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Cost Risk Allocation Theory and Practice
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Risk allocation is the assignment of risk reserves from a total project or portfolio level to individual
constituent elements. For example, cost risk at the total project level is allocated to individual work
breakdown structure elements. This is a non-trivial exercise in most instances, because of issues
related to the aggregation of risks, such as the fact that percentiles do not add. For example, if a
project is funded at a 70% confidence level then one cannot simply allocate that funding to work
breakdown structure elements by assigning each its 70% confidence level estimate. This is because
the resulting sum may (but not necessarily will) be larger than the total 70% confidence estimate for
the entire project. One method for allocating risk that has commonly been used in practice and has
been implemented in a cost estimating integration software package is to assign risk by assigning the
element’s standard deviation as a proportion of the sum of the standard deviations for all work break-
down structure elements (Sandberg, 2007). Another popular method notes that risk is typically not
symmetric, and looks at the relative contribution of the element’s variation above the mean or other
reference estimate. Dr. Steve Book first presented this concept to a limited Government audience in
1992 and presented it to a wider audience several years later (Book, 1992, 2006). This technique,
based on the concept of “need,” has been implemented in the NASA/Air Force Cost Model (Smart,
2005). These contributions represent the current state-of-the-practice in cost analysis. The notion of
positive semi-variance as an alternative to the needs method was brought forth by Book (2006) and
further propounded by Sandberg (2007). A new method proposed by Hermann (personal communi-
cation, 2010) discusses the concept of optimality in risk allocation and proposes a one-sided moment
objective function for calculating the optimal allocation. An older method, developed in the 1990s
by Lockheed Martin, assigns equal percentile allocations for all work breakdown structure elements
(Goldberg and Weber, 1998). This method claims to be optimal, and Goldberg and Weber (1998) show
that under a very specific assumption, that this is true. Aside from Hermann’s paper and the report
by Goldberg and Weber on the Lockheed Martin method, cost risk allocation has typically not been
associated with optimality. Neither the proportional standard deviation method nor the needs method
guarantees the allocation scheme will be optimal or even necessarily desirable. Indeed, the twin top-
ics of risk measurement and risk allocation have either been treated independently (Book, 2006), or
they have been treated as one and the same (Sandberg, 2007). Regardless, the current situation is
muddled, with no clear delineation between the two. In this article, the present author introduces
to cost analysis the concept of gradient risk allocation, which has been recently used in the areas
of finance and insurance (McNeil, Frey, & Embrechts, 2005). Gradient allocation clearly illustrates
that the notions of risk measure and risk allocation are distinct but intrinsically linked. This method
is shown to be an optimal method for allocation using three distinct arguments—axiomatic, game-
theoretic, and economic (optimal is used in this context as desirable or good, not as the minimum or
maximum of a specified objective function). It is also shown that the gradient risk allocation method
is intrinsically tied to the method used to measure risk, a concept not heretofore considered in cost
analysis. Gradient allocation is applied to five risk measures, resulting in five different allocation
methods, each optimal for the risk measure from which they are derived. Considerations on when
the proportional standard deviation and needs method are optimal are discussed, and a link between
Hermann’s method and the proportional standard deviation method is demonstrated.
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Introduction

“I can see that it works in practice, but does it work in theory?”
Garrett Fitzgerald, Prime Minister of Ireland 1981–1987

Risk is measured at a variety of work breakdown structure (WBS) levels. However, risk
management is typically applied at the project level, with the focus on measuring and
guarding against risk for the entire project, at least within funding allocations (such
as design and development, production, and operations and sustainment). These “col-
ors of money” have legal restrictions on how money can be moved from one portion of
life-cycle funding to another. For a satellite or robotic spacecraft this may encompass
both development and production since space missions are often unique with a single
production unit.

Once risk is measured at the project level, it is a non-trivial exercise to determine how
much of that total risk is attributable to each individual WBS element. This is because,
even though total cost is the sum of the costs for each WBS element, most risk measures
do not add. For example, if percentile funding is used for risk measurement, it is often (but
not always) the case that the sum of the percentiles will be greater than the percentile of
the sum of individual WBS elements. For example, consider two independent and normally
distributed random variables, X1 and X2 with X1 ∼ N(100, 20) and X2 ∼ N(300, 80), where
the symbol “∼” denotes “is distributed as.” To combine these two distributions, the means
and the variances are (separately) aggregated so that the total mean is 100 + 300 = 400,
and the total variance is 202 + 802 = 6,800. The standard deviation is the square root of
this latter value, which is approximately 82.5. The combined random variable, X1 + X2, is
also normally distributed with mean equal to 400 and standard deviation equal to 82.5, i.e.,
X1 + X2 ∼ N(400, 82.5). The 80th percentile of X1 can be calculated as:

p.80 = μ + z.80 σ ≈ 100 + 0.8416 · 20 ≈ 116.8,

where z.80 is equal to the inverse of the standard normal distribution at the 80th percentile.
Similarly, the 80th percentile of X2 is approximately 367.3, and the 80th percentile

of X1 + X2 is approximately 469.4. Thus, the sum of the 80th percentiles for X1 and X2

is 116.8 + 367.3 = 484.1, which is larger than the 80th percentile of the sum X1 + X2.
This example shows percentiles that do not add. Thus, one cannot add 80th percentiles
and expect that this sum will be equal to the 80th percentile of the sum of the random
variables. To see why this is the case in general for the sum of two independent normally
distributed variables, note that the percentiles are determined by the mean and standard
deviation. The sum of the means of random variables is equal to the mean of the sum of
the random variables, regardless of the distribution type or dependence relationship, so the
difference lies with the variance. For combining independent normal random variables, the
variances (rather than the standard deviations) are added. This is key, since the sum of
the variances, where the standard deviations of the individual normal random variables are
denoted by a and b, is equal to a2 + b2. The standard deviation of the sum is the square
root of this quantity, i.e.,

√
a2 + b2. From the fact that a2 + b2 ≤ a2 + 2ab + b2, it follows

that
√

a2 + b2 ≤ a + b, with strict inequality unless at least one of a or b is equal to zero.
Note that the standard deviation

√
a2 + b2 represents the risk of the combined distributions.

The quantity a + b represents the sum of the individual risks. Thus, in this case, combining
the independent elements is a diversification of risk. The total portfolio is not as risky on a
relative basis as each individual project.
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Since percentiles do not add, when funding at specific percentiles, risk allocation
becomes a non-trivial exercise. More generally, risk measures are not typically additive,
so whatever risk measure is being used at the total project level, some care is required to
effectively and fully allocate risk. The goal of risk allocation is to apportion the total esti-
mate to individual WBS elements so that each is funded in a manner so that the sum of the
individual WBS allocations equals the total risk measurement.

Risk Measurement

Risk allocation begins with risk measurement. Without measuring risk, it cannot be prop-
erly allocated. Since there has been confusion about the two, with some authors treating
the issues of risk measurement and allocation as independent problems, and others treat-
ing them as one and the same, a review of the topic of risk measurement is needed. For
a recent paper discussing the application of risk measurement applications in cost analy-
sis, see Smart (2012). There are several popular ways to measure risk. Variance, and its
square root, standard deviation, are popular measures for risk measurement. The notion of
measuring risk via the standard deviation dates back to (at least) the work of Markowitz
(1959).

Coherent Risk Measures

A risk measure is a single number that is used to represent cost risk for a project or program.
The variance of the distribution is a risk measure since it quantifies the spread in the cost
risk distribution. Value at risk is another risk measure and there are many others.

