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Introduction

Estimating the cost of a system under development is essentially trying to predict the future,
which means that any such estimate contains uncertainty. When estimating using a cost-
estimating relationship (CER), a portion of this uncertainty arises from the possibility that
the cost-estimating form to which regression analysis is applied may be the incorrect one.
That is, the data may have been fit to a linear form, but some curvilinear relationship may
more appropriately model the data. Assuming the algebraic model being used is the correct
one, the CER’s uncertainty is described by its standard error of the estimate (SEE), which is
basically the standard deviation of errors made (residuals) in applying that CER to estimate
the (known) costs of the systems comprising the historical database. The SEE depends
primarily on the extent to which those (known) costs fit the CER that purports to model
them. Finally, additional uncertainty associated with a specific CER arises from the location
of the particular cost-driver value (x) within or without the range of cost-driver values for
programs comprising the historical cost database. For example, if x were located near the
center of the range of its historical values, the CER would provide a more precise measure
of the element’s cost than if x were located toward the edges or even outside the data
range. The total uncertainty of CER-based estimates is a combination of all sources of
uncertainty.

The first kind of uncertainty mentioned, which questions the particular CER shape
involved, cannot be measured without redoing the regression analysis for a wide variety
of algebraic and other kinds of CER forms. Once we have decided upon a definite CER
form, the SEE, represented by only one number characteristic of the CER, is fairly easy
to measure for any CER shape or error model using known algebraic formulas. The sec-
ond kind of uncertainty associated with a specific CER, which assesses both the CER itself
and the value of the cost-driving parameter, is more complicated, and the way to account
for it is completely understood only in the case of classical linear regression, i.e., ordi-
nary least squares (OLS). As a result, explicit formulas exist for “prediction intervals” that
bound cost estimates based on CERs that have been derived by applying OLS to historical
cost data.

For CERs, even linear ones, derived by other statistical methods, there appears to be
no general method of solution described in the theoretical statistical literature. This report
illustrates the application of bootstrap statistical sampling, a 34-year-old statistical process
(Casella, 2003), to the problem of estimating prediction bounds for multiplicative-error
and other CERs derived by non-OLS methods. After the bootstrap method is shown to
be capable of yielding prediction bounds that approximate the known OLS bounds fairly
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TABLE 1 A One-cost-driver dataset

Project Actual cost Cost-driver value

Project 1 y1 x1

Project 2 y2 x2

• • •
• • •
• • •
Project n yn xn

well, it is applied analogously to non-OLS-derived CERs. Although statistical sampling can
yield only approximations to the “true” prediction bounds, the bootstrap technique appears
to be a practical and theoretically credible method of approaching this currently unsolved
estimating problem.

Prediction Bounds

The discussion of prediction bounds begins with a short summary of the state of the art in
CER-based cost-estimating, excluding some more advanced atypical techniques that have
been and will continue to be discussed elsewhere. To keep things as simple as possible, the
discussion is restricted to the case of one-cost-driver (called “univariate”) CERs.

OLS, also known as “classical linear regression,” is a technique that appeared in the
18th century or earlier and was formally published by Gauss (1809, 1821/1823) in the early
19th century. An OLS CER models cost as an additive-error linear function of one or more
cost drivers under a number of explicit mathematical conditions that will be discussed in
detail below. The OLS estimating problem has been completely solved over the course of
the last two centuries, even though new facts about it are still being discovered. Explicit
algebraic formulas exist for the coefficients of the linear model, the standard error, the
coefficient of determination (R2), hypothesis tests for significance of the coefficients, and
prediction bounds, which in the one-cost-driver situation are upper and lower bounds on
the cost (“prediction intervals”) for any value of the cost driver at any level of confidence.
The width of the prediction interval depends on both the CER’s SEE and the location of the
cost-driver value of interest. Historical cost and technical data listed in a framework, such
as that in Table 1, with x representing the cost driver, y the cost corresponding to it, and n
the total number of data points, are the basis of all CER-related calculations. The formula
for the prediction bounds is then

Ŷ ± tα/2,n–2 ∗ SEE

√√√√√1+ 1
n
+ (x− x̄)2

n∑
i=1

(xi − x̄)2

. (1)

Here, Ŷ is the CER-based estimate of the cost at cost-driver value x, x̄ is the mean (average)
of the n cost-driver values, and tα/2,n – 2 is the value of the t distribution for a two-sided 100
α% confidence interval, where α is a number between 0 and 1, inclusive.

Figure 1 illustrates an OLS CER bounded by hyperbola-shaped upper and lower
bounds (the dashed lines, respectively). Notice that the bounds widen as the cost-driver
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FIGURE 1 Prediction bounds for an OLS CER.

value moves away from the center of the dataset. In fact, the center of the dataset is the
point (x̄, ȳ), which is on the CER line (the solid line) in the OLS case.

A number of special non-linear algebraic forms can be fit using OLS techniques, but
closed-form solutions (Equation (1) is an illustration) for SEE, R2, and prediction bounds
are problematical or non-existent. Some non-linear forms can be made OLS-solvable by an
algebraic transformation (usually logarithmic), but the traditional OLS formula for R2 is not
applicable to non-OLS CER-based estimates; see Book and Young (2008) and Hu (2010)
for details. Care has to be taken in such cases that SEE and other CER quality metrics are
calculated in terms of x and y, rather than log(x) and log(y) or whatever transform space is
used. Polynomial forms, such as quadratic, cubic, etc., can be solved using multiple-linear
OLS methods. Closed-form expressions for prediction bounds do not appear to exist in any
of these non-OLS situations.

General non-linear CER forms allow the modeling of cost using any error form,
additive or multiplicative, and any algebraic form, linear or non-linear. For details, see
Wedderburn (1974), Nguyen et al. (1994, 2004), Jørgensen (1997), Book and Young
(1997), Book and Lao (1998), and Goldberg and Tuow (2003). In all of these cases, the
standard error can be calculated, as well as useful stand-ins for other quality metrics, such
as R2, but the prediction-interval problem does not appear to have been solved for CERs
derived by general-regression methods. One technique of approximating a solution to that
problem is the subject of this article.

The Bootstrap Philosophy

While waiting for the “exact” theoretical solution of the prediction-interval problem to be
found for non-OLS CERs (which, if history is a guide, could take decades), it would be use-
ful to have available a practical “ad hoc” method that can be applied to generate prediction
bounds in any particular case. “Bootstrap” statistical sampling appears to be an appropriate
technique to consider. The bootstrap method of error estimation was introduced by Efron
in 1977 (Efron, 1979) and has a 34-year history behind it; see Efron (2003) for a later dis-
cussion from his point of view. The bootstrap method is “distribution free,” so it does not
require common (but difficult to verify) distributional assumptions, e.g., normal or lognor-
mal error distributions or homoscedasticity. It works with additive- and multiplicative-error
models and all algebraic equation forms.

