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The authors present a prognostic cost model that is shown to provide significantly more accurate
estimates of life cycle costs for Department of Defense programs. Unlike current cost estimation
approaches, this model does not rely on the assumption of a fixed program baseline. Instead, the
model presented here adopts a stochastic approach to program uncertainty, seeking to identify and
incorporate top-level (i.e., “macro”) drivers of estimating error to produce a cost estimate that is
likely to be more accurate in the real world of shifting program baselines. The predicted improvement
in estimating accuracy provided by this macro-stochastic cost model translates to hundreds of billions
of dollars across the Department of Defense portfolio. Furthermore, improved cost estimate accuracy
could reduce actual life cycle costs and/or allow defense acquisition officials the ability to make
better decisions on the basis of more accurate assessments of value and affordability.

Introduction and Motivation

Many senior defense acquisition officials routinely make key decisions involving weapon
systems that are projected to cost billions of—or perhaps even a trillion (Hebert, 2011)—
dollars over their life cycle. These high-dollar decisions may involve how many units to
procure, how to phase program funding, or even whether to fund a program at all. Typically,
the decision will not only have major implications on the life of a given program, but
it can also impact the Pentagon’s overall budget and strategic direction. In light of the
looming, significant reductions to the defense budget (GPO, 2011), these program decisions
are bound to become both more difficult and more important, as questions of value and
affordability increasingly take center stage.

For the senior decision-maker, a principal tool for assessing the value and/or afford-
ability of a given defense program is via long-term program cost estimates, such as Life
Cycle Cost (LCC) and per unit Operating and Support (O&S) cost. It is therefore essential
that these estimates be reliable and accurate. But what if they are not? What if the fore-
casted ownership costs of a given program are far different from the actual costs? If there
is a significant disconnect between estimated and actual costs, the concern naturally arises
as to the utility of the estimates, and how sound are any decisions based upon them. These
are not just hypothetical questions. The authors recently completed a study that shows
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Department of Defense (DoD) estimates of long-term program cost are often highly inac-
curate and—perhaps more surprisingly—improve very little, if at all, as programs mature
(Ryan, Jacques, Ritschel, & Schubert, 2012).

This finding logically leads one to consider a more formidable challenge: How can the
accuracy of DoD life cycle cost estimates be improved? In this article, the authors tackle
the problem through a fundamentally different approach to cost estimating. We propose a
technique that, in essence, models the error in the program estimate as a random variable
whose value is determined by a salient group of top-level program summary indicators.
This prediction of the estimate error is then used to adjust the official program estimate to
a value that is, on average, significantly closer to the eventual, actual cost of the program.
We refer to this technique as macro-stochastic cost estimation. The authors have borrowed
the term “macro-stochastic” from the physical sciences where it is used to describe large-
scale phenomenon that can only be analyzed effectively in a statistical manner, such as
dynamic structural loads or earthquakes (Wijker, 2009).

This article is structured as follows. After providing some background on the nature
of contemporary DoD cost estimating, we review the key elements of the characterization
study that informed the creation of the two separate macro-stochastic cost models pre-
sented in this article. Next, we detail the mixed model methodology used to build each
model as well as the list of independent variables to be evaluated for significance. In the
Results section, we begin by showing a theoretical macro-stochastic cost model to illustrate
the potential power of this technique. We then describe how we transform the theoretical
model into a prognostic model and how its performance was validated. We conclude with
a discussion of key findings, known model issues, and ideas for future improvements.

The authors found that the adjustments the macro-stochastic model makes to the
program cost estimates achieve levels of accuracy significantly better than the original
estimates. With these improved estimates of actual program cost, we contend that senior
DoD decision-makers can expect to have far better insight into actual program value and
affordability, and come closer to achieving an optimal allocation of diminishing DoD
resources.

Background

Cost Estimating

Over the past couple of decades, DoD cost estimating has become increasingly sophis-
ticated. This comes as a result of improved computing capabilities, revised policies
(DoD, 1992; OSD CAIG, 2007), and the canonization of the best practices. Standard,
contemporary cost estimation techniques include product-oriented WBS development,
point estimating with associated confidence intervals, integration of probability distribu-
tions, stochastic parameterization through cumulative distribution functions (i.e., s-curves),
Monte Carlo simulations, and uncertainty/sensitivity analyses (GAO, 2009; DAU, 2012).
The resulting bottoms-up cost estimates are remarkably credible, highly detailed, fully
traceable, and mathematically rigorous. But they are also resource intensive, and—as
documented in the characterization study—often highly inaccurate (Ryan et al., 2012).

It is important to note that an inaccurate estimate is not necessarily the same thing as a
poor estimate. It may be that the cost estimator’s greatest ambition of a perfectly accurate
cost estimate is simply unattainable in the highly uncertain realm of defense acquisition.
As recently (and rather facetiously) articulated by the NASA advisory council in the context
of space systems:
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[Cost estimating] involves using incomplete, inaccurate, and changing data for
an outmoded & ineffective space system to derive the precise cost of pur-
chasing an unknown quantity of an undefined new space system to satisfy an
overly exaggerated & unvalidated requirement at some time in the future, under
uncertain conditions, with a minimum of funds. (NASA, 2008)

Although defense cost estimators attempt to take into account many sources of uncer-
tainty (e.g., inflation and discount rates, technical risks, commodity pricing, etc.), they are
ultimately constrained in a fundamental and critical way: They must assume a program
baseline. The DoD Acquisition Program Baseline (APB) reflects the key cost, schedule,
and performance attributes of a program, and is the necessary anchor from which all sta-
tistical cost excursions are based. In fact, changes to the APB are one of the most frequent
reasons for creating a new program cost estimate.

And while using the program baseline as a cost estimating baseline is a perfectly logi-
cal approach, it means that current cost estimating techniques are not only unable to account
for unforeseen sources of uncertainty (i.e., the infamous “unknown-unknowns”), but they
also preclude the possibility of capturing cost impacts that result from APB changes. If the
aim is to construct a cost estimate that will be as accurate as possible in the long run, this
link to the baseline represents a fundamental flaw in the estimate process because APB
deviations are virtually inevitable (at least for major defense programs (Drezner & Krop,
1997)). A delay in the planned initial operating capability of the system; a reduction in
the procurement quantity; an additional performance requirement: These are all common
causes of an APB deviation, and each is likely to adversely affect the accuracy of the orig-
inal estimate (no matter how good it may have been). Given the magnitude and frequency
of baseline changes in major Pentagon programs, it really shouldn’t be surprising that the
original LCC and O&S estimates are so often inaccurate. The greater wonder, in fact, is
that these estimates are ever relatively close.

