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Accurate product costing information is instrumental in effective decision making, especially for
product related decisions, such as product mix and product emphasis. A body of literature suggests
that activity-based costing plays an important role in providing accurate product costing informa-
tion. However, activity-based costing systems are also more complex due to the number of cost
drivers identified, compared to traditional single cost driver systems. We propose a modification
to the activity-based costing system that reduces the complexity. Using the concepts of linearly inde-
pendent and dependent vectors, it is shown that it is possible to identify parsimonious systems that
simplify an activity-based costing system without loss of accuracy. The modification presented in
this study will entice more firms to adopt an activity-based costing system and reap the benefits of
increased product costing accuracy.

Introduction

An activity-based product costing (ABC) system is based on causal relationships among
manufacturing activities and product costs. ABC systems produce cost assignments that are
generally more accurate than unit-based systems based on plant-wide or departmental over-
head allocation rates (Cooper & Kaplan, 1988). Evidence exists indicating this increased
accuracy leads to better cost control, improved decisions, and increased firm profitability
(Ittner, Lanen, & Larcker, 2002; Cagwin & Bouwman, 2002; Kennedy & Afleck-Graves,
2001). Yet, several researchers argue that ABC has not experienced as much diffusion as
it merits given its claimed advantages (e.g., Anderson & Young, 1999; Innes, Mitchel, &
Sinclair, 2000; Abernathy, Lillis, Brownell, & Carter, 2001; Cokins, 2002). The fact that
many firms are not using ABC accentuates Gosselin’s ABC paradox: “If ABC has demon-
strated benefits, why are more firms not actually employing it?” (Gosselin, 1997). The
nonusers of ABC, who have either considered ABC and rejected it or who are still consid-
ering it, identify complexity and cost as the major deterrents to its adoption (Innes et al.,
2000; Krumwiede, 1998).

The complexity of an ABC system increases at an exponential rate as the number of
activities required to produce a product increases. Larger, more complex ABC systems
are more accurate than traditional product cost systems, but they are rarely sustained after
a pilot project. Pryor (2004) offers three reasons for the lack of sustainability for larger,
complex systems. First, there are so many activity or second-stage cost drivers, that the
ongoing data required cannot be collected effectively. Second, the ABC bill of activities
has so much data that nonfinancial users find it too complex to read, interpret, and use.
Third, there are too many data locations for effective system integration.
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Given the complexity of ABC is identified as one of the major deterrents to its
adoption and/or sustainability; it seems reasonable that research efforts should focus
on reducing complexity and, thus, work towards identifying simplified product costing
systems. Product cost system simplification can be categorized into two major areas:
before-the-fact simplification and after-the-fact simplification. Before-the-fact simplifica-
tion addresses simplification at or before the implementation stage and affects adoptability.
To reduce complexity before the fact requires the adopter to identify a full-blown ABC
system and determine the level of accuracy of such a system before simplification can take
place. This is difficult, at best, given the limited resources of most firms. Furthermore, there
are no guidelines available for researchers and/or practitioners for undertaking such a task.
Therefore, before-the-fact simplification is difficult to address and deserves the attention of
future researchers. On the other hand, after-the-fact simplification is much more attainable
and has been the main focus of simplification research thus far.

After-the-fact simplification models take an existing complex and well-specified sys-
tem and use the information contained in this existing system to bring about the proposed
simplification. The simplification thus occurs after a sophisticated activity accounting sys-
tem is created. After-the-fact simplification is useful because it can ensure the sustainability
of an ABC system. Although the simplified system may be less accurate than the parent
system from which it is derived, “an approximately relevant ABC system is much more
valuable than one that is precisely useless” (Pryor, 2004, 2). Because the accuracy of the
more complex system is known, the accuracy of an approximately relevant ABC system
can also be assessed.

The notion of an approximately relevant ABC system is based on the accuracy loss
assumption. Prior research has stated that the accuracy of a system depends on minimizing
aggregation, specification, and measurement errors, thus creating a complex, well-specified
ABC system (Datar & Gupta, 1994). Aggregation error results from reducing the number
of activity cost pools by adding costs of heterogeneous activities to form fewer and more
aggregate cost pools. Specification error results from using the wrong cost driver to assign
costs. Measurement error refers to incorrect assignment of costs to individual activities.
Error is measured relative to an “unobservable” completely specified ABC system. Thus, it
is generally assumed that moving from a complex, well-specified ABC system to a simpli-
fied, more aggregate system necessarily entails a loss of accuracy (Babad & Balachandran,
1993; Datar & Gupta, 1994; Homburg, 2001). Because of this assumption, simplification
research has focused on minimizing accuracy loss as the number of drivers is reduced,
while simultaneously considering information production costs (Babad & Balachandran,
1993; Homburg, 2001). No one yet has challenged the accuracy loss assumption.

The cost of an ABC system is the other major deterrent to its adoption and use. The
cost of an ABC system can be divided into five identifiable costs:

1. activity identification costs,
2. first stage allocation costs,
3. activity driver identification costs,
4. ongoing data collection costs, and
5. complexity costs.

The first three costs are implementation and updating costs and are most effectively
addressed by before-the-fact simplification. The last two costs are costs related to sus-
tainability and are affected by after-the-fact simplification. Ongoing data collection costs
are the costs incurred to measure expected and actual consumption of activities so that
applied overhead costs can be computed (predetermined activity rates × the actual amount
of activity consumed). Thus, activity costs and expected consumption patterns for each
activity must be estimated and data must be collected for each driver so that overhead costs
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can be assigned to products as production unfolds. The more drivers there are, the more
data collection needed. Complexity costs are the costs of foregone benefits because man-
agers reject the ABC system due to its complexity (e.g., missing the opportunity to improve
pricing decisions because of increased accuracy of product costs). Reduction of these two
types of costs will automatically follow from any reduction in cost system complexity.

