compares the 95% median confidence intervals generated using each of the three
non-parametric methods. We can see clearly that the bootstrap confidence intervals (area
highlighted in green) are the narrowest (except for the last transition where the CI gener-
ated by Olive’s method was unrealistically reduced to the number zero, because this value
appears many times in the X8–9 sample).

The bootstrap analysis presents some results that require explanation for those not well
versed in statistical methods: For example, a 95% confidence interval could be the same as
a 50% confidence interval. One way of overcoming this discrepancy in shape is by using
the smoothed bootstrap described by De Angelis and Young (1992) that eliminates the
discreteness of the median leading to smoother distributions that a project manager would
be more familiar with.
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FIGURE 3 Comparison of 95% confidence intervals (of the median of log-transition time)
generated using three different techniques.

Comparison of DOE, NASA, and Army Datasets

Crépin, El-Khoury, and Kenley (2012) analyzed Technology Maturity (TM) scores from
a dataset from DoE’s Nuclear Materials Stabilization Task Group. They transformed
TM scores into TRLs and used multiple statistical tests to show that DoE TRL transi-
tion times were similar to NASA’s TRL transition times (for example, X4–5 values for
NASA are not statistically different from DoE’s X4–5 values). This result generalizes the
level-2 assumption across technologies and agencies.

Summary of Analysis of the Level-2 Assumption

In summary, the level-2 assumption is made whenever we want to study the statistics of
maturity variables on each of the TRL transitions. For the Army dataset, an ANOVA sup-
ported the assumption that the TRL transition variables are significantly differentiated.
While classical parametric estimators could be used, we recommend using the median
bootstrap as a robust and accurate estimator better suited to small and skewed datasets
(the datasets are small either from the start, or after undergoing segmentation for variance
reduction).

Analysis of the Level-3 Assumption

The level-3 assumption states, “Maturity variables are consistently related across technolo-
gies.” This level builds on the previous one: Not only are maturity variables well defined
and differentiated, they are also related in a consistent (predictable) manner. It is clearly
a stronger assumption because it means that if we pick any technology, we should expect
some form of stable relation between separate transitions in the same technology. For man-
agement purposes, this means that for any project, we can use early transition information
to make predictions on later transition variables (while level-2 models do not use any past
information).

This assumption is made whenever we make statements such as: (1) “If a technology is
already maturing quickly or cheaply relative to the average, then it is more likely to continue
doing so for the remainder of its development,” or (2) “High research and development
costs are related to high development and engineering costs.”
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Table 3 shows the results of a correlation analysis of the NASA dataset and highlights
correlations larger than 0.5. We can clearly see a cluster of highly correlated transition times
1–2, 2–3, 3–4, and 4–5. The rest of the transitions do not show any correlations except for
a (minor) positive correlation between 6–7 and 8–9.

In simple terms, this initial cluster of positive correlation means that if a technology
is maturing fast (resp. slow) in early TRL stages, then it is likely to keep maturing fast
(resp. slow) in later stages. This phenomenon is true up to TRL 5. For later TRLs, however,
we can see that transitions 6–7, 7–8, and 8–9 are very uncorrelated with all the early TRL
transition times, as if they were independent of them. Perhaps this is because a technology
changes hands after TRL 6, going from performing research in a laboratory to developing
an operational system (Peisen Schulz, Golaszewski, Ballard, & Smith, 1999).

El-Khoury (2012) developed several forecasting methods and compared their perfor-
mance. The forecasting methods by category are as follows:

Fixed estimates
Mean
Median

Influence Diagrams
ID (full)
ID (frag 4–3)
ID (frag 5–2)
ID (bounded)

Extrapolation
Moving average
Exponential smoothing
Exponential smoothing (with trend)

Regression
Full Autoregression
Full Autoregression (bounded)

Other
Closest Neighbor

Fixed estimates methods give the same forecast for all the technologies, they do not
use past transitions to forecast future ones, and they constitute the reference measures. As a
result, they are models that use the level-2 assumption, and they do not make use of the
level-3 assumption. They will be used only as a reference to evaluate the performance of the
other “smarter” level-3 techniques. Influence diagram methods (Shachter & Kenley, 1989)
use a probabilistic approach by assuming a multivariate normal distribution of the variables
and mapping the relations between them. Extrapolation techniques do not use training data;
they are only based on the past transitions of the forecasted technology itself. Regression
techniques are related to the influence diagram and extrapolation techniques. The fore-
casted transition is regressed against the known steps (using the training data), and the
results are applied to the known past transitions in order to generate the forecast. Finally, the
closest neighbor technique tries to forecast the transitions by imitating the variations of the
technology in the training set that correlates the most with the technology being forecasted.