What properties should a risk measure have? This issue has been studied in insurance
specifically and in risk management in general. A groundbreaking paper (Artzner et al.,
1999) introduced the notion of coherent risk measures. One property important for a risk
measure is that, when two random variables are combined, the risk measure of the portfolio
should be no riskier than the sum of the individual random variables’ risk measures. That
is for any risk measure ρ it should be the case that:

ρ(X + Y) ≤ ρ(X) + ρ(Y).

This definition of a diversification benefit from combining risks is called subadditivity.
A better-known term for subadditivity is the “portfolio effect” (Anderson, 2004), which
has been relied upon by policymakers in setting funding levels to individual projects to
relatively low levels, such as the 70th percentile and below. Subadditivity embodies the
principle of “l’union fait la force,” that is, unity is strength.

A second desirable characteristic of risk measures is monotonicity. For example, if the
cost of structures hardware is higher in every circumstance than thermal control hardware,
then the 70th percentile of the cost risk distribution should be higher for the structures
subsystem than for the 70th percentile of the cost risk distribution for the thermal control
subsystem. The property of monotonicity can be stated in equation form as:

If X ≤ Y for all possible outcomes, then ρ(X) ≤ ρ(Y).

A third desirable property is that the risk measure should be invariant of the currency
in which the risk is measured, or whether cost is accounted for in thousands or millions
of dollars. Also, it means that an increase or decrease in exposure to the risk requires an
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equivalent change in the amount of capital needed to guard against this risk. This is the
property of positive homogeneity, and can be expressed as ρ(cX) = cρ(X) for a constant
real number c. An example is a joint U.S. and European project, whose cost risk could be
measured in either dollars or euros. The risk should be the same regardless of the currency
used, up to a currency conversion factor. Another example is two components that are made
at the same time by the same manufacturer and built to the exact same specifications and
requirements; hence, these two components have the same cost risk. If X represents the cost
random variable for one component, then it should be the case that two times the risk of
one is the risk of both components considered together.

It is also important in measuring risk that if we add some fixed, certain amount to a
random variable, the risk does not change. This is the property of translation invariance
and can be expressed as ρ(X + c) = ρ(X) + c.

A coherent risk measure is defined as a risk measure ρ(X) that has the four properties
of subadditivity, monoticity, positive homogeneity, and translation invariance.

Commonly Used Risk Measures and Coherence

Standard Deviation Principle. A simple and popular risk measure is defined as the mean
plus a fixed number of standard deviations, i.e., μ + kσ for some real number k, which is
called the standard deviation principle. Note that this risk measure is subadditive, since:

μX+Y + kσX+Y = μX + μY + kσX+Y ≤ μX + μY + kσX + kσY

= μX + kσX + μY + kσY .

Also, the standard deviation principle is positive homogeneous, since:

μc(X+Y) + kσc(X+Y) = cμX+Y + ckσX+Y = c(μX+Y + kσX+Y).

And since standard deviation is not affected by a translation of the random variable (only
the mean is shifted by exactly the translation), the standard deviation principle is translation
invariant.

However, the standard deviation principle is not monotonic. To see this, consider a
bivariate random variable defined as:

p(X, Y) =
{

0.25 for X = 0, Y = 4
0.75 for X = 4, Y = 4

.

In this case, μX = 3, μY = 4, σX = √
3, σY = 0. Note that even though X ≤ Y it is the

case that:

μX + σX = 3 + √
3 > 4 = 4 + 0 = μY + σY .

Thus, an important consequence of a risk measure not being monotonic is that an element’s
risk can be greater than the maximum value possible for the variable, which is contrary to
common sense, and makes this an undesirable risk measure.

Value at Risk. Value at risk (VaR) is defined as the maximum possible loss at a given
probability level. In mathematical terms, suppose that C is a random variable representing
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project cost, and FC(x) = P(C ≤ x) is its probability distribution function. Then, the VaR of
C at probability level α is technically defined as:

VaRα(C) = Qα(C) = F−1
C (α) = inf {x : Fc(x) ≥ α}

= inf {x : 1 − Fc(x) ≤ 1 − α},

where Qα(C) is the 100αth percentile of C, F−1 denotes the inverse function of F, and
inf {x:statement} signifies the smallest value of x for which the statement following the
colon is true. That is, VaR is a percentile of the cost risk distribution (Smart, 2012).

Note that the standard deviation principle is not the same as VaR, unless we restrict our
attention to normally distributed random variables. In this case, VaR is a special case of the
standard deviation principle with k set to satisfy whichever percentile is selected. To see
this, note that the pth percentile of a normal distribution is equal to the mean plus a factor
times the standard deviation, i.e., F−1(p) = μ + kσ , where k = �−1(p) is the inverse of
the standard normal cumulative distribution function. In the case of the 70th percentile,
k = �−1(0.70) ≈ 0.5244.

In the normal distribution case, VaR satisfies the conditions of translation invariance,
monotonicity, and positive homogeneity. It is also subadditive by the same rationale used
for the standard deviation principle. Thus, in the special case of normally distributed
random variables, VaR is a coherent risk measure.

In general, VaR, as a percentile of a cost distribution, is translation invariant, mono-
tonic, and has positive homogeneity. However, VaR is not guaranteed to be subadditive
for non-normal random variables. A recent paper published in this journal (Smart, 2012)
provides examples of two projects, which when combined are actually superadditive when
VaR is the risk measure, leading to a reverse portfolio effect!

VaR, or percentile funding, is commonly used for measuring risk for NASA and
Department of Defense projects. The 50th, 70th, and 80th percentiles are typically used
to set budgets for these agencies’ projects. One of the motivating factors for funding at
such a low percentile is the prospect of a portfolio effect, or diversification. With diversifi-
cation, funding individual projects at the 70th or 80th percentile will result in much higher
confidence level when the entire agency portfolio is considered. At least, that is the hope.
However, in reality, the portfolio effect is minimal at best (Smart, 2009). Not only is such
an effect guaranteed, but the prospect of superadditivity, as shown by Smart (2012), means
that there can be a negative portfolio effect. Therefore, funding at the 70th or 80th percentile
is no guarantee that the confidence level of the total budget is any higher than the 70th or
the 80th percentile (respectively), and may, in fact, be lower. Funding at lower levels, such
as the 50th percentile, is even more problematic. In the case of skewed risk distributions,
the 50th percentile can be below the mean, and this can result in extremely low confidence
levels for the entire agency portfolio.

Percentile funding is also problematic for other reasons. Percentile funding only
indicates whether or not there is a problem, and does not set aside funds for bad
times. Thus, percentile funding is not a true risk management policy. Also, percentile
funding ignores the right tail of the distribution. For more on these issues, see Smart
(2012).

Expected Shortfall. Expected shortfall (ES) is similar to VaR, but it also considers the
expected overrun past a fixed percentile. Thus, it provides not only an indication that bad
times have occurred (when the percentile is exceeded), but also calculates a reserve set
aside to deal with adverse conditions when they occur.
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Expected shortfall is defined as:

ESα = 1

1 − F(Qα)

∫ 1

Qα

xf (x) dx = 1

1 − α

∫ 1

α

VaRu(X) du.

In the case of continuous cost risk distributions, this risk measure is referred to as con-
ditional tail expectation (CTE). For example, Q0.95 is the 95th percentile (McNeil et al.,
2005). It is the “Tail Value at Risk” since in the case of continuous cost distributions it may
be viewed as:

CTEα = E
[
X | X > Qα

]
.

