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Here, There Be Dragons: Considering the Right Tail
in Risk Management

CHRISTIAN B. SMART

Missile Defense Agency, Redstone Arsenal, Alabama

The “portfolio effect” is a common designation of a supposed reduction of cost risk achieved by
funding multiple projects (the “portfolio”) that are not perfectly correlated with one another. It is
often relied upon in setting confidence-level policy for program or organization budgets that are
intended to fund multiple projects. The idea of a portfolio effect has its roots in modern finance, as
pioneered by 1990 Nobel Memorial Prize in Economic Sciences recipient Harry Markowitz (1959).
On the other hand, in presentations to four recent ISPA-SCEA conferences, 2007–2010, the present
author argued that, when applied to Government budgeting, the portfolio effect is more myth than
fact. However, current National Aeronautics and Space Administration and Department of Defense
policy guidance relies heavily upon this apparently chimerical effect. The objective of the present
article is to propose a superior alternative budgeting decision process based on a concept called
“conditional tail expectation” that better measures project risk exposure in terms of the project’s
expected shortfall in funding. Also called “tail value at risk,” use of this risk-assessment technique is
growing in popularity in a variety of financial contexts, including insurance.

Introduction

Jorion (2007) wrote that “Western Europe conquered the world because of a technological
revolution that started because of attempts to measure the world.” In the same way, attempts
to measure risk more definitively, realistically, and accurately will surely lead to better
project management.

Current government policy guidance, particularly that offered by National Aeronautics
and Space Administration (NASA) and Department of Defense (DoD), calls for setting
funding at a specific percentile, typically the 70th or 80th. The optimistic belief underly-
ing this guidance is that the portfolio effect will allow total organization-wide funding to
support a much higher degree of confidence, perhaps even one above the 90th percentile.
However, if it turns out that a portfolio effect of the kind envisioned does not really occur,
policy guidance that recommends funding at a relatively low percentile, like the 70th or
80th, will result in numerous overruns, insufficient reserves, and other financial difficulties
at the organizational level. Funding at such “low” levels might very well result in overruns
for 20–30% of projects, so cost growth will continue to be a predictable occurrence.

Furthermore, funding at a specific percentile provides no insight into how much
extra funding may be needed in reserves. Depending upon the variance of the cost risk
distribution and its other statistical characteristics, such as skewness and kurtosis, the
needed amount of extra funding can vary significantly. Thus the right tail (the portion
of a probability distribution in the region of the higher percentiles) must be taken into
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consideration when establishing reserves. A more informative metric, called “conditional
tail expectation” (CTE), has been proposed by analysts working in finance and insurance
to measure this expected shortfall. Another name for that metric is “tail value at risk.”

Cost-related approaches to risk management for NASA and other government projects
seem to focus solely on finding a single percentile to budget against. NASA policy in
particular explicitly mentions the 70 and 50% levels, for example, and some government
organizations call for budgeting to the 80th percentile. Furthermore, other U.S. Government
organizations tend to follow the lead of NASA and other organizations on this issue. In the
financial industry, a percentile level is referred to as the “Value at Risk” (VaR) and defined
as the maximum possible loss at a given probability level (Embrechts et al., 2005). In this
article, we will consider the terms percentile level and VaR to be interchangeable.

In mathematical terms, suppose that C is a random variable representing project cost,
and FC(x) = P(C ≤ x) is its probability distribution function. Then the VaR of C at
probability level α is technically defined as

VaRα(C) = Qα(C) = F−1
c (α) = inf {x:Fc(x) ≥ α}

= inf {x: 1 − Fc(x) ≤ 1 − α},

where Qα(C) is the 100αth percentile of C, F−1 denotes the inverse function of F, and
inf{x:statement} signifies the smallest value of x for which the statement following the
colon is true. That is, VaR is a percentile of the cost risk distribution. For example, for α =
0.95, the 95th percentile of a normal distribution with mean equal to $600 and standard
deviation equal to $200 is approximately $929, so VaR0.95 = $929. In this article, the terms
VaRα , Qα , and F−1(α), for a specified value of α, are used interchangeably.

Percentile (or VaR) funding has some merits. It can be used to compare the fund-
ing requirements of different projects. It can be easily understood by decision makers
who may not be fluent in the details of probability and statistics. Risk reserves can
be defined in terms of it. It is currently part of NASA and DoD policies and is com-
monly used even in the banking industry. However risk management shouldn’t stop at
that point because, for example, even funding at the 70th percentile means that there is
almost a one-in-three chance of experiencing an overrun. And not only that, but fund-
ing at the 70th percentile provides no information about what may happen above that
level. If the 70th percentile is exceeded, how much additional funding is expected to be
required?

Funding at any set percentile is budgeting in the dark, ignoring the truly risky, bad-day
events that projects, or at least portfolios, should have funds available to pay for when they
occur. Funding against a low percentile is like whistling in the dark, hoping that right-tail
events do not occur. Funding against a high percentile is unfortunately not that much dif-
ferent, even though we think we have better prepared for right-tail events. And not all right
tails are created equal. Some distributions, such as the triangle, have no tails (a subcategory
of “thin”), the normal and lognormal have thin tails, but others, typically those which are
more realistic for projects, have fat tails. As on old maps that depicted dragons and other
monsters in uncharted territory (see Figure 1), who knows what risks lurk beyond the 70th
percentile?

Consider four different distribution types, each of which has the same 70th percentile,
but different characteristics, as displayed in Figure 2. In Figure 2, four distributions, a trian-
gular, normal, lognormal, and Pareto, are all displayed. Each has different characteristics,
and their defining parameters are listed in Table 1.
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FIGURE 1 A section of the Carta Marina by Olaus Magnus, 16th Century (color figure
available online).
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FIGURE 2 Four different distributions with the same 70th percentile.