Performance of forecasting methods was evaluated using a multivariate comparison
method. The two tables in Figure 4 show results for a single forecast. On top (in blue) is
the name of the technology and the training subset, and the left column (in grey) shows
the eight variables (TRL transitions). The upper table is the forecast table: The known
values (i.e., past values) are in green, and the forecasted ones are in yellow. The different
columns correspond to different known transitions: The first column makes forecasts for
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data

12 -0.6931 -0.6931 -0.6931 -0.6931 -0.6931 -0.6931 -0.6931 -0.6931

23 -0.6931 -0.596 -0.6931 -0.6931 -0.6931 -0.6931 -0.6931 -0.6931

34 0 -0.5593 -0.646 0 0 0 0 0

45 0 -0.4237 -0.5074 -0.3111 0 0 0 0

56 0 -0.3504 -0.4377 -0.7833 -0.6001 0 0 0

67 1.79176 0.2018 0.16642 0.60115 1.46608 1.4629 1.79176 1.79176

78 -0.6931 0.66393 0.63056 -1.0703 -0.5884 -0.7989 -1.3922 -0.6931

89 1.70475 0.63882 0.59797 0.90716 1.25882 1.43579 1.61305 1.61305

12 0 0 0 0 0 0 0

23 0.05102 0 0 0 0 0 0

34 0.42836 0.47588 0 0 0 0 0

45 0.3454 0.39797 0.26738 0 0 0 0

56 0.2956 0.35446 0.54311 0.45126 0 0 0

67 4.7764 4.81893 4.17579 1.66776 1.68155 0 0

78 1.44242 1.37866 0.15711 0.05521 0.05019 0.25146 0

89 3.60575 3.68157 3.02273 1.97874 1.29705 0.4819 0.4819

SSE 38.2888 39.1872 26.9652 6.90352 4.51247 0.29547 0.23223

MSE 5.46982 6.53121 5.39305 1.72588 1.50416 0.14773 0.23223

RMSE 2.33877 2.55562 2.32229 1.31373 1.22644 0.38436 0.4819

MAE 1.56357 1.85124 1.63322 1.03824 1.0096 0.36668 0.4819

0 0 0.92091 0.80909 1.16052 0.32828 0.4819

OFE 0.740140855

absolute forecasting errors ( in years)

(subset 1)

forecasts

FIGURE 4 Series of forecasts generated for one technology and different measures of
error of those forecasts.

seven transitions knowing only the first one, while the last column makes forecasts for the
last transition knowing all the previous ones.

The lower red table shows the absolute errors in years of every forecast, and it aggre-
gates those errors in three different ways: RMSE (Root Mean Square Error), MAE (Mean
Absolute Error), and OFE (Objective Function of Error). The OFE uses as inputs the “raw”
error data that correspond to the 28 error values that appear in the red tables of the forecasts.
The OFE aggregates this data based on “control parameters” such as the relative weight of
forecast spans and whether or to consider or not a particular column. It also allows dropping
a technology (mainly the outliers) out of the final total OFE.

Figure 5 compares the total OFE of all the methods using the median of the forecasting
errors generated by Monte Carlo sampling with each curve corresponding to one forecast-
ing technique. For a better visibility, we removed the worst techniques (“closest neighbor,”
“autoregression,” and “regression”).

The bounded autoregression (orange curve) method seems to be the best overall fore-
casting method. As for the rest of the methods, they perform better than fixed estimates in
early stages and worse in the later stages. This conclusion on the other methods holds if we
add the “extreme” outlier to the comparison (Figure 6).

Overall, the autoregression method can be considered the best method. Not only does it
consistently outperform the other techniques for different OFE settings, its results also have
a lower standard deviation. In this case, we went from an OFE of 13.2 for the best fixed
estimate (the median) down to 11.2 for the autoregression (a 15% reduction in median
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FIGURE 5 Total OFE for the nine best forecasting methods.
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FIGURE 6 Total OFE for the nine best forecasting methods (with the extreme outlier
included in the validation dataset).

forecast error). Most of the proposed techniques outperform the fixed estimates in the well-
behaved TRL 1 to TRL 5 area. Then, all methods experience an increase in forecast error
for the last transitions. While this poor performance can be attributed to the lack of data for
those late transitions (only 11 data points available, of which only subsamples were taken
for training), it is also a result of the high oscillation in transition times seen at those stages,
or simply the higher variance of X6–7, X7–8, and X8–9.
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Although extra care was taken by resampling the dataset many times and looking only
at median performances of the techniques, it is still possible that the methods have over-
learned the dataset or got “lucky” for this specific sample. More data is needed to properly
validate the approach to make sure that the improvement remains as the dataset gets larger.
As a result, it might be better to use the robust median bootstrap technique of level 2 until
level-3 forecasting techniques are validated for larger datasets.