In the case of normally distributed cost risk,

ESα(X) = CTEα(X) = μ + σ
φ
(
�−1(α)

)
1 − α

,

and for lognormally distributed cost risk,

ESα(X) = CTEα(X) =
E [X]

[
1 − �

(
lnVaRα−μ−σ 2

σ

)]
1 − α

,

where φ represents the standard normal density function, Φ is the cumulative normal distri-
bution function, and Φ−1 represents the inverse of the cumulative normal distribution. See
Smart (2012) for derivations. Also, note that expected shortfall is a coherent risk measure.
For more on the merits of expected shortfall as a risk measure, see Smart (2012).

One-Sided Moments. One-sided moments make sense from a risk perspective, since they
only look at risk above the mean, rather than uncertainty both above and below the mean.
Thus, they are an improvement over standard deviation as a risk measure, as advocated by
Book (2006) and Sandberg (2007) for use in risk allocation. The use of one-sided moments
dates back to at least the early 1950s, when they were advocated by the Nobel Prize-
winning economist Markowitz (1959). However, their use did not become popular until
much later.

Formally, the pth one-sided (positive) moment about the mean is defined as:

E
(
(X − μ)

p
+
)
,

or for a continuous cost risk distribution,∫ ∞

−∞
(x − μ)p

+ f (x) dx,

where (X − μ)+ = max(0, X − μ).
The first one-sided (positive) moment about the mean is, thus,∫ ∞

−∞
(x − μ)+f (x) dx =

∫ ∞

μ

(x − μ) f (x) dx.
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Note the similarity to expected shortfall; instead of a percentile, the mean is used. Consider
the risk measure defined by:

μ + E((X − μ)+),

which has been advocated (Hermann, 2010) for use in risk allocation.
The second moment about the mean is

σ 2
+ =

∫ ∞

−∞
(x − μ)2

+ f (x) dx =
∫ ∞

μ

(x − μ)2 f (x) dx,

which is referred to as positive semi-variance. Consider the risk measure defined by:

μ + σ+,

where

σ+ =
√∫ ∞

μ

(x − μ)2 f (x) dx

is the positive semi-deviation. This is similar to the standard deviation principle. Both of
these risk measures are coherent.

To see this, consider the first one-sided moment. It is positively homogenous, due to
properties of moments, as well as translation invariant. And since

(
X + Y − (μx + μy)

)
+ ≤ (X − μx)+ + (Y − μy)+,

this measure is also subadditive. For monotonicity, suppose that X ≤ Y . Then,

Y − μy −(X − μx) ≥ Y − μy −(Y − μx) = μx − μy,

for all X, Y , so this inequality holds when X ≥ μx and Y ≥ μy. Thus,

(Y − μy)+ −(X − μx)+ ≥ μx − μy.

So,

μx +(X − μx)+ ≤ μy + (Y − μy)+.

Applying expected values to both sides yields the desired result.
For the semi-standard deviation principle, positive homogeneity and translation invari-

ance hold for the same reasons as with the standard deviation principle. For subadditivity,
note that

(
X + Y − (μx + μy)

)
+ ≤ (X − μx)+ + (Y − μy)+,
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which implies that

√
E
(
X + Y −(μx + μy

))2
+ ≤

√
E
(

(X − μx)+ +(Y − μy
)
+
)2

,

which implies that√
E
(
X + Y −(μx + μy

))2
+ ≤

√
E(X − μx)2+ +

√
E(Y − μy)2+,

by Minkowski’s inequality (Hardy, Littlewood, & Pólya, 1952).
Since the means are additive and monotonic, subadditivity holds.
To show monotonicity, let X ≤ Y . Now in this case,

X − Y −(μx − μy
) ≤ Y − Y −(μx − μy

) = μy − μx,

for all X, Y , so this inequality holds when X ≥ μx and Y ≥ μy. Thus,

E
((

X − Y −(μx − μy
))

+
)

≤ μy − μx.

Thus, √
E
((

X − Y −(μx − μy
))2

+
)

≤ μy − μx,

which implies that

μx − μy +
√

E
((

X − Y −(μx − μy
))2

+
)

≤ μx − μy + μy − μx = 0.

So,

μx +
√

E
(
(X − μx)

2
+
) = μx +

√
E
((

X − μx −(Y − μy
)+ Y − μy

)2
+
)

≤ μx +
√

E
(
X − μx −(Y − μy

))2
+ +

√
E(Y − μy)2+,

by subadditivity, which is equivalent to:

μx − μy +
√

E
(
X − μx −(Y − μy

))2
+ + μy +

√
E(Y − μy)2+.

Since μx − μy +
√

E
(
X − μx −(Y − μy

))2
+ ≤ 0, it follows that

μx +
√

E
(
(X − μx)

2
+
) ≤ μy +

√
E(Y − μy)2+,

and, thus, monotonicity holds.
One-sided moments are likely to provide lower amounts than those calculated for

expected shortfall and, thus, may prove to be more palatable to management in setting



80 C. Smart

policy. They also take into account the entire tail of the distribution, although this measure
is not as sensitive to what is often referred to as “fat” right tails as is expected shortfall.

A Note on the Mean. The mean is another coherent risk measure. It takes into account
the entire right tail, and it is strictly additive, rather than subadditive, so no diversification
benefits are seen from funding at the mean. On the other hand, additivity is appealing since
it simplifies the risk allocation process greatly, is easy to explain to management, and is
easy to communicate with budget analysts and accountants. The mean is used as a risk
measure for some government agencies. Because it is coherent, it is a better, more sensible
funding policy than percentile funding.

Comparison of Risk Measures—Example. Consider the 10 individual projects shown in
TABLE 1. Each is assumed to be lognormally distributed, with common correlation equal
to 0.20 among all projects.

Now consider the total risk for all 10 projects combined, as a portfolio. Note that this
is purely a notional example, and any resemblance to the cost of actual projects, either
historical or currently in development, is purely coincidental.

The total risk of these 10 projects was aggregated using a 50,000 trial Latin hyper-
cube simulation. The six risk measures discussed in this article applied to the total risk
aggregation are shown in TABLE 2.

Policymakers—take note! Using a coherent risk measure does not necessarily translate
into a higher risk measure. The lowest risk measure in the example is the mean, followed

TABLE 1 Notional example of 10 projects

Project Mean Standard Deviation

Project 1 1501 556
Project 2 804 219
Project 3 907 302
Project 4 875 400
Project 5 1450 420
Project 6 1271 419
Project 7 874 541
Project 8 1001 229
Project 9 1139 392
Project 10 981 485
Total 10803

TABLE 2 Comparison of six risk measures

Risk Measure Value Coherent?

Mean $10,803 Yes
1st One-Sided Moment $11,629 Yes
Value at Risk (70th Percentile) $11,695 No
Semi-Standard Deviation Principle $12,413 Yes
Standard Deviation Principle $12,909 No
Expected Shortfall (VaR0.70) $13,331 Yes
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by the first one-sided moment. The one-sided moment risk measures only consider uncer-
tainty above the mean, and ignore uncertainty below the mean. The two-sided risk measures
also incorporate uncertainty below the mean. Thus, the one-sided risk measures are always
lower than their analogous two-sided versions.

Risk Allocation

Standard Deviation-Based Methods for Allocating Risk

Current established state-of-the-practice methods for allocating risk are based on standard
deviation as the measure of risk. The first method is conceptually simple. It apportions
risk by setting the amount allocated for a WBS element equal to the ratio of its standard
deviation to the sum of the total standard deviations. For example, for a project with two
elements with standard deviations equal to 100 and 200, the sum of the standard deviations
is 300, and the ratio of the first element to the sum is 100/300 = 1/3, so it is allocated one-
third of the total risk reserve, while the second is allocated the remaining two-thirds. This
method, which is referred to in this article as the proportional standard deviation method,
is easy to understand and easy to implement in a spreadsheet. In the past, it has typically
been used to allocate risk when risk is measured as a percentile.