The bootstrap philosophy parallels the philosophy of OLS and general-error regression
in assuming the following scenario:
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1. the true relationship between y (cost) and x (cost-driving parameter) is exactly the
algebraic relationship that is being modeled;

2. the x values in the historical database are known precisely, but the “actual” y values
are known accurately only to within some statistical error distribution;

3. the error distribution of y depends on how well its algebraic relationship with x
accounts for the various influences on y; and

4. the set of “residuals” (by which, for bootstrapping purposes, means the “actual”
minus the “estimated” costs) represents the distribution of error in the actual y
values.

The combined assumptions of the bootstrap philosophy imply that which residual hap-
pens to be matched with which particular x value is merely a matter of chance. This means
that the residuals are assumed to be randomly (in this case, equally likely) selected from an
(unknown) error distribution, of which the residuals themselves are the only manifestation.
The conclusion that follows from this assumption is that had data been collected in a dif-
ferent way or at a different time or from different sources, any one of the residuals might
have been obtained for any of the x values. Another way to look at the error distribution
is to consider the residual corresponding to any particular data point as a random number
drawn from the population comprised of all the residuals.

It is at this point that the bootstrap model departs from OLS. In OLS, the error dis-
tribution is postulated to be the normal distribution with mean 0 and standard deviation σ,
the numerical value of σ being the same for all points in the database. In particular, OLS
assumes that the residual associated with any particular data point is a random number
drawn from the normal distribution with mean 0 and standard deviation σ. Bootstrapping
does not require the normal distribution—its error distribution is defined solely by the set
of residuals.

The most significant consequence of the way the bootstrap error distribution is defined
and, as must be emphasized, the defining characteristic that makes bootstrapping a suc-
cessful statistical method, is that by selecting for each cost-driver value x a random number
from the set of residuals, a set of y values can be constructed that could very well have
been the “actual” y values resulting from conducting the same data collection effort under
different circumstances.

What Is Bootstrap Sampling?

Bootstrap sampling is a “resampling” method, where several (the more the better) random
samples are taken, not from a probability distribution, such as the triangular, normal, or
lognormal, but from the set of residuals that result from the derivation of a CER. The
residuals are calculated from the actual database from which the CER was derived, not
from an assumed probability distribution. As mentioned above, bootstrap theory assumes
that each of the n residuals (n = number of data points) has probability 1/n of being the
residual associated with any given x value. This assumption forces us to a process called
“sampling with replacement,” because a residual’s association with one x value does not
preclude its association with another x value in the same dataset. A good way to understand
this is to view a probability distribution or residuals as a collection of numbers, like those
painted on billiard balls, such that when one is drawn out of a tub, its number is recorded
and then it is put back in the tub before the next number is drawn. Therefore, the same
number could appear in the random sample more than once. An analog of this is the process
of drawing a random number from a normal distribution. Although the normal distribution
is a collection of infinitely many numbers, it is possible, at least in theory, to draw the same
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TABLE 2 Database OLS setup for bootstrap sampling

x Values
(cost driver)

y Values
(actual costs)

Predicted y values
(cost estimates)

Residuals =
Actuals−Estimates

7.9 3.595 3.699 −0.104
8.2 1.900 4.005 −2.105
9.8 3.300 5.635 −2.335

11.5 10.900 7.367 3.533
16.4 15.434 12.358 3.076
19.7 16.074 15.720 0.354
23.6 17.274 19.693 −2.419

Note. CER derived from x and actual y values is y = a + bx, where a = −4.348 and
b = 1.0187.

number more than once. Admittedly, in the case of the normal distribution, the probability
is essentially zero.

Only the probability 1/n is hard-wired into the process. After a set of sample residuals
has been randomly generated by the sampling-with-replacement process, a new dataset,
called “the bootstrap sample,” that could have been under other circumstances the “actual”
dataset, is calculated from each set of n sample residuals. Next, a “bootstrap CER” that
could have been the “real” CER (had the bootstrap sample been the real dataset) is calcu-
lated from each bootstrap sample. This process is repeated many times, and many sets of
n sample residuals are generated, leading to many bootstrap samples and many bootstrap
CERs.

To illustrate how this process works in practice, consider the dataset in Table 2, where
x is the radar diameter in feet, and y is the cost in thousands of fixed-year dollars from
which an OLS CER is derived:

The next step is to draw 255 random samples of size n = 7 without replacement from
the set of n = 7 residuals listed in the far-right column of Table 2. Why 255 you ask? Well,
why not? Microsoft Excel has 256 columns, and one is needed for the list of cost-driver
values. Of course, the table could be transposed and be able to draw 1,048,575 residual sam-
ples and still have one row left over for the cost-driver values, but this is only an example.
The first few of the 255 residual samples are displayed in Table 3.

TABLE 3 The first few of 255 random samples of residuals

x Values
(cost driver)

Residual
samples #1 #2 #3 #4 #5 #6 . . .

7.9 First residual −0.104 −2.105 −2.335 3.533 3.076 −2.419 . . .

8.2 Second residual 0.354 −2.419 −0.104 0.354 −2.335 −2.419 . . .

9.8 Third residual −0.104 3.533 3.533 −2.105 −2.335 0.354 . . .

11.5 Fourth residual −2.419 3.533 −2.419 −2.419 −2.105 −2.419 . . .

16.4 Fifth residual −2.105 −2.105 3.533 −2.105 0.354 0.354 . . .

19.7 Sixth residual −2.105 3.533 −2.105 −2.105 −2.419 3.076 . . .

23.6 Seventh residual 3.533 −2.419 0.354 −0.104 −2.419 −0.104 . . .

Note. Sampling is done “with replacement,” so some residuals will appear more than once in the
same sample.
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TABLE 4 The first few of 255 bootstrap actuals

x Values
(cost driver)

Bootstrap actual =
estimate + residual #1 #2 #3 #4 #5 #6 . . .

7.9 3.699 + First residual 3.595 1.594 1.365 7.233 6.775 1.281 . . .

8.2 4.005 + Second
residual

4.359 1.586 3.901 4.359 1.670 1.586 . . .

9.8 5.635 + Third
residual

5.530 9.168 9.168 3.530 3.300 5.989 . . .

11.5 7.367 + Fourth
residual

4.948 10.900 4.948 4.948 5.262 4.948 . . .

16.4 12.358 + Fifth
residual

10.253 10.253 15.892 10.253 12.712 12.712 . . .

19.7 15.720 + Sixth
residual

13.615 19.253 13.615 13.615 13.301 18.796 . . .

23.6 19.693 + Seventh
residual

23.226 17.274 20.047 19.588 17.274 19.588 . . .

Note. Each bootstrap sample is treated as if it were a set of “actual” data. The only use made of the
real actual dataset is to calculate the estimates and residuals.

Recall that each residual is an actual cost minus its estimate. It follows that an actual
equals the estimate plus the residual. Therefore, whenever a “residual” is added to an esti-
mate, an “actual” is obtained—not a real actual, but a “bootstrap actual,” namely, a number
than could have been the actual if the data were collected tomorrow instead of having
collected it yesterday. The first few of the 255 sets of bootstrap actuals appears in Table 4.