The motivating principle of this article is that in order for a cost estimate to have a rea-
sonable chance of being accurate in the real world of changing baselines, one must employ
an estimating technique that does not assume the program baseline is fixed. This goal is
at the core of the macro-stochastic cost estimating approach. Any change to the APB—or
any other cost-impacting change, for that matter—is assumed to be part of a larger ran-
dom process. In this way, we regard the top-level cost estimate as a stochastic value (vice
the constituent cost elements, as is typically done in the traditional stochastic cost esti-
mating approach). The premise of the macro-stochastic cost-estimating model, then, is that
each official program estimate has some random error (vis-à-vis actual costs) that is related
to a probability distribution. We further hypothesize that the nature of this distribution is
unique to each program, and can be sufficiently characterized by a relatively small number
of top-level program indicators easily gleaned from readily available program records.

Cost Measures

There are two distinct measures of cost that we assessed in the associated characterization
study: The Life Cycle Cost (LCC) and the Annual Unitized O&S Cost (AUC1). Importantly,
each measure serves as the basis of a separate macro-stochastic cost model presented in this
article. The LCC measure is arguably the most comprehensive and intuitive cost indicator
for system value assessments, and the first version of the model attempts to predict the
error in the program’s official LCC estimate. The AUC metric is also useful, however.
The AUC data tends to be more broadly available (both in terms of estimates and actuals),
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thereby enabling analysis of a greater number of programs over a longer span of time.
Moreover, unitized O&S costs are a commonly employed metric for assessing sustainment
costs, and can often provide a more valid comparative measure across similar contemporary
or antecedent systems (DAU, 2012). The AUC constitutes the foundation of our second
version of the model, which predicts the error in the program’s official AUC estimate.

In the case of both dependent variables, values are reported as percentages, with neg-
ative values indicating that the estimate was lower than the actual cost, and positive values
indicating the estimate was too high. Thus, a perfectly accurate estimate will have an error
of 0%.

Data Structure

Only Major Defense Acquisition Programs (MDAPs) were evaluated in the previously
completed characterization study. This is because only MDAPs provide the necessary level
of cost insight for readily assessing the accuracy of the LCC and AUC estimates. By law,
MDAPs are required to provide an annual report, known as the Selected Acquisition Report
(SAR), which includes a full life cycle cost analysis. The SARs were the primary source
used in the characterization study for official program cost estimates. They are nominally
first provided upon program initiation (typically Milestone II/B), and continue every year
until the program has been 90% acquired (DAU, 2012).

Each program SAR represents one observation in the MDAP data set. Further, each
SAR for which a valid LCC estimate and valid LCC actuals are available also becomes an
observation used in the development of the macro-stochastic LCC model. Similarly, each
SAR for which a valid AUC estimate and valid AUC actuals can be obtained becomes an
observation used to build the macro-stochastic AUC model. The specific count of LCC and
AUC SARs by program is provided in Table 1. The LCC model is based on observations
from 317 SARs across 31 MDAPs, and the AUC model is based on observations from
392 SARs spanning 35 MDAPs.

The data used to construct and validate the model was obtained from all Air Force
and Navy aviation, maritime, and munitions MDAPs. Therefore, the model is deemed to
be valid for use only against these services and types of programs. Additional data would
be required in order to assess model utility against space and information MDAPs. More
details on data set sources and compilation (as well as why Army programs could not be
evaluated) is available in the characterization paper.

Methodology

Mixed Models

The preceding characterization study, as well as the resulting model presented in this arti-
cle, are based on longitudinal data (Ryan et al., 2012), which is to say that the source data
consists of repeated measurements on different subjects over time. Importantly, the nature
of longitudinal data precludes the possibility of assuming an identical and independent
distribution (i.i.d.) of the random variables. Because the data is clustered into programs,
with repeated measurements of each program over time, there necessarily exists a correla-
tion between the repeated measurements for a given program—and therefore the statistical
errors of the observations—that must be accounted for in the statistical analysis. Further,
one expects these correlations to be greater for data points close in time, such as for succes-
sive SARs from the same program. This means that the statistical errors will be correlated
as well.
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Importantly, the fact that we expect correlated errors for the programs in this study
invalidates the underlying assumptions of simple analysis of variance and regression mod-
els, namely i.i.d. observations. To compensate for this, we instead employ mixed model
techniques for the data in this study. Mixed models use both fixed (i.e., entire population)
effects and random (i.e., subject-specific) effects within the same analysis. The key distinc-
tion between mixed models and simple regression models is that the former can produce
valid models even if the subject observations are not independent. In essence, mixed models
allow the data to exhibit inherent correlations and non-constant variability that arise from
the program-specific effects. This allows one to effectively model not only the measures of
central tendency for the data, but also the covariance structure attributable to the repeated
measurements (Diggle, Liang, & Zeger, 1994; Verbeke & Molenberghs, 2000).

Relative to the standard General Linear Model (GLM), the use of a mixed model for
this analysis provides several advantages, primarily relating to flexibility. A mixed model
allows the use of input variables even if data is missing for one or more of the subjects
(i.e., programs). Mixed models can also automatically accommodate for unequal spacing
of the repeated measurements (i.e., ensure minimum variance), which is a characteristic of
this data set. In addition, the mixed model allows more efficient and direct modeling of the
within-subject covariance structure for the entire dataset, as opposed to unique covariances
for every data pair. Finally, the results from the mixed model can be readily extended to
outcomes that do not conform to a normal distribution. In this study, we have assumed the
cost estimate errors are normally distributed (i.e., the solution to the mixed model equations
is a maximum likelihood estimate where the distribution of the errors is normal), but the
mixed model can accommodate nonlinear approaches, should they be considered more
appropriate (Patetta, 2002).

To put this in mathematical terms, the GLM in matrix form is given as:

y = Xβ + ε, (1)

where

y = the observed data vector, where E (y) = Xβ and var (y) = σ 2I;
x = the fixed effect design (i.e., model) matrix;
β = the vector of fixed effect parameter estimates (same for all subjects);
ε = the vector of residual errors, where E (ε) = 0 and var (ε) = σ 2I.

For the mixed model version, a random-effects term is added:

y = Xβ + Zy + ε, (2)

where

Z = the random effect design (i.e., model) matrix;
γ = the vector of random effect parameter estimates (varies by subject).

