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Cost estimation of new products has always been difficult as only few attributes will be known. In these
situations, parametric methods are commonly used using a priori determined cost function where
parameters are evaluated from historical data. Neural networks, in contrast, are non-parametric, i.e.,
they attempt to fit curves without being provided a predetermined function. In this article, this prop-
erty of neural networks is used to investigate their applicability for cost estimation of certain major
aircraft subassemblies. The study is conducted in collaboration with an aerospace company located
in Montreal, Canada. Two neural network models, one trained by the gradient descent algorithm
and the other by genetic algorithm, are considered and compared with one another. The study, using
historical data, shows an example for which the neural network model trained by genetic algorithm
is robust and fits well both the training and validation data sets.

Introduction

For a manufacturing company, being able to determine reliable cost estimates for new prod-
ucts is essential, whether the products are developed in-house or purchased from suppliers.
This is in particular crucial in aerospace companies, where some of the components and
products cost several thousands or even millions of dollars. However, cost estimation of
new products has always been difficult as only few attributes will be known. A case study
conducted by Bounds (1998) in the U.S. showed that only 26% of the completed projects
were on time and within budget. In tackling such difficult cost estimation problems, para-
metric methods are commonly used where the cost engineer predetermines an a priori cost
function with parameters to be estimated from historical data. In such parametric methods,
defining an appropriate cost function is always a difficult problem. Neural networks (NNs),
in contrast, are non-parametric models that attempt to fit curves without being provided
a predetermined function. Moreover, researchers have commended NN models for their
ability to characterize complex relationships (Caputo & Pelagagge, 2008; Cavalieri et al.,
2004; Tu, 1996). To achieve this, the NN has to be “trained” using historical data where
the training process can be accomplished by using different techniques that include genetic
algorithms (GAs).
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NNs and GAs are two computational techniques that have been actively and increas-
ingly researched in recent years. A number of researchers have proposed systems that
combine both techniques to allow the evolution of neural networks; see Yao (1993) for
early studies. In NNs, computation is performed through the passing of signals within
a structured arrangement of connected processing units (called neurons), in response to
given input signals. A NN, in addition to its connectivity details, usually includes mecha-
nisms that specify how weights on those connections may be changed over time in response
to the inputs provided to the network. In genetic algorithms, computation is performed
through the creation of an initial population of individuals followed by the evaluation,
synthesis, creation, and elimination of individuals over successive generations until a sat-
isfactory solution is found. In this study, the genetic algorithm is used to find weights for
a back-propagation neural network with a fixed number of layers, neurons per layer, and
other basic artificial NN (ANN) parameters. The NN is to be trained and used for esti-
mating target costs for major aircraft subassemblies for potential new airplane programs in
Bombardier Aerospace.

Problem Case

Bombardier Aerospace is a global leader in the design and manufacturing of aircraft. The
company is interested in quantifying target costs of various assemblies and subassemblies
for potential new aircraft. One such major subassembly is landing gear. It can be divided
into different subsystems, such as main landing gear (MLG), nose landing gear, among
others. The case presented in this article is the estimation of target cost of MLGs. Figure 1
depicts the fully extended MLG of a Bombardier Q400 in flight. The maximum takeoff
weight (MTOW), typically measured in pounds (lbs), is the heaviest weight at which the
aircraft can fly while meeting all the applicable airworthiness requirements. After conduct-
ing several interviews with internal experts and analyzing the technical specifications, it
seems that the MTOW of the aircraft, the weight of the MLG, and the height of the MLG
are identified as the main cost drivers. The height of the MLG, measured in inches, is the
vertical height of the MLG when it is fully extended as shown in Figure 1.