TABLE 1 Defining parameters of the four distributions

Distribution type Defining parameters

Triangular L = 100.00 M = 407.41 H = 1,000.00
Normal μ = 500.00 σ = 190.69
Lognormal μ = 6.0000 σ = 0.7569
Pareto α = 0.50 θ = 59.34

While the triangular, normal, and lognormal distributions are usually well understood
by cost analysts, the two-parameter Pareto distribution may be unfamiliar to many. Its
cumulative distribution function is given by the following expression:

FPar(x) = Pr{Par ≤ x} = 1 −
(

θ

x + θ

)τ

for x ≥ 0

= 0 for x < 0.
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The Pareto distribution, not commonly used in cost analysis, is an example of a fat-tailed
distribution, which has received a great deal of attention in the financial press in recent years
(see Taleb, 2007, for an example). So it is of interest to the cost community to compare what
a fat-tailed distribution may mean in practice for setting risk reserves, compared with the
consequences of modeling on the basis of the thin-tailed triangular, normal, and lognormal
distributions that are often seen in practice in the majority of cost estimates.

Although each distribution in Table 1 happens to have the same 70th percentile, as
shown in Figure 2, should we expect them to have similar tail behavior? The obvious
answer is no, and a cursory glimpse at the S-curves’ right-tail characteristics, as displayed
in Figure 3, make this plain.

The triangular and normal distributions both have thin tails. There is relatively little
risk beyond the 70th percentile, and while the lognormal has a slightly fatter tail, the Pareto
has an extremely fat tail. The 70th percentile for all four distributions is $600. But to get
to the 80th percentile, an additional $60 is needed for the normal, $80 for the triangular,
but $170 is needed for the lognormal, and a whopping $830 more is needed for the Pareto.
A comparison of the tail behavior of the four distributions is shown in Table 2.

Table 2 shows there is significant tail risk when the lognormal or the Pareto is an
appropriate model for the cost distribution. Indeed the 99th percentile for the Pareto is
1,000 times greater than its 70th percentile, indicating enormous tail risk. Should four dif-
ferent projects whose cost distributions follow the four different risk profiles seen in this
example, be funded at the same level? That is what would happen in the case of 70th
percentile confidence funding, but funding each of two projects at $600, one of which

TABLE 2 Comparison of tail percentiles for the four distributions

Percentile Triangular Normal Lognormal Pareto

70th $600 $600 $600 $600
80th $680 $660 $763 $1,424
90th $770 $744 $1,064 $5,875
95th $840 $814 $1,401 $23,677
99th $930 $944 $2,347 $593,341
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FIGURE 3 Tail behavior of the four distributions.
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follows the triangular distribution and the other the Pareto, will have significantly differ-
ent consequences in the 30% of those cases in which the projects’ 70th percentiles are
exceeded.

The Pareto distribution in this example may not model the cost-risk behavior of an
actual Government project, because almost any such project would surely be cancelled long
before experiencing cost growth in the range of a several-hundred-fold increase. Just imag-
ine the prospect of a billion-dollar project growing to a trillion-dollar project! However,
the Pareto distribution is illustrative of the real magnitude of risk seen in financial mar-
kets and in catastrophic risks for natural disasters such as the massive oil spill in the Gulf
of Mexico in 2010. These kinds of risks are what financial writers like Taleb ( 2007) call
“black swan” events. Risk magnitudes that arise from such distributions, namely the kind
typically referred to as fat-tailed in the field of finance, make costs overruns of aerospace
and defense projects seem puny by comparison.

And does percentile budgeting even truly amount to effective risk management policy?
Suppose you are shopping for a new car. You mention that safety is your top concern. The
salesman says he has a great, safe car available. You ask about the air bags. The salesman
answers, “Of course the air bags work! Seventy percent of the time they work fine. Only
30% of the time, the air bags will fail to deploy.” Would you buy such a car? According
to hedge fund manager David Einhorn, “Risk management is the air bag that must always
work, but only in the multi-sigma event where you have an accident” (Brown and Einhorn,
2008). This is the complete opposite of percentile budgeting to manage risk. Merrill Lynch,
in its September 28, 2002 10-Q filing, stated “VaR [aka percentile] measures do not convey
the magnitude of extreme events.” (Triana, 2009). Thus percentile budgeting is risk man-
agement based on misleading information. As Taleb stated in his book, The Black Swan,
“You’re worse off relying on misleading information than on not having any information at
all. If you give a pilot an altimeter that is sometimes defective he will crash the plane. Give
him nothing at all and he will look out the window.” The point is that average boring laid-
back events should not be the program manager’s only focus, but that’s all 70th percentile
budgeting protects against.

Coherent Risk Measures

A risk measure quantifies exposure to risk. When applied to cost risk, it is a single number
that is used to represent the cost risk of a project or program. In this article, risk measures
will be denoted by the function ρ. A risk measure for a project’s cost X, which is denoted
ρ(X), has the same units as those used to measure cost. That is, if cost is measured in dollars
then ρ(X) is also measured in dollars.

The variance of a distribution is one example of a risk measure, since it quantifies the
spread in the cost distribution. VaR, namely a percentile, is a more informative risk mea-
sure, and there are many others that have been and are being used. How do we know which
risk measures are “good” and which are not? In other words, what properties should a risk
measure have? This issue has been studied for the insurance industry specifically and for
risk measurement in general. In a groundbreaking paper, Artzner et al. (1999) introduced
the notion of “coherence” of risk measures.

One property important for a risk measure is that when two random variables are com-
bined, the portfolio of the two corresponding projects should be no riskier than the sum of
the individual projects’ risk measures. This property is expressed algebraically by stating
that a risk measure ρ should have the subadditivity property, namely, that

ρ(X + Y) ≤ ρ(X) + ρ(Y).
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This property ensures that there should be some diversification benefit from combining
risks from separate projects into a portfolio. A better-known term for subadditivity is the
“portfolio effect” (Anderson, 2004), which is being relied upon by policymakers in setting
funding levels of individual projects to relatively low levels, such as the 70th percentile
and below, and expecting the portfolio to automatically benefit from a higher level of
confidence.