In addition,

E

[
γ

ε

]
= 0 and var

[
γ

ε

]
=

[
G 0
0 R

]
⇒ var(y) = ZGZ + R, (3)

where

G = the random effects covariance matrix;
R = the fixed effects covariance matrix.
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One of the key inputs for a mixed model analysis is what structure should be
used for the random covariance matrix, G. For this data set, since we tend to observe
high correlations in the response variables reported in successive SARs, but increas-
ingly less correlation as the time between SARs grows larger, a covariance structure
that captures diminishing levels of correlation is desired. Therefore, a sensible choice for
model development is the autoregressive (AR) structure, which has homogeneous vari-
ances and correlations that will decline exponentially with temporal distance (Wolfinger,
1993). Multiple other covariance matrix structures were also examined, but overall model
performance was best using first-order autoregressive, i.e., AR(1).

To obtain the estimates of G and R, we solve for the values that optimize an objec-
tive function, in this case the Restricted Maximum Likelihood (REML) criterion. The
method for computing the denominator degrees of freedom for the tests of fixed effects
was Kenward-Roger. Thousands of model iterations were executed to find the best set of
variables from Table 1 to use in each model: The Bayesian Information Criterion (BIC)
was used as the primary method of discrimination between potential models. All model
analysis was accomplished using SAS version 9.3 (http://www.sas.com/software/sas9/).

Independent Variables and the Unit of Analysis

As noted earlier, a central assumption of the macro-stochastic cost estimating approach is
that there exists a relatively small set of high-level program parameters that, in aggregate,
significantly relate to the LCC and AUC estimate errors observed for a given program.
Table 2 lists and defines all of the independent variables we evaluated as potential fixed
or random effect parameters for both the LCC and AUC cost models. All variables in this
table are based on information available in the program SARs. Some of the variables are
taken directly from the SAR, some are calculated based on information available in differ-
ent sections of a single SAR, and some are calculated from information available across
successive SARs. All cost figures are in native (i.e., SAR-specific) base year (BY) dollars,
with the exception of variable #14. Although there are only 50 variables listed in Table 2,
the inclusion of “trending versions” of several variables (see Table 2, footnote #a) brings
the total count of independent variables to 252.

Table 2 is also interesting for what is not included. Defense acquisition professionals
and cost estimators alike are keenly interested in the cost impacts of a number of strategic
policies related to procurement. Three of the most intriguing—and controversial—relate to
acquisition strategy (e.g., traditional vs. evolutionary), contracting strategy (fixed-price vs.
cost-reimbursement), and sustainment strategies (organic vs. contractor). Although each
of these policy topics could potentially serve as an excellent macro-level predictor of cost
estimating accuracy, we were unable to incorporate variables related to any of these topics.

The fundamental obstacle in all three cases was being able to effectively quantify
these variables in the context of fluctuating and disparate acquisition efforts. Consider,
for instance, an evolutionary acquisition strategy, which may not be implemented until late
in the program when technical maturity is sufficient or may only be applied to a particu-
lar element of the system in development. It may also be that an evolutionary strategy is
abandoned midway through development or blended with more traditional practices into
a hybrid approach. This is just one example, but these types of subtleties tend to domi-
nate these three important procurement policy topics, thus regrettably precluding definitive
categorization and analysis.

The last item involving methodology that the reader should be aware of pertains to
the unit of analysis, which is equivalent to the model subject. This is a subtle, but critical,
analytical element that changes throughout model development, characterization, and
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validation. We begin with the SubProgram as the unit of analysis, but then switch to a
broader subject defined as the Program Category. This transformation is crucial to infusing
predictive capability into the macro-stochastic cost model. During validation, however, the
unit of analysis reverts to the full Program in order to present model performance in a
context most likely to resonate with target users. This nonstandard progression regarding
the unit of analysis (i.e., model subject) is explained in greater detail at each step of model
characterization.

Results

A Theoretical Macro-Stochastic Model

The first task is to assess the theoretical premise of a macro-stochastic cost model. A rea-
sonable suspicion would be that the nature of cost estimating errors for defense programs—
along with the underlying uncertainty which drives them—is inherently chaotic, such that
attempting to characterize these errors via a stochastic process is misguided at best. Thus,
the fundamental question that must be answered at the outset is whether there is any mean-
ingful correlation between the variables in Table 2 and the level of accuracy in a given
SAR’s cost estimate. We believe that the data shown in Figures 1 through 4 offers a
compelling response to this question.

Figure 1 is a plot of the percentage error in the empirical LCC estimates for all of the
MDAPs listed in Table 1. Overall, the data exhibits a high level of dispersion. Although the
mean error across all programs is only –4.7%, the mean magnitude of the errors (i.e., the
mean absolute value of the errors) is over 22%. The magnitude error does appear to reduce
slightly as time increases, suggesting that the accuracy of LCC estimates may be improving
slightly as program acquisition matures. However, as noted in the characterization paper,

FIGURE 1 Error in LCC estimate as a function of time (empirical data) (color figure
available online).
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FIGURE 2 Error in LCC estimate as a function of time (theoretical macro-stochastic
model) (color figure available online).

FIGURE 3 Error in AUC estimate as a function of time (empirical data) (color figure
available online).

this is likely an artifact of the acquisition cost component of the LCC converging to a
known value by the end of the acquisition phase (Ryan et al., 2012). When examining total
O&S cost, per se, there is no significant improvement in LCC estimating accuracy as time
goes on.
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FIGURE 4 Error in AUC estimate as a function of time (theoretical macro-stochastic
model) (color figure available online).

Figure 2 plots the results from a macro-stochastic mixed model that attempts to pre-
dict the error in each SAR and then compensate for it. The subject of this model is the
SubProgram (for reasons explained in the characterization paper, the SubProgram—vice
the Program—is the more appropriate unit of analysis). Designating the SubProgram (or
the Program, for that matter) as the model subject is a logical choice, but it has important
implications to model utility to be discussed shortly.

This so-called “theoretical macro-stochastic cost model” depicted in Figure 2 consists
of just three variables: Procure, Change (#48 in Table 2), the standard deviation of the nat-
ural logarithm of Acq Cost Est, BY10 (#14), and the natural logarithm of LCC Est (#17).
All three variables are modeled as fixed effects, while the first two—along with an inter-
cept term—are also modeled as random effects. The way to interpret this result is that the
broad pattern (i.e., the fixed effects) of life cycle cost estimating errors in all Navy and Air
Force MDAPs can be captured by examining the extent of procurement quantity changes to
date, the variability of the acquisition cost estimates to date, and the current LCC estimate.
Further, each program has its own pattern of errors (i.e., the random effects) driven by the
procurement quantity changes and the variability of the acquisition cost estimate to date,
as well as a unique starting point as defined by the intercept term.