The purpose of this research is to explore after-the-fact simplification and establish the
existence of parsimonious costs systems—those that reduce the complexity and cost of an
existing activity-based system without reducing its accuracy. We show that parsimonious
cost systems do exist to the extent that a set of linearly independent consumption vectors
exists. Through linear independence we show that these smaller systems exist, with the
number of cost drivers equal to at most the number of products in the firm. We also show
that the number of cost drivers can be reduced even further using the properties of vectors
and vector subspaces, while still maintaining the desired level of accuracy.

The focus of this research is cost system simplification for a decision-making context
and as such we do not address the issues of control or strategic management. This study
is a significant extension of prior studies where cost system simplification was achieved
but with an accepted loss in product costing accuracy (Babad & Balachandran, 1993;
Homburg, 2001). This research is important for providing information for decisions that
rely on accurate product costs, such as pricing, target costing, and relevant costing.

In the next section, the relevant prior literature is discussed. Then a definition of a com-
plex ABC system is presented and is used to illustrate how parsimonious cost systems can
be identified using the properties of linear independence. A discussion of the economic and
practical implications of parsimonious systems follows, and conclusions are summarized
in the final section.

Literature Review and Motivation

The accuracy of product costing information is important for effective decisions related to
products. Compared to traditional volume-based product costing systems, ABC is argued to
be more accurate (Babad & Balachandran, 1993). This purported accuracy stems from the
identification of the causal relationships between costs and their drivers, which increases
the number of cost pools and drivers compared to a traditional volume-based system.
However, Datar and Gupta (1994) show that increasing the number of cost pools and cost
drivers, as ABC requires, may not increase product-costing accuracy because of the unfa-
vorable tradeoffs that can occur with aggregation, specification, and measurement errors.1

They note that: “In theory, costing systems can be designed such that specification and
aggregation errors will be minimal” (Datar & Gupta, 1994, 585).

Knowing that no costing system is free from these errors, Labro and Vanhoucke (2008)
find that robustness to measurement and specification error tends to increase as the number
of driver links decreases. The results of their study suggest that decreasing the number of
drivers actually results in a system that is more robust to measurement and specification
errors.

Babad and Balachandran (1993) and Homburg (2001) present approaches that specif-
ically address the issue of the number of drivers and cost, noting that there is a trade-off
between accuracy and the cost and complexity of a cost system. In fact, Homburg (2001)
claims that reducing the possible cost drivers always reduces accuracy. Thus, the two
studies propose models that seek a balance between accuracy benefits and the ongoing com-
plexity and costs of data collection, storage, and processing associated with a completely
specified ABC system.

Babad and Balachandran (1993) begin with a fully specified ABC driver set and
develop a model that identifies an optimal subset of drivers that takes into consideration
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information production costs and accuracy. The optimal subset of drivers is selected by
maximizing the difference between the information cost savings of the eliminated drivers
and the costs of lost accuracy. The model allows the decision maker to specify the maxi-
mum number of drivers allowed in the simplified system (as a constraint). Error measures
are calculated for the simplified system. The approach combines the costs of the activities
corresponding to the eliminated drivers with the activity costs associated with the selected
drivers, defining a new (more aggregate) cost pool for each selected driver. In building these
more aggregate cost pools, all of the associated activity costs of an eliminated driver are
transferred to the cost pool of a corresponding selected driver.

Homburg (2001) extends the Babad and Balachandran model by allowing the activity
costs of the eliminated drivers to be allocated to multiple selected drivers, rather than just
one. The optimal subset of drivers is selected that minimizes accuracy loss with information
costs expressed as a constraint in the model (drivers are selected that do not exceed a pre-
specified level of information production costs). Other constraints ensure that the costs of
eliminated activities are allocated among the surviving activities. Thus, the cost pool for
a selected driver is the cost of the selected driver’s associated activity plus a share of the
costs of the eliminated activities. He then shows his approach creates a simplified system
with the same ABC-system complexity as the Babad and Balachandran approach but with
more accurate product costs.

The fact that Homburg’s model produces a more accurate system with no greater infor-
mation production cost illustrates that the Babad and Balachandran model did not identify
the optimal simplified system. However, both models assume a simplified system must sac-
rifice accuracy. Datar and Gupta (1994) also make this assumption because their analysis
implies that moving from a system that has minimized the three types of error to a sim-
plified system must necessarily increase aggregation and specification error. This article
illustrates that the accuracy-reduction assumption is not valid because it is indeed possi-
ble to reduce the number of drivers and simultaneously aggregate costs in such a way that
minimal accuracy is sacrificed relative to a fully specified ABC system.

Parsimonious Systems with Reduced Complexity

The Benchmark ABC System

To establish the existence of parsimonious systems, it is first necessary to define an existing
complex ABC system. In theory, an ABC system identifies as many activities as possible,
determines accurately the cost of each activity, and then uses a properly specified, unique
activity driver to assign the activity cost to products. For simplification, we ignore the
assignment of direct costs. These costs would be assigned in the same manner regardless
of the system used to assign indirect costs.

The amount of activity cost assigned to a product is proportional to the amount of the
activity driver consumed by the product. However, if two drivers are perfectly correlated,
then only one of these is used to assign the combined cost of the two activities (Babad
& Balachandran, 1993). After this adjustment, we assume that there remain s activities.
Assuming s mutually exclusive activities and n products, the total amount of indirect cost
assigned to each product is simply the sum of the cost received from each activity:

αi =
s∑

j=1

δijc
o
j , i = 1, . . . , n, (1)
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where:

αi = The expected activity-based indirect product cost;
δij = The expected proportion of the cost of activity j assigned to product i (i.e., the

consumption ratio);
co

j = The cost of activity j.