Analysis of the Level-4 Assumption

The level-4 assumption states “TRL is a measure of maturity and risk.” So far, we have not
used TRL numbers as metrics; we have just used the fact that TRLs are ordered placehold-
ers, defining distinguishable intervals, and that those intervals can be related. The fourth
level in our framework gives meaning to the TRL numbers by stating that those numbers
are a measure of maturity and risk.

This assumption can be decomposed into two parts. The first part is that TRL mea-
sures maturity. This part alone is of little use to managers since they are interested in the
operational dimensions of maturity (cost risk, schedule risk, performance risk). Therefore,
the second part of the assumption extends the first part to claim that the TRL numbers are
also measures of those operational dimensions of maturity.

More specifically, risk analysts would like to use a direct relation between TRL and
risk in the form of Risk = f (TRL). Many such models (for both cost and schedule) are
available in the literature. Lee and Thomas (2001) regressed cost growth measures against a
system TRL (average of the components weighted by their cost), while Dubos et al. (2008)
regressed Relative Schedule Slippage against a truncated value of the cost-weighted TRL
(WTRL). We found similar regressions against other maturity scales. Kenley and Creque
(1999) performed a regression of Time-To-Maturity against the technical maturity (TM)
scale, while Hoy and Hudak (1994) regressed cost uncertainty against a cost-weighted risk
score.

In 2009, Boeing filed a patent on “systems, methods, and computer products for mod-
eling a monetary measure for a good based upon technology maturity levels” (Matthews,
Data, Feely, & Gauss, 2009). The patent has a broad scope, as it concerns any association
of a TRL level with a component cost uncertainty, that is used to create component
cost distributions, which are then added to generate the good’s (i.e., the system’s) cost
distribution (Mathews, Datar, Feely, & Gauss, 2009).

While those models cannot be more valid than the assumptions they make, there is still
room for improvement by correcting for the ordinality of the TRL scale and by being more
careful with the relationship between TRL and risk. Doing so will allow us to answer the
research question:

● Out of the available methodologies, what is the best one to use in performing
regression of cost or schedule against TRL?

There are two weaknesses that show up often in the literature that are not weaknesses
in the scale itself, but that emerge when the scale is used as a measure of technology risk.

The first weakness is that TRL is a bad measure for risk since it measures achieved
developments only, without measuring the likelihood of a successful transition in the future.
For instance, one technology can be at TRL 6, and still have a costly and long development
ahead of it, while another technology can be at TRL 2, and have easy low-risk development
ahead of it. Azizian et al. (2009), Cornford and Sarsfield (2004), Nolte (2008), Mahafza,
Componation, and Tippett (2005), Sharif, Yu, and Stracener (2012), and Fernandez (2010)
all pointed out this problem in the TRL scale. In response to this issue, Mankins (1998) and
Bilbro (2007) respectively developed the AD2 and the RD3 measures. Those measures aim
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to quantify the difficulty and risk of what is left to be done, as opposed to what has already
been done.

The second problem is that risk managers would like to use TRL as a measure of risk.
However, TRL does not fully represent risk since it is only related to the probability of
occurrence term, while it misses the other factor in risk, which is the consequence term.
Hence, caution is required as to how TRL should be integrated in risk analysis. However,
even if we make sure to use TRL to measure only the probability of occurrence, it is still
a weak measure (especially when compared with other measures like RD3 and AD2, for
the reasons explained above). This is why Conrow (2003) recommended never using TRL
alone in risk assessments.

Many measures like RD3 and AD2 were specifically developed to compensate for
TRL’s failure to measure risk. They are intended to complement TRL in that they mea-
sure what TRL misses: future maturation risk. As a result, this assumption does not have
theoretical support. Conrow (2009) noted that TRL is only weakly correlated with risk.
This assumption is partially true, however, in the weak sense defined by the assumption for
level 1. The risk decreases as TRL increases because the risk now is on a fewer number of
remaining steps, and not because the TRL number itself is a measure of risk.

Although TRL does not measure technology risk, the literature indicates that TRL
surprisingly explains a very large percentage of the variation in maturity variables with
regression results with R2 values at around 90% or above. Conrow (2011) contested those
results by performing his own regression of Schedule Change on the data from Lee and
Thomas (2001), and getting a R2 of 0.26. Conrow (2009) also mentioned that R2 should
be adjusted for the degrees of freedom, and he obtained adjusted R2 values of 0.52 and
0.02 when repeating the calculations of Dubos et al. (2008).