Figures 3 and 4 are the AUC versions of Figures 1 and 2. Figure 3 shows that empirical
AUC estimating accuracy for MDAPs is considerably worse than LCC estimating accu-
racy, with the magnitude of the errors and accompanying standard deviation almost twice
as high. Figure 4 depicts the same data using a macro-stochastic model, and again, only
three variables are used. This time the variables are the Unit Acq Ratio (#50), the standard
deviation of the natural logarithm of Acq Cost Est, BY10 (#14), and the natural logarithm
of AUC Est (#15). As before, the first two variables are modeled as both fixed and random
effects, and the model includes a random intercept term. The model subject remains the
SubProgram.
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In both cases, the theoretical macro-stochastic model performs impressively, driving
down the magnitude of the mean error in the original prediction to a little over 1% in the
case of LCC estimates, and just over 2% in the case of AUC estimates. Since the result is
represented in percentage terms, it is easy to lose context of the amount of money involved.
But these potential improvements in estimating accuracy typically represent billions of dol-
lars. Since the mean magnitude error in the original LCC estimate is over 20%, a program
estimated to cost $30.0 billion over its life cycle could be expected to actually cost some-
where in the range of $24.0 to $36 billion, a $12 billion range. On the other hand, the
macro-stochastic model might predict a life cycle cost of $34.0 billion, but its equivalent
expected error range would only be $800 million. Clearly, such a massive reduction in cost
uncertainty would be of tremendous benefit to defense acquisition officials.

In one respect, this significant estimating improvement is an extremely important
result. Figure 2 and Figure 4 are remarkable because they show the tremendous poten-
tial utility of the macro-stochastic cost modeling approach. With a highly parsimonious
model, the model is able to predict the actual LCC and AUC estimating errors for all of the
programs in this study with exceptional accuracy. Moreover, the random (subject-specific)
effects are very powerful, strongly suggesting there is a unique pattern for each unit of
analysis. This result is especially impressive given that there are over 35 SubPrograms in
both models, over half of which consist of at least 10 data points (i.e., SARs) that must be
“fitted.”

However, in another—arguably more relevant—respect, this finding is of little utility.
The problem with the preceding approach is that it is inherently a post-hoc analysis. This is
why we refer to this model as “theoretical.” One cannot expect that the exact cost estimating
error patterns of these programs will occur again. So although using the SubProgram as the
model subject may reveal powerfully descriptive random effects, the theoretical macro-
stochastic model has no meaningful predictive capability.

The fact remains, however, that we now have some measure of confidence in the prin-
ciple of macro-stochastic cost estimating of DoD programs. The challenge becomes how
to translate this technique into a useful prognostic model.

Program Categories

In order to construct a predictive macro-stochastic model, the authors have devised a
template-based solution involving the creation of Program Categories. This approach aims
to achieve a better balance between model accuracy and utility by structuring the data
into broader categories comprising multiple programs and using criteria that apply to
both current and foreseeable programs. In this way, the Program Category supplants the
SubProgram as the model subject and the unit of analysis.

To use a stock market analogy, the Program Category notion is the equivalent of fore-
casting an individual company’s performance based on the business sector to which it is
assigned. In the absence of company-specific performance indicators (which would be
preferred, but may not be available until too late), we assume that the company’s future
performance will roughly conform to the average pattern of all the other companies in the
same sector. A key to making this approach work, of course, is ensuring that companies
(i.e., programs) are assigned to representative sectors (i.e., categories).

Indeed, establishing the exact Program Categories and ontological criteria was one
of the most challenging aspects of model development. Our first goal was to be able to
employ the model as early as possible, so the criteria used to assign a program to a partic-
ular Program Category had to be clearly discernible at the outset of a program. Second, we
wanted the Program Category criteria to be simple and logical, easily derived from the list
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of independent variables in Table 2. Third, we sought to have each category consist of pro-
grams similar enough to one another that the new model subject (i.e. the Program Category)
would continue to exhibit statistically significant subject-specific patterns that could be
captured by the random design matrix of the mixed model. (Given the complex interac-
tions between various fixed and random effect model terms and the constituent covariance
matrices, identifying meaningfully similar programs is often far from clear.)

In addition, the total number of program categories needed to be carefully considered
as it represented another source of tension between accuracy and utility. If we create too
few categories (i.e., many programs in a single category), the power of the mixed model is
bound to be diminished as there will likely be little in the way of subject-specific effects to
model. If we create too many categories, then we run the risk of building a model that is
still too program-specific. In other words, if we have a large number of categories with a
few programs in each, then we cannot—without additional data—have confidence that we
have identified a valid Program Category that will effectively subsume a future program of
interest.

We evaluated many different categorization structures defined via various variables and
attribute thresholds, as well as varying numbers of categories. In the end, we empirically
determined that the best balance of performance and utility was achieved through seven
Program Categories defined by the following three variables: DoD component (#2), System
type (#4), and Program size based on Acq cost est, BY10 (#14). Although the Program
Category criteria were the same for both the AUC and LCC model, the specific programs
and SAR counts are slightly different due to differences in data availability (see Table 1).
Tables 3 and 4 show the Program Category structure and program assignments for each
model.

Note that while the acquiring service component and the system type would not be
expected to change during a program’s life, the size of the program does change as acqui-
sition cost estimates vary—sometimes significantly—over time. The dependence of the
Program Category assignment on acquisition cost estimates introduces the possibility that
a program’s category assignment might change at some point in development. For the pro-
grams in our data set, this did not happen, but it could for some future program. If this were
to occur, it’s not clear whether that means the differently-sized program is in fact behaving
more like the programs in its newly assigned category, or whether the size thresholds we
have established here would need to be modified.

In addition, the fact that a surface maritime system (i.e., DDG 51) and a submarine
system (i.e., SSN 774) are grouped together into a single category is likely to aggrieve the
traditional cost estimator (as presumably would the grouping of fixed and rotary-wing avi-
ation systems). Although both the surface vessel and the submarine are maritime systems,
the Navy cost estimator knows that there are key cost-impacting differences between how
each type of program is acquired and operated. With respect to the modeling approach pur-
sued here, the point to keep in mind is that the pattern of program costs for similar systems
is a fundamentally different phenomenon than the pattern of program cost errors. It is the
latter that is relevant to our approach, and using this metric, the groupings in Tables 3 and
4 proved to be the most effective.

A Prognostic Macro-Stochastic Model

By restructuring the data from individual programs into Program Categories, we can now
use the model to make predictions. Given the assumption that future programs are essen-
tially like the programs in this data set, then as long as a future program can be assigned to
one of the existing categories, the macro-stochastic model can be reasonably applied at any
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time after program initiation to predict the expected error in the program’s cost estimate
and, by extension, predict the actual LCC or AUC.

