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The Fractal Nature of Cost Risk: The Portfolio
Effect, Power Laws, and Risk and Uncertainty

Properties of Lognormal Distributions
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Cost risk can be added to the list of the many phenomena in nature that follow a power-law
probability distribution. Both the normal and lognormal, neither of which is a power-law distri-
bution, underestimate the probability of extreme cost growth, as shown by comparison with empirical
data. This situation puts the widely debated “portfolio effect” into further dispute. However, even
though power laws are useful for modeling extreme events, budgets are not typically set at extreme
percentiles, such as the 90th. Indeed, budgets are usually set at the 70th percentile or below. In addi-
tion, it is shown that the lognormal distribution is also problematic in that region and for percentile
funding in general. To model cost risk for an individual program by setting budgets and/or reserves
using percentile funding with a percentile chosen at or below the 70th percentile, it appears that the
normal distribution may be the best option.

One must do no violence to nature, nor model it in conformity to any blindly
formed chimera. (Janos Bolyai, 1820)

Introduction

Janos Bolyai was a 19th century Hungarian mathematician noted for discovering non-
Euclidean geometry. While researching the parallel postulate of Euclid as teenager, he
became convinced that there could be a geometry independent of the parallel postulate,
which inspired him to write to his father, also a mathematician, that “One must do no
violence to nature, nor model it in conformity to any blindly formed chimera; that on the
other hand, one must regard nature reasonably and naturally, as one would the truth, and
be contented only with a representation of it which errs to the smallest possible extent,”
(Gray, 2004). It was later discovered by Einstein and others that physical space is, in fact,
non-Euclidean. Thus, the mathematical theory developed by Bolyai and others provided a
geometric tools needed for much of 20th century physics, including the development of
general relativity (Kiss, 1999).

In the spirit of Bolyai, the contemporary mathematician Benoit Mandlebrot, build-
ing upon and synthesizing the work of many disparate predecessors, discovered that nature
often does not act in accordance with the linear mathematics that were developed in the 18th
and 19th centuries (Mandlebrot, 1983, 1997). Just as the Euclidean space model of nature
is too simple, Mandlebrot discovered that numerous natural and man-made phenomena
are subject to random behavior that does not follow the statistical distributions commonly
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taught in elementary statistics courses, such as the normal and lognormal. Examples include
financial markets, energy of incoming cosmic rays, frequency of words, amount of dam-
age a fire causes to a house, and distribution of incomes, to name only a few. Normal and
lognormal distributions underestimate the frequency of extreme events for such phenom-
ena, which are said to be “self-similar” and follow a power law. An event or object is
self-similar if it is exactly like or similar to a part of itself; that is, the whole has the same
shape as one or more of its parts. An example is the map of a coastline. As Mandelbrot
pointed out in his book The Fractal Geometry of Nature (Mandlebrot, 1983), while the
maps of coastlines rendered at different scales differ in specific details, they have the same
types of features: “in a rough approximation, the small and large details of coastlines are
geometrically identical except for scale” (Mandlebrot, 1983, p. 34).

In this article, it is shown that cost risk can be added to the list of the many phenomena
to which Mandelbrot’s fractal model applies.

Cost Growth and Power Laws

Cost growth is the amount by which a program exceeds its initial budget. It is typically
expressed as a percentage. For example, for a program initially expected to cost $100 mil-
lion at the beginning of the program, but which actually costs $150 million by the end of
the program’s development, the program is said to have experienced 50% cost growth.
Cost growth has been shown to be an endemic and universal phenomenon. Studies by
Shaffer (2003), the U.S. Government Accountability Office (GAO, 1992), and Smart (2002,
2007) have shown that on average, over three-quarters of all NASA programs experience
cost growth, with an average cost growth ranging to 35% and higher, with many programs
experiencing much higher growth, including 100% or more. Cost overruns are not lim-
ited to space and weapons systems development projects. A 2002 study found that 90% of
construction projects experienced cost overruns (Flyvbjerg et al., 2002). Boston’s Big Dig
project experienced a $11 billion overrun (Flyvbjerg, 2005). The Suez Canal cost 20 times
as much as initially planned, and the Sydney Opera House cost 15 times as much as was
originally projected. The Concorde supersonic airplane, a technology marvel in the late
1960s and 1970s that was able to travel from New York to Paris in only 3.5 hours, cost
12 times more than predicted (Flyvbjerg et al., 2002). Even smaller projects are not immune
to large amounts of cost growth. The new Madison County Jail in north Alabama, which
was supposed to cost $29 million when the project began, eventually grew to $79 million
(Doyle, 2010).