A second desirable property of risk measures is that, if one cost (X) is always higher
than a second cost (Y), then the risk measure of X should be higher than the risk measure
for Y. For example, if the cost of structures hardware is higher in every circumstance than
the cost of thermal control hardware, then the 70th percentile of the cost risk distribution
should be higher for the structures subsystem than for the thermal control subsystem. This
is the property of monotonicity, and can be stated in equation form as

X ≤ Y for all possible outcomes ⇒ ρ(X) ≤ ρ(Y).

The symbol “⇒“ means “implies.”
A third desirable property is that the risk measure should be invariant in respect to

the currency in which the risk is measured or whether cost is accounted for in thousands or
millions of dollars. It also includes the characteristic that an equivalent increase or decrease
in exposure to the risk requires an equivalent change in the amount of capital needed to
guard against this risk. This is the property of positive homogeneity, which can be expressed
as ρ(cX) = cρ(X) for any constant real number c. This property makes sense because
risk characteristics should not change based on the unit in which the risk is measured.
For example, the only difference between risk reserves being measured in thousands vice
millions of dollars should be that when measured in thousands of dollars, the risk reserves
should be multiplied by 1,000, that is, the risk is $5 million, or 5,000 thousands of dollars.
Another example would be the difference between risks expressed in dollars versus euros
should be only the currency conversion (ignoring exchange rate risk over time).

Also important in measuring risk is the realization that a project may consist of some
aspects that are risky and some that are not. If a project consists of a portion that is subject
to risk and a portion that is not subject to risk, then the cost of the portion subject to risk is
a random variable but the cost of the portion not subject to risk is a fixed, constant amount.
That is, if there is a stochastic component and a deterministic component, the total risk
reserve should be the sum of an amount determined by the risk of the non-deterministic
component and the fixed, deterministic amount. This property is called translation invari-
ance and can be expressed as ρ(X + c) = ρ(X) + c. An example of this would be a project
that includes a firm-fixed price (FFP) contract for a single avionics component. The rest of
the system will have risk, but from the Government’s perspective, the FFP contract bears
no risk. So if the 80th percentile of the risk distribution for the rest of the system is $70
million, and the FFP contract for the avionics component is $10 million, then the total 80th
percentile is $70 + $10 = $80 million.

A coherent risk measure is defined as a risk measure ρ(X) that has the four properties
of subadditivity, monotonicity, positive homogeneity, and translation invariance.

A simple and popular risk measure is defined as the mean plus a fixed number of
standard deviations, i.e., μ + kσ , in particular ρ(X) = μ(X) + kσ (X), which is called the
standard deviation principle.

The standard deviation of a sum of random variables X and Y is

σ 2(X + Y) = σ 2(X) + σ 2(Y) + 2λσ (X)σ (Y)

≤ σ 2(X) + σ 2(Y) + 2σ (X)σ (Y) = (σ (X) + σ (Y))2.
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Because the correlation λ between X and Y is such that −1 ≤ λ ≤ 1. This implies that
σ (X + Y) ≤ σ (X) + σ (Y), and so that

ρ(X + Y) = μ(X + Y) + kσ (X + Y)

= μ(X) + μ(Y) + kσ (X + Y)

≤ μ(X) + μ(Y) + k(σ (X) + kσ (Y))

= μ(X) + kσ (X) + μ(Y) + kσ (Y)

= ρ(X) + ρ(Y).

This discussion proves that the standard deviation principle is subadditive.
Also, the standard deviation principle is positive homogeneous, since

μ(c(X + Y)) + kσ (c(X + Y)) = cμ(X + Y) + ckμ(X + Y)

= c(μ(X + Y)) + (k(σ (X + Y))).

And since standard deviation is not affected by a translation of the random variable,
although the mean is shifted by exactly the translation, the standard deviation principle
is translation invariant.

However, the standard deviation principle is not monotonic. To see this, consider a
bivariate random variable defined as

p(X,Y) =
{

0.25 for X = 0, Y = 4
0.75 for X = 4, Y = 4

.

In this case, μX = 3, μY = 4, σ X = √
3, σ Y = 0. Note that even though X ≤ Y we have

that μX + σ X = 3 + √
3 > 4 = 4 + 0 = μY + σ Y . It follows that the standard deviation

principle is not monotonic when k = 1, and this one counterexample (of course, there are
many more) serves to prove its non-monotonicity.

Risk as measured according to the standard deviation principle is not equivalent to
risk as measured according to the VaR metric, unless we restrict our attention to nor-
mally distributed random variables. In that case the VaR metric is a special case of the
standard deviation principle with k set to satisfy whichever percentile is selected. For the
70th percentile, k ≈ 0.5244. Therefore, for normally distributed variables, VaR satisfies the
conditions of translation invariance, positive homogeneity, and subadditivity by the same
rationale as for the standard deviation principle. But also a percentile measure is monotonic
regardless of the distribution involved since, if Pr(Y ≤ x) = β and Pr(X ≤ Y) = 1, then
Pr(X ≤ x) ≥ β. Thus, in the special case of normally distributed random variables, both
VaR and the standard deviation principle are coherent risk measures.

In general, however, VaR considered as a percentile of a cost distribution is translation
invariant, monotonic, and positive homogeneous. But it is not guaranteed to be subadditive
if non-normal random variables are involved. Indeed, there are cases in which percentile
funding may be superadditive, i.e., cases for which VaR(X + Y) ≥ VaR(X) + VaR(Y).
A mathematically intense example is described in Appendix A.

For a simple concrete example of superadditivity, suppose there are two projects in
a portfolio. Each project has a budget equal to $100, and there is a 25% probability of a



72 C. B. Smart

$20 overrun. Each of the two projects is assumed to be independent. See Table 3 for the
discrete probabilities.