It is now assumed (although it is really not true) that each bootstrap actual is a real
actual, and it is used to calculate a “bootstrap CER” that is not really the CER, but which
could have been under other circumstances consistent with the data-gathering error-model
assumptions. The first few of these bootstrap CERs are displayed in Table 5.

If all 255 bootstrap CERs are compiled and displayed together on the same graph,
they form an interesting pattern; see Figure 2. That pattern is somewhat reminiscent of the
region of the prediction bounds appearing in Figure 1. The pattern is narrowest in the center
of the data where the point (x̄, ȳ)= (13.87, 9.78) and flares outward as the cost-driver value
of interest moves to the extremes. Now an attempt must be made to estimate prediction
bounds from this information. If it works for OLS, where there is the “truth” against which
the bootstrap results can be tested, then there is some confidence in applying the bootstrap
method to the general-error-regression case where the truth is not known.

Deriving Bounds on Estimates from Bootstrap CERs

All 255 regression lines (bootstrap CERs) in Figure 2 share in common the property that
each of them could very well have been the actual CER, except for the fact that each was
derived from a bootstrap sample rather than from the actual dataset. If the cost y is estimated
at a cost-driver value x = 20 using the actual CER y = −4.348 + 1.019x, the estimate
y= 16.032 is obtained. This means that, if essentially random circumstances were different,
there are at least 255 other numbers (bootstrap estimates) that could be the cost estimate
for a cost-driver value of 20. A few of them are listed in Table 6.
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TABLE 5 Bootstrap CER calculated for each bootstrap sample

Bootstrap actuals = estimate + residual
x Values
(cost driver) #1 #2 #3 #4 #5 #6 . . .

7.9 3.595 1.594 1.365 7.233 6.775 1.281 . . .

8.2 4.359 1.586 3.901 4.359 1.670 1.586 . . .

9.8 5.530 9.168 9.168 3.530 3.300 5.989 . . .

11.5 4.948 10.900 4.948 4.948 5.262 4.948 . . .

16.4 10.253 10.253 15.892 10.253 12.712 12.712 . . .

19.7 13.615 19.253 13.615 13.615 13.301 18.796 . . .

23.6 23.226 17.274 20.047 19.588 17.274 19.588 . . .

a (intercept) −6.099 −3.834 −4.652 −3.366 −3.831 −7.957 . . .

b (slope) 1.114 0.998 1.045 0.897 0.897 1.242 . . .

r 0.960 0.892 0.926 0.938 0.940 0.980 . . .

r Squared 92.08% 79.55% 85.81% 87.90% 88.42% 96.07% . . .

Standard error
of estimate

2.193 3.393 2.851 2.233 2.179 1.686 . . .
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FIGURE 2 Graphs of 255 bootstrap CERs (color figure available online).

To find an 80% bootstrap interval for the cost at x = 20, these 255 possible estimates
(or even 256 if including the actual estimate) could be used as the basis for it. As a cursory
technique, the 255 bootstrap estimates could be ranked in order, smallest to largest, remov-
ing the bottom 10% and the top 10% of them and leaving the middle 80%. The shortest
interval containing all those remaining numbers can be considered to be the 80% bootstrap
interval for the cost. The method ultimately recommended to obtain 80% prediction bounds
on the cost is based on that idea and is only slightly more complicated.

The first step in this process is to calculate the estimates given by each bootstrap CER
for a range of cost-driver values. The first few of such estimates appears in Table 7.

The next step is, for each cost-driver value, to rank the 255 bootstrap estimates in order,
smallest to largest. A portion of the results is displayed in Table 8. Because 255 is not an



32 S. A. Book

TABLE 6 Some possible cost estimates for cost-driver value x = 20

Cost-driver value x Bootstrap CER Bootstrap estimate

20.000 y = −6.099 + 1.114x 16.181
20.000 y = −3.834 + 0.998x 16.126
20.000 y = −4.652 + 1.045x 16.248
20.000 y = −3.366 + 0.897x 14.574
20.000 y = −3.831 + 0.897x 14.109
20.000 y = −7.957 + 1.242x 16.883
20.000 • •
20.000 • •
20.000 • •

TABLE 7 OLS linear bootstrap cost estimates for a range of cost-driver values

Bootstrap cost estimates (y values)
Cost-Driver
(x) values #1 #2 #3 #4 #5 #6 . . .

5 −0.526 1.154 0.574 1.119 0.655 −1.747 . . .

7.9 2.706 4.047 3.606 3.719 3.256 1.855 . . .

8.2 3.040 4.346 3.919 3.989 3.526 2.227 . . .

9.8 4.823 5.942 5.592 5.424 4.961 4.215 . . .

10 5.046 6.142 5.801 5.603 5.140 4.463 . . .

11.5 6.718 7.638 7.369 6.948 6.486 6.326 . . .

15 10.619 11.130 11.028 10.087 9.626 10.673 . . .

16.4 12.179 12.527 12.491 11.343 10.882 12.412 . . .

19.7 15.857 15.819 15.941 14.303 13.842 16.511 . . .

20 16.191 16.118 16.254 14.572 14.111 16.883 . . .

23.6 20.203 19.710 20.017 17.801 17.341 21.355 . . .

25 21.764 21.106 21.481 19.056 18.597 23.094 . . .

30 27.336 26.095 26.707 23.541 23.083 29.304 . . .

35 32.908 31.083 31.934 28.025 27.568 35.514 . . .

40 38.481 36.071 37.161 32.509 32.054 41.724 . . .

45 44.053 41.059 42.387 36.994 36.539 47.934 . . .

50 49.626 46.047 47.614 41.478 41.025 54.144 . . .

exact multiple of 10, the lower 10th percentile value must be interpolated between the 25th
and 26th ranks and the upper 10th percentile value between the 229th and 230th ranks.

Table 9 shows a selection portion of Table 8, along with the interpolated lower and
upper 10% bootstrap bounds (BBs) on cost estimates at cost-driver values x = 5, 15, and
50. The 80% bootstrap interval runs from the lower 10% bound to the upper 10% bound;
80% of the bootstrap estimates lie between those two numbers.

Do OLS BBs Match OLS Prediction Bounds?