FIGURE 1 Fully extended MLG of a Q400 (color figure available online).
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TABLE 1 Historical data

Cost drivers

Program Weight (lbs) MTOW (lbs) Height (inches) Cost

1 335.77 33,000 111.16 63, 816
2 335.77 36,300 111.16 69, 465
3 389.97 43,000 111.54 73, 794
4 490.58 64,500 124.58 125, 657
5 199.58 37,850 43.29 78, 516
6 265.62 47,600 43.30 117, 834
7 328.81 53,000 40.85 104, 635
8 333.00 51,000 42.00 103, 552
9 532.00 72,750 54.80 103, 173
10 532.00 80,500 54.80 114, 082
11 594.00 85,970 55.00 102, 595
12 526.97 92,500 75.17 104, 400
13 526.97 98,000 75.17 104, 408

Table 1 shows the costs of 13 MLGs of existing aircraft programs along with the
corresponding potential cost drivers.

It should be noted that the cost data has been masked to protect proprietary data, and
the method to mask the data that has been utilized is shown in Muralidhar et al. (1999).
The problem is to develop a NN model to forecast MLG cost given this limited data set.
In the development process, several test cases will be considered where in each case, 3 of
the 13 programs will be held for validation and the remaining 10 will be used to train the
NN. Using these test cases, the genetic algorithm trained neural network will be evaluated
against the conventional gradient descent algorithm trained neural network. The ability to
predict costs of the validation data set will be used as a main criterion to compare the two
NNs. There has been some research conducted to use back propagation (BP) NNs for esti-
mating the cost (Hari et al., 2011; Ji & Sun, 2011; Gharehchpogh, 2011; Chou & Tia, 2010;
Feng & Xin-Zheng, 2009). Moreover, there have also been studies conducted by Salam
et al. (2009) and Smith and Mason (1996) comparing the estimation for regression models
and NN models, finding that NNs were more suitable. However, to our knowledge, there
has not been any research conducted on comparing different types of NNs for estimating
costs, as is the case in this article.

Back Propagation Trained ANN

Back propagation ANNs (BP-ANN) trained by using the gradient descent algorithm are
among the most popular forms of ANNs. They are able to approximate functions based on
a set of sample data. In the literature, it is shown that an ANN with a single hidden layer
and a non-linear activation function can approximate the decision boundaries of arbitrary
complexity (Pandya & Macy, 1996). The ANN used in this study is depicted in Figure 2.

The number of neurons in the hidden layer was chosen to be five as this was found
to be good in terms of generalization (avoidance of under- or over-fitting) after several
experimental runs for the problem considered in this article.

A normalized input vector representing the three cost drivers (see Table 1 before nor-
malization) is incident on the input (left) layer and distributed to the hidden (middle)
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FIGURE 2 A typical back propagation neural network.

layer and finally to the output (right) layer via weighted connections. The “bias” neuron
in Figure 2 always outputs unity without having an input. The bias neuron is very impor-
tant, and the error-back propagation neural network without a bias neuron does not learn
(Kecman, 2001). A neuron in the first layer simply spreads out its input value to all the
neurons in the hidden layer. Each of the remaining neurons in the network operates by
taking the sum of its weighted inputs and passing the result through a nonlinear activa-
tion function. This is shown mathematically in Equation (1). In this equation, outj is the
output of jth neuron, wi,j is the weight for of connection between ith source neuron and
jth destination and f is a nonlinear activation function. There are several conventionally
used activation functions. One of the most frequently used functions is the sigmoid func-
tion given in Equation (2). The computational simplicity of the derivative of this function
simplifies the formulation of the equations needed for the training process. Moreover, this
function is bounded, ensuring that certain signals remain within a range and introduces
nonlinearity to the model. The term Q in this equation is referred to as the temperature of
the neuron, and it determines the shape of the sigmoid. It is used to tune the network in
order to improve its convergence behavior.