The expected ABC indirect product cost assignment for product i, αi, is the benchmark
for evaluating the accuracy of simplified costing systems. Letting c = the total overhead
costs, an alternative and equivalent benchmark is the expected global consumption ratio, εi,
which is defined as follows:

εi = αi

c
=

s∑
j=1

(
co

j

c

)
δij. (2)

The expected global consumption ratio is the weighted average of the individual consump-
tion ratios. The expected consumption ratios, δij, are assumed to be stable for a minimum
of t periods, t ≥ 1.

Less Complex Systems

A less complex system is one with fewer drivers than the number in the benchmark sys-
tem. Reducing the number of drivers requires that the total overhead costs be assigned to
the remaining drivers in the less complex system. The critical question is whether the cost
pools for the reduced set of drivers can be defined such that the associated drivers provide
the same cost assignment as the benchmark ABC assignment. Using the concepts of lin-
early independent and dependent vectors, it can be shown that it is possible to simplify
the ABC system without sacrificing accuracy. Every product consumes an expected pro-
portion of an activity, as measured by its associated driver. Thus, for activity j, there is an
n-dimensional consumption ratio vector (usually expressed as an n × 1 column vector),
δj = (δ1j, δ2j, ..., δnj)′.2 For the benchmark ABC set of s consumption ratio vectors, there are
at most n linearly independent vectors. Under the assumption that the number of products
is less than the number of activities (which holds for many, if not most settings), the set of s
consumption ratio vectors is a dependent set. All dependent activities within the benchmark
set can be expressed as a linear combination of the independent activities and, therefore,
can be eliminated. The costs of the eliminated dependent activities are reassigned to the
independent activities using the scalars that define the relationship between the dependent
and independent activities. This approach creates an accuracy equivalent simplified system
as stated in the following proposition:

Proposition 1. Assume s > n. If there exist m linearly independent consumption ratio
vectors, 1 < m ≤ n, then a simplified system of m drivers exists that matches ABC indirect
cost assignments.

Proof. Let co
j = the cost of activity j in the benchmark ABC system and δj = the vector of

consumption ratios for activity j, where δij is the ith component of the vector. Number the
s activities so that the first m is linearly independent. Since all vectors, except for the first
m, can be expressed as a linear combination of the m linearly independent vectors, we have

the following:
m∑

j=1
krjδj = δr, r = m + 1, . . . , s. Using the scalars, krj, as allocation rates,
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define the cost assigned to activity j, j = 1, . . . , m, as cj =
s∑

r=m+1
krjco

r + co
j . Thus, the total

indirect cost, αm
i , assigned to product i in the m-driver system is expressed as:

αm
i =

m∑
j=1

δijcj

=
m∑

j=1

δij[
s∑

r=m+1

krjc
o
r + co

j ]

=
m∑

j=1

δijc
o
j +

m∑
j=1

δij

s∑
r=m+1

krjc
o
r

=
m∑

j=1

δijc
o
j +

s∑
j=m+1

δijc
o
j = αi �.

Babad and Balachandran (1993) have shown that when two drivers are perfectly cor-
related, then the two drivers can be combined without loss of accuracy. This is equivalent
to stating that when two drivers have exactly the same expected consumption ratio vector,
then the costs of the two activities can be added and the combined costs assigned using
either driver (since each driver assigns the costs in the same proportion). As stated, this
reduces the number of drivers needed to a total of s. Proposition 1 generalizes this find-
ing from Babad and Balachandran’s Lemma 1. Without loss of accuracy, it establishes
that it is possible to reduce the ABC system from s to at most n drivers. Expressing a
driver’s consumption ratio vector as a linear combination of m linearly independent vectors
is essentially stating that the dependent driver is perfectly correlated with the m independent
drivers. Thus, all dependent activities can be combined with the independent activities. The
combination of a dependent activity with m activities is more complicated than combining
with a single activity because the costs of the dependent activities must be assigned in a
very specific way. This assignment not only allocates the dependent activity’s costs to the
m activities, it may also redistribute some of the cost of an independent activity to other
independent activities. For example, the scalar coefficients, which act as allocation rates,
can be zero, positive, or negative.

Example of Simplification with Linearly Independent Consumption Ratio Vectors

TABLE 1 provides example product costing data for indirect costs, the ABC cost assign-
ment, the global consumption ratios for a completely specified benchmark ABC system,
and the indirect product cost assignment using a traditional, plant-wide rate based on direct
labor hours. Of the ten drivers, seven through nine are unit-level drivers with the other
seven classified as non-unit level drivers. Letting φi be the total cost of product i using a
plant-wide rate based on direct labor hours, the assigned indirect product costs would be
φ1 = $500, φ2 = $1,500, φ3= $2,000, and φ4 = $6,000. Comparing these costs to the
benchmark ABC cost assignment, it is evident that the plant-wide rate significantly dis-
torts product costs. Thus, a traditional system based on direct labor hours is not a desirable
simplification.
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Proposition 1 indicates that a simplified system with at most 4 drivers will produce the
same accuracy as the 10-driver system. Of course, the need for at most 4 drivers is true
even if the example were expanded to have 400 drivers. It is easy to verify that the first four
consumption ratio vectors, δj, j = 1, . . . , 4, are linearly independent.3 Thus, the remaining
six drivers can be expressed as a linear combination of drivers 1 to 4:

4∑
j=1

krjδj = δr, r = 5, 6, 7, 8, 9, 10. (3)

Equation (3) produces six sets of simultaneous equations. For example, the set of
simultaneous equations corresponding to driver 5 is expressed as follows:

k51

⎡
⎢⎣

0.00
0.00
0.25
0.75

⎤
⎥⎦ + k52

⎡
⎢⎣

0.00
0.25
0.25
0.50

⎤
⎥⎦ + k53

⎡
⎢⎣

0.125
0.295
0.230
0.350

⎤
⎥⎦ + k54

⎡
⎢⎣

0.15
0.15
0.45
0.25

⎤
⎥⎦ =

⎡
⎢⎣

0.20
0.15
0.35
0.30

⎤
⎥⎦ (4)

The other five sets of equations are similar with the right hand side vector being changed
to the corresponding dependent activity. Solutions to the six sets of equations are provided
in TABLE 2. Note that the krj’s sum to one for every dependent activity. This is always the
case as can be seen by summing the four equations represented by Equation (4). Also notice
that several of the krj’s are negative. For example, a negative k82 means that all of activity
8’s costs and some of activity 2’s costs are assigned to activities 1, 3, and 4. A similar
interpretation is given for the other negative krj.

Using the allocation rates of TABLE 2, the costs assigned to the four independent
activities are calculated using the following formula:

cj =
9∑

r=5

krjc
o
r + co

j , j = 1, ..., 4. (5)

TABLE 2 Scalar coefficientsa (allocation rates) for each dependent activity (from Table 1)

Allocation Rates for Dependent Activitiesb

Independent
Activities k5j k6j k7j k8j k9j k10j

j = 1 0.325 −0.100 0.090 0.588 −0.237 −0.040
j = 2 −0.807 0.314 −0.397 −0.025 0.782 0.097
j = 3 0.893 0.715 0.643 0.625 −0.268 0.857
j = 4 0.589 0.071 0.664 −0.188 0.723 0.086∑

krj 1.000 1.000 1.000 1.000 1.000 1.000

aThe scalar coefficients, krj, represent allocation rates used to allocate the cost of the dependent
activities to the remaining independent activities.
bThe krj’s presented in the table are the result of solving the following sets of simultaneous equations

for the corresponding data in Table 1:
4∑

j=1
krjδj = δr; r = 5, . . . , 10, where δj = the consumption ratio

vector for activity j and δr = the consumption ratio vector for activity r.



Activity-Based Parsimonious Cost Systems 137

TABLE 3 Parsimonious four-driver systema

Activity Drivers

Product Parts (1) Moves (2)
Eng. Hours

(3)
Batches

(4)

α:
Simplified ABC

Indirect Cost
Assignment

ε:
Global
Ratios

P1 0.00 0.00 0.125 0.15 $1,000 0.10
P2 0.00 0.25 0.295 0.15 $2,000 0.20
P3 0.25 0.25 0.230 0.45 $3,000 0.30
P4 0.75 0.50 0.350 0.25 $4,000 0.40
Costb pool $1,625.75 $957.64 $4,469.64 $2,946.96 $10,000

aA simplification of the ten driver system presented in Table 1.
bThe cost pools are the result of applying the allocation rates presented in Table 2 in the following

manner: cj =
10∑

r=5
krjc0

r + c0
j , j = 1, . . . , 4, where krj = cost allocation rate for allocating the cost of

the dependent activities to the independent activities, c0
r = initial cost of activity r, and c0

j = initial
cost of activity j.

The simplified systems corresponding to those displayed in TABLE 1 are provided in
TABLE 3.

Parsimonious Systems with r < n

Proposition 1 establishes the fact that simpler, equally accurate systems are possible.
We know this can be done because n linearly independent drivers will span Rn and ε (the
global consumption ratio vector) is a member of Rn. Thus, for a system that has hundreds
of activities, there are at most n linearly independent consumption ratio vectors. Assuming
that n is much smaller than the actual number of activities, then we have achieved a sig-
nificant simplification in complexity. However, n can still be large—much larger than what
would be typically found in a traditional costing system. This poses the interesting question
of whether or not systems exist that can match ABC accuracy with fewer drivers than n,
even when there are n linearly independent consumption ratio vectors.

Parsimonious systems smaller than n are also possible. This can be shown using the
concepts of vector spaces and vector subspaces. Let V be a set of vectors (Rn, for example).
V is a vector space if two conditions are met: (1) for every pair of vectors in V , their
sum is also in V , and (2) the product of a scalar and any vector in V is also in V . A vector
subspace, W, is a vector space that is contained in V (W ⊆ V). If W ⊂ V , then W is a proper
subspace of V . The dimension of a vector space is the number of linearly independent
vectors needed to span the space. A proper subspace, W, can have a dimension less than V .
For example, the two linearly independent consumption ratio vectors, (0.5, 0.5, 0, 0) and
(0, 0, 0.5, 0.5), span all consumption ratio vectors of the form (a, a, b, b). This subspace
thus has a dimension of 2. These two linearly independent consumption ratio vectors would
also span the global consumption ratio vector if it were of the form (a, a, b, b), as would
four linearly independent vectors. Thus, smaller systems exist whenever there are vector
subspaces of consumption ratios that (1) have a dimension r < n, and (2) the dimension of
the subspace remains unchanged when ε is added to the set.

Spanning Subspace Vectors. Spanning subspace vectors of dimension r < n consist of r lin-
early independent consumption ratio vectors that span the global consumption ratio vector.
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For s activities, the candidates for a spanning subspace total sCr where sCr = the number
of combinations of s drivers taken r at a time. Those combinations where the r vectors are
not linearly independent can be immediately eliminated. While there is no guarantee that
spanning subspaces will exist for a given setting, it is possible to identify all the potential
spanning vectors of dimension r.

