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A Probabilistic Method for Predicting Software
Code Growth

MICHAEL A. ROSS

Tecolote Research, Inc., Manhattan Beach, California

A significant challenge that many cost analysts and project managers face is predicting by how much
their initial estimates of software development cost and schedule will change over the lifecycle of
the project. Examination of currently-accepted software cost, schedule, and defect estimation algo-
rithms reveals a common acknowledgment that estimated software size is the single most influential
independent variable. Unfortunately, the most important business decisions about a software project
are made at its beginning, the time when most estimating is done, and coincidently the time of min-
imum knowledge, maximum uncertainty, and hysterical optimism. This article describes a model
and methodology that provides probabilistic growth adjustment to single-point Technical Baseline
Estimates of Delivered Source Lines of Code, for both new software and pre-existing reused soft-
ware that is sensitive to the maturity of their single-point estimates. The model is based on Software
Resources Data Report data collected by the U.S. Air Force and has been used as part of the basis
for several USAF program office estimates and independent cost estimates. It provides an alternative
to other software code growth methodologies, such as Holchin’s and Jensen’s code growth matrices.

Introduction

The Tecolote DSLOC Estimate Growth Model v06 (DEGM6) provides probabilistic
growth adjustments to single-point Technical Baseline Estimates (TBEs) of Delivered
Source Lines of Code (DSLOC), for both New software and Pre-Existing Reused (PER)
software, that are sensitive to the maturity of the DSLOC TBEs; i.e., when, in the Software
Development Life Cycle (SDLC), the DSLOC TBE is performed. It is a data-driven model
and methodology that is based on Software Resources Data Report (SRDR) data collected
by the U.S. Air Force Cost Analysis Agency (AFCAA) (Rosa, 2008). This model provides
an alternative to other software code growth methodologies, such as Holchin’s (2003) and
Jensen’s (2008) code growth matrices.

This article includes custom Cumulative Distribution Function (CDF) tables that can
be copied into tools, such as ACEIT or Crystal Ball, in order to construct Custom CDFs1

that are needed to model the baseline New DSLOC growth factor distribution and to model
the baseline PER DSLOC growth factor distribution. This article also includes a set of
DSLOC growth factor multipliers as a function of estimate maturity (EM) for each of New
DSLOC and PER DSLOC such that appropriate application of these factors to a DSLOC
TBE yields corresponding Least, Likely, and Most DSLOC values that, if input to SEER-
SEM, will reasonably model growth and uncertainty consistent with SRDR historical data.
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Model Summary

The DEGM6 equations for applying growth and uncertainty to TBE New and PER
DSLOC are2

SDAdjNew ≡ SDNew
(
e−bt (KGFNew − 1) + 1

)
(1)

and

SDAdjPER ≡ SDNew
(
e−bt (KGFPER − 1) + 1

)
, (2)

where

SDAdjNew ≡ Growth-adjusted New DSLOC estimate distribution;
SDAdjPER ≡ Growth-adjusted PER DSLOC estimate distribution;
SDNew ≡ Technical Baseline Estimate (TBE) of New DSLOC;
SDPER ≡ Technical Baseline Estimate (TBE) of PER DSLOC;
KGFNew ≡ Baseline (assuming Estimate Maturity = 0%) New DSLOC growth factor

distribution (see Custom CDF in Table 3);
KGFPER ≡ Baseline (assuming Estimate Maturity = 0%) PER DSLOC growth factor

distribution (see Custom CDF in Table 3);
b ≡ Decay constant; default is 3.466 based on Boehm’s (1981 pp. 310–311) Cone of

Uncertainty;
t ≡ Estimate Maturity Parameter: (SDLCBegin = 0%; SyRR = 20%; SwRR = 40%;

SwPDR = 60%; SwCDR = 80%; SwAccept = 100%).

The equations for providing the appropriate New and PER 〈Least, Likely, Most〉 DSLOC
inputs to SEER-SEM are:

Growth-Adjusted New DSLOC Growth-Adjusted PER DSLOC

SDAdjNewLeast = SDNew
(−0.828071e−3.466t + 1

)
SDAdjPERLeast = SDPER

(−0.687191e−3.466t + 1
)

SDAdjNewLikely = SDNew
(−0.828071e−3.466t + 1

)
SDAdjPERLikely = SDPER

(−0.687192e−3.466t + 1
)

SDAdjNewMost = SDNew
(
5.366128e−3.466t + 1

)
SDAdjPERMost = SDPER

(
3.658219e−3.466t + 1

)
. (3)

The remainder of this article describes the basis of these equations.

Components of the Model

Normalized Estimate Maturity

The single parameter input to the DEGM6 is normalized EM t. By default, EM is quantified
by the scale contained in Table 1. This scale is consistent with the model defaults for the
baseline New and PER DSLOC growth factor distributions, which is based on SRDR data,
and with the uncertainty decay factor, which is based on Boehm’s Cone of Uncertainty.
Tailored instances of the model can be created for different SDLCs as long as historical
data exist where the projects followed that particular SDLC and where these data have
been used to determine corresponding baseline growth factor distributions and uncertainty
decay factor values or distributions.
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TABLE 1 Default normalized estimate maturity scale

Estimate maturity scale

t = 0% Begin SDLC
t = 20% System Requirements Review
t = 40% System Design Review / Software Requirements Review
t = 60% Software Preliminary Design Review
t = 80% Software Critical Design Review
t = 100% Software Acceptance

DSLOC Baseline Growth Factor Distributions

DSLOC estimate growth is modeled at the computer program (CSCI) level and is applied
by multiplying the TBEs of New and PER DSLOC by the appropriate decay-adjusted
growth factor distribution. The baseline (zero EM) growth factor distributions for New
DSLOC and for Pre-Existing DSLOC have the following characteristics (Table 2) and
Custom CDFs (Table 3).