Allocating percentile funding via proportional standard deviation begins with calcu-
lating the specified percentile, such as the 70th or 80th. When a normal or lognormal
probability distribution is used to represent cost risk, the mean and standard deviation
describe the distribution and are typically used as the parameters to define it. Note that in
the case of n independent WBS elements the total standard deviation can be calculated as:

σTotal =
√∑n

i=1
σ 2

i .

For normal and lognormal distributions, once the mean and standard deviation have been
determined, a percentile, such as the 80th percentile, may be calculated. For a normal
distribution the calculated 80th percentile is

μTotal + z0.80σTotal.

If the mean is used as the point estimate (i.e., the non risk-adjusted cost estimate), since
the sum of the individual WBS elements’ means is the total mean, the risk dollars to be
allocated back is simply:

μTotal + z0.80σTotal − μTotal = z0.80σTotal.

These risk dollars are what is allocated back to each individual WBS element, and amounts
to the risk reserve above the mean.

Now that the risk dollars have been determined, we calculate the WBS element’s
portion of this total, i.e.,

pi = σi∑N
j=1 σj

.

These risk dollars are then allocated to each specific WBS element. In the case of a normal
or distribution the amount of risk dollars assigned to a specific WBS element is:
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μi + pi(z0.80σTotal) .

Note that these individual amounts add to the total 80th percentile since

n∑
i=1

μi + pi(z0.80σTotal) =
n∑

i=1

μi +
n∑

i=1

pi(z0.80σTotal) = μ +(z0.80σTotal)

n∑
i=1

pi

= μ + z0.80σTotal,

and the allocation weights pi sum to 1.
The proportional standard deviation method has some drawbacks. The most obvious

is that summing the standard deviations is a heuristic without basis in theory, which recalls
the quote by former Irish Prime Minsiter Garrett Fitzgerald that was cited at the beginning
at this article: “I can see that it works in practice, but does it work in theory?” The sum of
standard deviations is not the total standard deviation for example, or any useful statistic at
the total project level. Allocating via proportional standard deviation is not the best way to
allocate risk when percentile funding is used as the risk measure, as we shall see when we
look at gradient allocation later in this article. Another glaring drawback is that it ignores
correlation, and so may allocate risk to individual elements in a non-optimal manner. Also,
the proportional standard deviation method equates risk with standard deviation. However,
the two are not the same. When risk is high, uncertainty is also necessarily high, but the
converse is not always true. It may be the case that uncertainty is high but risk is low.
Consider the example of two triangular distributions displayed in FIGURE 1 due to Book
(2006).

The two triangular distributions displayed in FIGURE 1 are symmetric and, hence,
have the same amount of uncertainty and the same standard deviation. However, if the
point estimate is represented by the mean and risk is measured as the 80th percentile, then
the triangular distribution on the left has much more risk than the triangular distribution on
the right. As is evident from the graph, the triangular distribution on the right requires few
risk dollars above the mean to achieve the 80th percentile.

The correlation issue can be overcome; the method could be changed to one based on
covariance contributions. The covariance principle is based on the notion that in the general
case, when we consider correlation among WBS elements, the total variance is equal to:

Total Variance = σ TPσ ,

where P is the N × N correlation matrix, and σ is the N × 1 vector of standard deviations
for the individual WBS elements. The amount the ith WBS element contributes to the total
variance is equal to:

80thMean

50th

Mean

80th
50th

vs.

FIGURE 1 Two triangular distributions with the same level of uncertainty but different
amounts of risk.
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�i = σi

∑N

j=1
ρijσj,

where ρij is the correlation between the ith and jth WBS elements. The covariance principle
then allocates risk as:

pi = �i

Total Variance
.

Note that since

N∑
i=1

pi =
N∑

i=1

�i

Total Variance
= 1,

the risk allocation fully distributes the risk to the WBS elements. Note that this is the only
specific requirement of these risk allocation schemes, which is that they are complete—
they distribute the total risk dollar among the elements, no more and no less. There are
others that will be considered when optimal allocation is covered. Another potential issue,
pointed out to the present author (Hermann 2010), is the possibility of a negative allocation
if negative correlations are present. While not a conceptual problem, it may be hard to
communicate with management.

Even though the covariance principle overcomes the specific issue of correlation that
is not considered by the proportional standard deviation method, it too does not distinguish
between downside opportunities for cost savings and upside risk of cost growth. In order to
distinguish between upside risk and downside opportunity, Dr. Steve Book introduced the
notion of need in 1992 (Book, 1992). This idea is based on the concept of semi-variance.
Semi-variance looks only at the second moment above the mean. For a continuous random
variable X, this is defined as:∫ ∞

−∞
(x − μ)2

+ f (x) dx =
∫ ∞

μ

(x − μ)2f (x) dx,

where Y+ = max (Y , 0) .
The notion of need considers the difference between a selected percentile, such as the

80th, and a point estimate, such as the mean. The difference between these two values at
the total project level is the amount of risk dollars. Similar to covariance, the total need
base is calculated as:

Need Base =
∑N

i=1

∑N

j=1
ρij Needi Needj.

For the ith element, if the project’s percentile risk measure (denoted by πi) is lower than the
reference point estimate (denoted by ci), e.g., the mean, then the need for the ith element is
0. Otherwise, the need for the ith element is positive, and the need contribution of the ith
element to the total need is calculated as:

∑N

j=1
ρji Needj Needi,
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where

Needi = max(0, πi − ci).

The percentage of risk dollars allocated to ith element is then calculated as:

pi =

⎧⎪⎨⎪⎩
∑N

j=1 ρji Needj Needi

Need Base
if Needi > 0

0 if Needi = 0

.

The need concept also has its drawbacks. Negative correlation can lead to negative
need allocations, just as with the covariance principle. More importantly, the concept of
need ignores the right tail of the distribution (Sandberg, 2007). This important consideration
is risk measurement, as discussed in a paper published in the Journal of Cost Analysis
and Parametrics (Smart, 2012). Sandberg (2007) leverages this idea by proposing using
semi-variance at the element level to allocate risk and replaces the need at the element
level with the positive semi-variance. The idea of using semi-variance to measure risk is a
long-standing one. One of the first proponents of semi-variance in finance was the Nobel
Prize-winning economist Markowitz (1959). While taking into account the right tail of
the distribution, Sandberg (2007) does not consider the relationship between the sum of
the semi-variance contributions, and the total semi-variance, so again risk allocation and
risk measurement are considered as two separate, independent problems. Sandberg (2007)
considers the issue of optimization and provides an example where his method is optimal.

Optimal Allocation

Goldberg and Weber (1998) considered optimality as a desirable criterion for risk alloca-
tion. The Lockheed Martin method discussed in their Institute for Defense Analysis report
allocates risk dollars based on the “Money Allocated Is Money Spent” (MAIMS) princi-
ple (Goldberg and Weber, 1998). The central idea in MAIMS is the observation that once
project managers know how much they have been allocated, they will spend at least that
amount, if not more. Goldberg and Weber (1998) found that not all defense contractors
agree with this principle. Indeed, this is often not what is typically seen in practice. Risk is
measured and allocated within a specific funding category. Financial managers then have
the ability to juggle and re-juggle allocations as needed. The allocation method proposed by
Lockheed Martin is an equi-percentile method. In this method, each WBS element receives
the same percentile allocation, subject to the constraint that the sum of the risk dollars was
equal to the total risk dollars available.

