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Cumulative average and unit cost learning curve methodologies dominate current learning curve
theory. Both models mathematically estimate the structure of costs over time and under particu-
lar conditions. While cost estimators and industries have shown preferences for particular models,
this article evaluates model performance under varying program characteristics. A Monte Carlo
approach is used to perform analysis and identify the superior method for use under differing pro-
grammatic factors and conditions. Decision charts are provided to aide analysts’ learning curve
model selection for aircraft production and modification programs. Overall, the results indicate that
the unit theory outperforms the cumulative average theory when more than 40 units exist to create a
prediction learning curve or when the data presents high learning and low variation in the program;
however, the cumulative average theory predicts unit costs with less error when few units to create
the curve exists, low learning occurs, and high variation transpires.

Introduction

Background

Learning curves greatly impact the cost estimate of a project or program; therefore,
choosing the correct learning curve proves imperative for an accurate estimate. The dif-
ferences between the cumulative average and the unit theory are evaluated to determine
the effect each has on cost estimates of programs. This study identifies decision points for
analysts to use when working with learning curves and provides a table to aide an analyst’s
decision between learning curves.

Since the start of manufacturing, laborers depict a learning effect that improves their
efficiency in producing a good over time. The learning effect derives from laborers becom-
ing more efficient as they repeat a task and translates into reduced productions costs for
subsequent units (Malashevitz, Williams, & Kankey, 2004). In addition to laborer learning,
management also reduces unit costs through improved processes and tools. This myriad
of actions leads to per unit cost reduction throughout the production cycle (Stump, 2002).
This article generically refers to these cost reductions as “cost improvement.” General cost
improvement theory states that as the number of units produced double, the cost of pro-
ducing units reduces at a steady percentage, defined as the learning curve scope (Contract
Pricing Reference Guide, 2011). For example, with a learning curve slope (LCS) of 90%
and as the quantity doubles from 100 to 200, the unit cost of the 200th unit will decrease to
90% of the unit cost of the 100th unit.
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Today, there are many learning curve models, including Pegels’s exponential function,
Levy’s adaptation function, and the Stanford-B model (Belkaoui, 1986). Pegels’s exponen-
tial function uses an exponent to develop its learning curve, while the Stanford-B model
adds a “B-factor” to the learning curve equation in an attempt to quantify program difficul-
ties beyond managerial control (Belkaoui, 1986). While many different models like these
are available, two log-linear models, unit cost and cumulative average, remain predomi-
nant in learning curve theory. As demonstrated in the following section, log-linear models,
derived from early attempts to quantify learning, use a power function to derive their learn-
ing curves (Belkaoui, 1986). The cumulative average model, developed by Wright in 1936,
while working in the airline industry, initially measures the learning effect (Jensen, 1991).
This model combines each unit cost with the cost of the prior unit(s) to arrive at an average
cost per unit produced (Defense Acquisition University, 2008, p. 6). The averaging causes
smoothing of significant cost variances between units and thus is less susceptible to the
effects of these variances when estimating the cost of subsequent units (Malashevitz et al.,
2004).

Crawford developed the second primary methodology, the unit cost model. Crawford,
researching for the Stanford Research Institute, developed the unit cost model while updat-
ing the cumulative average model using World War II aircraft production (Contract Pricing
Reference Guide, 1996). Rather than using an average cost of all units produced, the unit
cost model provides a unique cost for each unit. This method provides no way of smoothing
significant cost variations between units and, thus, works better for production of items with
little expected variation (Malashevitz et al., 2004). This method provides direct attention
to the variation within data of past production units. While the two models have differing
approaches, they provide similar results.

Given equal starting costs and LCSs, unit cost and cumulative average curves reveal
similar shapes, as shown in Figure 1, but the unit cost model realizes learning, and thus
cost savings, more quickly than the cumulative average model (Shea & Thomson, 1994).
Different studies debate the merits and superiority of learning curve methods; Jensen
(1991) found that each model can mirror the other’s results given specific input parame-
ters. Additional studies indicate that each methodology provides distinct benefits; generally,
the unit cost method provides better results when comparing specific production units or
when the data exists in a per unit basis. When data exists in historical blocks, the cumula-
tive average method eases the implementation process (Stump, 2002). Stump’s assertions
highlighted that neither model proves superior under all circumstances.

While neither learning curve method establishes superiority, both provide similar and
repeatable results. For improved accuracy, Anderson (2003) stipulated the same use of a
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learning curve method throughout the program’s lifecycle. While maintaining consistency
provides accurate results, the goal is to identify programmatic qualities where one method
is preferable to the other. A further goal is to develop a guideline for cost estimators
to use when choosing the learning curve model with the lowest mean absolute percent
error (MAPE), which is described further in the Methodology section, given the particular
characteristics of the acquisition program.