Cost risk is the probability that an estimate will exceed a specified amount, such as
$100 million or $150 million. Cost growth and cost risk are intrinsically related. Historical
cost growth provides an excellent means for determining the overall level of risk for cost
estimates. For example, if 95% of past programs have experienced less than 100% growth,
it should be expected that the ratio of actual cost to the initial estimate should be less than
100% with approximately 95% confidence.

A power law is a polynomial relationship that exhibits scale invariance, which means
that the relationship does not vary as the scale changes. Scale invariance is closely related
to self-similarity and is a prime consideration in fractal geometry (Mandlebrot, 1983).
A real-valued function f is defined as scale- invariant if and only if there exists a constant
k such that

f (cx) = ck f(x)



Fractal Nature of Cost Risk 7

for all real values x in the function’s domain and for any real number c �= 0. The power
function

f(x) = axb

is scale-invariant since

f(cx) = a(cx)b = acbxb = cbaxb = cbf(x).

However, the affine function

f(x) = 2x + 1

is not scale-invariant. To see this, note that

f(cx) = 2(cx) + 1 = 2cx + 1.

Then there would have to exist a k such that, for all values of c and x,

2cx + 1 = f(cx) = ck f(x) = ck(2x + 1).

When x = 0, note that equality of these two terms requires that

2c · 0 + 1 = ck(2 · 0 + 1),

which means that

1 = ck,

namely c = 1 or k = 0 and c �= 0. But then when x = 1,

2c · 1 + 1 = f (c · 1) = ck f (1) = ck(2 · 1 + 1) = 2ck + 1 = 3 (since ck = 1).

Therefore, it follows that

f(c) = 3,

which is true only when c = 1. Scale invariance requires that the invariance works for all
c �= 0, not only particular values of c, so the affine function is not scale-invariant.

A single-parameter Pareto distribution is a probability distribution that embodies this
concept. If X is a random variable that follows a Pareto distribution, then the tail probability
that X is greater than a number x is given by

Pr (X ≥ x) =
(

x
xm

)−k

for all x ≥ xm, where xm is the (necessarily positive) minimum possible value of X, and
k > 0. The tail probability of the single-parameter Pareto distribution is scale-invariant,
because it is a power function with a = (xm)k and b = −k.
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The probability density function of a single-parameter Pareto distribution is defined as

Pr(x) = kxk
m

xk+1
,

and the cumulative distribution function is defined as

Pr(X ≤ x) = 1 −
(xm

x

)k
.

An example of a scaling phenomenon is the distribution of income. Consider, for exam-
ple, income distributions in the United States. For incomes above $70,000, incomes scale
according to a power law; see Figure 1.

For any given income in Figure 1, the diamond-shaped markers on the solid line repre-
sent the empirical likelihood that an income exceeds that value. For example, slightly over
10% of U.S. households have incomes in excess of $100,000. The graphs of the normal,
lognormal, and Pareto show the predicted likelihood of exceeding a given income, based
on a regression using the income data. This graph is designed to show the tails of the dis-
tribution and how likely an income is to be exceeded. It is the opposite of an S-curve plot
that shows the cumulative frequency.

Note that in Figure 1, the power law fit is nearly perfect, with a Pearson R2 = 99.49%.
Census Bureau data from 2006 (available at www.census.gov) indicate that 1.7% of U.S.
households have incomes greater than $250,000. The Pareto power law estimates this prob-
ability to be equal to 1.73%, a very close approximation. The lognormal distribution fit to
the Census Bureau data estimates that the probability is equal to 0.53%, while a normal
distribution estimates the probability to be equal to less than 3.5 in one million. The normal
distribution has thin tails, which, in practical terms, means that the probability of extreme
events is extremely small. The lognormal distribution provides a better estimate of the right
tail, but is not as good as that of the Pareto distribution.

Cost growth data follow a similar pattern. Figure 2 shows a probability plot for the
cost growth from the Schaffer study (2003). It is seen from Figure 2 that cost growth data
follows a pattern similar to that of income distribution. That is, the Pareto power law better
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tions for U.S. income (source: U.S. Census Bureau) (color figure available online).
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FIGURE 2 Cost growth probability plot for Schaffer study (color figure available online).

predicts the probability of extreme cost growth (in this case, greater than 100%) than either
the normal or lognormal law. For example, the probability that cost growth exceeds 180%
is actually 2%. The Pareto distribution estimates this probability to be equal to 3.1%, while
the lognormal estimate is 1.0%, and the normal estimate is 0.1%. In this case, the lognormal
and Pareto provide approximately equal accuracy in estimating the extreme right tail, but
the lognormal underestimates the probability of this level of cost growth.