For the ANN to be able to predict a cost given the three cost drivers as inputs, it must
first be trained using a training set. The training is a successive adjustment of the weights
using the gradient descent algorithm in order to minimize a defined measure of error, which
is typically the squared error (in the next section, the genetic algorithm will be presented as
the training method). In this process, each time an input vector p (of the three cost drivers)
from the training set is presented to the network, the difference between the desired and
the actual output is computed and each weight is adjusted by an amount �wi,j, given in
Equation (3). In this equation, η refers to the learning rate, Op,j refers to the output of the
jth neuron corresponding to the input vector p, and δp,j refers to the error signal at the jth
neuron δp,j. The error signal is computed using Equation (4) for the single neuron in the
output layer (Neuron 11) and using Equation (5) for the neurons in the hidden layer (j =
5 . . . 10). Researchers, such as Huang and Huang (1991), have indicated the sensitivity of
neurons in the hidden layer; however, conducting a sensitivity analysis on the neurons in the
hidden layer between 3 and 30 the predictions were found to be similar for all cases. The
datum tp in Equation (4) is the desired value at the neuron in the output layer, correspond-
ing to the pth presentation of the vector from the training set. This training algorithm is
called training by back-propagation or by gradient descent algorithm. Most of the equations
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presented in this section are peculiar to the neural network structure depicted in Figure 2. A
more general and complete derivation of the algorithm can be found in Pandya and Macy
(1996).

outi,l = f (neti) = f

⎛
⎝∑

j

wj,i,loutj,l−1

⎞
⎠ , (1)

f (neti) = 1

1 + e−neti
Q

, (2)

�wj,i,l = η × δp,i,l × Op,i,l, (3)

δp,1,2 = (
tp,1,2 − Op,1,2

) × Op,1,2 × (
1 − Op,i,2

)
, (4)

δp,j,1 − Op,j,1 × (
1 − Op,j,1

) × δp,1,2 × wp,1,2. (5)

Genetic Algorithm Trained ANN

Genetic algorithms (GAs) introduced in the 1970s by Holland (1975), have gained
increasing popularity in solving many optimization problems. It is an iterative procedure
maintaining a population of structures (“chromosomes”) that encode candidate solutions
of a problem under consideration. Computation is performed through creation of an
initial population of individuals followed by the evaluation, synthesis, creation, and elim-
ination of individuals over successive generations until a satisfactory solution is found.
Using the principle of survival of the fittest, GAs have the ability to guide their search
to the most promising areas of the state space. This property can be used to find the
connection weights of the back propagation neural network presented in the previous
section.

Solution Representation

The chromosomal encoding of a solution is the first task in applying a genetic algorithm
in any problem. In this research, a chromosomal representation of a neural network (with
fixed number of layers, number of neurons per layer, sigmoid function constants) to be a
string of connection weights ordered as shown in Figure 3 is considered.

The gene Wi,j represents the connection weight between neurons i and j. This gene
can assume any value between pre-specified upper bound UB and lower bound LB. These
bounds on the weights can be treated as parameters of the algorithm that can be adjusted
during algorithm tuning.
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FIGURE 3 A chromosomal representation of the neural network shown in Figure 2.
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Fitness Function

The purpose of the “fitness function” is to measure the fitness of candidate solutions in the
population. To calculate the fineness of an individual chromosome, we first set the values
of the weights of the various connection of the neural network to those values that can
be obtained from the chromosome under consideration as in Figure 3. We then use the
resulting neural network to forecast target costs on all of the training data sets. Once target
costs are forecasted, we calculate the sum of the squared errors where error is the difference
between the desired and forecasted values. The resulting sum of squared errors is used as
the fitness of the individual. Hence, the smallest this value is the more fit the individual
chromosome is.

Genetic Operators

“Genetic operators” make the population evolve by creating more promising (i.e., better
fit) candidate solutions to replace the less promising ones. These operators are generally
categorized as selection, crossover, and mutation operators.

Selection Operator. A simple way to simulate the natural selection process in a GA is
through tournament selection. In the proposed GA, we use a k-way tournament selec-
tion operator. In this operator, k individuals are randomly selected and the one presenting
the highest fitness is declared the winner and a copy of this individual is added to
the mating pool to form the next generation. Then, the k individuals in the tournament
are placed back to the current population and the process is repeated. This continues
until the number of individuals added to the mating pool is equal to the population
size.

Crossover Operators. Once the mating pool is generated using the selection operator,
the individuals in the pool are randomly paired to form parents for the next genera-
tion. Then, for each pair, the algorithm arbitrarily selects one of the available crossover
operators and applies it with some degree of probability to create two child individ-
uals by exchanging information contained in the parents. The crossover operators are
(i) swap-crossover-operator-1 (SwCO-1), (ii) swap-crossover-operator-2 (SwCO-2), (iii)
single-point-crossover-operator-1 (SPCO-1), and (iv) single-point-crossover-operator-2
(SPCO-2).