For any WBS element, define the average budget overrun as:

Average Budget Overrrun (ABO) =
∫ ∞

Budget
(x − Budget) f (x)dx,

and total average budget overrun as the sum of the n individual WBS elements’ overruns,
viz.,

Total Average Budget Overrrun =
∑n

i=1
ABOi.
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Goldberg and Weber (1998) show that under the assumption of the MAIMS principle, that
equi-percentile budgeting minimizes the total average budget overrun. Sandberg (2007)
also discusses allocation as minimizing the total average budget overrun.

Sandberg (2007) makes the claim that allocating risk via

rj = σj∑n
i=1 σi

rT for all j = 1, . . . , n

is close to optimal via this scheme. We next consider under what conditions this claim is
true.

In a recent technical note, risk allocation is posed as an explicit optimization problem
(Hermann 2010). This begins with the risk measure:

r =
∫ ∞

μ

(x − μ) f (x) dx,

and proceeds to consider allocating this risk to individual WBS elements 1, . . . , n by
minimizing the sum of the individual expected shortfalls across WBS elements, i.e.,

Minimize
∑n

i=1
r∗

i = Minimize
∑n

i=1

∫ ∞

μi+ri

(xi − μi − ri) f (xi)dxi,

subject to the restriction that
∑n

i=1 ri = rT and ri ≥ 0 for all i = 1, . . . n. Note that, in
this article, risk measure functions are denoted by the letter r and are functions of a single
variable. Risk allocation, when the context is clear to which set the risk is being allocated
from a larger superset, is denoted by ri, such as the risk attributed to the ith element from
the total project level. When greater clarity is needed, the notation r(X,Y) is used, which
means the allocation of risk from set Y to a subset X, using risk measure r.

Hermann’s method is notable for considering the issue of allocation as an optimization
problem, and for taking into consideration the entire right tail of the cost risk distribution
in the allocation process.

As a result of looking at the sum of expected shortfalls, this method does not incor-
porate the impact of correlation, and thus is similar to the proportional standard deviation
method. Note also that the method seeks to minimize a special case of TABO when each
WBS element is initially budgeted to the mean value.

Note that in the case of normally distributed random variables,

r =
∫ ∞

μ

x − μ√
2πσ 2

exp

(
−(x − μ)2

2σ 2

)
dx = σ√

2π
.

Note that the funding level for this risk measure is

μ + r = μ + σ√
2π

≈ 65.5th percentile.

Given funding to μ + r the “remaining expected risk exposure” (as defined by Hermann
(2010) is, for a normally distributed random variable, equal to:

r∗ =
∫ ∞

μ+r

x − μ − r√
2πσ 2

exp

(
−(x − μ)2

2σ 2

)
dx
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=
∫ ∞

μ+r

x − μ√
2πσ 2

exp

(
−(x − μ)2

2σ 2

)
dx −

∫ ∞

μ+r

r√
2πσ 2

exp

(
−(x − μ)2

2σ 2

)
dx

= σ√
2π

exp(− r2

2σ 2
) −

∫ ∞

μ+r

r√
2πσ 2

exp

(
−(x − μ)2

2σ 2

)
dx.

Employing a change of variable, letting u = x−μ

σ
yields:

σ√
2π

exp

(
− r2

2σ 2

)
− r

∫ ∞

r
σ

1√
2π

exp

(
−u2

2

)
du

= σ√
2π

exp

(
− r2

2σ 2

)
− r

(
1 − Φ

( r

σ

))
.

For Hermann’s method, the method of Lagrangian multipliers can be used (see Marlow
(1978) for a discussion of this technique). Using this method objective function with
embedded constraint can be written as:

Λ(r1, . . . , rn, λ) =
∑n

i=1

∫ ∞

μi+ri

(xi − μi − ri) f (x)dx − λ
(∑n

i=1
ri − rT

)
.

In the case of normally distributed random variables,

∂

∂ri
= − ri√

2πσ 2
i

exp

(
− r2

i

2σ 2
i

)
−
(

1 − Φ

(
ri

σi

))
+ ri

(
φ

(
ri

σi

)
1

σi

)
− λ = 0.

Since

φ(x) = 1√
2π

exp

(
−x2

2

)
.

This expression simplifies to

Φ

(
ri

σi

)
− 1 − λ = 0,

which means that

ri

σi
= �−1(1 + λ).

Note that the right side of this equation is constant for all i = 1, . . . , n, which implies that

ri

σi
= rj

σj

or
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ri = σi
rj

σj
,

for all i, j = 1, . . . , n.
Note that the constraint, ∑n

i=1
ri = rT ,

can be written as:

r1 + σ2

σ1
r1 + . . . + σn

σ1
r1 = rT ,

and thus,

r1 = σ1∑n
i=1 σi

rT ,

and, in general,

rj = σj∑n
i=1 σi

rT for all j = 1, . . . , n.

Thus, the percentage allocation is the proportional contribution of the jth random variable
to the sum of the standard deviation values. Note that these results do not depend on setting
the budget equal to the mean. The results hold for any budget level. Thus, the proportional
standard deviation method is optimal under the condition that all risks are normally dis-
tributed. This will not often occur in practice since even in the case of a relatively large
WBS, for which the central limit theorem begins to take effect, and thus for which the total
risk distribution is approximately normal, the individual risks are typically skewed and not
normally distributed.

Allocating Along the Gradient

Returning to the specific question of risk allocation, what are some reasonable criteria for
allocating risk? Heretofore, analysts have largely restricted their attention to something
that seems reasonable (heuristic), subject only to the strict criteria that the allocation be
complete, that is, that for a risk measure rT and n WBS elements with respective allocation
r1, . . . , rn, that ∑n

i=1
ri = rT .

The proportional standard deviation method is illustrative of this type of approach, and
allocation according to needs is an improvement on some of its inherent shortcomings,
such as treating uncertainty and risk as equivalent. Some authors have discussed optimal
allocation, such as Goldberg and Weber (1998) and Hermann (2010). However, what has
still been lacking is the ability to clearly discern between risk measurement, risk allocation,
and how the two relate. Also, the requirement for other criteria in establishing a good,
reasonable, or perhaps optimal risk allocation has gone largely unnoticed. In the case that
risk dollars cannot be reallocated among WBS elements, Hermann’s approach offers a good
optimization criterion, and he constrains his allocation to be a complete one.
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Gradient allocation is a commonly used way to allocate risk in finance and insurance
and has been found by different authors in different fields using different approaches to
meet the single allocation method that meets simple criteria for allocating risk. This method
is also consistent with coherent risk measures. And as long as the risk measure meets a
simple criterion, it is guaranteed to be total.

Gradient allocation involves allocating to each WBS element an amount equal to the
gradient of the risk measure. To define this, consider an n-element WBS with cost random
variables denoted by X = (X1, . . . , Xn) and portfolio weights denoted by λ = (λ1, . . . ,
λn). These weights are positive units. For example, Xi may represent the price of a stock,
while λi may represent the number of shares of stock in a portfolio. The total cost for the
project is found by summing the individual WBS elements, accounting for the weights, i.e.,∑n

i=1 λixi. If the total risk measure is denoted by r and the risk measure for each individual
WBS is denoted by ri then the gradient allocation of r is defined as the partial derivative:

∂r

∂λi
,

which reflects the rate of change in the total risk relative to the rate of change in the port-
folio weight for each individual WBS element. As long as the risk measure is positive
homogeneous (a property shared by all the risk measures discussed in this article), such a
risk allocation is guaranteed to be a complete allocation. This is due to Euler’s homoge-
neous function theorem (McNeil et al., 2005), which (for the purposes of this article) states
that a continuously differentiable real-valued function r : R

n → R is positive homogeneous
if and only if:

∑n

i=1
λi

∂r

∂λi
= r(λ).