What is the impact of scale invariance on cost growth? One facet of cost risk is that
budgets are not set in isolation. Rather, budgets are set in the context of multiple ongo-
ing projects. Thus, in practice, a portfolio of projects is often considered. In this case, it
has been suggested that due to diversification across a suite of missions, it is possible to
achieve a high level of confidence in the overall budget while setting budgets for individual
missions at a lower level (Taleb, 2007). This draws on ideas in economics, such as mod-
ern portfolio theory developed by Nobel laureate Harry Markowitz (1959); see Table 1
for an example (Anderson, 2004). In Table 1, there are ten mutually independent nor-
mal distributions. For independent normal variates, the sum of the variates is also normal,

TABLE 1 Example of the portfolio effect for ten mutually independent
normal distributions

Project μ σ 61% Confidence level

Project 1 $1,696 $539 $1,846
Project 2 $1,481 $404 $1,594
Project 3 $1,395 $435 $1,516
Project 4 $874 $288 $954
Project 5 $840 $219 $901
Project 6 $1,449 $371 $1,552
Project 7 $1,638 $537 $1,788
Project 8 $1,031 $259 $1,103
Project 9 $1,271 $323 $1,361
Project 10 $1,937 $602 $2,105

Portfolio metrics $13,612 $1,317 $14,720
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with mean equal to the sum of the means of the individual random variable and standard
deviation equal to the square root of the sum of squares of the individual standard devia-
tions. Therefore, the portfolio level mean in Table 1 is the sum of individual project means,
and the portfolio level standard deviation in Table 1 is the square root of the sum of the
individual project variances. Because of this fact, in this particular case, it is possible to
achieve 80% confidence for the full portfolio of ten projects while budgeting each individ-
ual project at the 61% confidence level. This is a significant savings. The portfolio level
80% confidence level in Table 1 is the sum of the 61% confidence levels for the individual
projects.

However, when a Pareto distribution is applied to the same data (see Table 2), using
the means and a common scale to represent the probability of cost growth that is consistent
with the cost-growth historical data, a drastically different conclusion is reached.

The scale derived from the cost growth data in the Schaffer study is used for all
ten projects with means equal to those defined in Table 1; that is, the empirical data
summarized in Figure 2 are used to define the scale for each distribution, assuming that
cost growth follows a power law. This distribution is consistent with the cost-growth
data shown in Figure 2. Assuming these ten Pareto distributions to be mutually inde-
pendent, a Monte Carlo simulation with 5000 trials was performed using @Risk in
Microsoft Excel. For these ten distributions, it was found that the portfolio effect is min-
imal and that each individual project must be funded at the 77.5% confidence level to
achieve an overall portfolio confidence level equal to 80%; see Table 2 for a summary of
these data.

The primary consequence of scale invariance for cost growth and cost risk is that the
portfolio effect is minimal, if it even exists at all. This is due to the fact that the normal,
and, to a lesser extent, the lognormal, distributions underestimate the probability of extreme
cost growth. When this probability is modeled more accurately in accordance with the
empirical data, the portfolio effect vanishes, or at best is minimal. Thus, policy makers
should be careful in assuming that such an effect will help diversify risk among missions.
If policy makers want to achieve a high level of confidence for their overall budget, their
focus should be on sufficiently funding each individual mission at a sufficient confidence
level. To do otherwise is to place faith in the “blindly formed chimera” of the normal
distribution.

TABLE 2 Example of the minimal portfolio effect when scale invariance
is taken into account (Pareto data)

Project μ Scale 77.5% Confidence level

Project 1 $1,696 3.0731 $1,859
Project 2 $1,481 3.0731 $1,623
Project 3 $1,395 3.0731 $1,529
Project 4 $874 3.0731 $958
Project 5 $840 3.0731 $921
Project 6 $1,449 3.0731 $1,588
Project 7 $1,638 3.0731 $1,795
Project 8 $1,031 3.0731 $1,130
Project 9 $1,271 3.0731 $1,393
Project 10 $1,937 3.0731 $2,123

Portfolio metrics $13,612 $14,919
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The Lognormal Paradox: Considerations for Modeling Cost Risk
When Budgeting Near the Median (50% to 70% Confidence Levels)

While the Pareto distribution better models cost risk at the right tails, such as at the 90th
percentile, it does not do a good job of modeling the central portion of the distribution,
which is where funding is often set; see Figure 3 for an example with a common mean.