Objective

The present research focuses on identifying the program characteristics, or factors, under
which one learning curve method is superior to the other. This article defines superior as
providing more accurate results more than half the time with a 5% error margin; therefore,
a learning theory must perform better 55% of the time. This 5% margin of error enables
confident distinguishing between performances of the two methods. Using this criterion,
decision charts are developed to aid analysts’ choice between learning curve methodolo-
gies under differing conditions. To generate the analysis, enough data must be obtained;
however, insufficient real-world data exists of large acquisition programs to develop the
analysis. This problem is solved by generating synthetic data that mimic possible real-world
program characteristics.

Generating synthetic data that mirror reality requires real-world data. The supplied
data identify the distribution of errors between each model’s predicted values and the
actual values of the real-world program. This error distribution is used to verify that the
synthetic data reflects actual data. One hundred forty-six data points were obtained from
seven Air Force aircraft production and modification programs from Air Force Material
Command, ASC/FMCE. These programs include: C-5 AMP, B-2 Link 16, B-2 UHF
SATCOM, B-2 RMP, F/A-18E/F, C-17A, and F-22, totaling 146 data points. The use of
these data is described further in the next section.

Methodology

Overview

Generated data and an error distribution from previously mentioned aircraft programs are
combined to evaluate the performance of the unit and cumulative average learning theo-
ries using Monte Carlo simulation methods. By controlling for the three influencing factors
(LCS, overall variance, and number of actual used to produce a learning curve), the cir-
cumstances in which one theory performs better (contains less error) than the other theory
are determined. The decision criteria are based on the percent of time within the simulation
that one theory outperforms the other theory. After conducting the simulations, a table is
created as a guideline for reference to a reader or analyst.

Data Generation

Synthetic data are created to represent actual cost of units produced, which represent
a combination of two learning curve formulas, unit and cumulative average, which are
manipulated through simulation. It is found that when using data generated from either a
cumulative average curve or a unit cost curve, even with proper error distribution, the data
biases the decision toward the curve from the synthetic generation. To attenuate this issue,
the two formulas are evenly weighted to create unbiased data points, and control factors are
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changed to adjust the curve to match actual data. To calculate the unit cost learning curve,
the following equation, found in Stump (2002), is used:

Unit Cost = First Unit Cost ∗ Unit #− ln(LCS) .

Leaving all other factors of the learning curve generations random, the LCS is changed.
When calculating the cumulative average slope, the following equation, also found in
Stump (2002), is used:

Avg. Cost First Unit Cost ∗ (
(Unit #)− ln (LCSc)+1 − (Unit # − 1)− ln (LCSc)

)
.

To calculate the LCS for the cumulative average curve, the values from the unit portion of
the data are used to ensure that the LCS values match the cumulative average portion of the
generation.

Error Generation

As previously addressed, with access to unit cost data for U.S. Air Force aircraft, the actual
data points provided are used to calculate the error distribution of the weighted average
of the unit and cumulative average data points. The error distribution is determined by
using the previously mentioned synthetic data to predict the actual data and calculate the
residuals from the prediction. Once the residuals are calculated, the data are standardized
using (Xi−X̄)

Sx
, where Xi is the individual residual of the prediction from the actual, X̄ is

the mean residual of the prediction from the actual, and Sx represents the sample standard
deviation of the residuals.

With the standardized data, the residuals from different aircraft programs are com-
pared. Using the weighted average equation, the values are predicted for the actual data.
After calculating the predicted values, the residuals of the different aircraft programs are
standardized. Crystal Ball’s

®
(2011) Fit Distribution command is used to determine the dis-

tribution to model the error as accurately as possible. The Fit Distribution command uses
the Kolmogorov-Smirnov (KS), Anderson-Darling, and chi-squared tests, as well as others,
and compares the test statistics of each model for each test. The Fit Distribution command
chooses the model that produces the greatest amount of the best test statistic values for
the varying tests to generate the standardized error. This distribution creates the individual
error values for our simulation.

Multiplying each of the individual errors by a constant, the amount of the error is
controlled, depending on the simulation conditions, to create the individual error. To ensure
constant variance, the simulation’s individual error is multiplied by the previous unit cost,
which creates a constant percentage difference throughout the units produced. For example,
given these conditions: first unit cost of $100,000, individual error value for the second unit
of 0.5, and an overall variance factor of 0.1, the error amount for the next unit equates to
$5000. Because the individual error takes different values for each unit based upon the error
distribution, one unit’s error could be positive, while the next could be negative.