The crossover operator SwCO-1 arbitrarily selects a neuron (N1, N2, N3, or N4) in the
input layer segment of the parent chromosomes and exchanges the weights associated to
this neuron between the parent chromosomes. The SwCO-2 crossover operator exchanges
the Hidden-Layer Segments of the parent chromosomes. SPCO-1 arbitral selects a
crossover point in the Input-Layer-Segment of the parent chromosomes and exchanges the
part of this segment lying to the left of the crossover point. SPCO-2 exchanges the part of
the Hidden Layer Segment lying to the right of an arbitrarily selected crossover point on
this segment. The above four crossover operators are applied with individual probabilities
α1, α2, α3, and α4.

Mutation Operators. Selection and crossover do not introduce new genetic material into the
population pool. This task is performed by the mutation operators acting at the gene level
to alter information contained in the gene. In this research we consider a single mutation
operator. This operator is applied with a small probability α5 on a given chromosome and
gets affected on each gene with another small probability α6. Whenever this operator gets
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effected on a particular gene, it steps up or down the value of this gene by a step amount
θ using the equations wi,j = min (UB, wi,j + θ ), or wi,j = max (LB, wi,j − θ ), respectively.
The step amount θ is calculated every time this operator is applied on a given wi,j with the
equation θ = θmax

∗ rand( ), where θmax is a parameter to be set, and rand( ) is the random
number generator in {0, 1}.

Implementation

Once solution representation, fitness function, and genetic operators are defined, the genetic
algorithm can be implemented following the general steps shown in Figure 4.

The stopping criterion used is the maximum allowable average squared error of pre-
diction on the training data set using the “best” neural network (i.e., with the smallest
error) found so far. Once the stopping criterion is reached, the algorithm is stopped and
we then evaluate each neural network in the final population both on the training and val-
idation data sets and we pick the one that outperforms the other neural networks. This is
one significant advantage of the genetic algorithm-based approach over the simple gra-
dient descent-based back propagation. At the end of its iteration, the genetic algorithm
approach can provide several thousands of neural networks from which we can choose the
one that provides good prediction not only on the training data set but also on the valida-
tion as well. The developed code for the GA trained NN can be found online (GA Code,
2012).

Numerical Example

In this section, we present numerical examples to compare the back propagation-trained
neural network to that of the best neural network found by the genetic algorithm. As pre-
viously mentioned, the experiment is conducted on estimating the target costs for MLGs
at Bombardier. Three cases were generated where subsamples of the data in Table 1 were
arbitrarily picked such that ten programs were used as train data set and the remaining three
were used for validation purposes. The programs used for validation were (2, 8, 12), (3, 7,
9), and (6, 7, 13) in cases 1, 2, and 3, respectively.

Initialize Population
Repeat

Get a weight for the neural network from a chromosome
Evaluate the neural network and assign a fitness to the
chromosome
Repeat the above two steps for each chromosome
Perform competitive selection
Randomly form pairs of individuals
Apply Crossover and obtain two children from each pair
Apply Mutation operator on each child chromosome
Constitute the next generation from the new
chromosomes

Until stopping criterion is reached

FIGURE 4 A pseudo-code for genetic algorithm.
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TABLE 2 Case 1 BP-ANN vs. GA-ANN

BP-ANN GA-ANN

Program Cost Forecast Error % Forecast Error %

1 63, 816 63, 746 0.11 64, 708 1.40
3 73, 794 73, 756 0.05 75, 113 1.79
4 125, 657 125, 660 0.00 125, 132 0.42
5 78, 516 78, 665 0.19 78, 724 0.27
6 117, 834 117, 621 0.18 118, 315 0.41
7 104, 635 104, 961 0.31 105, 892 1.20
9 103, 173 105, 278 2.04 106, 056 2.79
10 114, 082 109, 176 4.30 112, 384 1.49
11 102, 595 104, 480 1.84 102, 393 0.20
13 104, 408 105, 030 0.60 102, 661 1.67
2 69, 465 66, 039 4.93 69, 472 0.01
8 103, 552 101, 768 1.72 101, 958 1.54
12 104, 400 103, 554 0.81 105, 345 0.91