Specifically, we are looking for all sets of r linearly independent consumption ratio

vectors, 2 ≤ r < n, such that
r∑

j=1
wjδj = ε where wj > 0 and

r∑
j=1

wj = 1. Consider the

set, K, of all linearly independent consumption ratio vectors of dimension r - 1. Let
δk = (δk

1, δk
2, . . . , δk

r−1), where δk ∈ K and k = 1, 2, . . . , p with p ≤ sCr-1. Let δcv
r be the

rth consumption ratio vector, a completing vector. Then δcv
r added to δk defines a spanning

subspace vector based on the following:

wrδ
cv
r +

r−1∑
j=1

wjδ
k
j = ε, (6)

δcv
r =

ε −
r−1∑
j=1

wjδ
k
j

1 −
r−1∑
j=1

wj

, (7)

wj ≤ min
i

(
εi

δij

)
, j = 1, 2, . . . r − 1; i = 1, 2, . . . , n, (8)

r−1∑
j=1

wj < 1. (9)

Equation (7) ensures that the r vectors, (δk
1, δk

2, . . . , δcv
r ), span the global consumption

ratio vector while Equations (8) and (9) ensure that the chosen wj’s produce a positive
δcv

r . Allowing the wj,, j = 1, . . . , r - 1, to vary within the permitted ranges generates all
vectors, δcv

r , which, when added to the r - 1 vectors, will define spanning subspace vectors.
Repeating this process for every δk ∈K generates all potential spanning subspace vectors.
Letting Mr be the set of all completing vectors for K, we state the following proposition
that follows from the above arguments:

Proposition 2. If one of the firm’s consumption ratio vectors belongs to the completing
set, Mr, then a parsimonious system exists of size r.

Examples of Reduced Systems Using Subspace Vectors. Using the data of TABLE 1, it is
possible to show that subspace vectors exist so that parsimonious systems with r = 2 and
r = 3 can be defined. For r = 2, K is simply all 10 activities. Consider δ2

1 ∈ K (driver 2 of
TABLE 1). Equations (8) and (9) imply that w1 ≤ 0.8. Thus, Equation (7) and any w1 ∈
[0, 0.8] produce a completing vector for δ2

1 . For example, applying Equation (7) to each w1

obtained by setting w1 = 0.1 and allowing it to increase by increments of 0.1 produces the
eight completing vectors shown in TABLE 4. Comparing the completing vectors of TABLE
4 with the consumption ratio vectors in TABLE 1, we see that the completing vector with a
weight of 0.5 corresponds to driver 5 of TABLE 1; therefore, consistent with Proposition 2,
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TABLE 4 Completing vectors for a two-driver system

Weights for Completing Vectorsa

δ2
1 w2 = 0.9 w2 = 0.8 w2 = 0.7 w2 = 0.6 w2 = 0.5 w2 = 0.4 w2 = 0.3 w2 = 0.2

0.00 0.111 0.125 0.143 0.167 0.200 0.250 0.333 0.50
0.25 0.194 0.188 0.179 0.167 0.150 0.125 0.083 0.00
0.25 0.306 0.312 0.321 0.333 0.350 0.375 0.417 0.50
0.50 0.389 0.375 0.357 0.333 0.300 0.250 0.167 0.00

aw1∈ [0.0.8] is required for any consumption ratio vector to complete a two-dimensional vector sub-
space that spans the global consumption ratio vector. The weight (allocation rate) for the completing
vector is w2 =1 – w1. The completing vectors are calculated for each of the above weights using the

following formula: δcv
2 = ε−w1δ

12
1−w1

, where δc
2 = a completing vector for δ2

1.

a system with two drivers exists that replaces the completely specified ABC system and has
the same degree of accuracy.

Thus, drivers 2 and 5 using weights w1 = 0.5 and w2 = 0.5 span the global vector:

0.5

⎡
⎢⎣

0.00
0.25
0.25
0.50

⎤
⎥⎦ + 0.5

⎡
⎢⎣

0.20
0.15
0.35
0.30

⎤
⎥⎦ =

⎡
⎢⎣

0.10
0.20
0.30
0.40

⎤
⎥⎦ (10)

Since the weights are allocation rates, the cost pools assigned to the two drivers are c2 =
0.5 × $10,000 = $5,000 and c5 = 0.5 × $10,000 = $5,000. This two-driver system is
summarized in TABLE 5.

For three-driver systems, we must identify all completing vectors for all combinations
of two vectors. There are 45 pairs (10C2) to evaluate. For example, consider the kth pair:
drivers 2 and 8 of TABLE 1. Letting w1 be the allocation rate for driver 2 and w2 the
allocation rate for driver 8, all (w1, w2) pairs that satisfy Equations (8) and (9) (w1 ≤ 0.8,
w2 ≤ 0.67, and w1 + w2 < 1) define the set of completing vectors. For example, if w1 =
0.3 and w2 = 0.2, then the completing vector calculated by Equation (7) corresponds to
driver 7 of TABLE 1. Thus, drivers 2, 7, and 8 with allocation weights of 0.3, 0.2, and
0.5 span the global vector:

TABLE 5 Parsimonious two-driver systema

Activity Drivers

Product
Moves (2)

(δ2
1)

Setup Hours (5)
(δcv

2 )