TABLE 2 SRDR data set distribution statistics

ACE DSLOC baseline growth factor distribution statistics

New DSLOC growth factor Pre-existing DSLOC growth factor

Number of Data Points (N) 56 Number of Data Points (N) 45
Data Set Mean (m) 1.75 Data Set Mean (m) 1.43
CDF Mean (m′) 1.75 CDF Mean (m′) 1.42
%ile @ Data Set Mean

(P(m))
69% %ile @ Data Set Mean

(P(m))
71%

%ile @ CDF Mean
(P(m′))

69% %ile @ CDF Mean
(P(m′))

71%

%ile @ Point (P(pt)) 29% %ile @ Point (P(pt)) 29%
Data Set Median m[∼] 1.20 Data Set Median m[∼] 1.04
CDF Median m′[∼] 1.204296 CDF Median m′[∼] 1.037044
Define a baseline growth

factor distribution in
ACE by using this value
as the “Equation /

Throughput” field entry
with a custom CDF
containing
corresponding
median-normalized
growth factor values.

Define a baseline growth
factor distribution in
ACE by using this value
as the “Equation /

Throughput” field entry
with a custom CDF
containing
corresponding
median-normalized
growth factor values.

Data Set Std Dev s 1.33 Data Set Std Dev s 0.91
CDF Std Dev s′ 1.32 CDF Std Dev s′ 0.90
Data Set CV (C[V]) 0.76 Data Set CV (C[V]) 0.64
CDF CV (C′[V]) 0.75 CDF CV (C′[V]) 0.63
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TABLE 3 DSLOC estimate growth factor distribution CDFs

ACE DSLOC baseline growth factor distribution CDFs

Copy shaded columns into ACEIT custom
CDF dialog box

Copy shaded columns into ACEIT custom
CDF dialog box

New DSLOC growth factor CDF Pre-existing DSLOC growth factor CDF

%ile

Raw
growth
factor

Median-normalized
growth factor %ile

Raw
growth
factor

Median-normalized
growth factor

0.0 0.547902 0.4549560272208 0.0 0.655131 0.6317293787416
1.0 0.551141 0.4576460806781 1.0 0.655131 0.6317293787416
2.0 0.581378 0.4827532462799 2.0 0.660043 0.6364662585323
3.0 0.608058 0.5049076955001 3.0 0.665570 0.6417952482967
4.0 0.627232 0.5208286323592 4.0 0.683037 0.6586381727100
5.0 0.636229 0.5282996372516 5.0 0.706474 0.6812380644476
6.0 0.636407 0.5284473677728 6.0 0.720040 0.6943196660333
7.0 0.642677 0.5336535369111 7.0 0.721267 0.6955034049290
8.0 0.650977 0.5405458522550 8.0 0.722519 0.6967099061808
9.0 0.664670 0.5519163885260 9.0 0.723852 0.6979960756790

10.0 0.676993 0.5621483902387 10.0 0.725186 0.6992822451771
11.0 0.682089 0.5663801768247 11.0 0.782870 0.7549050972897
12.0 0.689030 0.5721433207804 12.0 0.840553 0.8105279494022
13.0 0.698820 0.5802731079439 13.0 0.855829 0.8252587074461
14.0 0.747107 0.6203681800052 14.0 0.858990 0.8283060100418
15.0 0.820302 0.6811466717064 15.0 0.877333 0.8459940234183
16.0 0.834355 0.6928160959576 16.0 0.907822 0.8753946054196
17.0 0.837741 0.6956274919723 17.0 0.930109 0.8968845711522
18.0 0.900236 0.7475209997647 18.0 0.935987 0.9025533043474
19.0 0.951335 0.7899511413624 19.0 0.941866 0.9082220375426
20.0 0.968243 0.8039911843758 20.0 0.947745 0.9138907707378
21.0 0.980545 0.8142062798349 21.0 0.953623 0.9195595039331
22.0 0.987532 0.8200079742699 22.0 0.959502 0.9252282371283
23.0 0.990888 0.8227943734626 23.0 0.965381 0.9308969703235
24.0 0.992523 0.8241524749089 24.0 0.971260 0.9365657035187
25.0 0.994159 0.8255105763553 25.0 0.977138 0.9422344367139
26.0 0.995794 0.8268686778016 26.0 0.983017 0.9479031699091
27.0 0.997430 0.8282267792480 27.0 0.988896 0.9535719031044
28.0 0.999065 0.8295848806943 28.0 0.994774 0.9592406362996
29.0 1.000455 0.8307384829524 29.0 1.000001 0.9642804324725
30.0 1.001516 0.8316194196262 30.0 1.000010 0.9642887324668
31.0 1.002576 0.8325003563000 31.0 1.000018 0.9642970324612
32.0 1.003637 0.8333812929738 32.0 1.000027 0.9643053324555
33.0 1.004698 0.8342622296476 33.0 1.000035 0.9643136324499
34.0 1.005759 0.8351431663214 34.0 1.000044 0.9643219324442