Determining Decision Factors

After generating the data and applying noise, or error, to the data, analysis is made of which
factors impact the decision between the cumulative average and unit cost models. To choose
between the cumulative average and unit cost methods, the values predicted for both and
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their performance on the MAPE is judged, described by
∑n

i

∣∣∣ Yi−Ŷi
Yi

∣∣∣ ∗ 100, where Yi is the

individual unit’s cost, and Ŷi is the individual prediction of the unit’s cost with either the
unit or cumulative average theory. The MAPE measures the absolute percent error of a
prediction to the actual data. The following factors are considered: first unit cost, number
of actual data points used to generate the learning curve, overall variance (amount of error),
total number of units produced, and the LCS of the data.

To preliminarily determine the factors, a minimum of 5000 simulations is run, holding
one of the previously mentioned factors constant, at different levels, while other factors
remain random. By holding one factor constant, the level of impact is determined on the
percent of time the cumulative average outperforms the unit theory at different levels of
that factor. This information is used to decide factors to control in the simulation, delin-
eating factors that do not impact the decision between the cumulative average and unit
theory.

The results are then graphed from the analysis of each factor to determine if changing
the factor affects the decision to choose between the cumulative average and unit theory.
If changing the factor changes the decision to choose between the cumulative average and
unit theory by more than 5%, the factor was manipulated. For example, as shown in these
results, the magnitude of the overall variance impacts the percent of time that one learning
curve would be chosen over the other. If the factor does not affect the decision, determined
by response changes of less than 5%, then it does not matter if the variable remains constant
or is kept random. The first unit cost is modeled as a random variable to emulate different
real costs of programs, but the total number of units is kept constant in order to improve
the efficiency of the simulations.

Validating Error Distribution

To ensure that the synthetic data statistically approximate the actual aircraft data, the KS
test is used as a validation test. The KS test determines whether data match a distribution
by measuring the distances between the data and the distribution. The null hypothesis of
the KS test states that the distribution of one dataset represents the distribution of the other
dataset’s distribution, while the alternate hypothesis assumes that the two distributions do
not replicate each other. Using the KS test tests if the simulated error distribution statisti-
cally differs from the error distribution of the actual data. If the distributions do not match
at the 0.05 alpha, the results from that simulation are not used. Using this test on each
simulation and only analyzing the passing results ensures that simulations approximate the
actual data distributions.

Simulation

To ensure that the simulations match reality, Crystal Ball
®

(2011) is used to conduct the
Monte Carlo simulations. A range of conditions is tested with a combination of the levels
within the dependent factors. Table 1 depicts the three different factors—LCS, variance
factor, and units used for LCS—with four, five, and four levels, respectively, correspond-
ing to the factors. A program with 500 units is simulated; the overall variance, LCS, and
number of units within the bins given in Table 1 are controlled using a uniform distribu-
tion to create the predicted values. For the cost of the first unit, a uniform random number
between $10,000 and $100,000,000 is generated. For example, 1 level combination con-
tains between 5 and 10 units to create a learning curve, an overall variance between 0%
and 20%, and an LCS between 80 and 85. Therefore, with 4 LCSs, 5 variance factors,



Comparison of Learning Curves 57

TABLE 1 Three factors—LCS, variance factor, and
number of units used to create LCS—and their subse-
quent levels for generating the random data

LCS Variance factor Units used for LCS

80–85 0.0–0.2 5–10
85–90 0.2–0.4 11–20
90–95 0.4–0.6 21–30
95–99 0.6–0.8 31–40

0.8–1.0

and 4 units used to create a learning curve as possibilities, 80 different bins exist. Fifty
thousand simulations exist for each combination, totaling 4,000,000 individual simula-
tions, to determine the percent of time with that combination of factors that the cumulative
average theory outperforms the unit cost theory.

Results

We find that three of the five factors—LCS, variance, and number of data used to gener-
ate the LCS—develop differences in the decision. The conditions are tested by fixing the
variable to a certain value and keeping all other variables uniformly random, then running
50,000 simulations to determine the amount of time the cumulative average contains less
error. As seen in the trend in Figure 2, the number of units to create the learning curves
impacts the percentage of time that the cumulative average learning curves outperform the
unit cost theory. For example, with 5 units, the cumulative average contains less error over
50% of the time; while with 100 units, the cumulative average contains less error around
15% of the time. Therefore, the number of units to produce the predicted values proves
significant in method selection.