α:
Simplified ABC Indirect

Cost Assignment

ε:
Global
Ratios

P1 0.00 0.20 $1,000 0.10
P2 0.25 0.15 $2,000 0.20
P3 0.25 0.35 $3,000 0.30
P4 0.50 0.30 $4,000 0.40
Costb $5,000 $5,000 $10,000

aA simplification of the ten-driver system in Table 1.
bThe cost assigned to each of the activities is based on the weights, w1 = 0.5 and w2 = 0.5.
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0.3

⎡
⎢⎣

0.00
0.25
0.25
0.50

⎤
⎥⎦ + 0.2

⎡
⎢⎣

0.05
0.15
0.20
0.60

⎤
⎥⎦ + 0.5

⎡
⎢⎣

0.18
0.19
0.37
0.26

⎤
⎥⎦ =

⎡
⎢⎣

0.10
0.20
0.30
0.40

⎤
⎥⎦ (11)

A parsimonious system is possible using only three drivers, and the costs assigned to activ-
ities 2, 7, and 8 are c2 = 0.3 × $10,000 = $3,000, c7 = 0.5 × $10,000 = $5,000, and
c8 = 0.2 ×$10,000 = $2,000. This three-driver parsimonious system is summarized in
TABLE 6.

Identifying All Parsimonious Systems, r ≤ n

Thus far, we have provided examples of parsimonious systems. A systematic procedure for
exhaustively identifying all such systems would be useful. From Proposition 1, we know
that we can solve for the cost pools of n linearly independent consumption ratio vectors
using the following equation:

n∑
j=1

cjδj = α. (12)

Dividing both sides of Equation (12) by c, the total overhead cost, we obtain an equivalent
equation:

n∑
j=1

wjδj = ε, (13)

where wj = cj/c. In matrix notation, Equation (13) is expressed as:

Dw = ε, (14)

TABLE 6 Parsimonious three-driver systema

Activity Driversb

Product
Moves (2)

(δk
1)

Setup Hours
(8) (δk

2)
Materials (7)

(δcv
3 )

α:
Simplified ABC

Indirect Cost
Assignment

ε:
Global
Ratios

P1 0.00 0.05 0.18 $1,000 0.10
P2 0.25 0.15 0.19 $2,000 0.20
P3 0.25 0.20 0.37 $3,000 0.30
P4 0.50 0.60 0.26 $4,000 0.40
Costc $3,000 $2,000 $5,000 $10,000

aA simplification of the ten driver system presented in Table 1.
bWe let the two-driver combination of 2 and 8 be combination k.
cThe cost assigned to each of the three activities is based on the weights, w1 = 0.3, w2 = 0.2, and
w3 = 0.5. Multiplying these weights by the total overhead cost of $10,000 results in the three cost
pools for each driver.
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where D is an n × n matrix of consumption ratios and w and ε are n × 1 column vectors.
Solving Equation (14) for w, we obtain:

w = D−1ε (15)

All those systems with positive cost pools (w ≥ 0, with wi > 0 for at least one i), qualify as
parsimonious systems. Subspaces are identified whenever a w has one or more wi = 0.

If all combinations of size n (sCn = the number of n-combinations) were linearly
independent, then solving Equation (14) would exhaustively identify all parsimonious
systems with positive cost pools. Attempting to solve Equation (14) will segment the n-
combinations into two subsets: those where the inverse matrix D−1 exists (the set of linearly
independent n-combinations) and those where it does not exist (the set of all linearly depen-
dent n-combinations). For each linearly dependent n-combination, it is possible that one of
its sub-combinations will span the global vector. However, if the sub-combinations are
found in other independent n-combinations, then the evaluation of these sub-combinations
has already been done. For example, consider a four-product system and suppose that
drivers 3, 4, 5, and 6 form a dependent combination. There are four three-driver sub-
combinations (3-4-5, 3-4-6, 3-5-6, and 4-5-6) and six two-driver combinations (3-4, 3-5,
3-6, 4-5, 4-6, and 5-6). Now assume that if driver 1 is added to each of the four three-
driver combinations, a linearly independent combination is produced. In this case, the
sub-combinations have been evaluated in this independent set and no further action is
needed (the two-driver combinations are also included in the independent combinations).
Finally, suppose that sub-combination 3-4-5 is not found in an independent four-driver
combination. The combination can be evaluated by adding a unitary product vector, ei, so
that the combination ei-3-4-5 is linearly independent.

Example Illustrating Identification Approach

Using the data of TABLE 1, we identify all parsimonious systems for r = 2, 3, and 4. There
are 210 combinations of size four (10C4). Solving Equation (14) for these 210 combinations
produces 208 linearly independent combinations and two linearly dependent combinations
(1-6-8-9 and 6-7-9-10). Since all sub-combinations of the dependent combinations are eval-
uated in one of the linearly independent combinations, no additional action is needed.
Of the 208 linearly independent combinations, there were 27 different combinations of
four drivers that replaced ABC assignments with positive allocation ratios, two different
duplicating combinations with three drivers, and one combination with two drivers. These
combinations and their associated allocation weights are shown in TABLE 7.

Parsimonious Systems with Reduced Cost

Having established that reducing complexity without reducing accuracy is possible, the
next objective is to determine whether the ABC system cost can be reduced without sac-
rificing accuracy. Three categories of costs associated with a traditional ABC system will
be considered: (1) complexity costs; (2) ongoing costs (data collection and updating); and
(3) implementation costs. Complexity costs are the costs of foregone benefits because man-
agers reject the ABC system due to its complexity (e.g., missing the opportunity to improve
pricing decisions because of increased accuracy of product costs). Ongoing data collection
costs are the costs incurred to measure expected and actual consumption of activities so
that applied overhead costs can be computed (predetermined activity rates × the actual
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amount of activity consumed). Thus, activity costs and expected consumption patterns for
each activity must be estimated and data must be collected for each driver so that over-
head costs can be assigned to products as production unfolds. The more drivers there are,
the more data collection needed. Updating costs are the costs of adjustments that must
be made for significant changes in underlying relationships. Implementation costs are the
initial costs of identifying activities and drivers and assigning the costs of resources to
activities (first-stage allocation).