Upon closer examination, it turns out that the BBs, namely the 10th and 90th percentile
bootstrap estimates, for x values within the range of the database are closer together than
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TABLE 8 A portion of the ranked bootstrap estimates for cost-driver values x = 5, 15,
and 50

Estimate
ranks x = 5 x = 15 x = 50

Estimate
ranks x = 5 x = 15 x = 50

1 −3.405 8.709 33.719 226 2.591 12.013 54.701
2 −3.129 9.205 34.271 227 2.634 12.042 54.723
3 −3.066 9.251 34.774 228 2.683 12.051 54.728
4 −3.030 9.325 35.090 229 2.697 12.068 55.050 ← Upper

10th

Percentile
5 −2.971 9.330 35.278 230 2.725 12.077 55.120
6 −2.784 9.384 35.572 231 2.762 12.085 55.324
7 −2.684 9.528 36.138 232 2.772 12.102 55.418
8 −2.683 9.559 36.257 233 2.783 12.114 55.441
9 −2.670 9.594 36.425 234 2.820 12.133 55.784

10 −2.516 9.626 36.523 235 2.825 12.136 55.944
11 −2.419 9.655 38.009 236 2.829 12.149 56.315
12 −2.399 9.662 38.030 237 2.866 12.187 56.329
13 −2.108 9.693 38.144 238 2.979 12.209 56.353
14 −2.087 9.718 38.320 239 3.016 12.212 56.409
15 −1.949 9.728 38.522 240 3.053 12.275 56.675
16 −1.924 9.745 38.663 241 3.098 12.282 56.755
17 −1.860 9.751 38.784 242 3.170 12.283 57.040
18 −1.798 9.754 39.420 243 3.172 12.330 57.150
19 −1.764 9.762 39.637 244 3.208 12.439 57.655
20 −1.747 9.766 39.679 245 3.338 12.474 58.021
21 −1.715 9.781 39.717 246 3.379 12.513 58.310
22 −1.554 9.784 39.735 247 3.380 12.563 58.500
23 −1.551 9.792 39.826 248 3.591 12.591 58.892
24 −1.521 9.795 39.869 249 3.603 12.756 59.999
25 −1.517 9.850 39.883 250 3.801 12.769 60.250

Lower
10th

Percentile

→ 26 −1.499 9.855 39.887 251 3.869 12.807 60.259
27 −1.498 9.888 39.899 252 3.872 12.946 60.381
28 −1.461 9.889 40.219 253 3.878 13.060 60.422
29 −1.452 9.893 40.264 254 3.925 13.278 62.543
30 −1.371 9.895 40.513 255 4.511 13.281 62.568

TABLE 9 Interpolated lower and upper 10% BBs

Estimate ranks x = 5 x = 15 x = 50

• • • •
Rank 25 −1.517 9.850 39.883
Lower 10% bound −1.508 9.852 39.885
Rank 26 −1.499 9.855 39.887
• • • •
Rank 229 2.697 12.068 55.050
Upper 10% bound 2.711 12.072 55.085
Rank 230 2.725 12.077 55.120
• • • •



34 S. A. Book

TABLE 10 Lower 10% B-BBs versus OLS prediction bounds

Differences: B-BB
versus OLS

Cost-driver
(x) Values

Bootstrap
80% lower

bounds

B-B 80%
lower bounds

(B-BLBs)

OLS prediction
bounds (80%
lower bounds) Absolute Percentage

5 −1.508 −4.258 −4.213 0.0447 1.0604%
7.9 1.989 −0.761 −0.931 0.1700 18.2625%
8.2 2.330 −0.420 −0.597 0.1773 29.6875%
9.8 4.174 1.424 1.158 0.2659 22.9604%
10 4.426 1.676 1.375 0.3008 21.8762%
11.5 6.146 3.396 2.980 0.4159 13.9546%
15 9.852 7.102 6.582 0.5200 7.9003%
16.4 11.193 8.443 7.966 0.4774 5.9934%
19.7 14.069 11.319 11.103 0.2163 1.9476%
20 14.338 11.588 11.380 0.2073 1.8211%
23.6 17.516 14.766 14.618 0.1479 1.0117%
25 18.838 16.087 15.838 0.2499 1.5781%
30 23.143 20.392 20.058 0.3340 1.6651%
35 27.434 24.684 24.129 0.5550 2.3002%
40 31.604 28.854 28.104 0.7496 2.6674%
45 35.783 33.033 32.018 1.0151 3.1704%
50 39.885 37.135 35.891 1.2441 3.4662%

the known 80% lower and upper OLS prediction bounds. On the other hand, far outside
the range of the cost-driver data, the BBs are farther apart—this is probably due to lack
of a normal-distribution assumption on the estimating error. Some theoretical analysis and
numerical experimentation indicates that adjusting the lower BBs downward and the upper
BBs upward by an additive amount equal to the SEE of the “real” CER leads to “bootstrap-
based” bounds (B-BBs) that are significantly closer to the known OLS prediction bounds.
This issue is discussed in detail in the next few paragraphs.

In Tables 10 and 11, the term “absolute” difference refers to the absolute value of
the dollar-valued difference between the OLS bounds and the B-BBs. The percentage
difference is the absolute difference expressed as a percentage of the OLS value.

Comparison of B-BB bounds with OLS prediction bounds in Tables 10 and 11
illustrates, for the example being worked with, that the adjusted

B-BB(y) = BB(y) ± StdError (2)

bounds seem pretty good (not perfect, but better than without the adjustment and certainly
better than nothing) in the OLS case. Prediction-bound formulas do not exist in any non-
OLS cost-modeling context, even for linear CERs; thus, that adjustment will be used here
for all non-OLS additive-error-CER scenarios. As an approximating technique, it will not
yield “exact” prediction bounds (those are yet unknown), but it appears to provide adequate
results.

For the given example, Figure 3 displays graphically the comparison between the
B-BBs and the OLS prediction bounds to which they correspond. Of course, it is not rec-
ommended to use the B-BBs in the OLS case, because exact closed-form expressions for
the bounds are available for OLS. This study should be considered a demonstration in
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TABLE 11 Upper 10% B-BBs versus OLS prediction bounds

Differences: B-BB
vs. OLS

Cost-driver
(x) values

Bootstrap 80%
upper bounds

(BUBs)

B-B 80%
upper bounds
(B+BUBs)

OLS prediction
bounds (80%
upper bounds) Absolute Percentage

5 2.711 5.461 5.704 0.2428 4.2569%
7.9 5.215 7.965 8.329 0.3643 4.3738%
8.2 5.452 8.202 8.607 0.4051 4.7060%
9.8 6.906 9.656 10.112 0.4557 4.5070%
10 7.096 9.846 10.302 0.4559 4.4254%
11.5 8.501 11.251 11.753 0.5016 4.2675%
15 12.072 14.823 15.282 0.4593 3.0055%
16.4 13.593 16.343 16.751 0.4081 2.4363%
19.7 17.621 20.371 20.337 0.0346 0.1700%
20 17.996 20.746 20.671 0.0752 0.3636%
23.6 22.250 25.000 24.768 0.2321 0.9371%
25 23.990 26.740 26.400 0.3395 1.2859%
30 30.217 32.967 32.366 0.6011 1.8570%
35 36.465 39.215 38.483 0.7325 1.9033%
40 42.657 45.407 44.694 0.7134 1.5963%
45 48.922 51.672 50.967 0.7055 1.3842%
50 55.085 57.835 57.281 0.5541 0.9674%
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FIGURE 3 Bootstrap-based bounds graphed together with their corresponding OLS
prediction bounds (color figure available online).

principle; because this seems to work for OLS, it will be applied to non-OLS situations,
such as those involving non-linear CER forms and multiplicative-error models.