This improved utility has come at a cost, however. The powerful program-specific
trends depicted in Figure 2 and Figure 4, which consisted of only three independent vari-
ables, are diluted by the amalgamation with other—albeit similarly behaving—programs.
In essence, the new model subject of Program Category requires that the random effects
design matrix (Z) compromise between multiple, different program trends, resulting in
reduced model performance. Or, to continue the market analogy, a particular company’s
performance is not likely to exactly follow the average of its assigned sector: There will
be important company-specific deviations. Fortunately, we can restore a large degree of
expected model performance though the inclusion of additional variables.

The final LCC macro-stochastic model incorporated 12 variables (to include 5 ran-
dom variables) from Table 2 and the final AUC macro-stochastic model incorporated 14
(to include 6 random variables). The selected fixed and random variables, along with their
estimated parameter values, are listed in Tables 5 through 8. Since the random variables
vary by Program Category, they are specified in their own tables. The reader should be cau-
tious in making inferences based on relative parameter estimate values as not all variables
are normalized, and the relationship between parameters is complicated by the inclusion of
both fixed and random effects.

Note that over half of the final variables from both models are capturing, in some
manner, program trends to date regarding the estimated cost and/or production quantity.
These variables may capture trends either directly by what is being measured (e.g., Nunn
McCurdy Breach, Cost Variance, etc.) or indirectly via changes in a given variable to date
(e.g., standard deviation, mean, etc.). Regardless, a consequence of this predominance of
trending variables is that a program should have at least one previous SAR on which to con-
struct a trend value; without a previous SAR, we find that model performance diminishes
considerably. In practice, this results in a small impact on the utility of the model in that

TABLE 5 LCC macro-stochastic model variables and fixed effects parameter estimates

# LCC model variable
Random
effect?

Fixed effect
estimate

1a DoD Component (#2)—Navy No 0.4157
1b DoD Component (#2)—Air Force No 0.0000
2a Acq Type (#6)—New No 0.2132
2b Acq Type (#6)—Modification No 0.2183
2c Acq Type (#6)—Variant No 0.0000
3 Weighted Mean of Normalized Acq Cost Est, BY10 (#14) Yes 3.2555
4 Std. Dev. of Natural Log of Acq Cost Est, BY10 (#14) No 9.3392
5 Natural Log of LCC Est (#17) No 7.1928
6 Mean of Natural Log of LCC Est (#17) No −4.8595
7 Maximum CV, Est (#25) Yes −0.7387
8 Slope of Regression Line of CV, Quan (#26) Yes 0.2188
9 Standard Deviation of CV, Total (#27) No −1.6512
10 Range of CV, Total-Quan (#28) Yes 0.7593
11a Breach, N-M (#34)—No Yes −3.1063
11b Breach, N-M (#34)—Yes Yes −3.1440
12 Std. Dev. of Square Root of Procure, Change (#48) No −0.3264



TA
B

L
E

6
L

C
C

m
ac

ro
-s

to
ch

as
tic

m
od

el
ra

nd
om

ef
fe

ct
s

pa
ra

m
et

er
es

tim
at

es
by

pr
og

ra
m

ca
te

go
ry

(P
C

at
)

R
an

do
m

ef
fe

ct
es

tim
at

e

#
L

C
C

m
od

el
va

ri
ab

le
PC

at
1

PC
at

2
PC

at
3

PC
at

4
PC

at
5

PC
at

6
PC

at
7

1
W

td
.M

ea
n

of
N

or
m

al
iz

ed
A

cq
C

os
tE

st
,B

Y
10

−3
.5

64
1

4.
44

51
−2

.0
47

6
−3

.4
83

7
3.

21
09

−3
.4

78
2

4.
91

77
2

M
ax

im
um

C
V,

E
st

0.
23

84
−2

.0
19

4
−1

.1
12

0
0.

53
59

1.
06

97
0.

72
22

0.
56

52
3

Sl
op

e
of

R
eg

re
ss

io
n

L
in

e
of

C
V,

Q
ua

n
0.

39
89

0.
12

23
−1

.1
51

4
−0

.4
86

6
2.

36
72

−0
.6

49
1

−0
.6

01
3

4
R

an
ge

of
C

V
,T

ot
al

-Q
ua

n
−0

.1
11

1
1.

00
39

0.
31

64
1.

82
85

−2
.2

55
1

−0
.2

41
0

−0
.5

41
7

5a
B

re
ac

h,
N

-M
—

N
o

0.
49

24
−0

.0
67

0
−0

.4
32

2
0.

27
78

−0
.5

39
5

−0
.0

92
1

0.
36

06
5b

B
re

ac
h,

N
-M

—
Y

es
0.

51
63

−0
.0

54
1

−0
.4

08
3

0.
50

18
0.

08
01

0.
04

42
−0

.7
88

3

62



Macro-Stochastic Model for LCC Estimates 63

TABLE 7 AUC macro-stochastic model variables and fixed effects parameter estimates

# AUC model variable
Random
effect?

Fixed effect
estimate

1a DoD Component (#2)—Navy No 0.4687
1b DoD Component (#2)—Air Force No 0.0000
2a Acq Phase (#5)—Development Yes 1.6995
2b Acq Phase (#5)—Production Yes 1.6816
3a Acq Type (#6)—New No 0.3993
3b Acq Type (#6)—Modification No −0.1132
3c Acq Type (#6)—Variant No 0.0000
4 Mean of Scaled Acq Cost Est, BY10 (#14) Yes 0.4536
5 Natural Log of AUC Est (#15) No 0.6391
6 Mean of Natural Log of AUC Est (#15) No −0.5730
7 Maximum CV, Engr (#24) Yes 1.4515
8 Weighted Mean of CV, Est (#25) No 1.5208
9 CV, Quan (#26) No 0.8438
10 Mean CV, Total (#27) No −1.2817
11 Wtd. Mean of Natural Log of Procure, Plan (#47) Yes 0.1570
12 Mean of Square Root of Procure, Plan (#47) No 0.2402
13 Wtd. Mean of Square Root of Procure, Change (#48) Yes −0.1111
14 Unit Acq Ratio (#50) Yes 5.8501

it is not suitable for use until the second SAR, which is nominally one year after program
initiation.