Note that from the definition of this risk measure property in a previous section of this
article, if r is positive homogeneous, then r(αλ) = αr(λ) for αεR+.

Taking the derivative of r(αλ) with respect to α yields:

∂r(αλ)

∂(αλ)
=
∑n

i=1

∂r(αλ)

∂(αλi)

∂(αλi)

∂α
=
∑n

i=1

∂r(αλ)

∂(αλi)
λi.

Since this is true for all α it is also true for α = 1, so,

r(λ) =
∑n

i=1

∂r(λ)

∂λi
λi.

Thus, if a risk measure is positive homogenous, then the risk can be allocated to each con-
stituent element by its gradient. This allocation is complete, so no additional constraint
is needed to ensure this property holds. Also, it provides a natural connection between
risk measure and risk allocation. Given a risk measure, the allocation method is derived
directly and is specific to the method used to measure risk. Gradient allocation is popular
in finance and insurance, where it is also referred to as the Euler principle, due to its con-
nection to Euler’s theorem. In the last decade several authors have written papers urging its
use, and have derived it from relatively simple criteria (e.g., Tasche, 1999; Denault, 2001;
Kalkbrenner, 2005). Arguments for its use have been based on economic principles, simple
axioms related to continuity and diversification, and game theory.
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In terms of economic principles, it has been argued that risk should be viewed as rel-
ative to its performance (Tasche, 1999). In terms of cost analysis for government projects,
this can be viewed as the cost relative to the risk, as measured by the ratio:

E(X)

r
.

If two projects have the same expected cost but one has a higher risk measure than the
other, the one that is relatively less risky is to be preferred. Thus, the higher this ratio is the
better.

The economic performance criterion is then defined (Tasche, 1999) as:

∂

∂λi

(
E(X(λ)

r(λ)

)⎧⎪⎨⎪⎩
> 0 if

E(Xi)

ri
>

E(X(λ))

r(λ)

< 0 if
E(Xi)

ri
<

E(X(λ))

r(λ)

.

This criterion can be interpreted as an item that is more expensive relative to its risk con-
tribution than average will cause expected cost relative to risk for the entire portfolio as
we increase its weight in the portfolio, and an item that is less expensive relative to its risk
contribution will cause expected cost relative to risk for the entire portfolio to decrease as
we increase its weight in the portfolio.

Tasche (1999) demonstrated under the condition that the gradient is continuous, that
gradient allocation is the only allocation method that meets this condition. To see this,
assume that gradient allocation is the method used. Then by assumption:

∂r

∂λi
= ri,

for i = 1, . . . , n.
Applying the product rule yields:

∂

∂λi

(
E(X(λ))

r(λ)

)
= 1

r(λ)

∂E(X(λ))

∂λi
− E(X(λ))

r(λ)2

∂r

∂λi
.

Since

∂E(X(λ))

∂λi
= ∂

∂λi
(λ1E(X1) + . . . + λnE(Xn)) = E(Xi),

∂

∂λi

(
E(X(λ))

r(λ)

)
= E(Xi)

r(λ)
− E(X(λ))

r(λ)2 ri.

Setting

E(Xi)

r(λ)
− E(X(λ))

r(λ)2 ri > 0,

and simplifying, we see that this expression is equivalent to
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E(Xi)

ri
>

E(X(λ))

r(λ)
.

A similar expression results when the partial derivative ∂E(X(λ))

∂λi
is set to be less than zero.

Thus, the economic performance condition is seen to hold when gradient allocation is
used.

Now assume that the performance condition holds. Since the gradient,

∂

∂λi

(
E(X(λ)

r(λ)

)
,

is continuous, a series of limiting values, such that,

limn→∞
(

E(Xi)

ri

)
n

= E(X(λ))

r(λ)
,

implies that

limn→∞
(

∂

∂λi

(
E(X(λ))

r(λ)

))
n

= 0.

Recalling the product rule expansion:

∂

∂λi

(
E(X(λ))

r(λ)

)
= 1

r(λ)

∂E(X(λ))

∂λi
− E(X(λ))

r(λ)2

∂r

∂λi
,

and noting that

∂E(X(λ))

∂λi
= E(Xi),

we find that

∂

∂λi

(
E(X(λ))

r(λ)

)
= 1

r(λ)
E(Xi) − E(X(λ))

r(λ)2

∂r

∂λi
.

At the limit,

E(Xi)

ri
= E(X(λ))

r(λ)
,

which implies that

E(Xi)

E(X(λ))ri
r(λ) = ri.

Also at the limit,

1

r(λ)
E(Xi) − E(X(λ))

r(λ)2

∂r

∂λi
= 0.

Solving for the gradient, we find that
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∂r

∂λi
= E(Xi)

E(X(λ))
r(λ) = ri.

Using a simple set of criteria, another derivation of gradient allocation was obtained
(Kalkbrenner, 2005). Kalkbrenner defines three conditions. First, the allocation must be a
linear function. Second, the allocation must be diversifying. Let r(X) denote as before, a
risk measure for X. Then denote by r(X, Y) the allocation of risk from Y to a subportfolio
X. By diversifying we mean that the allocation of risk to a subportfolio does not exceed
the measure of risk for X considering it as a stand-alone portfolio, i.e., r(X, Y) ≤ r(X).
Third, the risk allocation function must be continuous. Given these conditions, the gradient
allocation method is the only one that meets all three criteria.

Since the allocation is diversifying, for ε, ε∗ ∈ R:

r(Y + ε∗X) ≥ r(Y + ε∗X, Y + εX).

And since it is linear the latter term is equivalent to:

r(Y + εX + (ε∗ − ε)X, Y + εX) = r(Y + εX) + (ε∗ − ε)r(X, Y + εX).

Without loss of generality, assume that ε < ε∗. Then,

r(X, Y + εX) ≤ r(y + ε∗x) − r(y + εx)

ε∗ − ε
.

Swapping the ε′s and the ε∗′s yields:

r(Y + ε∗X) − r(Y + εX)

ε∗ − ε
≤ r(X, Y + ε∗X).

Putting the two inequalities together and taking the limit as ε∗ → 0, it is found that

r(X, Y) ≤ r(Y) − r(Y + εX)

ε
≤ r(X, Y + εX).

Taking the limit as ε → 0 and noting that the allocation function is continuous, the result
is that the allocation is equal to ∂r

∂λi
for all i = 1, . . . , n.

The gradient allocation principle has also been derived from game-theoretic argu-
ments. Rather than the non-cooperative game theory that most people are familiar with,
such as popularized in the prisoner’s dilemma and in the film A Beautiful Mind, risk allo-
cation can be viewed as a cooperative game, where the coalitions or elements work in
accordance to allocate total risk. A game that allows fractional allocations, such as with
cost risk allocation, is a “fuzzy” game. It has been found with some simple criteria that
the only allocation principle consistent with them is gradient allocation (Denault, 2001).
These criteria are the diversifying allocation principle (also used by Kalkbrenner (2005));
the property of symmetry, which means that if by adding any set to the portfolio, any two
sub-portfolios that contribute the same amount of risk will also receive the same alloca-
tion; and a riskless item will receive only its cost in the allocation scheme; no more, no
less. It is interesting to note that in game theory, gradient allocation is referred to as the
Aumann-Shapley value. For more information see Denault (2001) and Aubin (2007).