TRL is a partial measure of maturity risk. It is important to take the definition of the
regression’s dependent variable into consideration (e.g., total cost vs. absolute cost growth
vs. relative cost growth vs. probability of cost growth). We did not have sufficient data to
confirm a high correlation in all those cases, but evidence in the literature confirms a useful
correlation between the level of TRL and the variation in maturity variables such as cost
and schedule.

Conrow (2003, 2009, 2011) pointed out that risk is decomposed into a probability
of occurrence term and a consequence of occurrence term. While TRL can be a partial
measure of the probability of occurrence, it provides little information on the consequence
of occurrence. If a technology has a low TRL when product development begins, we can
say that there are high chances of cost overruns, but it is harder to estimate by how much
the overruns will be. Therefore, if we look at cost risk for example as our relevant maturity
parameter, then we could look at many cost-related variables. “Probability of cost growth”
would be a variable that can be modeled well by using TRL (because it is a probability of
occurrence term). On the other hand, “Absolute cost growth” is a variable that would be
poorly modeled by TRL (because it is a consequence of occurrence term). “Relative cost
growth” might have a chance of being well-modeled by TRL since it is a normalization of
the consequence of occurrence.

Conrow (2003, 2009, 2011) also pointed out another issue: the ordinality of the TRL
scale. The numbers in the TRL scale have no particular meaning; they are simple place-
holders that just indicate the order, and could well be replaced by letters A, B, C, D, and
so on with no loss of information. Mathematical operations (sums, averages, differences,
multiplications) on TRL scores are not defined; they have no mathematical meaning, and
can lead to wrong results. Such operations are nevertheless found in the literature.

Gorod, Sauser, and Boardman (2008) defined System Readiness Level (SRL), as a
weighted sum of TRLs for system components that uses Integration Readiness Levels
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(IRLs) to determine the weighting. SRL does not take into account the criticality of some
components in the Work Breakdown Structure (WBS). Dubos et al. (2008) and Lee and
Thomas (2001) both performed TRL averaging when creating the WTRL. First, averaging
ordinal numbers does not have a mathematical meaning. Second, if the scale were cardinal,
there would be no reason to weigh the average with component costs (cost does not neces-
sarily represent the component’s criticality in the system). Third, if the scale were cardinal,
there would be no reason for averaging to be the appropriate operation to aggregate TRLs in
a system. The minimum might be a better operation, and more generally, the WBS should
be taken into account to detect parallelisms and critical paths.

Another example of performing mathematical operations is the Integrated Technology
Index (ITI) proposed by Mankins (2002):

ITI =
∑

subsystem technologies

(
�TRL × R&D3 × TNV

)

Total # of subsystem technologies
. (1)

The ITI disregards the ordinality of TRL twice: first when performing differences of
TRLs and second when performing a weighted average of those numbers.

Furthermore, regressions on the TRL scale are over-constrained by the fact that TRL
is treated as cardinal. A linear regression for example would be looking for a constant
increment of the maturity variable between any two consecutive TRLs. This constraint has
no reason to be true.

We are not implying that all results involving operations on TRL are necessarily wrong
and misleading. The application might be small enough or defined on a small range of the
TRL scale that the operation would not lead to major mistakes. However, caution should
be used in defining the range of TRL values, and then they should be tested extensively to
show that the range of results could carry useful information for the user.

As a solution to this problem, Conrow (2009) proposed a calibration of the TRL scale
in an attempt to give a maturity meaning to the TRL numbers. Conrow asked experts to
compare the maturity of the 36 pairs of TRL values and then aggregated and normalized
the results using an Analytic Hierarchical Process (AHP). He then scaled the results so
that the calibrated TRL 9 had a value of 9, and then fitted the results to a third degree
polynomial. The result was:

TRLadjusted = 0.346 + 0.012 ∗ TRL3. (2)

While this calibration provides a technique to adjust TRL numbers to a metric scale, it
still suffers a couple of drawbacks.

First, AHP is based on human assessments that are often imprecise and subjective,
especially when using not-so-well defined words such as “maturity.” Second, there is a
conceptual problem in calibrating the scale with respect to “maturity.” What does it mean
for an expert to answer, “TRL 9 is 2.5 times more mature than TRL 6”? If we want to make
an ordinal scale cardinal, then the calibration has to be done with respect to an underlying
cardinal space. El-Khoury (2012) pointed out that the maturity concept is a multidimen-
sional concept, and we cannot say that A is more mature than B by using only one number.
For the comparison to make sense, it should pick one of the operational dimensions of
maturity. For example, “What are the odds of meeting schedule for TRL 9 compared to
TRL 6?” or “What is the ratio of cost overrun risk between TRL 8 and TRL 4?”