(Continued)
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TABLE 3 (Continued)

ACE DSLOC baseline growth factor distribution CDFs

Copy shaded columns into ACEIT custom
CDF dialog box

Copy shaded columns into ACEIT custom
CDF dialog box

New DSLOC growth factor CDF Pre-existing DSLOC growth factor CDF

%ile

Raw
growth
factor

Median-normalized
growth factor %ile

Raw
growth
factor

Median-normalized
growth factor

35.0 1.006934 0.8361189505898 35.0 1.000053 0.9643302324386
36.0 1.008635 0.8375310337930 36.0 1.000061 0.9643385324329
37.0 1.019294 0.8463820771439 37.0 1.000070 0.9643468324273
38.0 1.043799 0.8667296952683 38.0 1.000078 0.9643551324216
39.0 1.056488 0.8772661203276 39.0 1.000087 0.9643634324160
40.0 1.061531 0.8814541263447 40.0 1.000096 0.9643717324103
41.0 1.077386 0.8946191944000 41.0 1.000104 0.9643800324047
42.0 1.095158 0.9093763078095 42.0 1.008341 0.9723224006821
43.0 1.101241 0.9144271946891 43.0 1.017606 0.9812565274949
44.0 1.110578 0.9221809075650 44.0 1.022750 0.9862163911111
45.0 1.129681 0.9380430984295 45.0 1.025832 0.9891891231291
46.0 1.146794 0.9522532535966 46.0 1.028802 0.9920524918041
47.0 1.161612 0.9645572137280 47.0 1.031629 0.9947791563005
48.0 1.175352 0.9759666924584 48.0 1.034150 0.9972099058180
49.0 1.188582 0.9869524694725 49.0 1.035597 0.9986049529090
50.0 1.204296 1.0000000000000 50.0 1.037044 1.0000000000000
51.0 1.220227 1.0132285108501 51.0 1.051076 1.0135314180882
52.0 1.235491 1.0259034375419 52.0 1.065109 1.0270628361763
53.0 1.253759 1.0410721288710 53.0 1.071722 1.0334396884843
54.0 1.278366 1.0615054344346 54.0 1.076215 1.0377723791408
55.0 1.310158 1.0879036710637 55.0 1.080648 1.0420468568251
56.0 1.348175 1.1194715146162 56.0 1.085033 1.0462747641318
57.0 1.362497 1.1313642195322 57.0 1.088700 1.0498114997334
58.0 1.368921 1.1366985449027 58.0 1.090935 1.0519658919248
59.0 1.385809 1.1507218356303 59.0 1.095459 1.0563282213600
60.0 1.403391 1.1653207912851 60.0 1.118300 1.0783540487449
61.0 1.422378 1.1810874633589 61.0 1.141142 1.1003798761299
62.0 1.435969 1.1923722637887 62.0 1.156588 1.1152741102021
63.0 1.441217 1.1967305353143 63.0 1.171110 1.1292768951102
64.0 1.466421 1.2176586141183 64.0 1.178534 1.1364363112958
65.0 1.504536 1.2493083329262 65.0 1.182410 1.1401740431203
66.0 1.569993 1.3036606799299 66.0 1.202303 1.1593561686135
67.0 1.641339 1.3629037558390 67.0 1.242216 1.1978437861926
68.0 1.711234 1.4209419553934 68.0 1.285361 1.2394469706890
69.0 1.769168 1.4690479512317 69.0 1.339813 1.2919546393959

(Continued)
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TABLE 3 (Continued)

ACE DSLOC baseline growth factor distribution CDFs

Copy shaded columns into ACEIT custom
CDF dialog box

Copy shaded columns into ACEIT custom
CDF dialog box

New DSLOC growth factor CDF Pre-existing DSLOC growth factor CDF

%ile

Raw
growth
factor

Median-normalized
growth factor %ile

Raw
growth
factor

Median-normalized
growth factor

70.0 1.791218 1.4873573359220 70.0 1.394266 1.3444623081028
71.0 1.810478 1.5033503939377 71.0 1.446846 1.3951643364272
72.0 1.826520 1.5166707673287 72.0 1.499427 1.4458663647515
73.0 1.833663 1.5226022189589 73.0 1.512964 1.4589197393336
74.0 1.836591 1.5250336550182 74.0 1.515345 1.4612163557037
75.0 2.001786 1.6622047665646 75.0 1.546372 1.4911344165383
76.0 2.176723 1.8074659984159 76.0 1.600314 1.5431496329445
77.0 2.270585 1.8854052239881 77.0 1.651218 1.5922352307263
78.0 2.358345 1.9582776404535 78.0 1.696045 1.6354615912594
79.0 2.433223 2.0204534599156 79.0 1.739863 1.6777139417320
80.0 2.516756 2.0898160858878 80.0 1.775599 1.7121742117209
81.0 2.607790 2.1654072775023 81.0 1.811336 1.7466344817099
82.0 2.690278 2.2339015178687 82.0 1.838907 1.7732199061744
83.0 2.769916 2.3000301078190 83.0 1.865456 1.7988209749484
84.0 2.893396 2.4025628420106 84.0 1.877871 1.8107927137641
85.0 2.997528 2.4890301913380 85.0 1.883219 1.8159497876006
86.0 3.005193 2.4953945827531 86.0 2.007928 1.9362040968520
87.0 3.055583 2.5372369555455 87.0 2.281838 2.2003299503721
88.0 3.172005 2.6339089359211 88.0 2.502560 2.4131677723693
89.0 3.403969 2.8265227894852 89.0 2.537125 2.4464974840362
90.0 3.710696 3.0812166786418 90.0 2.571689 2.4798271957032
91.0 4.007346 3.3275433624827 91.0 2.669888 2.5745180730522
92.0 4.295195 3.5665622442057 92.0 2.768086 2.6692089504012
93.0 4.404569 3.6573823260358 93.0 2.972917 2.8667228978367
94.0 4.555443 3.7826615156815 94.0 3.208214 3.0936148652969
95.0 4.830813 4.0113180287745 95.0 3.477960 3.3537251840393
96.0 5.272124 4.3777655963462 96.0 3.775264 3.6404101838074
97.0 5.904905 4.9032028421625 97.0 4.167301 4.0184431884618
98.0 6.163649 5.1180536566296 98.0 4.748802 4.5791722028886
99.0 6.245217 5.1857845825628 99.0 5.265691 5.0775979934902