Then the 75th percentile value for each project is $120, while the 70th percentile is
$100, since F(100) = 0.75 and $100 is the smallest value in the set for which F(100) >

0.70.
Since the two projects are independent, there is a 0.75 ∗ 0.75 = 0.5625 probability

that the total cost of the portfolio is equal to $200. Also, there is a 2 ∗ 0.75 ∗ 0.25 = 0.375
probability that one project will have an overrun while the other will not, for a total portfolio
cost equal to $220. And there is a 0.25 ∗ 0.25 = .0625 probability that both projects will
experience a $20 overrun, for a total portfolio value equal to $240. The probabilities, along
with the cumulative values, are displayed in Table 4.

The overall 70th percentile for the portfolio is $220, since F(220) > 0.70 and it is the
smallest value in the set of outcomes with this property.

Thus the overall portfolio is riskier than the sum of the individual projects because the
70th percentile for the complete program exceeds the sum of the 70th percentiles of the
individual projects. Even though common sense would tell you that managing two projects
as a portfolio should be no riskier than managing them separately, and in fact should be
less risky due to diversification benefits, measuring risks with percentiles can lead to the
opposite conclusion. This provides two distinct examples which shows that not only does
the portfolio effect not exist (Smart, 2008, 2009), for percentile funding, it is possible to
have a reverse portfolio effect!

The previous example occurs frequently when the funding level is below the mean for
individual projects. In the example above, funding was at $100, but the mean outcome is
equal to $100 ∗ 0.75 + $120 ∗ 0.25 = $105. For example, consider two independent normal
distributions, each with mean μ and standard deviation σ . Suppose that funding for each
project is set below the mean, at the qth percentile. Since the normal distribution is sym-
metric, the 50th percentile is equal to the mean, so in this case, funding is also set below
the 50th percentile. For the normal distribution, the percentile funding can be represented
as μ+ φ−1(q)σ , where φ−1 is the inverse of the standard normal distribution. The sum of
the percentile funding for each project is 2(μ+ φ−1(q)σ ).

Since the two normal distributions are independent (by assumption), the sum of the
distributions is also normal with mean 2μ and standard deviation

√
σ 2 + σ 2 = √

2σ .

TABLE 3 Potential costs and associated
probabilities for the example

$ Probability of Occurrence

100 75%
120 25%

TABLE 4 Portfolio probabilities and associated costs for the example

$ Probability of Occurrence Cumulative Probability

200 56.25% 56.25%
220 37.50% 93.75%
240 6.25% 100.00%
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Percentile funding at the qth percentile for the portfolio is thus 2μ + √
2φ−1(q)σ . Note

that since the qth percentile is less than the 50th percentile that φ−1(q) is less than zero since
the mean of the standard normal distribution is equal to zero. Thus, it follows that

2(μ + φ−1(q)σ ) = 2μ + 2φ−1(q)σ < 2μ + √
2φ−1(q)σ ,

which means that the sum of the percentiles is less than the percentile of the sums, which
demonstrates that there is a negative portfolio effect when normal distributions are funded
below the mean (and also the 50th percentile).

As another concrete example, consider two independent lognormal distributions, one
with mean 10, and standard deviation 2, and the other with mean 50 and standard deviation
20. The 50th percentiles for the two distributions are approximately 9.81 and 46.42, respec-
tively. In this case, using Monte Carlo simulation to aggregate the two distributions, the
50th percentile of the sum of the distributions is found to be 56.46. This is slightly greater
than the sum of the 50th percentiles of each lognormal distribution, which is approximately
56.23. Again, when funding below the mean, a negative portfolio effect is found to occur.
Note that the example in Appendix A does not depend on setting the percentile level below
the mean. Indeed the example in Appendix A shows a negative portfolio effect for any tail
value.

Conditional Tail Expectation

Government agencies need to set policy on a course of action once the 70% mark is
exceeded. Percentile funding is not a risk management policy. As we have discussed, it
simply defines when a bad situation has occurred, but says nothing about what course of
action to take once a bad event (cost has exceeded a specified percentile) has occurred.
A better policy is one that would have specific funds set aside in the case of a specific
bad event. One useful risk measure that comes in handy in such cases is the CTE. This is
defined as the amount of cost growth to expect given that cost has exceeded a specified
amount, that is

E
[
X|X > Qα

]
,

where Qα is a specified percentile. This risk measure is referred to the CTE. For example,
Q0.95 is by definition the 95th percentile. This risk measure is also called the “Tail Value
at Risk” (TVaR) and “expected shortfall” (Embrechts et al., 2005). Using the term TVaR
makes sense since, in the case of continuous cost distributions, it may be viewed as an
integral of the right tail of the distribution:

CTEα = E
[
X|X > Qα

] = 1
1 − F(Qα)

∫ ∞

Qα

xf (x)dx = 1
1 − α

∫ 1

α

VaRu(X)du.

The latter equality can be derived by making the substitution u = F(x) Note also that CTEα

can be written as

CTEα = E
[
X|X > Qα

] =
∫ ∞

VaRα
xf (x)dx

1 − α
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= VaRα − VaRα +
∫ ∞

VaRα
xf (x)dx

1 − α

= VaRα − VaRα

∫ ∞
VaRα

f (x)dx

1 − α
+

∫ ∞
VaRα

xf (x)dx

1 − α
.

Thus,

CTEα = VaRα +
∫ ∞

VaRα
(x − VaRα)f (x)dx

1 − α

= VaRα +
∫ ∞

VaRα
xf (x)dx − VaRα

(∫ ∞
VaRα

f (x)dx
)

1 − α

= VaRα +
E(X) − ∫ VaRα

0 xf (x)dx − VaRα

(
1 − ∫ VaRα

0 f (x)dx
)

1 − α

= VaRα + E(X) − ∫ VaRα

0 xf (x)dx − VaRα(1 − F(VaRα))

1 − α

= VaRα + E(X) − (
∫ VaRα

0 xf (x)dx + VaRα(1 − F(VaRα)))

1 − α

= VaRα + E[X] − E[XVaR
α ]

1 − α
.

It is shown in Appendix B that, for a normal distribution,

CTEα(X) = μ + σ
φ(
−1(α))

1 − α

and, for a lognormal distribution, that

CTEα(X) =
E[X]

[
1 − 


(
lnVaRα−μ−σ 2

σ

)]
1 − α

.