Figure 5 and 6 show, respectively, the performance of the LCC and AUC prognostic
macro-stochastic models where the subject equals the Program Category. Each model is
capable of predicting the accuracy of a current LCC or AUC point estimate at any point
in a program’s life where at least two SARs are available, and then compensating for
that error to provide a statistically more accurate estimate. Although model performance
is not as impressive as it was for the theoretical model (where the model subject was
SubProgram), it is still far better than current estimate performance. The mean magnitude
error in the prognostic LCC macro-stochastic model is more than a fourfold improvement
of the empirical estimate; for the AUC model, the improvement is over fivefold.

A Prognostic (and Validated!) Macro-Stochastic Model

The performance shown in Figures 5 and 6 was achieved under conditions in which the
training data set and the test (i.e., validation) data set were equivalent. Thus, it is reasonable
to suspect that actual model performance against future programs will be reduced (Larson,
1931; Hart & Wehrly, 1986). In order to validate the model, we need to test its performance
against data that is not available to the model. We certainly don’t want to wait several
years for new program data to become available, but the current size of the data set is an
impediment to a standard data partitioning techniques (i.e., dedicated training and test data
sets). With respect to validation, the most logical unit of analysis is the program, as that is
the fundamental entity for cost estimation and cost accrual accounting in the DoD. For both
the LCC and AUC model, however, we have fewer than three dozen programs available for
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FIGURE 5 Error in LCC estimate as a function of time (prognostic macro-stochastic
model) (color figure available online).

FIGURE 6 Error in AUC estimate as a function of time (prognostic macro-stochastic
model) (color figure available online).

analysis, hardly sufficient to execute a robust validation involving separate training and test
data sets.

This leads us to cross-validation. However, the specific method of cross-validation
for the macro-stochastic model is more complicated than it might at first seem. The
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non-i.i.d. nature of the data also invalidates standard cross-validation techniques: omitting
an observation (i.e., one SAR) does not remove the associated information due to corre-
lations with other observations from that subject (Opsomer, Wang, & Yang, 2001; Arlot,
2010). Suggested techniques to work around this problem include modified cross-validation
(Chu & Marron, 1991), h-block cross-validation (Burman, 1994), and sequential validation
(Bengio & Chapados, 2003).

Unfortunately, none of these techniques are well suited for the structure of the MDAP
data. Not only is the correlation distance (i.e., the strength of the correlation) highly depen-
dent on the program, but several programs have an insufficient number of SARs to faithfully
implement the given technique. For instance, in the case of h-block cross-validation, deter-
mining the theoretically appropriate size of h in our data set is not clear, but it must be
relatively large, and any value of h greater than two could eliminate as many as six programs
from the validation.

As a result, we have implemented a tailored version of Leave One Out Cross Validation
(LOOCV). Ordinarily, the “one” in LOOCV refers to a single observation, which is held
out from the data set and used for validation after the model is trained on the remaining
data. This process is then repeated for every data observation. Given the correlations within
a program, we have redefined the “one” to denote an entire Program. This is an appealing
strategy for two reasons. First, this is the level at which the correlations exist, so omitting an
entire Program is the only assured method for fully eliminating the correlations. Second,
despite restructuring the data into Program Categories, principal cost estimating interest
remains with the Program, so that is the appropriate level for assessing model performance.
Thus, for validation purposes, the entire Program (not just the SubProgram) becomes the
unit of analysis and the observation left out.

After removing a given Program from the data set, we train the model using the
remaining data and use the omitted Program as the test set. Then we record how the
model performed against that Program. We repeat this process for every Program in the
data set. This results in 30 (the C/MH-53E program cannot be validated because it only
has one valid LCC SAR) separate validations for the LCC model and 35 for the AUC
model, which are then amalgamated into a single summary of overall validated model per-
formance. This is a particularly rigorous validation as no information regarding the program
to be tested remains embedded in the model. Also note that the Program Category structure
still applies. This means that when validating certain programs (particularly the large and
medium maritime categories) very few programs remain in the category to form the basis of
the (i.e., train) Program Categorization parameters (refer to Tables 3 and 4). Nevertheless,
the validated version of each model performs well.

Figure 7 shows the resultant validated performance of the macro-stochastic prognostic
LCC model based on our tailored LOOCV technique. This performance reflects model-
corrected LCC estimates for every program with at least two valid SAR-derived LCC
estimates. The analogous results for the AUC version of the model can be seen in Figure 8.
As one would expect, model performance has diminished relative to the non-validated ver-
sion of the model, but it still remains significantly better than empirical performance. The
mean magnitude error in the validated LCC macro-stochastic model is 2.1 times better than
the empirical estimate; for the AUC model, the model is 2.6 times better.

Figure 9 compares the mean magnitude error per SAR in the empirical data to that of
both the AUC and LCC validated models across all programs. For reference, performance
of the non-validated version of each model is also shown. To ensure a fair comparison,
all SARs omitted from the macro-stochastic models (i.e., initial SARs) were also omitted
from the empirical data, which is why the mean magnitude errors for the empirical data are
slightly different from those shown in Figures 1 and 3.
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FIGURE 7 Error in LCC estimate as a function of time (validated prognostic macro-
stochastic model) (color figure available online).

FIGURE 8 Error in AUC estimate as a function of time (validated prognostic macro-
stochastic model) (color figure available online).

Figure 10 shows another measure of model effectiveness, which is essentially “head-
to-head” performance of each macro-stochastic model to the empirical estimates. This
program-by-program comparison shows that the validated LCC model performs better (i.e.,
has an overall lower error across all the SARs of a given program) in 23 of 30 cases. The
validated AUC model performs better for 31 of the 35 programs.
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FIGURE 9 Model performance as measured by mean magnitude error per SAR.

FIGURE 10 Model performance as measured by number of programs with lower overall
error.

Discussion

Key Findings

Although the validation results of the LCC and AUC macro-stochastic prognostic models
yield sizeable errors, we find that overall accuracy for both models is significantly better
than what was achieved in the original SAR estimates. The predicted LCC value from the
validated macro-stochastic model had a mean absolute error of just under 11% compared
to a 21% error in the historical program estimates. Given that the total LCC across all



Macro-Stochastic Model for LCC Estimates 69

of the programs we evaluated was approximately $800 billion, the model-predicted LCC
estimates represent an improvement in estimating performance of about $80 billion, or an
average of $2.6 billion per program. For the AUC estimates, the improvement was even
greater. The mean magnitude error of the historical cost estimates was over 40%, while the
model estimates had a mean magnitude error of less than 16%. Again, this translates to cost
fidelity improvements measured in billions of dollars.

Improvements in the mean errors tell part of the story, but program-by-program per-
formance is also important, and the macro-stochastic models performed well by this metric
as well. If the macro-stochastic prognostic model presented here had been used to esti-
mate LCC costs for every SAR of the programs in the LCC data set (aside from the first),
the model-based estimate would have had a lower overall error than the original estimate
for 23 of 30 programs (77%). In the case of the AUC estimates, the model would have
performed better for 31 of 35 programs (89%).