100.0 6.253957 5.1930414674842 100.0 5.265691 5.0775979934902

The default DSLOC baseline growth factor distribution statistics and CDF tables are
developed from historical data reported in SRDRs and collected by the AFCAA. This data
were filtered first by eliminating all data points where the New or PER growth factor is zero
or undefined (i.e., the estimated value cannot be zero and the final actual value cannot be
zero):
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Candidatei = EstNewi �= 0 ∧ EstPERi �= 0 ∧ ActNewi �= 0 ∧ ActPERi �= 0, (4)

where

Candidatei ≡ Boolean indicator of the ith project in the list of SRDR projects where TRUE
indicates the element satisfies the filter criteria, FALSE indicates it does not;

EstNewi ≡ ARO/ATP estimated New DSLOC of the ith project in the list of SRDR projects;
EstPERi ≡ ARO/ATP estimated PER DSLOC of the ith project in the list of SRDR

projects;
ActNewi ≡ Actual delivered New DSLOC of the ith project in the list of SRDR projects;
ActPERi ≡ Actual delivered PER DSLOC of the ith project in the list of SRDR projects;
∧ ≡ Symbolic logic “and” operator; if both operands evaluate to TRUE then the expression

evaluates to TRUE, otherwise the expression evaluates to FALSE.

Ideally, the filtering described in Equation (4) would be the only filtering necessary;
however, the SRDR data set contains several instances of extreme (considered unrealistic
by the author) growth or shrinkage. Therefore, the resulting filtered data are filtered again
to eliminate all data points that are outside above and below two multiplicative standard
deviations of the filtered data set mean. This additional filtering served to remove three
data points (SRDR instances) from the original 59 New software data points (5%) and the
same three data points from the original 48 PER data points (6%).

The author recognizes that choosing to perform this additional filtering is subject to
some criticism; however, the statistics from the resulting data set show virtually no change
in the dataset median positions3 while reducing the coefficients of variation (CV) to values
the author considers somewhat more reasonable4 at the risk of possibly being somewhat
more optimistic. The author acknowledges the point of view that suggests a no-pruning
strategy might have been more appropriate since it would have “completely” captured the
inherent uncertainty.

CandidateNewi = KGFNewi ∈ ((%SEEGFNew + 1)−2 KGFNew, (%SEEGFNew + 1)2 KGFNew
)

where

KGFNewi ≡ ActNewi/EstNewi

and where

%SEEGFNew ≡
√√√√ 1

(N − 1)

N∑
i=1

((
KGFNewi − KGFNew

)
KGFNew

)2

CandidatePERi = KGFPERi ∈ ((%SEEGFPER + 1)−2 KGFPER, (%SEEGFPER + 1)2 KGFPER
)

where

KGFPERi ≡ ActPERi/EstPERi

and where
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%SEEGFPER ≡
√√√√ 1

(N − 1)

N∑
i=1

((
KGFPERi − KGFPER

)
KGFPER

)2

where

CandidateNewi ≡ Boolean indicator of the ith project in the list of SRDR projects where
TRUE indicates the project data satisfies the filter criteria, FALSE indicates it does not;

CandidatePERi ≡ Boolean indicator of the ith project in the list of SRDR projects where
TRUE indicates the project data satisfies the filter criteria, FALSE indicates it does not;

KGFNewi ≡ New DSLOC estimate growth factor of the ith project in the list of SRDR
projects;

KGFPERi ≡ PER DSLOC estimate growth factor of the ith project in the list of SRDR
projects;

%SEEGFNew ≡ Percentage Standard Error of Estimate of the list of New DSLOC esti-
mate growth factors belonging to those projects in the list of projects defined by
Candidatei = TRUE;

%SEEGFPER ≡ Percentage Standard Error of Estimate of the list of PER DSLOC esti-
mate growth factors belonging to those projects in the list of projects defined by
Candidatei = TRUE.

DSLOC Estimate Uncertainty Decay

Decrease (decay) of the uncertainty implied by DSLOC estimate growth-factor distribu-
tions as a project progresses from start to finish and is modeled by the general form:

KGFAdj = e−bt (KGF − 1) + 1, (5)

where

t ≡ Normalized EM (percentage of the development process duration at which the estimate
is performed); tstart ≡ t0 ≡ 0% and tfinish ≡ 100%;

b ≡ Decay parameter; by default is set to a value of 3.466, which emulates the decay
behavior of Boehm’s Cone of Uncertainty;5

KGF ≡ Growth factor distribution at time t0;
KGFAdj ≡ Decay-adjusted growth factor distribution at EM t.