Reducing Complexity and Ongoing Costs

Reducing complexity decreases the likelihood that managers will reject an ABC system
and this in turn reduces complexity costs. Reducing complexity also implies that the ongo-
ing data collection costs can be reduced because there are fewer drivers needed to apply
overhead costs to products. In fact, ongoing data collection costs can be totally avoided
for at least k periods by simply using cε to calculate the expected overhead costs for
each product.4 Using ε to assign overhead costs in this way is an example of a particu-
lar n-dimensional parsimonious cost system. However, cε is the total expected overhead
cost for each product. Overhead is applied on a day-by-day basis by dividing cε by the
expected units for each product to obtain an expected overhead cost per unit. Thus, there
is an implicit driver: units of each product. Since every cost system gathers this particular
driver information, there is no incremental ongoing data collection required.

Other parsimonious systems are also possible—even smaller than dimension n if
desired—where the more familiar practice of using a small number of common drivers to
assign overhead costs may be used. Furthermore, following the familiar practice of apply-
ing overhead costs using activity drivers rather than the weighted average of all drivers may
be a better approach if the objective is to gain managerial acceptance of an activity-based
system. Although using drivers to assign overhead costs increases ongoing data collection
costs relative to the use of ε and units of product, because r < s it still significantly reduces
the data collection costs relative to the completely specified system. Thus, we can conclude
that complexity costs and ongoing data collection costs can be significantly reduced for
parsimonious systems.

Updating costs are another matter. If ε has not changed (e.g., no products added or
dropped or no major technological changes), then no updating costs are incurred. If ε has
changed, then updating costs must be incurred to assess the new values. Since parsimonious
systems depend on the new ε, updating costs are essentially identical for both the com-
pletely specified system and the parsimonious systems. However, since updating activities
are essentially a smaller-in-scope repetition of implementation activities, updating costs
can be reduced if implementation costs can be reduced.

Reducing Implementation Costs

Reducing the Size of the Benchmark System. Parsimonious systems require knowledge of
ε, implying that the implementation costs of a completely specified benchmark ABC sys-
tem must be incurred. Using a smaller, well-specified benchmark system that estimates ε

with an acceptable level of confidence and precision would be one way of reducing imple-
mentation and updating costs (by reducing the number of times an implementation activity
is performed). Sampling techniques may be useful for decreasing the size of the bench-
mark system. A random sample of activities can produce very good estimates of the global
consumption ratios, where the sample size is significantly smaller than the total number of
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activities. Reducing implementation costs in this way would thus facilitate the viability of
establishing and maintaining parsimonious cost systems.

Reducing First-Stage Allocation Costs. Another possibility is to reduce implementation
costs by eliminating the need for first-stage allocation. Eliminating the need to identify
and assign the costs of resources to individual activities would produce significant savings
and make it much more practical to assess and maintain knowledge of ε. It is possible
to eliminate or reduce first-stage allocations depending on the nature of the correlation
between consumption ratios and activity costs. Since there is no reason to believe that the
consumption ratio of product i must increase (decrease) as we move from a less (more)
costly activity to a more (less) costly activity, an assumption of no correlation appears
the most reasonable. Under this no-correlation assumption, we can state and prove the
following:

Proposition 3. If there is no correlation between δij and cj, i = 1, . . . , n - 1 and j = 1, . . .

s, then αi = δic, i = 1, . . . , n - 1, and there is no need to know individual activity costs.

Proof.

Cov(δij, cj) = 0 ⇒ E(δij − δi)(cj − c̄) = 0 ⇒ E(δijcj) − δic̄ = 0 ⇒ E(δijcj) = δic̄.

Since we are dealing with equally weighted discrete values, E(δijcj) =
∑

j
δijcj

s = αi
s , which

implies that αi = δic. Finally, since αn = c −
n−1∑
1=1

αi, the activity costs of all products are

determined without knowing any cj.. �
If, according to Proposition 3, there is no correlation for at least n - 1 products, only

the total overhead cost, c, and the average consumption ratios are needed to calculate the
activity-based product cost for all products. Moreover, since αi = δic and αi = εic, we have
δi = εi. In practical terms, the proposition is likely to hold well enough even if there is weak
correlation. If there is a strong correlation between δij and cj for more than one product
(the no-correlation assumption must hold only for n - 1 products), clearly contradicting
Proposition 3, simplification and cost reduction are still possible because a random sample
of a reasonably small number of activities allow the relationship to be described by a well-
fitted regression equation (requiring, of course, that activity costs be determined for this
sample of activities through the usual first-stage allocation methods). This equation is then
used to assign the cost to all other activities (outside the sample), avoiding the first-stage
allocation costs for these remaining activities.

Examples Illustrating Proposition 3. From TABLE 1, we can calculate the correlation
between δij and cj. The largest correlation is 0.002, when i = 4. Thus, we can safely assume
that the no-correlation assumption holds. The simple average consumption ratios for the
four products are 0.1, 0.2, 0.3, and 0.4, equal to the global consumption ratios as pre-
dicted, thus allowing the activity-based product costs to be calculated without knowing the
individual activity costs (by simply multiplying each δi by c, the total overhead cost).