Extension of Bootstrap Method to Multiplicative-Error CERs

Figure 4 illustrates the difference in behavior of standard errors between additive-error
and multiplicative-error CERs. Additive-error CERs have constant standard error across
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FIGURE 4 Estimates ± one standard error for multiplicative-error and additive-error
CERs, respectively (Eskew & Lawler, 1994).

the range of cost-driver values. This kind of error model is adequate if the cost estimates
corresponding to the cost-driver values do not range over an order of magnitude or more.
However, suppose that the cost estimates based on a CER vary over a large range, say from
$100K to $1,000K. Then a standard error of $50,000 would equate to a very unaccept-
able 80% error of estimation at the low end, but a fabulous 8% error at the high end. The
obvious solution to the problem of a CER that generates wide-ranging estimates is to use a
multiplicative-error model that expresses the error as a percentage of the estimate. In most
situations, percentage error is what a decision maker wants to understand anyway.

Applying B-BBs in the case of multiplicative-error CERs differs slightly from how
they are applied in the additive-error situation. In the additive-error situation, they are
defined as in Equation (2), namely, B-BB = BB ± StdError. In the multiplicative-error
situation, the standard error is expressed as a percentage of the estimate, and this leads us
to define B-BBs as follows:

B-BB(y) = BB(y) ± (%StdError) × ESTy. (3)

A Brief Introduction to General-Error Regression

In theory, there is no limit to the number of algebraic forms that may serve as models for
CERs. In practice, though, in the one-cost-driver situation, most CERs take one of very few
algebraic forms. Primary among these are the following:

● factor CERs of the form y = ax,
● linear CERs of the form y = a + bx, and
● non-linear CERs of the forms

● y = ax b,
● y = ab x,
● y = a + bx c,

where a, b, and c are constant coefficients or exponents derived from the historical data
supporting the CER. Although the case of only one cost driver per CER is discussed here,
the concepts are the same for multiple cost drivers, but the mathematical details are more
complicated.

OLS offers the opportunity to derive only two kinds of CERs in the one-cost-driver
situation: (1) linear additive-error CERs that are unbiased in the statistical sense and
(2) log-log multiplicative-error CERs that are not unbiased in either the additive-error or
multiplicative-error sense. In addition, if the analyst chooses the OLS linear form, he/she
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ipso facto must use an additive-error model. On the other hand, if he/she were to choose
the OLS log-log form, the error model must be multiplicative.

A major statistical breakthrough occurred in 1974, when Wedderburn (1974) enhanced
an existing 1972 technique, of which he was one of the inventors, that came to be known
as iteratively reweighted least squares (IRLS). IRLS is a technique for deriving CERs with
the following characteristics:

● are “almost” unbiased in the analyst’s choice of either the additive-error or
multiplicative-error sense; for a discussion of the word “almost” in this context,
see Goldberg and Tuow (2003, p. 65) or Sperling and Goldberg (n.d., p. 7);

● allow the analyst his/her choice of the additive-error or multiplicative-error model
independent of the algebraic form of the CER; and

● allow the analyst his/her choice of algebraic functional form y = f (a, b, c, d)
independent of the CERs error model.

In a more recent refinement of IRLS, Book and Lao (1998) introduced the minimum
percentage error–zero percentage bias (MPE-ZPB or ZMPE) technique to derive CERs that
also had minimum possible percentage (i.e., multiplicative) error among all unbiased CERs
of the algebraic form being considered.

For both unbiasedness and minimum possible percentage standard error in CERs,
ZMPE offers a slight improvement over IRLS (Book, 2006b). Experience and theory indi-
cate that IRLS CERs do not necessarily have the minimum possible standard error among
all zero-bias CERs. In fact, Wedderburn claimed neither unbiasedness nor minimum per-
centage error for IRLS CERs. He credited IRLS CERs with having a desirable statistical
property called “maximum quasi-likelihood.” To avoid statistical detail, simply note that
OLS has a related property called “maximum likelihood” in addition to its unbiasedness
and minimum standard error. In the sections that follow, the ZMPE method will be applied
to derive the multiplicative-error CERs and will use the (x, y) dataset of Table 2 for all
(illustrative only) examples.

Prediction Bounds for a Multiplicative-Error Factor CER

Multiplicative-error factor CERs have the algebraic form y = axε, where y is cost, a is
the CER’s single coefficient derived from the supporting historical database, x is the value
of the cost driver (e.g., weight), and ε is the multiplicative error, which is expressed as a
percentage of the estimate ax. ZMPE CERs minimize the percentage standard error subject
to the constraint that percentage bias be zero. Specifically, the sum of percentage squared
errors

F(a) =
n∑

k=1

(
yk − axk

axk

)2

(4)

is minimized, subject to the constraint that percentage bias

B(a) =
n∑

k=1

(
axk − yk

axk

)
= 0. (5)

In most ZMPE and IRLS cases, Excel’s Solver routine or some more advanced numerical
optimization procedure is used to find the numerical value of the coefficient a. But, as will
be seen, this is not necessary in the simple case of a one-cost-driver factor CER.
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The equation B(a) = 0 is first rearranged as follows:

0 = B(a) =
n∑

k=1

(
axk − yk

axk

)
=

n∑
k=1

(
1− yk

axk

)

=
n∑

k=1

1−
n∑

k=1

yk

axk
= n− 1

a

n∑
k=1

yk

xk
.

(6)

It then follows that the algebraic form of the the ZMPE factor CER’s zero-bias constraint is

n∑
k=1

yk

xk
= na, (7)

from which it follows uniquely that the ZMPE numerical value of the coefficient a is

a = 1
n

n∑
k=1

yk

xk
. (8)

Table 12 displays the calculations required when applying Equation (8) instead of the
Excel Solver to derive the ZMPE factor CER for the dataset of Table 2.

Table 12 results in the calculation that the ZMPE factor is a= 0.637, so the factor CER
is y = 0.637x, which is graphed along the supporting data points in Figure 5.

The next phase is a bootstrap sampling process that is headed toward estimating pre-
diction bounds for the ZMPE factor CER-based estimates. Table 13 contains the initial step
in this direction, the computations of the multiplicative-error residuals. The key idea in that
step is to understand that residuals of the multiplicative-error CER are ratios, rather than
differences, of the estimates and their corresponding actuals. That is, for the CER y = ax,
the estimate ESTyi = axi leads to the residual yi/ESTyi = yi/axi.

Using the residuals in Table 13, 255 sets of bootstrap residuals are generated. For each
such set, a set of bootstrap actuals are calculated and then ZMPE bootstrap factor CERs
are derived from each set of bootstrap actuals. The results of this process are displayed in
abbreviated form in Table 14.