Nevertheless, the calibration still captures the general idea that the distance between
maturity variables becomes larger at higher TRLs. One alternative approach to avoid the
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problem of ordinality in regressions is to treat the TRLs as categorical variables. Instead
of embedding in advance a certain distance between the TRL levels in the regression, we
can simply consider each TRL a different category and let the regression compare them by
pairs.

In summary, while the problem of probability vs. consequence of occurrence and the
problem of ordinality might be addressed by using specific methodologies, we still can-
not solve the issue of TRL not being a measure of maturity, or it not being a measure of
risk. This would necessitate a multiple regression against several maturity scales, which is
beyond the scope of what we were able to analyze with the limited data sets. To answer
our earlier question on the best methodology in performing regression against TRL, this
methodology should:

● Avoid using any kind of averaging of TRLs. A WBS-based approach or SRLs can
be used instead, if system TRLs need to be computed.

● Have a probability-of-occurrence-related dependent variable. The choice of variable
is also important in that it has to be one that is well explained by the regression (in
terms of adjusted R2).

● Use a calibrated TRL scale (preferably calibrated to a relevant dimension of
maturity).

Conclusions and Directions for Future Research

In this article, we proposed a four-level taxonomy of TRL-based models. When we were
performing our research on TRL cost and schedule models, we discovered that different
models departed from different assumptions and that the only way of consistently eval-
uating and comparing those models was by grouping them according to the increasing
assumptions that they make. This allowed us to make recommendations and propose some
alternative methodologies that make better use of the assumptions. Each level was ana-
lyzed theoretically (mainly by using properties of the TRL scale) and empirically (mainly
by using the NASA dataset). The NASA dataset was also used in developing and evaluat-
ing the new methodologies at levels 2 and 3, as a well as in making recommendations at
levels 1 and 4. Data scarcity was a major concern throughout our research, and we often
had to use specific methodologies and propose special recommendations to deal with this
fact.

The framework, although theoretical, allowed us to answer four practical research
questions, one at each assumption level:

At level 1, the model strongly supported GAO maturation risk recommendations, both
theoretically and empirically.

At level 2, the data confirmed that TRL transition times were statistically differenti-
ated enough for the study of transition time distributions to make sense. Furthermore, the
bootstrap method is a suitable technique to make estimations on those variables with small
datasets.

At level 3, we found that there is significant positive correlation between early TRL
transition times. Furthermore, the autoregression method improved forecast accuracy by
15% over level-2 fixed estimate models.

At level 4, the assumptions are only partially supported, although regressions on TRL
still explain a significant percentage of variability in maturity variable risk. However, we
propose some modifications to the methodologies found in the literature so that they avoid
performing mathematical operations on TRLs, that they correct for TRL’s ordinality, and
that they limit the model to probability-of-occurrence terms only.
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All those results allow us to say that TRL can indeed be used beyond simply the exit
criteria of a Science and Technology program.

The presented models are in no case a silver bullet in solving the problems in acqui-
sition. A lot of those problems can be mainly attributed to managerial issues, poor risk
management practices, external changes in funding or requirements, or to wrong incentive
structures (for example, the contracting structure). This main contribution of this research
is to provide a framework to aid future researchers in understanding and developing more
realistic cost and schedule models to improve the risk analysis part of risk management.

Many potential directions of research directly follow from the work presented in this
article.

First, although special care was taken in choosing the methods and in making conclu-
sions and recommendations, the empirical part of this thesis is still based on a very small
dataset. The results need to be confirmed as soon as more data becomes available.

Second, although there are reasons to believe that the four assumptions can be extended
to other types of technologies and other agencies, let us note that our empirical evidence
only supports the assumptions for NASA technologies for now. The results in Crépin et al.
(2012) are in support of a generalization of results to the Department of Energy’s TRL, but
they are also based on a small dataset and only on a few of the 8 TRL transitions. More
statistical comparison work can be done as other agencies adopting TRL start releasing
data.

Third, a very important extension to this research is to augment the models by looking
at other complementary measures of maturity. We can try to capture a larger proportion of
variability in maturity variables by performing multiple regression analysis.

Finally, there is still work to be done to improve level-4 regression models. Initially,
we can find what versions of cost and schedule variables best correlate with TRL. In addi-
tion, we can develop and test calibrations of the TRL scale that are relevant on certain
dimensions of maturity.
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