In Figure 3, the normal and lognormal distributions have common means and standard
deviations, while the one-parameter Pareto distribution is defined so that its mean is the
same as those of the normal and lognormal, while the scaling parameter is based on the
empirical analysis of cost growth data. Note that the Pareto is more conservative at the right
tail (at or above the 90th percentile) but is much less conservative at lower levels. This is the
tradeoff in fat-tailed distributions—they better reflect the reality of extreme events, but they
do not always do a good job of representing lower confidence levels, such as those at which
budgets are typically set. Even Mandlebrot admits that scale invariance does not do as good
a job as the normal and lognormal at representing the bulk of the distribution (Mandlebrot,
1997). Also note that the Pareto distribution in this example largely represents risk, but it
does not realistically represent opportunities, or the potential for cost savings, below the
50th percentile.

Program reserves are typically set at the 70th percentile or below. For example, NASA
policy dictates that all NASA programs must be funded at a 70% confidence level, so the
concern is not with getting the tails correct, but rather in providing realistic assessments of
the bulk of the cost risk distribution.

The lognormal distribution seems to represent a compromise between the fat-tailed
distributions and the normal distribution. As we have seen, the lognormal distribution has a
fatter tail than the normal distribution, and fatter-tailed distributions, such as the Pareto,
have even fatter tails that better represent the 90th and 95th percentiles. However, the
lognormal distribution does a better job of representing the bulk of the distribution. When
funding is near the central tendency, the lognormal or normal distribution may do better job
of representing the reserves needed.

One of the properties of the normal distribution is that the mean and median are equal
to one another. Also, for two normal distributions with common mean μ and standard
deviations σ1 < σ2, the distributions intersect at the 50th percentile, but for all percentiles
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FIGURE 4 Comparison of normal distributions with common mean.

above the 50th percentile, more reserves are required for the distribution with the higher
standard deviation. This is intuitive, since the standard deviation is a quantitative measure of
uncertainty. Thus, a higher standard deviation means that there is more uncertainty. When
uncertainty is higher, a higher budget is usually required to achieve any confidence level
above the median. Figure 4 gives a graphical comparison of three normal distributions with
common mean but different standard deviations.

For example, for the distribution with standard deviation equal to 100, the 55th per-
centile is $612, and when the standard deviation is equal to 200, the 55th percentile
is $624.

Note that risk is not equivalent to standard deviation. Standard deviation is a measure of
uncertainty, reflecting both the potential for cost to increase (risk) and the potential for cost
to decrease (opportunity). In the case of normal and lognormal distributions, the distribution
is completely specified by its mean and standard deviation. When the standard deviation
increases, uncertainty increases, since the right tail also becomes fatter. Therefore, as the
standard deviation increases, risk also increases. It follows that risk is positively associated
with standard deviation, although it is not equivalent to it.

This common and intuitively appealing situation does not apply to the lognormal dis-
tribution. Indeed, for the lognormal distribution there is a paradox—when risk increases,
less money may actually be required to achieve a higher amount of confidence! This seem-
ing contradiction partly stems from a basic property of the lognormal distribution, which
is that the mean is actually strictly greater than the median; consider the same means and
standard deviations as earlier for a lognormal distribution used to represent cost risk (see
Figure 5).

In this case, the 55th percentile, when the standard deviation is equal to 100, is $607,
but when the standard deviation increases to 200, the 55th percentile drops to $598. This is
not logical, since the risk has doubled, but less money is needed to achieve a relatively high
level of confidence. These two distributions intersect at approximately the 60th percentile,
so funding at a level equal to the 60th percentile would be needed just so that the two
different risk profiles would require the same level of funding.

This is just an example illustrating this property that for two lognormals with a given
mean, the one with the higher standard deviation, and hence the one with more risk, requires
less funding at the 50th percentile and, at levels slightly above that, creates logical prob-
lems. This is because it implies that when budgeting to the 50th percentile, or slightly above
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FIGURE 5 Comparison of lognormal distributions with a common mean.

that level, riskier events may require less funding than less risky events. Suppose an analyst
develops a cost risk analysis for his manager that is modeled with a lognormal distribution.
The analyst presents it to his manager, telling him that the 50th percentile is $100 million.
After discussing the risks used in the analysis, the manager asks the analyst to go back and
add an additional risk to the analysis and to update him with the new results. Suppose that
the risk does not affect the mean, but it increases the standard deviation. Then the new anal-
ysis, which is riskier than the previous analysis, will require less than $100 million funding
at the 50th percentile. Now the analyst goes back to his manager and reports to him that
adding the additional risk to the analysis means that now only $98 million is needed to
achieve the 50th percentile of the new risk distribution.While the analyst has done nothing
wrong, he will have a difficult time explaining that a new analysis that considers addi-
tional risk will mean that less funding is required. This is formalized in the theorem that
follows.