TABLE 12 Derivation of ZMPE factor CER using Equation (8)

Number of
data points

Diameter
x (feet)

Cost y
(FY $99K) y/x a ESTy = ax % Bias

Squared %
error

7 7.9 3.595 0.455 0.637 5.034 28.5826% 8.1696%
8.2 1.900 0.232 0.637 5.225 63.6360% 40.4954%
9.8 3.300 0.337 0.637 6.244 47.1530% 22.2341%

11.5 10.900 0.948 0.637 7.328 −48.7514% 23.7670%
16.4 15.434 0.941 0.637 10.450 −47.6954% 22.7485%
19.7 16.074 0.816 0.637 12.553 −28.0531% 7.8698%
23.6 17.274 0.732 0.637 15.038 −14.8717% 2.2117%

Sums 97.1 68.477 4.460 61.871 0.0000% 127.4960%

% bias = 0.0000%
%std error = 46.0970%

R2 = 86.0636%
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FIGURE 5 ZMPE factor CER versus data points (color figure available online).

TABLE 13 Calculation of ZMPE factor CER residuals

x Values Actual y values Estimated y values
Residuals =

actual/estimated

7.9 3.595 5.034 0.714
8.2 1.900 5.225 0.364
9.8 3.300 6.244 0.528

11.5 10.900 7.328 1.488
16.4 15.434 10.450 1.477
19.7 16.074 12.553 1.281
23.6 17.274 15.038 1.149

TABLE 14 The path from ZMPE factor CER residuals to bootstrap ZMPE factor CERs

Bootstrap y value = (estimated y value) × (bootstrap residual)
x Values
(cost driver)

Estimated
y values 1 2 3 4 5 6 . . .

7.9 5.034 1.830 5.782 5.782 2.660 6.446 1.830 . . .

8.2 5.225 2.761 7.772 1.900 6.691 7.717 7.717 . . .

9.8 6.244 3.300 7.996 7.173 4.460 9.289 9.289 . . .

11.5 7.328 8.417 5.233 9.383 10.900 2.665 9.383 . . .

16.4 10.450 15.544 3.800 7.463 13.381 15.434 5.522 . . .

19.7 12.553 14.419 8.965 16.074 16.074 18.540 14.419 . . .

23.6 15.038 22.210 7.947 22.369 10.739 5.468 7.947 . . .

a (factor) 0.637 0.608 0.568 0.676 0.663 0.721 0.620 . . .

% Standard
Error

46.10% 49.59% 46.86% 36.52% 36.12% 46.82% 49.81% . . .

% Bias 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% . . .

R2 86.06% 94.92% 5.18% 84.04% 56.53% 12.61% 18.29% . . .
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FIGURE 6 Two hundred fifty-five bootstrap ZMPE factor CERs (color figure available
online).

TABLE 15 Points on the bootstrap ZMPE factor CERs for a range of cost-driver values

Bootstrap cost estimates (y values)
Cost-driver
(x) values #1 #2 #3 #4 #5 #6 . . .

20 49.659 49.988 60.788 55.820 38.285 39.057 . . .

30 69.243 69.354 77.751 74.620 60.518 60.706 . . .

40 88.826 88.720 94.714 93.421 82.751 82.354 . . .

50 108.410 108.086 111.677 112.221 104.984 104.003 . . .

53 114.285 113.895 116.766 117.861 111.654 110.497 . . .

55 118.202 117.769 120.158 121.621 116.101 114.827 . . .

60 127.994 127.452 128.640 131.022 127.217 125.651 . . .

61 129.952 129.388 130.336 132.902 129.441 127.816 . . .

64 135.828 135.198 135.425 138.542 136.111 134.310 . . .

66 139.744 139.071 138.818 142.302 140.557 138.640 . . .

67.3 142.290 141.589 141.023 144.746 143.448 141.454 . . .

70 147.578 146.817 145.603 149.822 149.451 147.300 . . .

71 149.536 148.754 147.299 151.702 151.674 149.464 . . .

76 159.328 158.437 155.780 161.102 162.791 160.289 . . .

78 163.245 162.310 159.173 164.863 167.237 164.618 . . .

79 165.203 164.247 160.869 166.743 169.461 166.783 . . .

80 167.162 166.183 162.566 168.623 171.684 168.948 . . .

90 186.746 185.549 179.529 187.423 193.917 190.596 . . .

100 206.329 204.915 196.492 206.224 216.150 212.245 . . .

110 225.913 224.281 213.454 225.024 238.383 233.893 . . .

120 245.497 243.646 230.417 243.825 260.617 255.542 . . .

The 255 bootstrap ZMPE CERs are graphed together with the supporting data points
in Figure 6, the outlines of which illustrate the trend of the prediction bounds. Notice
the obviously widening bounds in the direction of increasing estimates. This pattern is a
consequence of multiplicative errors being a percentage of the estimate.

The first few actual bootstrap cost estimates on which Figure 6 is based are displayed
in Table 15.
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TABLE 16 Portion of the ranked bootstrap estimates for cost-driver values x = 5,
15, and 50

Estimate ranks x = 5 x = 15 x = 50 Estimate ranks x = 5 x = 15 x = 50

1 2.045 6.135 20.451 226 3.782 11.346 37.820
2 2.120 6.360 21.200 227 3.786 11.358 37.860
3 2.153 6.458 21.527 228 3.787 11.361 37.869
4 2.195 6.585 21.950 229 3.792 11.375 37.917
5 2.205 6.614 22.045 230 3.796 11.388 37.961
6 2.209 6.628 22.094 231 3.801 11.403 38.010
7 2.229 6.687 22.290 232 3.842 11.526 38.420
8 2.280 6.839 22.795 233 3.875 11.626 38.754
9 2.289 6.867 22.890 234 3.880 11.641 38.802

10 2.308 6.923 23.076 235 3.881 11.642 38.807
11 2.317 6.951 23.171 236 3.890 11.671 38.904
12 2.322 6.966 23.219 237 3.900 11.700 39.000
13 2.331 6.994 23.315 238 3.910 11.729 39.096
14 2.337 7.011 23.369 239 3.914 11.743 39.144
15 2.337 7.011 23.369 240 3.941 11.822 39.407
16 2.341 7.023 23.411 241 3.946 11.837 39.455
17 2.402 7.207 24.023 242 3.980 11.939 39.798
18 2.407 7.221 24.072 243 4.030 12.090 40.301
19 2.412 7.236 24.120 244 4.045 12.134 40.446
20 2.453 7.358 24.528 245 4.105 12.314 41.046
21 2.460 7.379 24.597 246 4.124 12.371 41.238
22 2.477 7.430 24.767 247 4.134 12.402 41.339
23 2.482 7.447 24.822 248 4.267 12.801 42.669
24 2.486 7.459 24.863 249 4.283 12.850 42.833
25 2.491 7.473 24.911 250 4.283 12.850 42.833
26 2.491 7.473 24.911 251 4.288 12.864 42.879
27 2.496 7.489 24.965 252 4.288 12.864 42.881
28 2.520 7.559 25.197 253 4.293 12.878 42.927
29 2.520 7.559 25.197 254 4.378 13.133 43.775
30 2.535 7.604 25.347 255 4.472 13.415 44.715

Table 16 exhibits a portion of the ranked bootstrap estimates for the cost-driver values
x = 5, 15, and 50. It is from Table 16 that the lower 10% prediction bounds are obtained
by interpolating between the 25th and 26th lowest estimates, and the upper 10% prediction
bounds are obtained between the 229th and 230th lowest estimates, for those cost-driver
values. The results of the interpolation appear in Table 17.