For example, consider a single project whose cost risk has been modeled as a lognormal
distribution with mean equal to $100 million and standard deviation equal to $50 million,
μ= 4.49, σ = 0.72, and the 70th percentile is equal to

e4.49+z0.700.72 ≈ $114.6 million.

Thus, in this instance,

CTE0.70 = 100 ·
1 − 


(
ln 114.6−4.49−0.472

0.47

)
1 − 0.7

≈ $159.7 million.
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Therefore, given that the 70th percentile has been reached, the expected amount needed to
complete the project will be $160 million, roughly $46 million above the 70th percentile
budget. This is 40% more than that budgeted value.

In addition to providing a true risk management approach, in that the CTE establishes
not only a trigger (the VaR event that occurs when cost grows to the percentile at which
project funding has been set), but also an additional amount of reserves set aside in case bad
times occur. CTE provides additional detail about the right tail relevant to a sensible risk
management policy. And CTE is a coherent risk measure (Acerbi and Tasche, 2002). Most
of the coherence properties follow naturally from properties of percentiles, in particular
positive homogeneity and translation invariance. Monotonicity naturally follows, since if
X is always less than or equal to Y, the conditional expected value of X greater than some
fixed value will always be less than the conditional expected value of Y for that same fixed
value. To see that subadditivity holds, note that

CTEα(X) + CTEα(Y) − CTEα(X + Y)

= E[X|X > Qα(X)] + E[Y|Y > Qα(Y)] − E[X + Y|X + Y > Qα(X + Y)]

= E[X|X > Qα(X)] − E[X|X + Y > Qα(X + Y)] + E[Y|Y > Qα(Y)]

− E[Y|X + Y > Qα(X + Y)],

which can seen by definition to be greater than zero since both expected value differences
are nonnegative, proving subadditivity.

Another problem with VaR, or percentile funding, that is solved by CTE is what the
author has termed the “Lognormal Paradox.” As discussed in Smart (2008, 2012), with
funding levels at or below the 84th percentile, for a common mean and standard devia-
tion, a normal distribution will require more funding than a lognormal distribution even
though the lognormal has a fatter right tail. This is contrary to common sense, which tells
us that distributions with fatter right tails correspond to higher probabilities of risk events
and therefore should require greater funding. See Figure 4 for a graphical comparison.
As is evident from Figure 4, for percentiles between the 23rd and 84th percentiles, the nor-
mal distribution has higher percentile levels than the lognormal distribution. This occurs
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TABLE 5 Comparison of VaR and CTE

Mean = $600, Standard Deviation = $200

α = 50.0% 60.0% 70.0% 80.0% 90.0% 95.0% 99.0% 99.9%

VaR Normal $600 $651 $705 $768 $856 $929 $1,065 $1,218
Lognormal $569 $618 $675 $748 $863 $971 $1,211 $1,552

CTE Normal $760 $793 $832 $880 $951 $1,013 $1,133 $1,273
Lognormal $753 $793 $842 $908 $1,016 $1,120 $1,359 $1,704

despite the fact that their means and standard deviations are the same and the lognormal
has fatter tails than the normal distribution, all else being equal. The cause of the paradox
is that percentile funding does not take into account the full right tail, which is where the
lognormal’s extreme risk is located (even though the probability of that extreme risk is still
small).

However CTE does not suffer this shortcoming, precisely because it takes the full right
tail into account. See Table 5 for a comparison, where, for example, the percentiles for the
lognormal and normal do not cross until the 90th percentile for VaR, while for CTE the
lognormal is greater than the normal for all percentiles above the 60th percentile. Thus,
CTE has another advantage, in that it is a more sensible policy.

Note that CTE funding requires additional money above and beyond strict percentile
funding. This decreases as a percentage of the percentile as the percentile increases. For
a lognormal funded at the 70th percentile, the additional funding needed to make up the
expected shortfall is approximately 25% greater, while at the 80th percentile it is 21%
more.

CTE is simple to calculate. When a lognormal or normal distribution is used to model
total cost risk, as in the NASA/Air Force Cost Model (NAFCOM), there is a closed form
equation that can be used to calculate CTE. These formulas, which can be implemented in
a spreadsheet, are derived in Appendix B. And CTE can be easily calculated when Monte
Carlo simulation is used to estimate cost risk. For example in a 10-trial Monte Carlo sim-
ulation of a normal distribution with mean equal to $600 and standard deviation equal to
$200, whose trial values are shown in Table 6, the 70th percentile represents values above
$687.21, so to calculate CTE0.70 we calculate the mean of the three values above the 70th
percentile, namely the eighth, ninth, and tenth largest of the Monte Carlo trial values. Those
values are $732.19, $755.82, and $779.58, and their mean is equal to $755.86. Incidentally,

TABLE 6 Monte Carlo trial values

1 379.69
2 450.73
3 451.91
4 504.46
5 548.09
6 661.94
7 687.21
8 732.19
9 755.82

10 779.58
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because CTE is a mean, probability theory advises that its calculation should require, in
most situations, fewer trials to accurately measure within a given error-bound range than
percentiles, which require more trials for the same degree of accuracy.

Note that the mean calculated from the Monte Carlo trials, $755.86, is still quite dif-
ferent from the exact value of $832 calculated in Table 5. This inaccuracy results from the
small number (ten) of samples used in this example. More trials would have resulted in a
closer approximation.

CTE was introduced in the late 1990s and quickly became the preferred standard for
setting liabilities for insurance settings. In Canada, the “actuarial Standards of Practice
promulgate the use of the CTE whenever stochastic methods are used to set balance sheet
liabilities” (Hancock and Manistre, 2005). It is also the basis for the Swiss Solvency Test
(Filipovic and Kupper, 2007), which forms a major part of Swiss insurance policy. And the
National Association of Insurance Commissioners recommends setting reserves using CTE
(Lombardi, 2009).