A lognormal distribution is the probability distribution of any random variable whose
logarithm is normally distributed. Equivalently, a lognormal is the exponentiation of a nor-
mal distribution. The lognormal distribution can be represented by two parameters, such as
the mean μ and standard deviation σ . It can also be represented by the mean p and stan-
dard deviation q of the log-transformed random variable that follows a normal distribution.
Because p is also the median, as well as the mean, of the normal distribution, it follows
that exp(p) is the median of the associated lognormal distribution, Note that the following
additional relationships between μ, σ , p, and q apply:

μ = e p+0.5q2,

σ 2 = e2p+q2
(

eq2 − 1
)

,

p = 0.5 ln
(

μ4

μ2 + σ 2

)
,

q =
√

ln
(

1 + σ 2

μ2

)
.



14 C. Smart

Theorem 1. For two lognormal distributions with common mean μ and standard devi-
ations σ 1 > σ 2 > 0, the 50th percentile of the lognormal distribution with mean μ and
standard deviation σ 1 is less than the 50th percentile of the lognormal distribution with
mean μ and standard deviation σ 2.

Proof. Since σ 1 > σ 2 > 0, it holds that

σ 2
1 > σ 2

2

and

μ2 + σ 2
1 > μ2 + σ 2

2,

which means that

1

μ2 + σ 2
1

<
1

μ2 + σ 2
2

and

μ4

μ2 + σ 2
1

<
μ4

μ2 + σ 2
2

;

from this, it can be seen that

√
μ4

μ2 + σ 2
1

<

√
μ4

μ2 + σ 2
2

,

and so

ln

(√
μ4

μ2 + σ 2
1

)
< ln

(√
μ4

μ2 + σ 2
2

)
,

which, in turn, implies that normal distribution means are such that p1 < p2. By the fact
that the median of a lognormal is equal to exp(p), the proof is completed.

It is known from Theorem 1 that two lognormal distributions with a common mean
intersect at some percentile greater than the 50th. The exact percentile at which the two
intersect in terms of the parameters for a lognormal distribution can be determined. For a
lognormal distribution the kth percentile can be represented as

e p+zq,

where z represents the z-score of the kth percentile for a standard normal distribution. This
result, which will be shown as a complicated function, is of more than theoretical interest.
It is important in showing that for a lognormal, as the risk increases but the mean remains
constant, the maximum point at which the two distributions intersect increases without
limit. This is significant, because it means that there is no limit at which the two lognor-
mals may intersect. Even though the riskier lognormal, the one that has a fatter tail, will
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eventually intersect the less risky lognormal, this point of intersection has no upper bound.
So simply increasing the percentile at which funding is set to the 60th, 70th, 80th, or even
90th percentiles will not overcome the logical problem that a less risky lognormal may
require more funding than a riskier lognormal.

The next theorem involves the concept of the “coefficient of variation of a distribution,”
namely the ratio of the distribution’s standard deviation to its mean.

Theorem 2. For two lognormal distributions with a common mean μ and standard devi-
ations σ 1 > σ 2 > 0 with σ 1 = α · σ 2, where α > 1, the normal distribution z-score z at
which the two intersect is the following function of the coefficients of variation of the two
distributions:

z = 0.5
(√

ln(1 + α2CV 2) +
√

ln(1 + CV 2)

)
,

where CV = σ 2/μ is the coefficient of variation for the lognormal distribution with param-
eters μ and σ 2. Since σ 1 = α · σ 2, the coefficient of variation for the lognormal distribution
with parameters μ and σ 1 is α · CV. Also, the minimum value of z is q2, namely the stan-
dard deviation of the normal distribution associated with the lognormal distribution that
has the smaller standard deviation σ 2.

Proof. The kth percentile of the lognormal distribution with mean μ and standard deviation
σ can be written as

e p+zq.

Setting the two expressions for the kth percentile where intersection occurs equal yields

e p1+zq1 = e p2+zq2 ,

and so

p1 + zq1 = p2 + zq2.