These interpolated lower and upper 10% BBs serve as the basis of approximate 80%
bootstrap-based (B-B) prediction bounds derived by applying Equation (3). For this exam-
ple, those bounds are displayed in Table 18. The resulting prediction bounds are illustrated
on a Cartesian graph, together with the CER and the supporting data points, in Figure 7.

Prediction Bounds for a Multiplicative-Error Linear CER

Now that a relatively thorough treatment of the multiplicative-error factor-CER case
has been offered, what happens if the same technique for multiplicative-error CERs is
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TABLE 17 Interpolated lower and upper 10% BBs

Estimate ranks x = 5 x = 15 x = 50

• • • •
Rank 25 2.491 7.473 24.911
Lower 10% bounds 2.491 7.473 24.911
Rank 26 2.491 7.473 24.911
• • • •
Rank 229 3.792 11.375 37.917
Upper 10% bounds 3.794 11.382 37.939
Rank 230 3.796 11.388 37.961
• • • •

TABLE 18 Calculation of B-B prediction bounds for multiplicative-error CERs

Cost driver
x-values

Lower
80% BBs

Lower BB - %
SEE × ESTy

ZMPE factor
CER estimate

Upper BB +
%SEE × ESTy

Upper
80% BBs

5 2.491 1.023 3.186 5.263 3.794
7.9 3.936 1.616 5.034 8.315 5.994
8.2 4.085 1.677 5.225 8.631 6.222
9.8 4.883 2.004 6.244 10.315 7.436
10 4.982 2.045 6.372 10.525 7.588
11.5 5.730 2.352 7.328 12.104 8.726
15 7.473 3.068 9.558 15.788 11.382
16.4 8.171 3.354 10.450 17.261 12.444
19.7 9.815 4.029 12.553 20.734 14.948
20 9.965 4.090 12.744 21.050 15.176
23.6 11.758 4.826 15.038 24.839 17.907
25 12.456 5.113 15.930 26.313 18.970
30 14.947 6.135 19.116 31.575 22.763
35 17.438 7.158 22.302 36.838 26.557
40 19.929 8.180 25.488 42.100 30.351
45 22.420 9.203 28.673 47.363 34.145
50 24.911 10.225 31.859 52.625 37.939

applied for other algebraic forms will be described, beginning with the multiplicative-error
linear CER.

Table 19 displays the calculations needed to run Excel’s Solver routine to derive a
multiplicative-error CER that offers minimum percentage error and zero percentage bias.
The resulting CER is graphed along with the data points from which it was derived in
Figure 8.

The next step in the process is to calculate the residuals and set them up for bootstrap
sampling. Table 20 compares the actual costs with their corresponding estimates according
to the ZMPE linear CER and then calculates the CER’s residuals. Table 21 displays the
first six of the 255 sets of bootstrap residuals, from which the 255 bootstrap ZMPE linear
CERs are derived. The 255 linear bootstrap CERs themselves are graphed in Figure 9 and
illustrate the flaring-out pattern that is characteristic of multiplicative-error regression.
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TABLE 19 Excel solver setup and derivation of ZMPE linear CER

x values
Actual y
values

Estimated
y values Percentage bias

Percentage
squared

error
Actual

y2
Estimated

y2

Actual y
∗estimated

y

7.9 3.595 2.852 −26.0399% 6.7808% 12.924 8.135 10.254
8.2 1.9 3.206 40.7414% 16.5986% 3.610 10.280 6.092
9.8 3.3 5.094 35.2226% 12.4063% 10.890 25.953 16.811
11.5 10.9 7.100 −53.5112% 28.6345% 118.810 50.417 77.395
16.4 15.434 12.883 −19.8040% 3.9220% 238.208 165.964 198.832
19.7 16.074 16.777 4.1896% 0.1755% 258.373 281.464 269.672
23.6 17.274 21.379 19.2014% 3.6869% 298.391 457.065 369.302
97.1 68.477 69.292 0.0000% 72.2047% 941.207 999.278 948.358

a = −6.470138 n = 7
b = 1.180052 n

∑
x2 − (

∑
x)2 = 1899.3490

%std error =
38.0012%

n
∑

y2 − (
∑

y)2 = 2193.5568

%bias = 0.0000% n
∑

xy − (
∑

x)2(
∑

y)2 = 1893.5931
R2 = 86.0636% ∴ R = 0.927705

After the bootstrap estimates are calculated for a range of cost-driver values and ranked
from smallest to largest, the 10th and 90th percentile values, respectively, are marked,
adjusted as described earlier, and then each sequence is connected by a curve that passes
though the percentile values to form, respectively, the lower and upper approximate 80%
prediction bounds. The approximate prediction bounds, which parallel the flaring out to the
right visible in Figure 9, are displayed in Figure 10.

Prediction Bounds for a Multiplicative-Error Power CER

A power CER for cost y in terms of a cost-driver value x has the algebraic form y = ax b.
CERs of this form have historically been derived using log-log OLS, i.e., by taking loga-
rithms of both sides of the equation and solving the resulting linear regression problem by
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FIGURE 8 ZMPE linear CER graphed together with its supporting database (color figure
available online).

TABLE 20 Multiplicative-error residuals of the ZMPE linear CER

x values y values Estimated y values Residuals =
(cost drivers) (actual costs) (estimated costs) actual/estimated

7.9 3.595 2.852 1.260
8.2 1.900 3.206 0.593
9.8 3.300 5.094 0.648

11.5 10.900 7.100 1.535
16.4 15.434 12.883 1.198
19.7 16.074 16.777 0.958
23.6 17.274 21.379 0.808

a = −6.4701 b = 1.1801
% SEE = 38.0012% % bias = 0.0000%

TABLE 21 The first six of the 255 sets of bootstrap residuals

x Values Samples #1 #2 #3 #4 #5 #6 . . .

7.9 First residual 0.648 0.808 0.808 1.260 0.958 0.648 . . .

8.2 Second residual 1.260 1.535 0.648 0.958 1.198 1.198 . . .

9.8 Third residual 1.260 0.958 0.808 0.593 1.535 1.535 . . .

11.5 Fourth residual 0.808 0.593 0.958 1.535 0.648 0.958 . . .

16.4 Fifth residual 1.535 0.648 0.593 0.958 1.198 1.260 . . .

19.7 Sixth residual 0.808 0.593 0.958 0.958 1.198 0.808 . . .

23.6 Seventh residual 1.198 1.260 1.535 0.593 0.648 1.260 . . .

OLS methods. However, this 18th century log-log technique has a number of weaknesses
with respect to current statistical capabilities. Those weaknesses are summarized in some
detail in Book (2010). The ZMPE power CER will be used for the database of this study;
both are graphed in Figure 11.