In terms of criteria for cost risk allocation, the notion of economic performance may
be a good one for activities involving profit and loss, but is not as big a motivating factor for
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the cost of government projects where the activities are determined according to scientific
pursuits, technological objectives, or the needs of national defense. On the other hand,
diversification for an allocation makes sense regardless of the application. The amount
allocated to a specific WBS element should be less than or equal to the contribution of that
element to the overall risk. Gradient allocation thus meets logical, sound criteria, which
is linked with and thus consistent with the risk measure used, and is naturally a complete
allocation without requiring an explicit constraint.

Hermann demonstrates that his risk allocation method is similar to a gradient alloca-
tion (Hermann, 2010). However, his method only looks at the gradient in the direction of
the individual WBS element without considering dependencies (correlation) between the
elements.

Application of Gradient Allocation

Note that gradient allocation potentially indicates different risk allocation algorithms for
different methods of risk measurement, since the method of allocation explicitly depends
upon the risk measurement. In this section, the gradient allocations for the risk mea-
surement methods discussed in a previous section are calculated. In what follows, an
n-element WBS with cost random variables denoted by X1, . . . , Xn with portfolio weights
λ = (λ1, . . . , λn) is assumed.

Standard Deviation Principle. Denote the covariance matrix for the WBS by �. Note that

r(λ) = μ + kσ = μ + k
√

λ′Σλ.

Then applying gradient allocation, it is found that

∂r

∂λi
= μi + k

Σλi√
λ′�λ

= μi + k

∑n
j=1 Cov(XiXj)λj√

λ′�λ
.

Setting λi = 1 for all i = 1, . . . n, it is easy to see that

∑n

i=1
μi + k

∑n
i=1

∑n
j=1 Cov(XiXj)

Std.Dev.(X)
= μ + kσ ,

since ∑n
i=1

∑n
j=1 Cov(XiXj)

Std.Dev.(X)
= σ 2

σ
= σ .

This allocation method is also referred to as the covariance principle (McNeil et al., 2005).

Value at Risk. Tasche (2000) demonstrated that allocation along the gradient for VaR
amounts to:

E(Xi|X = VaR(X)).

To see this, assume that n ≥ 2 and that (X1, . . . , Xn) has a joint density. Let (λ1, . . . , λn)
be a vector of portfolio weights with λ1 > 0. Note that
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P(X(λ) ≤ t) = E(P(X(λ) ≤ t|X2, . . . , Xn))

= E

(
P

(
X1 ≤ t −∑n

j=2 λjXj

λ1

∣∣∣∣∣X2, . . . , Xn

))

= E

(∫ λ−1
1 (t−∑n

j=2 λjXj)

0
fX1|X2,. . .Xn (u, x2, . . . , xn)du

)
,

where fX1|X2,. . .Xn is the conditional density function of X1.
Taking the derivative under the expectation with respect to t, yields, by the

Fundamental Theorem of Calculus, that

fX(λ)(t) = 1

λ1
E

((
fX1|X2,. . .Xn

(
1

λ1

(
t −

∑n

j=2
λjxj

)
, x2, . . . , xn

)))
.

Also note that

E(Xi|X(λ) = t) = lim
δ→0

δ−1E(XiI{t≤X(λ)≤t+δ})
δ−1P(t < X(λ) ≤ t + δ)

=
∂
∂t E(XiI{X(λ)≤t})

fX(λ)(t)

=
∂
∂t E(Xi ∫λ−1

1 (t−∑n
j=2 λjXj)

0 fX1|X2,. . .Xn (u, x2, . . . , xn)du)

fX(λ)(t)
,

as long as fX(λ)(t) = 0 and i ≥ 2. Taking the derivative under the expectation yields:

E(Xi|X(λ) = t) =
1
λ1

E(XifX1|X2,. . .Xn ( 1
λ1

(t −∑n
j=2 λjxj), x2, . . . , xn))

fX(λ)(t)
.

Using the substitution:

fX(λ)(t) = 1

λ1
E

⎛⎝⎛⎝fX1|X2, . . . Xn

⎛⎝ 1

λ1

⎛⎝t −
n∑

j=2

λjxj

⎞⎠ , x2, . . . , xn

⎞⎠⎞⎠⎞⎠,

and simplifying provides the result that

E(Xi|X(λ) = t) = E(XifX1|X2, . . . Xn ( 1
λ1

(t −∑n
j=2 λjxj), x2, . . . , xn))

E
((

fX1|X2, . . . Xn

(
1
λ1

(
t −∑n

j=2 λjxj

)
, x2, . . . , xn

))) .

In the case of i = 1, it can be derived in similar fashion that

E(Xi|X(λ) = t) =
E
(

t−∑n
j=2 λjxj

λ1
fX1|X2, . . . Xn

(
1
λ1

(
t −∑n

j=2 λjxj

)
, x2, . . . , xn

))
E
((

fX1|X2, . . . Xn

(
1
λ1

(
t −∑n

j=2 λjxj

)
, x2, . . . , xn

))) .
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Note that

α = P(L(λ) ≤ VaRα(λ)) = E

⎛⎝∫ VaRα(λ)−∑n
j=2 λjXj

λ1

0
fX1|X2,. . .Xn (u, x2, . . . , xn)du

⎞⎠ .

Taking the derivative with respect to λi, i = 2, . . . , n, yields:

0 = λ−1
1 E

((
∂VaR(λ)

∂λi
− Xi

)
fX1|X1, . . . Xn

(
1

λ1

(
VaRα(λ) −

∑n

j=2
λjxj

)
, x2, . . . , xn

))
.

Let fX1|X1, . . . Xn (·) denote fX1|X1, . . . Xn

(
1
λ1

(
VaRα(λ) −∑n

j=2 λjxj

)
, x2, . . . , xn

)
.

Solving for ∂VaR(λ)

∂λi
, we find that

∂VaR(λ)

∂λi
E
[
fX1|X1, . . . Xn (·)]− E

[
XifX1|X1, . . . Xn (·)] = 0,

and, thus,

∂VaR(λ)

∂λi
= E

[
XifX1|X1, . . . Xn (·)]

E
[
fX1|X1, . . . Xn (·)] .

Substituting the result already derived for E(Xi|X(λ) = t) with t = VaR, it is found that

∂VaR(λ)

∂λi
= E(Xi|X(λ) = VaRα(λ)) ,

again, for i = 2, . . . , n.
Taking the derivative of

α = P(L(λ) ≤ VaRα(λ)) = E

⎛⎝∫ VaRα(λ)−∑n
j=2 λjxj

λ1

0
fX1|X2,. . .Xn (u, x2, . . . , xn)du

⎞⎠
with respect to λ1 yields:

0 = E

(
� · fX1|X1,. . .Xn

(
1

λ1

(
VaRα(λ) −

∑n

j=2
λjxj

)
, x2, . . . , xn

))
,

where � =
(

∂VaRα(λ)

∂λi
λ1

+
∑n

j=2 λjXj−VaRα(λ)

λ2
1

)
. Solving for ∂VaRα(λ)

∂λi
and substituting the result

derived for i = 1 gives:

∂VaR(λ)

∂λi
= E(Xi|X(λ) = VaRα(λ)) .

The result is simple, and even intuitive, even though the mechanics of the derivation are
complicated. However, even though the formula appears simple, it is not easy to calculate
in practice. This is not a simple, straightforward conditional expected value calculation,
since for continuous distributions, the probability that X(λ) = VaRα(λ) will be zero. In the
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case of continuous distributions, a simple linear approximation can be found by noting that
in the subject of linear regression, E(Xi|X(λ)) represents the best estimate of Xi by X. Thus,
a simple linear approximation can be found by minimizing E

(
(Xi − a − bX)2

)
, which is

well known as:

b = Cov(Xi, X)

Var(X)

and

a = E(Xi) − bE(X) ,

where Cov(X,Y) is the covariance between X and Y . Plugging these values into the estimate
yields:

E(X̂i|X(λ)) = E(Xi) + Cov(Xi, X)

Var(X)
(VaRα − E(X)).