The Practical Impact of Conditional Tail Expectation

The question still outstanding is whether or not the percentile funding policy being
implemented by Government agencies will be effective in containing cost growth. Fewer
missions overall should experience cost growth, but what about those that do? As we have
shown percentile funding is not a true risk management policy, because additional funding,
perhaps a significant amount, will be required much of the time, possibly 30% or more.
It will likely be more, since even with 70th percentile funding, cost risk analyses typically
explicitly exclude extreme events that occur from time to time, such as strikes, “acts of
God,” and other external factors beyond a project’s control. However, should the overall
amount needed above and beyond the 70th percentile be a relatively small amount, perhaps
a percentile funding policy will help to stem cost growth. However, the historical record
indicates this may be yet another pipe dream.

To gain an understanding of how much additional funding will be required in practice
for percentile funding, it is useful to examine historical cost growth data. As discussed by
Smart (2009), for a data set of cost growth for 112 recent NASA missions, some missions
underran their estimates, others came in spot-on their budgets, and still others overran their
budgets, often by large margins.

The minimum cost growth was −25.2% for Super Light Weight Tank, an upgrade for
the space shuttle program from its more traditional aluminum structure to an aluminum-
lithium composite. The negative number signifies an underrun of approximately 25%.
(Contrary to popular belief, missions occasionally come in under budget.) For the current
study, 14 such missions experienced underruns, which represented 12.5% of the missions
studied.

Only two of the 112 missions hit their budget targets spot on. Nine of the missions
were within 5% of the initial budget, and 19 were within 10% (either above or below),
performance that is considered quite satisfactory.

The remaining missions’ costs, the great majority of the 112 in fact, experienced cost
growth in excess of 10% of the budgeted amount. Maximum cost growth among the mis-
sions studied was 385% for the Hubble Space Telescope and Space Telescope Assembly,
which suffered from several sources of traditional cost growth, including funding con-
straints, launch vehicle delays, and underestimation of time and resources necessary to
develop the requisite technology.

A range from −25% on the low side to over 350% on the high end is a wide range.
The average (mean) cost growth for all missions was 53.0%, with median growth equal
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FIGURE 5 Graphical summary of NASA cost growth (color figure available online).

to 32.1%. The difference between the mean and median indicates a high degree of pos-
itive skew in the data, with most missions experiencing relatively small amounts of cost
growth (half experienced growth less than 33%) and some, such as Hubble, experiencing
extreme amounts of cost growth. Overall, 17 missions showed cost growth in excess of
100%, implying that costs more than doubled. While representing only about 15% of the
112 cost growth data points, we will see that growth of this severity, while not common,
occurs often enough to offset any hoped-for portfolio effect. See Figure 5 for a graphical
summary of these data.

The probability that an estimate will exceed a specified amount, such as $100 million
or $150 million, is a measure of cost risk. Cost growth and cost risk are thus intrinsically
related. Historical cost growth provides an excellent means for determining the overall level
of risk for cost estimates. For example, if 95% of past programs have experienced less than
100% growth, we should expect that the ratio of actual cost to the initial estimate should
be less than 100% with 95% confidence. Thus cost growth is the impact of cost risk in
action. Because of uncertainty in historical data, cost models, program parameters, etc., the
term “cost risk” is redundant since risk is inherent in cost estimates. Thus, characteristics
of this cost growth data set determine characteristics seen in a cost risk distribution that is
consistent with cost growth. In Smart (2009) it was shown that the cost growth data closely
follow a lognormal distribution with a coefficient of variation equal to 100%. This implies
a significant amount of cost risk that is much higher than that typically modeled by cost
analysts. Note that this is a different conclusion than was reached in the author’s recent
article in the Journal of Cost Analysis and Parametrics (2012) for a smaller data set of
40 missions.

Table 7 displays, for lognormal cost risk distributions of various levels of coefficient
of variation (abbreviated CoV, it is the standard deviation divided by mean, expressed as a
percentage), the additional amounts expected to be required if the budget is exceeded. This
amount ranges from a low of around 10% of the budget if the latter is set at the 90th per-
centile for a distribution having CoV = 20%, to a high of about185% if the budget is set at
the 30th percentile and CoV = 100%. Note that, for NASA, with its 70th percentile funding
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TABLE 7 Additional funding needed if budget exceeded for various budget strategies and
risk characteristics

Budget Set at
Coefficient
of Variation 30th 40th 50th 60th 70th 80th 90th

20% 23.6% 20.5% 18.0% 15.9% 14.0% 12.2% 10.2%
30% 38.0% 32.7% 28.5% 25.0% 21.9% 19.0% 15.8%
40% 54.1% 46.1% 40.0% 34.9% 30.4% 26.2% 21.6%
50% 72.0% 60.9% 52.4% 45.5% 39.4% 33.7% 27.7%
60% 91.6% 76.8% 65.7% 56.7% 48.8% 41.5% 33.9%
70% 112.7% 93.8% 79.7% 68.3% 58.5% 49.5% 40.1%
80% 136.0% 112.0% 94.4% 80.5% 68.6% 57.6% 46.4%
90% 160.0% 131.0% 110.0% 93.0% 78.8% 65.9% 52.7%
100% 185.0% 151.0% 125.5% 105.8% 89.2% 74.2% 59.0%

policy and a CoV implied by the data to be 100%, missions that experience cost overruns
beyond the 70th percentile, will require on average additional funding in the amount of 89%
of the original budget. Here there be dragons indeed! This is a sobering amount, because
30% of the time, approximately 90% more money will be needed, even if the risk models
being applied are calibrated to empirical cost growth experience.

Since 30% of the time, an additional 90% more funding will be required, the average
project should expect to experience 27% growth (.27 = 0.90 ∗ .30). While an improvement
over the current 53% average growth, we can see that percentile funding will not be the
hoped-for panacea, but only a band-aid where major surgery is required.