Solving for z yields

z = p2 − p1

q1 − q2
,

and substituting for p and q yields

z =
0.5 ln

(
μ4

μ2 + σ 2
2

)
− 0.5 ln

(
μ4

μ2 + σ 2
1

)
√

ln
(

1 + σ 2
1

μ2

)
−
√

ln
(

1 + σ 2
2

μ2

) ,
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which can be simplified, using properties of logarithms, to

z =
0.5 ln

(
μ4

μ2 + σ 2
2

÷ μ4

μ2 + σ 2
1

)
√

ln
(

1 + σ 2
1

μ2

)
−
√

ln
(

1 + σ 2
2

μ2

) =
0.5 ln

(
μ2 + σ 2

1

μ2 + σ 2
2

)
√

ln
(

1 + σ 2
1

μ2

)
−
√

ln
(

1 + σ 2
2

μ2

) ,

Substituting σ 1 = α · σ 2, it is found that

z =
0.5 ln

(
μ2 + α2σ 2

2

μ2 + σ 2
2

)
√

ln
(

1 + α2σ 2
2

μ2

)
−
√

ln
(

1 + σ 2
2

μ2

) .

Recall that the coefficient of variation is the ratio of the standard deviation to the mean. The
numerator for this expression can be rewritten in terms of the coefficients of variation, viz.,

μ2 + α2σ 2
2

μ2 + σ 2
2

=
μ2

(
1 + α2σ 2

2

μ2

)

μ2

(
1 + σ 2

2

μ2

) = 1 + α2CV2

1 + CV2 ,

yielding

z = 0.5
(
ln
(
1 + α2CV2)− ln

(
1 + CV2))√

ln
(
1 + α2CV2)−

√
ln
(
1 + CV2) .

Setting

x =
√

ln
(
1 + α2CV2), y =

√
ln
(
1 + CV2) ,

z = 0.5
(

x2 − y2

x − y

)
= 0.5

(
(x − y) (x + y)

x − y

)
= 0.5 (x + y) .

Therefore,

z = 0.5
(√

ln(1 + α2CV2) +
√

ln(1 + CV2)

)
,

where CV is the standard deviation (σ 2) of the lognormal distribution divided by the mean,
and α is the ratio of σ 1 to σ 2.

Note that since σ 1 > σ 2 > 0, α > 1. Because z is increasing as a function of α, notice
that the greatest lower bound of z is attained when α = 1. Therefore

z ≥ 0.5
(√

ln(1 + α2CV2) +
√

ln(1 + CV2)

)
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= 0.5
(√

ln(1 + CV2) +
√

ln(1 + CV2)

)

= 0.5 · 2
(√

ln
(
1 + CV2)) =

√
ln
(
1 + CV2)

But by the expression for q2,

q2 =
√

ln
(
1 + CV2),

so the minimum possible value of z is seen to be q2, and this completes the proof and
establishes the theorem.

As an example of the application of Theorem 2, suppose that two lognormal distribu-
tions have a common mean but different standard deviations. The points of intersection
for numerous pairs of coefficients of variation for the two distributions are shown in
Table 3.

Note that in the table, the percentile at which the two distributions intersect ranges
from approximately the 55th to over the 68th percentile. Also, note that the greater the
difference between the two standard deviations (since the means are the same, the ratio of
coefficients of variation is the same as the ratio of the standard deviations), the higher
the percentile at which the two distributions intersect. This is counter to intuition. For
example, this situation could arise when applying correlation to a risk analysis. Correlation
does not affect the mean, but it has a significant impact on the standard deviation (Book,
1999; Smart, 2002). A higher correlation value, on average, translates to higher risk,
which should mean that more money should be required to achieve the 60th percentile.
But if, for example, the coefficient of variation of the first distribution is 10% while the
second is 55%, the second standard deviation is 5.5 times the first. However, the two
distributions intersect at the 62nd percentile, so less funding is needed to achieve the
60th percentile for the riskier cost distribution. Figure 6 provides an illustration of this
concept.

Theorem 2 established a lower bound on the intersection (the z-score must be at
least q2). A further question can be asked based on the information in Table 3: Is there any
upper limit at which two lognormals can intersect? The next theorem (Theorem 3) shows
that, given a lognormal distribution and any percentile greater than the lower bound, there
is another lognormal distribution with the same mean that intersects the original lognormal
at the specified percentile. The conclusion is that two lognormal distributions can inter-
sect at any percentile between the 50th and the 100th. Theorem 4 will establish points of
intersection between a normal and a lognormal.

Theorem 3. Given a lognormal distribution and any percentile k between the lower bound
(corresponding to the lower limit of z) that is established in Theorem 2 and the 100th
percentile, there is another lognormal distribution with the same mean that intersects that
distribution at the kth percentile.