Note that “Var” in the formula denotes variance while “VaR” denotes the “value at risk”
or percentile. Note that this approximation amounts to applying the covariance principle to
the difference of the percentile at which the project is funded and the total expected value,
or mean.

Note that this approximation is equivalent to Book’s needs method for allocating risk.
Thus, the needs method is a best linear approximation to a gradient allocation when VaR is
used as the risk measure. Thus, the needs method is optimal for allocating risk when risk is
measured as a percentile of the cost risk cumulative probability distribution.

In the case of Monte Carlo simulations, kernel smoothing or some other smoothing
technique will likely be needed to overcome the issue that it is possible that none of the sam-
ple values will likely have a value such that X(λ) = VaRα(λ). That is a subject deserving
of a paper of its own and, thus, it is not covered in more detail here.

Expected Shortfall. Suppose VaR is set at the αth percentile. Then the expected shortfall
risk is defined as:

r(λ) = 1

1 − α

∫ 1

α

VaRu(λ) du.

Calculating the gradient with respect to λ yields:

∂r

∂λi
= 1

1 − α

∫ 1

α

∂VaRu

∂λi
du.

Plugging in the formula for the partial derivative of VaR with respect to λi obtained in the
preceding section it is found that

∂r

∂λi
= 1

1 − α

∫ 1

α

E(Xi|X(λ) = VaRu(λ)) du.

Let v = VaRu(X(λ)) = F−1
X(λ)(u). Then, since fX(λ)(v) dv = du and, thus,
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1

1 − α

∫ 1

α

E(Xi|X(λ) = VaRu(λ)) du = 1

1 − α

∫ ∞

VaRα

E(Xi|X(λ) = v) fX(λ)(v) dv

= 1

1 − α
E(Xi; X(λ) ≥ VaRα)

= E(Xi|X(λ) ≥ VaRα).

That is, the gradient capital allocation is

∂r

∂λi
= E(Xi|X(λ) ≥ VaRα(λ)).

While similar in form to the capital allocation for VaR (the only difference is that the
equality in the conditioned expectation is now an inequality), this is more intuitive and
easier to calculate than the VaR allocation. For a Monte Carlo simulation, it is simply the
contribution of the ith element to the expected shortfall.

One-Sided Moments. For the risk measure associated with the pth one-sided moment:

r(λ) = μ +
(∫ ∞

−∞
(x(λ) − μ)

p
+ f (x) dx

) 1
p

.

The gradient allocation principle is straightforward to apply. In this case,

∂r

∂λi
= E(Xi) + 1

p

(∫ ∞

x=μ

(x(λ) − μ)pf (x) dx

) 1
p −1

·
∫ ∞

x=μ

p(x(λ) − μ)p−1 · (Xi − E(Xi))f (x) dx

= E(Xi) +(σ+,p
)1−p

E((Xi − E(Xi))· (X − E(X))
p−1
+ ).

The case p = 1, for which the risk measure is the same as proposed by Hermann (2010),

∂r

∂λi
= E(Xi) +

∫ ∞

x=μ

(Xi − E(Xi)) f (x) dx.

When p = 2, the semi-standard deviation principle, the allocation scheme simplifies to:

∂r

∂λi
= E(Xi) + E((Xi − E(Xi))(X − E(X))+)

σ+,2
,

which is a one-sided covariance principle. This is the same as the needs method. The only
difference is that the one-sided moments consider the mean as the value above which risk
reserves are set, rather than an arbitrary point estimate. But the one-sided moments can
be generalized to include such cases. Thus, we have found another instance in which the
needs method is found to be optimal, that is, when positive semi-variance is used as the risk
measure.

Summary of Gradient Allocation Formulas. A summary of the gradient allocation formulas
presented in this section are summarized in TABLE 3.
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TABLE 3 Summary of gradient allocation formulas for five risk measures

Risk Measure Associated Gradient Allocation Formula

Standard deviation principle μi + k

∑n
j=1 Cov(XiXj)

Std.Dev.(X)
Value at risk E(Xi|X = VaRα)

Expected shortfall E(Xi|X ≥ VaRα)

1st one-sided (positive) moment E(Xi) + ∫∞
x=μ

(Xi − E(Xi))f (x) dx

Semi-standard deviation principle E(Xi) + E((Xi − E(Xi))(X − E(X))+)

σ+,2

For the 10-project example given in TABLE 1, the results of applying the risk
allocation methods discussed in this article are shown in TABLE 4.

Note the differences in the allocations, which are significant. Hermann’s method dif-
fers significantly from the first one-sided (positive) moment gradient allocation, for which
the risk measure is the same. This may be due to the numerical methods required to find
the optimal allocation method.

Conclusion

Current risk allocation theory and practice and relatively new methods for risk allocation
have been discussed. The proportional standard deviation method and the needs method
are heuristics that do not necessarily have optimal properties. A new method that explicitly
seeks to minimize the sum of the allocated expected shortfalls beyond the mean was dis-
cussed. Risk allocation methods have not sought to distinguish between measurement and
allocation, so risk measurement was also summarized. We pointed out that the problems
of risk measurement and risk allocation are separate and distinct but related topics. The
concept of coherence for risk measures was discussed, and relatively new coherent risk
measurement methods, such as expected shortfall were treated in depth. A new risk alloca-
tion method that is becoming increasingly popular in finance and insurance was discussed,
which is gradient allocation. Gradient allocation links together risk measurement and risk
management, and in given certain criteria for allocating risk, proves to be the best method
for an associated risk measurement method.

It was found that current risk allocation methods fall within this theoretical frame-
work. The proportional standard deviation method is a special case of Hermann’s allocation
method, under the condition that all risks are normally distributed and the risk allocations
are not reversible—once allocated, no re-allocation is possible. These are not practical
conditions—in practice risk allocations can be reallocated, and even if the WBS is large
enough to apply the central limit theorem at the total level, individual risks are typically
skewed, and are better represented by distributions capable of modeling this skew, such as
lognormal distributions. Hermann’s suggested risk measure turns out to be coherent, and
thus a better measure of risk than percentile funding. This risk measure, in the example
shown, is the smallest risk measure above the mean. And in many cases, such as for the
normal distribution, this amount will be less than the 70th percentile, making it a potentially
attractive risk measure for policymakers, who are constrained by tight budgets.

The needs method falls within the gradient allocation framework—it is similar to the
semi-standard deviation method, and when applied to the difference between a percentile
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and the mean, is similar to the best linear estimator for gradient allocation when value
at risk is used for risk measurement. Thus the needs method is more appealing than the
proportional standard deviation allocation method since it is not dependent on distribution
type, and is close to optimal when percentile funding or semi-standard deviation is used to
measure risk.

It is likely that analysts and policymakers are using one or more of the risk measures
in this presentation. For each, an optimal risk allocation method has been presented and
summarized. The author advocates the use of coherent risk measures, and associated gradi-
ent allocations. Non-coherent risk measures, such as value at risk, do not present effective
risk management solutions, especially since value at risk lacks a portfolio effect. And not
using gradient allocation does not meet the criteria of diversification for risk allocations,
which is not desirable. The current methods available are practical heuristics, but looking
at the theory of risk allocation indicates that there are better methods, gradient allocation
among them.
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