Not only can the original program estimate be improved dramatically using a macro-
stochastic derived correction factor, but it can also be accomplished with minimal effort.
The specific variables that feed each model are easily derived from data routinely available
in the program’s SARs. Program values observed for these variables can be transcribed into
the model formula at any point after the program’s second SAR, and a macro-stochastic
estimate derived in just a few hours.

The fact that trending variables were found to be statistically significant predictors of
LCC and AUC estimate errors is an intriguing result, but difficult to fully explain. Recall
that the original estimates developed by the program had access to all of the same infor-
mation (and far more) available to us in the SAR. Thus, any cost-impacting changes to the
program should have been incorporated into the latest SAR estimate. It may be that the full
cost implications of certain types of baseline changes are not fully understood until later
in the program. Or it may be that certain types of historical program instability are likely
to persist and/or permeate other elements of the program in ways that distort expected
costs. In any case, the prominence of the trending variables make it tempting to conclude
that change and cost instability tends to beget further change and cost instability. But this
interpretation is too simplistic, and frankly not warranted based on the data. Instead, our
conclusion is more nuanced: Certain types and degrees of change in certain types of pro-
grams do tend to affect the ultimate accuracy of the current cost estimates in relatively
predictable ways.

Perhaps of equal interest to the parameters included in the model are those that were
omitted, i.e., those that never significantly contributed to model performance. Notable
non-contributors were Joint (#3), APB-related variables (#8–11), Prime Contractor (#12),
PAUC/APUC-related variables (#20–23), Requirement Changes (#41–46), Program Year
(#1), Maturity (#7), and Expended (#18). The last three are perhaps the most surprising,
as one would expect that variables that capture program age would be a good indicator of
cost estimate accuracy (with the presumption that estimate accuracy improves as programs
mature). Since they were not, this serves as additional evidence of the finding presented in
the characterization paper, i.e., that LCC and O&S cost estimates for MDAPs are improving
very little, if at all, over time (Ryan et al., 2012).

We believe that the LCC and AUC macro-stochastic cost models presented here are
ready for trial use. However, it is important to understand a fundamental constraint on their
intended implementation. Note that both the LCC and AUC models require as an input all
of the subject program’s respective cost estimates to date (see Tables 5 and 7). This means,
for one, that the output of the macro-stochastic model would generally not be suitable for
internal program use. Unless perhaps implemented as a final validation check, awareness of
the macro-stochastic output could influence the official SAR cost estimates, which in turn,
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would likely bias the output of the macro-stochastic model. This is because the macro-
stochastic model implicitly relies on the continuation of current cost estimating practices;
any deviation from these practices, to include modifying the estimate based on the results
of the macro-stochastic model, could fundamentally change the stochastic nature of this
key input variable.

The dependence of the macro-stochastic cost model on the program’s cost estimate
also means that it is not meant to be used in lieu of existing program estimates. The tra-
ditional cost estimate may be perfectly accurate given the current baseline, which is an
important input, per se, for senior decision-makers. The macro-stochastic model, on the
other hand, is intended to be a complementary data point—it provides leadership the equiv-
alent of a stochastic cost vector, i.e., a probabilistic indication of where program costs are
likely to end up.

As a consequence of these implementation constraints, the authors envision that these
models could be most effectively employed by cost validation entities outside the acqui-
sition chain of command. An independent cost estimate is required for all MDAPs, which
is provided by either the service cost agency or the Office of the Secretary of Defense,
Cost Assessment and Program Evaluation (OSD/CAPE). Either of these entities may find
the output of the macro-stochastic model highly useful when conducting their independent
analyses. The Defense Acquisition Executive (DAE) and/or the Defense Acquisition Board
(DAB) are also potential consumers, as they each require independent cost estimates as part
of their review process, and the macro-stochastic model estimate could serve as an alternate
source of realistic cost validation (GAO, 2009; DAU, 2012).

Another potential user of this type of model would be the DoD service component
acquisition portfolio manager, who is often required to manage the execution of sev-
eral similar defense systems. The macro-stochastic model may be especially suitable in
this case, as the portfolio manager is likely to be responsible for multiple systems from
the same Program Category, and more accurate insights into overall portfolio cost com-
mitments could be invaluable. Moreover, using the model for several contemporaneous
programs would reduce the susceptibility of the predicted values being skewed by sta-
tistical outliers. Although the macro-stochastic model may certainly be applied to—and
has been validated against—individual programs, one would expect it to perform more
consistently when multiple programs are being simultaneously evaluated. This suspicion
can be partially confirmed by examining aggregated program performance at the Program
Category level. Although the results are not presented here due to space considerations, we
did find that both models provided significantly improved estimates across every Program
Category.

Issues and Concerns

Not surprisingly, the macro-stochastic model will sometimes predict an error estimate that
overcorrects the program estimate, such that an underestimate becomes an overestimate,
and vice versa. This is a natural consequence of that fact that the model is attempting
to minimize variance around a “perfect” estimate (i.e., zero error), which means that it
implicitly regards an overestimate as equally undesirable as an underestimate. This can
(and does) create the following type of situation: The original estimate is 20% too high (or
too low), but the model-corrected estimate is 10% too low (or too high). The question arises
of whether we would be better off budgeting 20% too much or 10% too little. Although both
underestimates and overestimates are undesirable from a budget planning perspective, there
are situations where one type of error may be preferred to the other. The macro-stochastic
model could certainly be tailored to reflect such preferences through a zero error offset.
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Somewhat related to the issue of overcorrections are the occasional instances where
the model predicts an extremely large estimate error. While these predictions of massive
errors—once applied to the original estimated cost—sometimes produce a more accurate
estimate, they can also lead to unrealistic results, such as when the model predicts that the
actual LCC or AUC has been underestimated by more than 100% (unless one wishes to
advocate the possibility that Pentagon programs could turn a profit!). To avoid these types
of nonsensical outcomes, we have embedded a threshold mechanism into the prognostic
model such that the original estimates—regardless of what error the model predicts—are
not corrected by more than a factor of two. In other words, the prediction of actual cost
after correction for the model-predicted error will never be more than double the empirical
estimate, nor less than half. In principle, the threshold could be much higher, but this level
seemed appropriate from a practical standpoint. Although the program LCC and AUC esti-
mates are sometimes inaccurate by a factor greater than two, corrections that require more
than doubling or halving of the program estimate would—even if valid—likely be regarded
with justifiable skepticism. Note that while thresholding did provide an improvement to
overall model performance, the effect was marginal, and it was not implemented often. The
threshold constraint affected the output in 26 of 709 cases (3.7%), and nearly half of these
instances occurred on a single program (C-130J).