TABLE 3 Case-2 BP-ANN vs. GA-ANN

BP-ANN GA-ANN

Program Cost Forecast Error % Forecast Error %

1 63, 816 63, 820 0.01 62, 400 2.22
2 69, 465 69, 299 0.24 64, 409 7.28
4 125, 657 125, 878 0.18 117, 966 6.12
5 78, 516 78, 766 0.32 82, 251 4.76
6 117, 834 117, 436 0.34 105, 175 10.74
8 103, 552 103, 944 0.38 110, 559 6.77
10 114, 082 108, 483 4.91 107, 305 5.94
11 102, 595 107, 277 4.56 104, 773 2.12
12 104, 400 105, 177 0.74 107, 047 2.54
13 104, 408 103, 989 0.40 105, 380 0.93
3 73, 794 81, 744 10.77 75, 425 2.21
7 104, 635 112, 593 7.61 111, 013 6.10
9 103, 173 109, 321 5.96 110, 109 6.72

Tables 2, 3, and 4 show both data and forecast using BP-ANN and GA-ANN for
cases 1, 2, and 3, respectively. In these tables, it can be seen that the maximum error
observed in all 13 data points is more or less the same in both types of neural net-
works. However, the GA-ANN results a lower error on the validation than the BP-ANN.
A statistical test (t-test), which can be found in Ross (2010), comparing the means of
the errors, with a 95% confidence interval also confirms that the GA model outper-
forms that of BP in terms of predictability. This entails that using the genetic algorithm
search method enables us to find neural networks that have better generalization. Similar
encouraging results were obtained in several other trials, which are not illustrated in this
article.
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TABLE 4 Case-3 BP-ANN vs. GA-ANN

BP-ANN GA-ANN

Program Cost Forecast Error % Forecast Error %

1 63, 816 64, 137 0.50 68, 205 6.88
2 69, 465 68, 800 0.96 72, 582 4.49
3 73, 794 74, 073 0.38 81, 354 10.25
4 125, 657 125, 394 0.21 128, 195 2.02
5 78, 516 79, 012 0.63 87, 065 10.89
8 103, 552 102, 687 0.84 106, 426 2.78
9 103, 173 107, 558 4.25 103, 751 0.56
10 114, 082 109, 218 4.26 111, 772 2.02
11 102, 595 102, 580 0.01 103, 165 0.56
12 104, 400 105, 577 1.13 104, 948 0.52
6 117, 834 105, 658 10.33 106, 122 9.94
7 104, 635 110, 544 5.65 109, 846 4.98
13 104, 408 103, 870 0.51 104, 495 0.08

Discussion and Conclusion

Neural networks and genetic algorithms are two computational techniques that have been
actively and increasingly researched in recent years. A number of researchers have pro-
posed systems that combine both techniques to allow the evolution of neural. In this
article, we used genetic algorithm for training neural networks for target cost estimation.
Numerical examples showed that the neural networks trained by genetic algorithm have
better generalization (good prediction on the validation data). This property is essential for
accurate prediction of costs on new programs with limited data, as researchers, such as
Chen et al. (2000) and Fukunaga (1990), have indicated challenges on NN with limited
data, however, this research indicates otherwise. Moreover, as previously mentioned, the
research of Salam et al. (2009) and Smith and Mason (1996) indicate that cost estimation
on NN outperforms those based on regression models. However, a limitation of the applica-
tion of NN models, also highlighted by Smith and Mason (1996), which was also the case
of this research applied in an industrial setting, is that management is reluctant to use NN
models to their intangible phenomenon. Furthermore, even though the GA training algo-
rithm outperforms the one of BP, it may also tend to find a local optimal solution, rather
than the global one. Therefore, future research is required to test other algorithms, such
as simulated annealing to better understand when NN models may perform poorly when
compared to one another and to other estimation models.
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