Proof. At one point near the end of the proof of Theorem 2, it was seen that

z = 0.5
(√

ln(1 + α2CV2) +
√

ln(1 + CV2)

)
.
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FIGURE 6 Comparison of funding levels for two lognormals.

Solving for α, it is found successively that

√
ln(1 + α2CV2) = 2z −

√
ln(1 + CV2),

ln(1 + α2CV2) =
(

2z −
√

ln(1 + CV2)

)2

,

1 + α2CV2 = exp
(

2z −
√

ln(1 + CV2)

)
,

from which it can be seen that

α =

√√√√e
(

2z−
√

ln(1+CV2)
)2

− 1

CV2 .

Now the coefficient of variation must be set sufficiently high relative to the baseline
lognormal (#2) to find another lognormal that intersects it at percentile k. This is done
by calculating α, which is the ratio of the coefficients of variation of other lognormals rela-
tive to the baseline lognormal for the z-score that corresponds to the percentile at which the
two distributions will intersect. That value of α defines lognormal (#1), which has the asso-
ciated normal distribution z-score for percentile k. Furthermore, as α increases to ∞, the
equation above shows that z also increases to ∞, and that, in turn, implies that k increases
to 100%. This completes the proof and hence establishes the theorem.

Thus, given a lognormal distribution, there is another lognormal distribution with a
greater standard deviation that intersects the first lognormal at the 80th percentile, another
at the 90th percentile, another at the 95th, the 99th, the 99.99th, etc. That is, given two
lognormals with the same mean, there is no upper bound for the intersection between them.
For example, suppose that a lognormal distribution has coefficient of variation equal to
20% and the 75th percentile is selected. Then the z-score is the inverse of a standard nor-
mal distribution (calculated in Excel using the formula “=NORMSINV(0.75)”), which is
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approximately 0.67449. This z-score and the coefficient of variation of 20% are used as
inputs in the formula derived in the proof of Theorem 3; that is,

α =

√√√√e
(

2(0.67449)−
√

ln(1+(0.20)2)
)2

− 1

(0.20)2 ,

which results in α ≈ 4.369.
For the baseline lognormal, the coefficient of variation is fixed. Then from Theorem 3,

as α increases, the z-score increases. As the value of α increases, so does the standard devi-
ation of the other lognormal, and thus, the risk for the other lognormal increases. But z also
increases, which means that the riskier the lognormal becomes, the higher the percentile at
which the two distributions intersect. This process continues with no limit: the higher the
risk, the higher the point of intersection.

By definition, the normal and lognormal distributions have the same mean. For a
normal distribution, the mean and 50th percentiles are the same value. However, for a
lognormal distribution, the 50th percentile is always less than or equal to the mean. Thus,
at the 50th percentile, the lognormal requires less funding than a normal distribution with
the same mean and standard deviation. Thus, when funding to the 50th percentile, for a
given mean and standard deviation, measuring risk with a lognormal distribution requires
fewer risk reserves than when measuring risk with a normal distribution, even though the
lognormal tail is fatter and hence is riskier.

However, funding policies typically focus on percentiles greater than the 50th, such
as the 70th or 80th percentiles. However, it turns out that another peculiar feature of the
lognormal distribution is that for percentiles less than the 85th, the normal distribution
percentiles exceed those of a lognormal with the same mean and standard deviation. This
means that percentile funding policies at these levels consider a normal distribution to be
riskier than a lognormal.

This issue does not impact estimating at the mean, which is not the same as percentile
funding; see Figure 7 for an example.

Theorem 4. For a lognormal distribution and a normal distribution with common mean
and standard deviation, the maximum point at which the distributions intersect is at least
the 84% confidence level.

Proof. At the 50th percentile, the normal mean is equal to the normal 50th percentile, and
it is given that this is equal to the lognormal mean. Because the lognormal’s 50th percentile
is less than its mean, as was discussed earlier, if funding is set at the 50th percentile, a
lognormal risk measure will require less funding than the normal with the same mean. Since
the lognormal has a fatter tail than the normal distribution, this means that the normal and
lognormal distributions must intersect at some point above the 50th percentile of the normal
distribution. From Theorem 3, there is no bound to the upper limit for the intersection, it is
only known that it will be at some point less than the 100th percentile. Since lognormal and
normal distributions are unbounded above, the theoretical 100th percentile is not a finite
number.

The probability level of a normal distribution one standard deviation above the mean
is approximately 84.1%, and here, the normal z-score is equal to 1. Let μ and σ denote
the mean and standard deviation of the normal distribution, respectively. Let p and q
denote the mean and standard deviation, respectively, of the normal distribution asso-
ciated with the lognormal. Note that the normal distribution that is associated with the
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lognormal is not the same distribution as the normal distribution with mean μ and standard
deviation σ .