Another potential concern is long-term model reliability. As discussed in the previous
section, the current iteration of both macro-stochastic models relies on official program
estimates to produce its own estimate. This fact introduces an inherently recursive—and
potentially unstable—element to longer-term model use. We know that senior defense lead-
ers make key decisions based on the traditional program cost estimates, and that these
estimates are often highly inaccurate. The nature of those decisions—and thus the ultimate
trajectory of certain types of programs—may be substantively different if the decision-
maker has access to more accurate cost estimates. For instance, programs that would
otherwise be cancelled might instead be funded, and vice versa. This in turn, could cre-
ate a negative feedback loop where cost estimate trajectories of certain program categories
no longer conform to the patterns that characterize the programs that we have seen to date,
thereby reducing the predictive capacity of the macro-stochastic model. Though highly
speculative, this argument points to the need for continued refinement of the model as
more data becomes available.

Perhaps the most significant barrier to macro-stochastic model implementation relates
to the fact that it represents a fundamentally different approach to DoD cost estimating.
In particular, it could be viewed in many respects as inherently non-transparent. In con-
trast to a traditional bottoms-up cost estimate, the specific drivers of the macro-stochastic
cost estimate are not directly traceable, nor fully explainable. Users could be inclined to
view this type of model as too opaque, in that the output may in fact be probabilisti-
cally more accurate, but the internal workings are inscrutable. Nevertheless, the results
presented here are compelling: Independent cross-validation verifies the improvements in
long-term DoD cost estimates that may be achieved by adjusting the cost estimates using
the model-predicted error.

In practice, the most important caveat to using this model pertains to the Program
Category structure. This construct was a strategy employed to transform the theoretical
macro-stochastic model into a useful prediction tool. However, it is only a valid construct
to the extent that current programs are representative of future programs, and those future
programs really do “fit” into one of these established categories. Expanding on this point,
the number of programs in Program Categories five (medium maritime) and six (large mar-
itime) are fewer than we would prefer. By only having two to three constituent programs,
we run the risk identified early on, i.e., that the defined Program Category may not be
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sufficiently representative of the next program to be assigned. Therefore, users of the cur-
rent iteration of the macro-stochastic model may wish to be more wary when employing the
model against these two Program Categories. This concern can be significantly mitigated
only with the passage of time and the inclusion of more data.

Finally, a methodological note of caution: The specific model variables selected as well
as the parameter estimates are based on the results of the previously completed characteri-
zation study (Ryan et al., 2012). Therefore, we recommend that potential users familiarize
themselves with that study in order to understand the potential issues and biases docu-
mented there before employing the macro-stochastic model. If the specific findings of the
characterization study are not valid, then the specific variables and parameter values of this
model are not likely to be valid either. Note, however, that concerns about the methodology
of the characterization study would not be expected to weaken the underlying premise of
macro-stochastic cost estimation; it would only affect its specific formulation.

Future Work

There are a number of ways in which the reliability, accuracy, or utility of the macro-
stochastic model could be improved. One beneficial task would involve using more current
data to reproduce the characterization study and rebuild the model. The current data set
is based on information available as of mid-2011. By expanding the data set to incorpo-
rate more recent SAR data and cost actuals, one could conceivably expand the data set
by approximately ten percent in terms of the SAR count, and five percent with respect to
program count. This additional data could help identify flaws in the model or increase con-
fidence in the current implementation, especially if conducted by an independent source.
Alternatively, model reproduction on a larger data set could allow the model parameters
and Program Categories to be further optimized.

The utility of the macro-stochastic model might be significantly improved by extend-
ing its applicability to earlier MDAP cost estimates. The availability of a more accurate
cost estimate prior to Milestone B could be especially valuable, as this milestone requires
independent certification of program cost reasonableness and affordability (DAU, 2012).
But, as previously noted, the model is currently constrained by the need for certain trend-
ing variables, which are ostensibly not available until the second SAR. Ordinarily, SARs
are not required until after Milestone II/B, but some MDAPs do submit what are known
as RDT&E (Research, Development, Test, and Evaluation) SARs prior to Milestone II/B.
These SARs nominally exclude certain key cost categories (e.g., O&S costs), but if enough
of these types of SARs exist, and they are otherwise sufficiently extensive, they could be
evaluated for model inclusion. Alternatively, it may be possible to obtain values for the
model parameters from non-SAR sources.

Lastly, a couple of specific model concerns articulated in the previous section relate
to the fact that the model is dependent on the program’s cost estimate. Therefore, a
key improvement would be to build the model without using any of the program’s esti-
mates as independent variables. This approach might reduce model performance, but it
would also improve long-term model reliability and ensure the output is truly a function-
ally independent cost estimate. This modification could also be instrumental in beginning
to characterize the cost-effectiveness of the aforementioned procurement strategy polices
related to acquisition, contracting, and sustainment. Although we previously commented
on the difficulty of quantifying these elements via the SARs, some degree of quantifi-
cation could be very beneficial, and alternate data sources (besides the SAR) could be
considered.
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Conclusion

Despite the fact that DoD cost estimating practices have become increasingly sophisticated,
the actual program cost estimates that are produced remain poor, at least when compared
to the final, actual costs of the program. Our hypothesis is that this deficiency is largely due
to the fact that current cost estimating techniques must assume a fixed program baseline.
As a way around this unrealistic assumption, we have proposed a fundamentally different
approach to cost estimating that attempts to capture this uncertainty by modeling the error
in the program estimate as a random variable. We found that the value of this variable is
largely unique to a given program—and even a group of programs, to some extent—and
could be predicted reasonably well through a relatively small number of top-level program
summary indicators gleaned from the annual SARs.

The macro-stochastic model represents an intriguing option for vetting program esti-
mates of Life Cycle Cost and Annual Unit O&S Cost. It not only appears to provide cost
estimates that are significantly more accurate than those reported in the original SAR esti-
mates, but the amount of effort needed to construct the estimates is minimal. Although the
current version of the macro-stochastic model is not suited for replacing existing program
cost estimates, the authors believe it could be extremely useful to independent costing enti-
ties outside the acquisition chain of command who are seeking a more realistic assessment
of system value or program affordability.

Note

1. “AUC” is not a standard DoD acronym; the authors have coined it for convenience in the context
of this application. Further, AUC should not be confused with the APUC (Average Procurement
Unit Cost).
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