Summary

Current risk management policy for NASA and other agencies consists largely of setting
reserves at a fixed percentile, popularly known outside the cost community as VaR. This
policy has much in common with setting risk reserves in the banking industry. However, it
ignores the tails of the risk distributions, ignorance of which is dangerous to the financial
viability of the project. And funding to a percentile does not even provide a cushion for
bad times; exceeding a percentile-funding level simply tells you that times are indeed bad.
Percentile funding will not lead to an end to cost growth—empirical evidence suggests
that a 70th percentile funding policy will result, on average, in a significant amount of
cost growth. Furthermore, running to Congress and asking for more money when a fixed
percentile is exceeded is not a risk-management policy, but rather a reflection of a lack
of maturity and discipline required to fully implement sophisticated and meaningful risk
management. Worst of all, percentile funding can result in a reverse portfolio effect, which
means that funding an agency as a whole could be riskier than funding any single project!
A better policy would be to use a risk measure such as CTE that takes into account the
tails of the distribution. Such a policy will offer both a signal of a bad event (i.e., VaR
is exceeded), as well as a cushion for the expected amount of money to guard against this
event. CTE is a simple measure, represented by a single number just like percentile funding
and can be easily explained to senior management and project managers, since it is simply
the additional amount of money required to fund a project in case the percentile-funding
budgeted is breached. It need not be significantly more expensive for the agency as a whole
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than current percentile-funding policies. Since it takes into account the full right tail of the
distribution, a lower-level threshold such as the 60th or 70th percentile could be chosen
for the trigger. In summary, a reserves strategy cannot stop with simply setting reserves
at a relatively high percentile. Without a change in budgeting policy, government agencies
should expect to incur much, much more spending on a regular basis.
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Appendix A

This appendix describes an example of a case of superadditivity in a percentile-funding
strategy, namely the possibility that cost risk of a portfolio may exceed the combined cost
risk of the projects in the portfolio. Consider two independent random variables X, Y,
each of which follows a one-parameter Pareto distribution, whose distribution function is
defined as

FPar(x) = Pr{Par ≤ x} = 1 −
(

θ

x

)τ

for x ≥ θ

= 0 for x < θ .

This distribution is referred to as a one-parameter Pareto, because the parameter θ is merely
a barrier designator that establishes the domain of the distribution, unlike the parameters
of the two-parameter Pareto that is described in the Introduction (Klugman et al., 2008),
where both parameters actively describe the analytic behavior of the distribution function.

For purposes of this example, suppose that each of the random variables X and Y has
the specific parameters τ = 1

2 and θ = 1, which means that that FPar(y) = 1 − y−1/2 for x ≥
1 and FPar(x) = 0 otherwise and FPar(y) = 1 − y−1/2 for y ≥ 1 and FPar(y) = 0 otherwise,
respectively. Then, to determine the probability that the sum of the two Pareto variables
X and Y is less than or equal to some value z, convolution of probability distributions is
applied. The solution space X + Y ≤ z, bounded on the upper right by the straight line Y = z
− X, is represented in Figure A.1, where for each value of X, Y ranges in value from 1 to
z − X and, to complete the triangle, X sweeps from 1 to z − 1 (since Y is at least 1). The
straight line Y = z − X is the boundary between the regions where X + Y < z and X + Y >

z. Therefore Pr(X + Y ≤ z) is the probability of the triangular region below and to the left
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FIGURE A.1 Solution space for Pr(X + Y ≤ z) (color figure available online).

of the line, bounded by its base and height intersecting at the point (1,1). The probability
density functions of X and Y are the derivatives of their respective distribution functions,
namely f (x) = 1/2 x−3/2 and g(y) = 1/2y−3/2.

Denoting the distribution function of the sum X + Y as G, the probability of interest is
calculated as the double integral over the triangular region in Figure A.1, namely,

G(z) = Pr(X + Y ≤ z) =
∫ z−1

1

∫ z−x

1
f (x)g(y)dydx

=
∫ z−1

1

1
2

x−3/2
[∫ z−x

1

1
2

y−3/2dy
]

dx

=
∫ z−1

1

1
2

x−3/2 [−y−1/2]z−x

1 dx =
∫ z−1

1

1
2

x−3/2(1 − (z − x)−1/2)dx

=
∫ z−1

1

1
2

x− 3
2 dx − 1

2

∫ z−1

1
x− 3

2 (z − x)−
1
2 dx

= [−x−1/2]z−1
1 − 1

2

∫ z−1

1
x−3/2(z − x)−1/2dx

= 1 − 1√
z − 1

− 1
2

∫ z−1

1
x−3/2(z − x)−1/2dx.

In order to calculate the last integral with respect to x, set u = √
x so that du = 1

2
√

x dx,

which in turn means that 2
√

xdu = dx. Substituting u for x then yields 2udu = dx.
Therefore (ignoring integration limits for now),

1 − 1√
z − 1

− 1
2

∫ x−3/2(z − x)−1/2dx = 1 − 1√
z − 1

− 1
2

∫ u−3(z − u2)−1/22udu,

which simplifies to 1 − 1√
z−1

− ∫ u−2(z − u2)−1/2du.
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A further change of variable is needed at this point, in particular a trigonometric sub-
stitution of s for u as follows, continuing to ignore the integration limits: set u = √

zsin(s),
and, thus, du = √

z cos(s)ds. Then,

√
z − u2 =

√
z − zsin2(s) = √

zcos(s)

and s = sin−1
(

u√
z

)
. Therefore, the integrand above becomes

1

u2
√

z − u2
du = 1

zsin2(s)
√

zcos(s)

√
zcos(s)ds = 1

zsin2(s)
ds = csc2(s)

z
ds

And, hence, the indefinite integral for G(z) = Pr(X + Y ≤ z) simplifies to

1 − 1√
z − 1

−
∫

1

u2
√

z − u2
du = 1 − 1√

z − 1
−

∫
csc2(s)

z
ds

= 1 − 1√
z − 1

+
[

cot(s)
z

]
+ c,

where c is an arbitrary constant to be later superseded by re-inserting the integration limits.