TABLE 8 presents the description of how a larger completely specified system of
400 activities was created. Since activity costs were assigned independently of the con-
sumption ratios, the correlations are not significant, the largest being 0.027 (Product 4).
Thus, as expected, εi = δi. However, if a firm with this structure were considering the
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TABLE 8 Four-hundred activity example (completely specified system)

Activities

Uniform
Distribution

(Activity Cost)a Product

Uniform
Distribution

(Source of δij)b εc δi
d

1–100 [$800, $1,000] P1 [0.08, 0.12] 0.10 0.10
101–200 [$600, $800] P2 [0.15, 0.25] 0.20 0.20
201–300 [$400, $600] P3 [0.20, 0.40] 0.30 0.30
301–400 [$200, $400] P4 1 − δ1j − δ2j − δ3j 0.40 0.40
Total cost $242,554

aCosts are assigned randomly using the indicated uniform distribution.
bExpected consumption ratios are assigned randomly to each of the first three products for a given
activity using the indicated uniform distributions. The ratios assigned to Product 4 for activity j are
calculated using the property that the consumption ratios must sum to one.
cThe weighted average consumption ratio, rounded to the hundredth decimal place.
dThe simple average consumption ratio, rounded to the hundredth decimal place.

implementation of an ABC system, it would not know up front that the no-correlation
assumption holds. One possibility is to simply assume that this assumption is reasonable
and press forward. For the more cautious, after identifying all activities and their drivers,
a small random sample of activities could be taken and costs assigned so that evidence
of correlation can be provided. For the TABLE 8 example, a random sample of 10 activ-
ities was taken. TABLE 9 presents the relevant data for this small sample. In this sample,
Product 1 produced the highest correlation, 0.785, which was statistically significant. The
other three products had correlations ranging from -0.058 to 0.291, and were not signif-
icantly different than zero. Thus, at least three products (n - 1) meet the no-correlation
assumption and Proposition 3 holds. The closeness of the average consumption ratios with
the weighted average consumption ratios also provides supportive evidence for the no-
correlation assumption. Thus, ABC product costs can be determined without a first-stage
allocation.

Summary and Conclusion

Simplifying ABC is a key objective if we expect ABC to be more widely adopted and/or
sustained. We have shown that it is possible, through after-the-fact simplification, to create
smaller, simpler, and less-costly systems with no loss of product costing accuracy rela-
tive to a complex ABC system. Therefore, it is possible to reduce the cost and complexity
of ABC even without reducing its benefits. Using the properties of linear dependence and
independence we show that parsimonious systems may exist where the product cost assign-
ments are essentially equal to an assignment by an ABC system, where the number of cost
drivers chosen for the simplified system is no greater than the number of products of the
firm. Extending beyond this result, we also find that it is possible to reduce the number of
cost drivers in a parsimonious cost system below the number of products. This is shown by
using the properties of vector subspaces and the concept of spanning.

The results found in this study significantly extend previous research as the accu-
racy reduction of simplified systems is no longer a valid assumption. Indeed, systems do
exist where aggregation of cost pools and drivers can occur without any loss in accuracy
compared to an ABC system with a large amount of complexity.
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TABLE 9 Sample for correlation evidence

Consumption Ratios (δij)

Activity Product 1 Product 2 Product 3 Product 4 Activity Cost

1 0.089 0.182 0.286 0.444 $393
2 0.109 0.191 0.336 0.363 $628
3 0.118 0.233 0.379 0.270 $909
4 0.084 0.195 0.381 0.340 $269
5 0.110 0.171 0.397 0.321 $871
6 0.118 0.155 0.289 0.437 $808
7 0.117 0.188 0.326 0.369 $781
8 0.085 0.210 0.396 0.309 $584
9 0.112 0.210 0.329 0.349 $455
10 0.090 0.190 0.346 0.374 $347
Correlationa 0.785∗ −0.058 0.127 0.291
Sample δi

b 0.102 0.193 0.346 0.357
Sample εi

c 0.107 0.192 0.348 0.352

aCalculated using activity cost and the consumption ratios of each product.
bThe average of the consumption ratios of each product column.

cThe activity-based product cost divided by the total cost of all ten activities:

10∑
j=1

δijcj

$6,045 .
∗Significantly different from zero, with p < 0.01.

This study has addressed after-the-fact cost system simplification. Future research pos-
sibilities include a focus on before-the-fact simplification to address how implementation
costs can be reduced. Future research in this area may determine if sampling or correla-
tion analysis will reduce the steps and, therefore, the cost of implementation. Sampling
techniques may be useful for decreasing the size of the original ABC system. A random
sample of activities can produce very good estimates of the complete set of consumption
ration, where the sample size is significantly smaller than the total number of activities.
Another possibility is eliminating or reducing first stage allocations by investigating the
nature of the correlation between consumption ratios and activity costs. If there is no cor-
relation between consumption ratios and activity costs, it may be possible to determine
the cost assignment without performing a first stage allocation. These techniques may help
future companies embrace the adoption of ABC.

Notes

1. Aggregation error results from reducing the number of activity cost pools by adding costs of
heterogeneous activities to form fewer and more aggregate cost pools. Specification error results
from using the wrong cost driver to assign costs. Measurement error refers to incorrect assign-
ment of costs to individual activities. Error is measured relative to an “unobservable” completely
specified ABC system.

2. Throughout the remainder of the article, vectors are indicated by bold type.

3. If
4∑

j=1
kjδj = 0 only for kj = 0 for all j, then the consumption ratio vectors are linearly independent.

4. It is possible that even if individual expected consumption ratios change, ε may remain
unchanged. Thus, k is a minimum value for ε-stability.
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