The practical effect of applying this model is time-progressive compression of the DSLOC
estimate distribution about the TBE position approaching no uncertainty at process
completion.

In order to render Equation (5) useful in a particular estimating situation, we need
to assume some value (or distribution) for the uncertainty decay function proportionality
constant b. Two methods for accomplishing this are: (1) to perform a regression analysis
of relevant historical data to determine an expected value or distribution for b and (2) to
assume uncertainty decay consistent with Boehm’s Cone of Uncertainty. The latter is con-
sidered to be the model’s default and can be accomplished by assuming b = 3.466 (see
Figure 1) and time t to be normalized according to the SDLC EM scale in Table 1.
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FIGURE 1 Curve fit of Boehm Cone of Uncertainty—top half.

Decay-Adjusted DSLOC Growth-Factor Distributions

We assume some normalized uncertainty scale factor function KU of time t where KU (t) ∈
[0, 1], where KU (t|t = 0) = 1 represents maximum (full scale) uncertainty, and hypothe-
size that KU (t) decreases (decays) at a rate proportional to its value (i.e., uncertainty tends
to decay faster during the early stages of a process when experience is low and tends to
decay slower during the later stages of a process when experience is high). We model this
hypothetical behavior mathematically as:

d KU (t)

dt
∝ − KU (t) ∴ d KU (t)

dt
= −b KU (t) , (6)

where b is the constant of proportionality.6 Solving the ordinary differential Equation (6)
yields:

d KU (t)

KU (t)
= −bdt →

∫
d KU (t)

KU (t)
= ∫ −bdt → ln (KU (t)) = −bt + c

∴ KU (t) = e−btec. (7)

Since we have already posited the constraint KU (t|t = 0) = 1, we can solve Equation (7)
for the constant of integration c:

KU (0) = e−b(0)ec = 1 → ec = 1 ∴ c = 0 . (8)

Substituting the equivalent of c in Equation (8) for c in Equation (7) yields:

KU (t) = e−bte(0) ∴ KU (t) = e−bt . (9)
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Applying Uncertainty Decay to Growth-Factor Distributions

Suppose we have a baseline DSLOC estimate growth factor distribution KGF, which has
been developed from historical data and which models the amount of uncertainty that exists
about the TBE of DSLOC, assuming that this estimate is done at the beginning of a soft-
ware development process; i.e., EM is zero, consistent with the processes from which the
historical data were collected. Suppose this baseline distribution is represented as a CDF;
i.e., a mapping of growth factor values to percentiles. We would like to model what happens
to the uncertainty modeled by this baseline distribution as activities in the process progress
to completion. We have already hypothesized that uncertainty decays over time and have
developed a model for this decay in Equation (9). Since the function KU (t) in Equation (9)
is normalized (i.e., yields uncertainty factors that are percentages of full scale), we can
scale our baseline DSLOC estimate growth factor distribution by the transformation:

KGFAdj = KU (t) (KGF − 1) + 1, (10)

where

KGF ≡ baseline growth factor distribution at t = 0 (0% EM) which is given as a custom
CDF (see Table 3);

KGFAdj ≡ decay-adjusted growth factor distribution at some EM t.

This transformation effectively scales the percentage differences between the growth
factors in the baseline growth factor distribution and no growth (a growth factor of 1).

Substituting the value of KU (t) in Equation (9) for KU (t) in Equation (10) yields:

KGFAdj = e−bt (KGF − 1) + 1. (11)

As stated earlier, in order to render Equation (11) useful in a particular estimating
situation, we need to assume some value (or distribution) for the uncertainty decay function
proportionality constant b; either by assuming b = 3.466 (Boehm’s Cone of Uncertainty) or
by analyzing relevant historical data to model decay as a single value b or as a distribution
B. Figures 2 and 3 illustrate the behavior of Equation (11) with decay constant b = 3.466
over the range of possible EM values t ∈ [0, 1].

Applying Growth Factor Distributions to TBEs of New and PER DSLOC

We can now transform single-point TBEs of New SDNew and PER SDPER DSLOC into
growth-adjusted distributions of New SDAdjNew and PER SDAdjPER DSLOC by scaling the
appropriate instantiation of Equation (11) (a distribution) by the corresponding single-
point TBE:

SDAdjNew ≡ SDNew
(
e−bt (KGFNew − 1) + 1

)
(12)
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FIGURE 2 New DSLOC growth-factor decay.
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FIGURE 3 PER DSLOC growth-factor decay.

and

SDAdjPER ≡ SD_New
(
e−bt (KGFPER − 1) + 1

)
. (13)

Figures 4 and 5 illustrate the behaviors of the growth-adjusted New DSLOC estimate dis-
tribution as described in Equation (12) and the growth-adjusted PER DSLOC estimate
distribution as described in Equation (13) for given New and PER TBEs and a given EM.
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FIGURE 4 Example growth-adjusted New DSLOC distribution vs. estimate maturity.
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FIGURE 5 Example growth-adjusted PER DSLOC distribution vs. estimate maturity.