Note that since s = sin−1
(

u√
z

)
,

cot(s) = cos(s)

sin(s)
=

cos
(

sin−1
(

u√
z

))
u√

z

=

√
cos2

(
sin−1

(
u√

z

))
u√

z

=

√
1 − sin2

(
sin−1

(
u√

z

))
u√

z

=
√

1 − u2

z
u√

z

,

From which it follows that 1 − 1√
z−1

+
[

cot(s)
z

]
= 1 − 1√

z−1
+

√
1− u2

z

z u√
z

= 1 − 1√
z−1

+
√

1− u2
z

u
√

z .

Now, since u = √
x, finally putting the integration limits back in yields
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G(z) = Pr(X + Y ≤ z) = 1 − 1√
z − 1

− 1
2

∫ z−1

1
x−3/2(z − x)−1/2dx

= 1 − 1√
z − 1

+
⎡
⎣

√
1 − x

z√
xz

⎤
⎦

z−1

1

= 1 − 1√
z − 1

+
[√

z − x

z
√

x

]z−1

1

= 1 − 1√
z − 1

+ 1

z
√

z − 1
−

√
z − 1
z

= 1 − 2
√

z − 1
z

.

Returning now to the superadditivity issue, note that

Pr(2X ≤ z) = Pr
(

X ≤ z
2

)
= 1 −

( z
2

)− 1
2

> 1 − 2
√

z − 1
z

= Pr(X + Y ≤ z),

if ≥ 2. But z < 2 is not a possibility because θ = 1 (in the one-parameter Pareto distribution
we are working with) implies that X ≥ 1, so that 2X ≥ 2. So, if 2X ≤ z, z must be at least 2.

In this case, VaRα(X) = F−1(α), as discussed in the Introduction. Since

F
( z

2

)
= Pr

(
X ≤ z

2

)
= Pr(2X ≤ z) ≥ Pr(X + Y ≤ z) = G(z)

implies that, for any number z ≥ 2, the probability that 2X does not exceed z is greater than
the probability that X + Y does not exceed z.

As an example of a possible value of z, consider the (1 − α)th percentile of 2X, namely,
the value of z for which Pr(2X ≤ z) = 1 − α. The probability that X + Y is less than or equal
to that value of z must, therefore, be smaller than 1 − α, and this ensures that the (1 − α)th
percentile of X + Y must be larger than z, that is, VaRα(X + Y) > VaRα(2X).

Now, recalling that VaRα(X) = F−1(α), where F(x) = 1 − x−1/2 for our example, it
follows that VaRα(X) = (1 − α)−2 by solving the equation 1 − α = 1 − VaRα(X)−1/2,
where x = VaRα(X) is the (1 − α)th percentile of X. Additionally, VaRα(2X) = 2(1 − α)−2

follows directly from the positive homogeneity of VaR.
Because X and Y have the same (one-parameter Pareto) distribution, the fact that

VaRα(X) = (1 − α)−2 implies also that VaRα(Y) = (1 − α)−2. A consequence of the fact
that VaRα(2X) = 2(1 − α)−2 is then that

VaRα(X + Y) > VaRα(2X) = VaRα(X) + VaRα(Y),

one instance of which asserts, for α = 0.20, that the 80th percentile of funding for the
portfolio consisting of projects X and Y exceeds the sum of the individual 80th percentiles
of funding for projects X and Y considered separately.

In conclusion, one contrary example is sufficient to disprove a proposed general
principle, and this example establishes that, for percentile funding, not only is there no
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guaranteed portfolio effect and that there may in fact be a negative portfolio effect. If we
fund individual projects at a specified percentile of the cost risk S-curve, it may be that
the total portfolio funding, namely the sum of the budgets of the individual projects,
may not be sufficient to fund the portfolio at even that same level of confidence (not
yet mentioning a higher level of confidence). Farther down the line, this may mean that
greater risk reserves will be needed to achieve the desired confidence levels of the indi-
vidual projects. This possibility is clearly undesirable for a risk management policy and
calls into question the use of percentile funding when setting risk reserves for government
projects.

Appendix B

Note that for a normal distribution, VaRα(X) = μ + σ
−1(α), and that

CTEα(X) = μ + σE
[

X − μ

σ

∣∣∣∣X − μ

σ
≥ Qα

(
X − μ

σ

)]
.

Note that

E
[

X − μ

σ

∣∣∣∣X − μ

σ
≥ Qα

(
X − μ

σ

)]
= 1

1 − α

∫ ∞


−1(α)
xφ(x)dx

= 1
1 − α

[−φ(x)]∞

−1(α)

= φ
(
φ−1(α)

)
1 − α

where φ represents the standard normal density function and φ−1 represents the inverse of
the cumulative standard normal distribution. Therefore, for a normal distribution,

CTEα(X) = μ + σ
φ(
−1(α))

1 − α
.

For a lognormal distribution,

CTEα = VaRα + E[X] − E[XVaRα]

1 − α
.

Note that E[XVaRα] = ∫ VaRα

0
1√

2πσ
exp

(
− 1

2

(
lny−μ

σ

)2
)

dy + VaRα(1 − α), and setting z =
lny−μ−σ 2

σ
, the integral simplifies to

exp
(

μ + σ 2

2

) ∫ lnVaRα−μ−σ2

σ

−∞
1√
2π

exp
(

−1
2

z2
)

dz = E[X]

[



(
lnVaRα − μ − σ 2

σ

)]
.

Thus, the CTE for the lognormal distribution can be written as

VaRα +
E[X] − E[X]

[



(
lnVaRα−μ−σ 2

σ

)]
− VaRα(1 − α)

1 − α
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=
E[X]

[
1 − 


(
lnVaRα−μ−σ 2

σ

)]
1 − α

,

where F is the cumulative standard normal distribution function.

Appendix C: Acronyms

CoV Coefficent of Variation
CTE Conditional Tail Expectation
DoD Department of Defense
FFP Firm Fixed Price
NAFCOM NASA Air Force Cost Model
NASA National Aeronautics and Space Administration
TVaR Tail Value at Risk
VaR Value at Risk