Figure 3 shows the difference in the percent of time that the cumulative average learn-
ing curves contain less errors than the unit learning curves when the amount of variation
changes. A trend exists and indicates that the overall variance proves to be another impor-
tant factor in determining which method best predicts costs, with a change from less than
5% to about 25% of the time that the cumulative average contains less errors. When testing
the LCS, it is found that the LCS impacts the decision between the unit cost or cumulative
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average methods, as seen in Figure 4, with a change from about 5% of the time to about
25% of the time that the cumulative average contains less error. The first unit cost and total
number of units produced did not affect the amount of time that the cumulative average
contains less error, as shown in Figures 5 and 6, respectively.

Results of these simulations provide the information as to which individual factors to
alter in the final simulations described in the Methodology section. In general, the unit cost
method provides better MAPE results when producing a greater numbers of units. The unit
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cost method also provides better results when greater learning occurs. Finally, when overall
variance reaches the extremes, the unit cost method produces more accurate results.

Values in Table 2 indicate the percentage of times that the cumulative average produces
a better MAPE than the unit cost method. In an effort to provide analysts an effective
guideline to use when choosing between the unit cost and cumulative average methods,
these charts are shaded. Dark gray indicates bins where the cumulative average percentage
equals a value below 45%. White backgrounds indicate bins where the cumulative average
rises above 55%. Light gray indicates bins where the cumulative average method produces
superior results between 45%–55% of the time. The results from the bins can be seen in
Table 2.

Conclusion

Under most conditions, the unit cost theory of learning curves is found to predict results
better than the cumulative average theory. The unit cost theory performs equally or better
than the cumulative average theory when the number of units increases beyond 40 units.
The amount of variation in the data and the slope of the learning curve affects the decision
between using the unit cost and cumulative average methodologies when the number of
units falls below 40.

While other research examines the superiority of various learning curve methodolo-
gies, none perform detailed simulation research on major Air Force aircraft acquisition
programs. However, Moses performed two similar studies in 1990 and 1994 for the Naval
Post Graduate School. In these studies, Moses compared the accuracy (1990) and bias
(1994) of log-linear methodologies with models using a production rate adjustment factor.
The key similarity to the present study was that Moses identified some of the same variable
programmatic factors used in this research, including, number of data points, LCS, and
production quantity. While these studies generated synthetic data and highlighted the fact
that many variables impact learning model selection, the studies do not examine accuracy
between the unit cost and cumulative average models. An analysis is provided here of the
accuracy of the unit and cumulative average learning curves new to this field of research.

Overall, results allow readers to determine which theory will provide an analyst
improved knowledge upon what learning curve to use for their research or program. A user-
friendly table (Table 2) was created, which allows the reader to determine which theory
to use dependent on program characteristics. The “overall variance” factor from Table 2
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TABLE 2 Percent of time cumulative average has a lower MAPE score under different
conditions as determined by the three factors

Overall variance

0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1

5–10 Actuals

LCS 80–85 40.78 44.79 47.87 48.54 49.66
85–90 44.94 49.70 50.31 51.92 54.21
90–95 49.78 51.75 54.71 57.70 59.56
95–99 53.08 59.14 62.03 62.91 63.35

11–20 Actuals

LCS 80–85 3.16 17.03 29.24 32.62 34.71
85–90 9.43 29.43 35.12 38.46 41.78
90–95 18.83 37.08 42.96 47.91 51.03
95–99 33.40 50.50 55.88 58.03 58.87

21–30 Actuals

LCS 80–85 0.00 7.62 18.78 22.88 25.52
85–90 3.39 18.57 25.70 29.58 33.02
90–95 10.47 27.79 34.80 40.13 43.54
95–99 24.96 43.66 49.72 52.12 53.08

31–40 Actuals

LCS 80–85 0.26 4.68 13.40 17.44 19.92
85–90 1.95 13.17 20.16 24.26 27.63
90–95 7.27 22.39 29.82 35.01 38.35
95–99 20.33 39.30 45.41 47.77 48.51

Dark gray—bins where cumulative average percentage equals a value below 45%, white—bins where
cumulative average rises above 55%, light gray—bins where cumulative average produces superior
results between 45%–55% of the time.

represents the amount of error within the data, while the “actual” factor depicts the number
of units used to create the learning curve. The white cells describe conditions when the
cumulative average theory produces better results, the dark gray cells describe conditions
in which the unit cost theory produces improved results, and the light gray cells describe
conditions that both unit cost and cumulative average produce similar results. When condi-
tions fall within the light gray ranges, the user can choose which method they prefer. The
user should understand that the cumulative average theory produces better results when the
number of units remains low with high variability of the costs; conversely, the unit the-
ory outperforms the cumulative average theory under most conditions and always when
the number of units exceeds 40. This article provides analysts a tool to determine when
to use which learning curve for the most accurate prediction; moreover, a more accurate
prediction enables better allocation of funds.
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