Modeling DSLOC Growth in ACEIT

The process for using DEGM6 within ACEIT for each of a particular set of computer
programs (CSCIs) is (see Table 4):

● Define a variable for each CSCI for each of New and PER to represent the
particular CSCI’s New and PER DSLOC baseline growth factor distributions;
e.g., SI010101_New_BL_GF and SI010101_PER_BL_GF. These will represent the
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TABLE 4 Example ACEIT application of new DSLOC estimate growth

WBS/CES Description Unique ID Equation / Throughput

New Growth-Adjusted
DSLOC

SI010101_New_Adj_Sd SI010101_New_Adj_GUF ∗
SI010101_New_Sd

Technical Baseline
DSLOC Point Estimate

SI010101_New_Sd 25000 [Given]

Maturity at DSLOC
Estimate

SI010101_New_Sd_Est_
Mat

0.20 [Sys Req Rev Complete =
20% Estimate Maturity]

Baseline Growth Factor SI010101_New_BL_GF 1.204296 [Tecolote DSLOC
Estimate Growth Model
v06 Median of SRDR New
DSLOC Data Set]

Decay Constant SI010101_New_GF_
Decay

3.466 [Tecolote DSLOC
Estimate Growth Model
v06 Default]

Adjusted Growth Factor SI010101_New_Adj_GUF exp(−SI010101_New_GF_
Decay ∗ SI010101_New_Sd_
Est_Mat) ∗ (SI010101_New_
BL_GF - 1) + 1 [Tecolote
DSLOC Estimate Growth
Model v06]

random variables (distributions) KGFNew and KGFPER in Equations (1) and (2), respec-
tively. These variables must be described as distributions using ACEIT’s custom
CDF feature. The model default position CDFs are shown in Table 3. Note that
when using ACEIT’s custom CDF feature, it is best to normalize the growth factor
values about the median growth factor value in the right-most (shaded) columns of
Table 3 and set the point estimate to the median (50th percentile) growth factor value
in order to see reasonable point estimate values and percentages that are calculated
from the CDF.

● Define a variable for each CSCI for each of New and PER; e.g.,
SI010101_New_Sd_Est_Mat and SI010101_PER_Sd_Est_Mat for each of
New and PER; that will represent the EM variable t in Equations (1) and (2).
For example, if the current TBE of New DSLOC for SI010101 was performed at
successful completion of a System Requirements Review (System Requirements
Analysis is complete) then the variable SI010101_New_Sd_Est_Mat would, from
Table 1, be entered as 0.2 (20%).

● Define a new variable for each CSCI for each of New and PER; e.g.,
SI010101_New_GF_Decay and SI010101_PER_GF_Decay; that will represent the
decay parameter variable b in Equations (1) and (2). Note that these variables could
alternatively be described as random variables (distributions) B using ACE’s custom
CDF feature based on some program-specific historical data. The model default is a
constant value for b of 3.466.

● Define a variable for each CSCI for each of New and PER; e.g.,
SI010101_New_Adj_GUF and SI010101_PER_Adj_GUF; that will represent
the uncertainty-decay-adjusted version of the New DSLOC and PER DSLOC
growth factor distributions for that CSCI. The equation field for each of these
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variables implements Equation (11); e.g., exp(–SI010101_New_GF_Decay ∗
SI010101_New_Sd_Est_Mat) ∗ (SI010101_New_BL_GF – 1) + 1.

● If the decay constant is being described as a random variable B (distribution) then,
because each decay constant random variable is inversely related to its correspond-
ing growth factor random variable, as can be seen in Equation (11), we would
need to negatively correlate each growth factor/decay constant pair in order for
the convolution of these two variables to work properly in ACEIT.7 For exam-
ple, we would group SI010101_New_GF_Decay and SI010101_New_BL_GF and
call the group SI010101_Growth_Decay_Group. We would then set the Group
Strength of SI010101_New_GF_Decay to “–1” and set the Group Strength of
SI010101_New_BL_GF to “D.” Note that none of this step is necessary if using
the model defaults based on SRDR data and assuming the decay to be constant with
a value of 3.466.

Modeling DSLOC Growth in SEER-SEM

Bi-Normal Distribution

The Galorath, Inc. SEER family of estimating tools incorporates a rather unorthodox prob-
ability distribution to model input uncertainty. This officially unnamed distribution here is
referred to as a bi-normal distribution because it combines the left half of the Probability
Density Function (PDF) of one normal (Gaussian) distribution that has a particular mean
and standard deviation with the right half of the PDF of another normal distribution that
has the same mean but possibly a different standard deviation. Figures 6 and 7 show,
respectively, the PDF and CDF of an example bi-normal distribution where the mean
of each component distribution is zero, where the standard deviation of the left (low)
distribution equals 1, and where the standard deviation of the right (high) distribution
equals 4.
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FIGURE 6 PDF of an example bi-normal distribution.
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FIGURE 7 CDF of an example bi-normal distribution.

The PDF of the bi-normal distribution can thus be described as:

f bi-normal

(
x | μ̃, σ 2

L , σ 2
H

) =
{

f normal

(
x | μ = μ̃, σ 2 = σ 2

L

)
x ≤ μ̃

gnormal

(
x | μ = μ̃, σ 2 = σ 2

H

)
x ≥ μ̃

, (14)

the CDF can be described as:

Fbi-normal
(
x | μ̃, σ 2

L , σ 2
H

) =
{

Fnormal
(
x | μ = μ̃, σ 2 = σ 2

L

)
x ≤ μ̃

Gnormal
(
x | μ = μ̃, σ 2 = σ 2

H

)
x ≥ μ̃

, (15)

and the inverse CDF (i.e., the quantile function) can be described as:

F−1
bi-normal

(
p | μ̃, σ 2

L , σ 2
H

) =
{

F−1
normal

(
p | μ = μ̃, σ 2 = σ 2

L

)
p <= 0.5

G−1
normal

(
p | μ = μ̃, σ 2 = σ 2

H

)
p >= 0.5.