The mean of the lognormal distribution is therefore

e p+0.5q2
,

and the standard deviation is

e p+0.5q2
√

eq 2 − 1 .

So, at the 84.1th percentile of the normal distribution, the normal distribution percentile is
μ + σ , and the lognormal distribution percentile is e p+q.

This is thus comparing μ + σ with e p+q. Since the mean of the lognormal distribution
is the same as the mean of the normal distribution, e p+0.5q2

can be substituted for μ and
e p+0.5q2

√
e q2 − 1 for σ in the term μ + σ , and this can be compared with e p+q:

μ + σ = e p+0.5q2 + e p+0.5q2
√

e q2 − 1 = e p+0.5q2
(

1 +
√

e q2 − 1
)

.

Setting this equal to e p+q gives

e p+0.5q2
(

1 +
√

e q2 − 1
)

= e p + q,

which simplifies to

e0.5q2
(

1 +
√

e q2 − 1
)

= eq.

Note that one solution to this transcendental equation is q = 0, since e0 = 1, although it is
an extraneous solution because it forces σ = 0, which is not possible for such distributions.
In fact, q > 0 follows from the fact that q is itself the standard deviation of a normal
distribution.
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Also note that

eq2 = 1 − 1 + eq2 ≤ 1 + 2
√

eq2 − 1 +
(

eq2 − 1
)

=
(

1 +
√

e q2 − 1
)2

,

which implies that

1 +
√

e q2 − 1 ≥
√

e q2 = e0.5q2
.

When q > 1,

e0.5q2
(

1 +
√

eq2 − 1
)

≥ e0.5q2
e0.5q2 = eq2

> eq,

and when q = 1, this inequality holds also because eq= e = 2.718 and e0.5q2(
1 +

√
eq2 − 1

)
= √

e
(
1 + √

e − 1
) = 3.810. Thus equality is not attained when q ≥ 1,

and so the normal percentile one standard deviation greater than the mean exceeds the
lognormal percentile (the same) one standard deviation greater than the (same) mean.

When q < 1, the inequality

e0.5q2
(

1 +
√

eq2 − 1
)

> eq

is difficult to verify algebraically or even by using calculus. Numerical routines such as
Mathematica and Wolfram Alpha (http://www.wolframalpha.com) or direct calculations
made in Excel can be used to verify that equality only holds at q = 0 and that the difference
increases as q increases. The difference can be expressed as the continuous function f(q) =
e0.5q2

(1 +
√

eq2 − 1) − eq, and so the fact that the inequality holds when q ≥ 1 and the only
root is at 0 imply that the inequality must also hold for q ≤ 1. Figure 8 shows a graph of
f (q), namely of the differences between the normal and lognormal distribution percentiles
at one standard deviation above the mean.

Because of the paradox, care should be taken in applying lognormal distributions when
reserve levels are set at the 80th percentile or below. In these cases, a normal distribution
will provide more logically consistent results and will better aid decision makers in making
logical choices in establishing budgets and reserve levels. Also, when reserve levels and
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budgets are set below the 85th percentile, the normal distribution is more conservative than
the lognormal distribution.

Summary

Numerous natural and economic phenomena have been shown to have the property of scale
invariance. Cost growth and cost risk can be added to this extensive list. Also, normal dis-
tributions were shown to significantly underestimate the likelihood of extreme cost growth.
While the portfolio effect for cost risk is intuitively appealing, the data indicate that this
phenomenon is at best minimal and should not be relied upon by policy makers to reduce
risk. Instead, the focus of confidence levels should be placed on individual missions.

When considering individual missions, funding levels are often set at confidence levels
near the central portion of the distribution, such as the 60th or 70th percentiles. In this case,
fat-tailed distributions like the Pareto are not the best choice for modeling cost risk. When
funding levels are set at such levels, the lognormal also proves to be problematic. Oddly
enough, in such cases, the normal distribution proves to be the most logically consistent
and conservative choice. However, the triumph of the normal distribution in such a case
indicates that by setting funding levels at the 60th or 70th percentile may be a fool’s game,
since this seemingly contradicts the empirical evidence provided in the first part of the
article that the normal distribution does not do a good job of modeling the higher percentiles
and that there is little, if any, portfolio effect. Thus, setting funding levels at the 60th or even
the 70th percentile for individual missions is not likely to provide sufficient confidence
levels at the agency level to provide a comfortable margin for future cost growth.
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