Table 22, analogous to several previous tables, compares the actual costs with the
ZMPE power CER-based estimates and calculates the multiplicative-error residuals.
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FIGURE 9 Bootstrap CERs derived from residuals of the ZMPE linear CER (color figure
available online).
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FIGURE 10 Approximate 80% upper and lower prediction bounds on estimates based on
the ZMPE linear CER (color figure available online).
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FIGURE 11 ZMPE power CER together with its supporting database (color figure
available online).
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TABLE 22 Multiplicative-error residuals of the ZMPE power CER

x Values y Values Estimated y Values Residuals =
(cost drivers) (actual costs) (cost estimates) actual/estimate

7.9 3.595 3.436 1.046
8.2 1.900 3.659 0.519
9.8 3.300 4.949 0.667

11.5 10.900 6.489 1.680
16.4 15.434 11.835 1.304
19.7 16.074 16.144 0.996
23.6 17.274 21.921 0.788
a = 0.103734 b = 1.693439
% SEE = 43.450063% % bias = 0.000000%

The entire bootstrap process will not be reviewed again that consists of generating
(1) 255 sets of bootstrap residuals, (2) 255 sets of bootstrap actuals, (3) 255 bootstrap
ZMPE power CERs, (4) ranking of 255 bootstrap estimates for a range of cost-driver val-
ues, (5) identification of the 10th and 90th percentile estimates for each such cost-driver
value, and (6) adjusting those estimates and connecting them as before to form approximate
80% lower and upper prediction bounds on power CER-based estimates. The 255 bootstrap
power CERs are displayed in the graph of Figure 12.

The final result of that process is the set of approximate 80% prediction bounds that
are illustrated in Figure 13, along with the supporting data points and the ZMPE power
CER. The widening of the prediction interval in this case is, as before, the most spectacular
effect of choosing the multiplicative-error CER model.

Prediction Bounds for a Multiplicative-Error Triad CER

One apparent fact from Figure 11 is that the concavity of the power CER is opposite from
that of its supporting database. Notice that the CER slopes upward to the right, while the
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FIGURE 12 Two hundred fifty-five ZMPE bootstrap power CERs (color figure available
online).
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FIGURE 13 Approximate 80% upper and lower prediction bounds on estimates based on
the ZMPE power CER (color figure available online).
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FIGURE 14 ZMPE triad CER together with its supporting database (color figure available
online).

TABLE 23 Multiplicative-error residuals of the ZMPE triad CER

x Values
Actual y
values

Estimated y
values

Residuals =
actual/estimated

7.9 3.595 2.786965 1.2899336721
8.2 1.900 3.293516 0.5768911567
9.8 3.300 5.730955 0.5758203023

11.5 10.900 7.939498 1.3728828226
16.4 15.434 12.912169 1.1953065162
19.7 16.074 15.520302 1.0356757065
23.6 17.274 18.116607 0.9534898236
97.1 68.477 66.3000109 7.000000000
a = −236.110 b = 212.422
% SEE = 39.4852% % bias = 0.00000000000%
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sequence of data points slopes downward to the right. This feature seriously reduces the
credibility of the power CER in this case, and there is a risk of its occurring anytime a
power CER is derived. The reason for this is that a power CER must pass through the
(0,0) (x,y) point on the graph of Figure 11, even though the natural y-axis point to pass
through may be elsewhere. This problem is completely solved by use of the triad CER
form y= a+ bx c, where coefficient a (the fixed cost) identifies the point at which the CER
intersects the y-axis.

The power CER has no fixed-cost term; therefore, the fixed cost is effectively
considered to be zero, and so the CER must pass through the (0,0) points.

The nearly vertical bootstrap CER on the left side of Figure 15 is something that occa-
sionally appears as a result of statistical sampling. However, there is no impact to the 80%
prediction bounds, because that particular curve is literally “off the chart” and outside the
10% to 90% range bootstrap estimates.
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FIGURE 15 Two hundred fifty-five ZMPE bootstrap power CERs (color figure available
online).
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Summary

While explicit formulas exist for prediction intervals that correspond to OLS-derived lin-
ear CERs, those intervals can be reproduced fairly well by adjusting bounds derived by
bootstrap sampling. For general-error CERs, however, prediction bounds do not appear to
be available, although techniques for deriving such CERs have been available for almost
40 years. While awaiting the discovery of the “exact” solution, the bootstrap sampling
technique appears to offer an opportunity to approximate prediction bounds for any spe-
cific CER by analogy with the adjustment process for OLS BBs. The bootstrap method
is, however, at a significant disadvantage when compared with algebraic formulas such as
those for OLS CERs: it provides a solution on a “one-time-only” basis for each CER, rather
than via an algebraic formula of wide applicability. Theoretical research in this direction
may be worthwhile, as it may lead to future algebraic solutions, and should be encouraged,
but there is a current need to have the ability to at least approximate prediction bounds for
general-error CERs.

Acronyms

B-B Bootstrap-Based
B-BB Bootstrap-Based Bound

BB Bootstrap Bound
CER Cost-Estimating Relationship
EST Estimated

FY Fiscal Year
IRLS Iteratively Reweighted Least Squares

K Thousands (usually of dollars)
MPE-ZPB Minimum Percentage Error–Zero Percentage Bias

OLS Ordinary Least Squares
SEE Standard Error of the Estimate

ZMPE Zero Percentage Bias–Minimum Percentage Error

TABLE 24 Path from ZMPE triad CER residuals to bootstrap ZMPE triad CERs

Bootstrap y values

x Values #1 #2 #3 #4 #5 #6 . . .

7.9 3.331 3.826 3.595 2.657 3.331 2.657 . . .

8.2 1.900 4.248 4.248 4.248 3.411 1.896 . . .

9.8 6.850 7.868 7.868 3.306 5.464 3.300 . . .

11.5 4.580 8.223 8.223 7.570 10.900 10.900 . . .

16.4 16.656 13.373 12.312 7.449 13.373 12.312 . . .

19.7 16.074 8.954 18.552 18.552 20.020 14.798 . . .

23.6 10.451 18.763 10.451 23.369 10.432 17.274 . . .

a (intercept) −234.930 −233.629 −234.175 −235.904 −236.560 −236.531 . . .

b (coefficient) 213.612 215.212 214.377 212.627 211.969 211.998 . . .

c (exponent) 0.051 0.048 0.050 0.056 0.059 0.057 . . .

% std error 43.87% 23.68% 26.03% 38.48% 30.23% 35.10% . . .

% bias 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% . . .

R2 91.45% 91.46% 91.45% 91.43% 91.42% 91.42% . . .
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