(16)

p ∈ (0, 1)

We have already stated that, for bi-normal distributions, the mean of the left (low-
side) distribution μL is always equal to the mean of the right (high-side) distribution μH .
However, the low-side distribution standard deviation σL need not equal the high-side distri-
bution standard deviation σH . When σH > σL the overall bi-normal distribution is skewed to
the right, when σL > σH the overall distribution is skewed to the left, and when σL = σH the
overall distribution is symmetrical and classically normal. Because, for bi-normal distribu-
tions, the low-side and high-side distributions are normal, because the low-side distribution
mean equals the high-side distribution mean, and because the mean of any normal distri-
bution is always its median (50th percentile) value, it follows that the low-side distribution
contributes half of the overall distribution’s probability density and the high-side distribu-
tion contributes the other half of the overall distributions probability density. Therefore,
μL and μH are always equal to the overall bi-normal distribution’s median value m. Note,
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however, that m is not necessarily equal to the overall bi-normal distribution’s mean μ;
this is only true for the special case of a symmetric bi-normal distribution, i.e., one where
σL = σH .

SEER-SEM uses bi-normal distributions to model the uncertainty about its DSLOC
inputs. For each DSLOC input, SEER-SEM expects the user to have elicited each of a
least (L), likely (M), and most (H) DSLOC value for that input. Together these values
describe the range of possible DSLOC outcomes for that input and the particular DSLOC
outcome within that range that is estimated to be the “most likely” to occur. SEER-SEM
turns each least, likely, and most triple 〈L, M, H〉 into a bi-normal distribution according to
the following assignments:

μL = μH = m = (L + 4M + H)

6
, (17)

σL = m − L

3
, (18)

and

σH = H − m

3
. (19)

It is important to note here that the relationship in Equation (17) constrains the amount of
skew that can be modeled by the bi-normal distribution. Maximum right (high-side) skew
occurs when M = L and maximum left (low-side) skew occurs when M = H.

SEER-SEM requires that the uncertainty about a DSLOC estimate be characterized as
a (Least, Likely, Most) triple. Since SEER-SEM provides no facility for specifying DSLOC
growth and growth-uncertainty decay, DSLOC inputs to SEER-SEM must already be
growth- and uncertainty-adjusted. Therefore, in order to model DSLOC growth in SEER-
SEM according to DEGM6, DSLOC Least, Likely, and Most values must be chosen to
force SEER-SEM’s bi-normal distribution to match, as closely as possible, the distributions
described in Table 3 and adjusted for uncertainty decay as a function of EM.

Growth-adjusted Least LAdj, Likely MAdj, and Most HAdj DSLOC inputs to SEER-SEM
can be calculated for each of New and PER as functions of the given New and PER DSLOC
TBEs SDNew and SDPER with given EM t. For each of New and PER we define a set of three
DSLOC estimate growth multipliers KLAdj, KMAdj, and KHAdj using Equation (11):

KLAdj = e−3.466t (KL − 1) + 1 (20)

and

KMAdj = e−3.466t (KM − 1) + 1 (21)

and

KHAdj = e−3.466t (KH − 1) + 1, (22)

such that

LAdj = KLAdjSD and MAdj = KMAdjSD and HAdj = KHAdjSD . (23)
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We first instantiate Equations (18), (19), and (17) with KL, KH , and KM , respectively:

σL = m − KL

3
∴ KL = m − 3σL (24)

and

σH = KH − m

3
∴ KH = m + 3σH (25)

and

m = (KL + 4KM + KH)

6
→ KM = 6m − KL − KH

4

→ KM = 6m − (m − 3σL) − (m + 3σH)

4

∴ KM = 4m + 3σL − 3σH

4
. (26)

Recall that m is always equal to the overall bi-normal distribution median. We wish to
force this value to be equal to the SRDR data set median mdataset; therefore,

KL = mdataset − 3σL and KH = mdataset + 3σH and KM = 4mdataset + 3σL − 3σH
4

.
(27)

Substituting the equivalents of KL, KH , and KM in Equations (27) for KL, KH , and KM in
Equations (20), (22), and (21), respectively, yields:

KLAdj = e−3.466t (mdataset − 3σL − 1) + 1 (28)

and

KMAdj = e−3.466t

((
4mdataset + 3σL − 3σH

4

)
− 1

)
+ 1 (29)

and

KHAdj = e−3.466t (mdataset + 3σH − 1) + 1. (30)

Appropriate values for mdataset can be found in Table 2. Appropriate values for σL and
σH have been determined by using the Microsoft Excel Solver add-in to minimize the differ-
ence between each SRDR data set mean value and its corresponding bi-normal distribution
mean value by varying its associated σL and σH values. The results from running Solver
and then calculating KL, KM , and KH are shown in Table 5.

Substituting the computed values of KL, KM , and KH in Table 5 for KL, KM , and KH in
Equations (20), (21), and (22) for each New and PER DSLOC yields:

● For New DSLOC:

KLAdj = −0.828071e−3.466t + 1

KMAdj = −0.828071e−3.466t + 1

KHAdj = 5.366128e−3.466t + 1. (31)
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TABLE 5 Bi-normal distribution parameters and resulting multiplier values

Solver target
(objective)

Solver change
values (results)

SEER-SEM multiplier expression
scale factors

DSLOC Type σ [L] σ [H]

|μ[SRDR
Data Set] −
μ[binormal

approx]| K[L] K[M] K[H]

New 0.344122 1.720611 0.000001 −0.828071 −0.828071 5.366128
Pre-Existing 0.241411 1.207058 0.000000 −0.687191 −0.687192 3.658219

● For Pre-Existing DSLOC:

KLAdj = −0.687191e−3.466t + 1

KMAdj = −0.687192e−3.466t + 1 (32)

KHAdj = 3.658219e−3.466t + 1.

Substituting the multiplier expressions in the sets of Equations (31) and (32) for the multi-
plier variables in Equations (23), yields the sets of equations for determining the appropriate
Least, Likely, and Most DSLOC values to input into SEER-SEM such that growth, growth
uncertainty, and growth uncertainty decay are modeled consistent with DEGM6 and with
the SRDR data upon which it is based.

● For New DSLOC:

Least = SD
(−0.828071e−3.466t + 1

)
Likely = SD

(−0.828071e−3.466t + 1
)

Most = SD
(
5.366128e−3.466t + 1

)
. (33)

● For PER DSLOC:

Least = SD
(−0.687191e−3.466t + 1

)
Likely = SD

(−0.687192e−3.466t + 1
)

Most = SD
(
3.658219e−3.466t + 1

)
.

(34)

Figures 8 and 9 show comparisons between the resulting bi-normal CDFs and the
corresponding SRDR data set CDFs.

Conclusions

It is this author’s opinion that the DEGM6 model as described in this article represents a
quantum improvement over the field of available software code growth methodologies.
Specifically, among the advantages of this model over the Holchin (2003) and Jensen
(2008) code growth matrices are the following:

● DEGM6 is based on AFCAA-collected SRDR data versus Holchin’s Delphi survey
of experts approach and Jensen’s data from multiple proprietary sources.
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1.75; SRDR data set = 1.75. Confidence %s @ mean: bi-normal approx = 63%; SRDR data
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● DEGM6 requires only one parameter, EM, which is reasonably objective ver-
sus Holchin’s and Jensen’s rather subjective and vaguely-defined Complexity and
Maturity parameters.

● DEGM6 produces a growth-factor distribution result (embodies uncertainty) versus
Holchin’s single-point growth-factor result. (Jensen uses the lognormal distribution
as a model.)
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● DEGM6 provides growth-factor distribution decay based on updated EM parameter
versus Holchin’s single-point growth factor reduction based on updated Complexity
and Maturity parameters. (Jensen defines EM in terms of defined program phases.)
DEGM6 differentiates between New and PER DSLOC growth versus Holchin’s and
Jensen’s one-growth-factor-fits-all approach.

This model has been used as part of the basis for several USAF program office
estimates and independent cost estimates. Planned enhancements to this model include
rerunning the data analysis using a recently-updated version of the AFCAA SRDR data set.
The number of programs and possible stratifications in this new data set may lead to unique
baseline growth factor distributions for particular software types and/or characteristics.

Acronyms

ACEIT Automated Cost Estimating Integrated Tools
AFCAA Air Force Cost Analysis Agency

ARO Announcement of Research Opportunity
ATP Authority to Proceed
BL Baseline

CDF Cumulative Distribution Function
CES Cost Estimating Structure

CSCI Computer Software Configuration Item (i.e., a computer program)
CV Coefficient of Variation (= standard deviation divided by mean)

DEGM6 DSLOC Estimate Growth Model v06
DSLOC Delivered Source Lines of Code

EM Estimate Maturity
GF Growth Factor

PER Pre-Existing Reused
SDLC Software Development Life Cycle

SEE Standard Error of the Estimate
SEER System Evaluation and Estimation of Resources
SEM Software Estimating Model

SRDR Software Resources Data Report
STDEV Standard Deviation

TBE Technical Baseline Estimate
USAF United States Air Force
WBS Work Breakdown Structure

Notes

1. The term “Custom CDF” refers to a feature in ACEIT that allows distributions to be specified
as a discrete range-value-to-percentile mapping as opposed to a mapping described by some
mathematical distribution function such as “lognormal.”

2. We use the Arial bold italic font to denote a random variable; i.e., a variable that can take
on values according to some probability distribution, the Times New Roman bold italic font to
denote a function, the Times New Roman bold font to denote a vector or matrix or array, the
Times New Roman italic font to denote a simple variable, and the Times New Roman normal font
to denote a number.

3. The median New DSLOC growth factor changed from 1.19 to 1.20 and the median PER DSLOC
growth factor changed from 1.02 to 1.04.
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4. The New DSLOC growth factor distribution CV changed from 0.98 to 0.75 and the median PER
DSLOC growth factor distribution CV changed from 1.77 to 0.63.

5. Note that the model uses only the rate of uncertainty decay implied by Boehm’s Cone of
Uncertainty. The model does not use Boehm’s growth factors but instead uses growth factors
derived from the SRDR data.

6. The symbol ∝ indicates that the left operand is proportional (related by some factor) to the right
operand.

7. Note that e−bt is equivalent to 1
/

ebt.
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