
Journal of Cost Analysis and Parametrics, 4:148–159, 2011
Copyright © SCEA & ISPA
ISSN: 1941-658X print
DOI: 10.1080/1941658X.2011.628594

Using Earned Value Data to Detect Potential
Problems in Acquisition Contracts

C. GRANT KEATON, EDWARD D. WHITE, and
ERIC J. UNGER

Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio

Government contractors report earned value information to government agencies in monthly contract
performance reports. Though major differences may exist in the data between subsequent contract
performance reports, we know of no government effort to detect these occurrences. The identification
of major changes may locate and isolate problems and, thus, prevent million and billion dollar cost
and schedule overruns. In this study, we illustrate a proof of concept approach to identify changes
in the cost performance index and the schedule performance index that may indicate problems with
contract performance. We find the intuitive detection algorithm identifies changes in the cost perfor-
mance index and the schedule performance index that correspond to large changes in the Estimate at
Complete from 1 to 12 months out. The ability to detect unusual changes provides decision-makers
with warnings of potential problems for acquisition contracts.

Background

Strains on the discretionary budget force military services to monitor cost and schedule
performance for material acquisition closely. However, the deterioration of skills and per-
sonnel in the defense acquisition workforce decreases the Department of Defense’s (DoD)
ability to provide adequate financial discipline (Morin, 2010). While the DoD presently
addresses the reconstitution of the defense acquisition workforce, current acquisition ana-
lysts continue to manage an increasing workload. These analysts require new approaches
to improve financial discipline in defense acquisition.

Several methods exist that may improve acquisition analysts’ ability to monitor cost
and schedule performance. Specifically, analysts may develop more accurate estimate at
complete (EAC) models and scrutinize changes in cost and schedule performance indices
(Christensen, Antolini, & McKinney, 1995). The Guide to Analysis of Contractor Cost
Data also provides guidance to acquisition analysts on the analysis of DoD contractor cost
and schedule data (Headquarters Air Force Material Command, Financial Management,
1994). The intent of the guide is to aid acquisition programs in the reduction of cost growth
and the improvement of visibility. The guide discusses numerous analytical techniques
that focus on cost, schedule, and technical performance. Acquisition analysts study many
of these measures (e.g., Cost Performance Index (CPI) and Schedule Performance Index
(SPI)), in-practice.

Additionally, the guide offers direction on the use of problem analysis techniques.
Problem analysis techniques include measures of cost and schedule efficiency, variance
verification, management reserve analysis, manpower loading trend analysis, performance
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trends, forecasting by EAC function, and Over Target Baseline analysis. One particularly
useful metric is the percent complete versus percent spent chart, which shows the cost
and schedule performance expectation in the form of the CPI. A CPI slope of less than
1 indicates a program is spending more than expected. These deviations from the normal
percent complete-percent spent line may indicate cost problems for an acquisition program.
Similarly, deviations in the percent complete vs. percent scheduled chart in the form of
the SPI may show schedule problems in an acquisition contract. A SPI slope of less than
1 indicates a program is behind in anticipated schedule.

With these tracking methods in mind, this research highlights to program analysts and
DoD leadership a proof of concept approach for identifying problems within acquisition
contracts in real-time using earned value data. Particularly, we center our research on the
following: can we detect changes in acquisition contracts with an algorithm given at least
the first three months of CPI and SPI data? If we can detect a change, how long does
a change exist before we successfully identify it? We illustrate and test the ability of a
forecasting algorithm to detect statistically significant changes in acquisition contracts’
CPI and SPI. These detections identify contract areas that face or are at risk of ongoing
cost overruns and schedule delays. Although program managers can use this information to
aid analysis and exploration of program issues, this approach is not a substitute for expertise
and understandings of their respective programs.

Researchers apply change detection to identify when system characteristics change.
Even though multiple definitions and interpretations of “change” exist depending on
the context or field of study, typically definitions of change detection focus on time-
dependency. Specifically, abruptness, not necessarily magnitude, characterizes system
change (Basseville & Nikiforov, 1993). Signal processing (Borodkin & Mottl’, 1976;
Cohen, 1987), time series analysis (Box, Jenkins, & Reinsel, 1994; Dasgupta & Forrest,
1996; Makridakis, Wheelwright, & Hyndman, 1998), automatic control (Willsky, 1976),
and industrial quality control (Shewhart, 1931; Woodward & Goldsmith, 1964; Duncan,
1986) are some fields that apply change detection techniques. However, increases in infor-
mation availability and advances in computer processing power provide new opportunities
for change detection research (Cios & Moore, 2002; Venkatesh, 2007.) In this analysis,
we employ autoregressive integrated moving average (ARIMA) models to study change
detection. Because we only discuss those models investigated, we do not cover the entire
spectrum of ARIMA models. We direct the reader to Box, Jenkins, and Reinsel (1994)
or Makridakis, Wheelwright, and Hyndman (1998) for a complete discussion of time
series analysis.

Database

The Defense Cost and Resource Center (DCARC) hosts a major collection of detailed
earned value (EV) data for DoD acquisition contracts. These data include monthly con-
tract performance reports (CPR), contract history files, and other EV and programmatic
data submissions directly from program offices. For this analysis, we use EV history files
available in DCARC.

Contract history files contain multiple entries for earned value information by month.
Specifically for our analysis, the contract history files include the actual cost of work per-
formed (ACWP), budgeted cost of work performed (BCWP), and the budgeted cost of work
scheduled (BCWS). Because DoD and the American National Standards Institute maintain
specific requirements and instructions for these measures, we assume the data provide a
framework for reliable measurement (OUSD(AT&L)ARA/AM(SO), 2005; NDIA/PMSC,
2009). We limit our analysis database to history files for research, development, test, and
evaluation (RDT&E) contracts in DCARC. We limited the database to RDT&E contracts
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because of their relatively high risk relative to production contracts, increasing the possi-
bility of validating our approach. That is, if our proposed method does not work in a riskier
spectrum, it’s unlikely to work on less risky contracts.

In an internal query of DCARC, we identify 813 that meet our database specifications.
Of these 813 contracts, we could only locate 787 files in the actual database itself. The
different file types of the search results (e.g., .pdf and .trn) reduce the number of files
we can download into a database from 787 to 165 because we cannot extract all the data
automatically (without an extensive manual data entry effort, which we comment on later
in the results section). Lastly, of the 165 files we can access, we discover 32 unique contract
history files for RDT&E contracts. We eliminate one history file due to data inconsistencies.
We list in Tables 1 and 2 the number of contracts in the research database by military
handbook type and military service, respectively. We do not impose a contract start date
or end date constraint on the research database due to the small number of history files
we gather from DCARC; however, the start date for all but one contract is after January 1,
2000 (see Table 3).

As with any database, there are limitations with respect to the data source. Acquisition
contract history files offer some benefits, but pose many obstacles to analysis. These

TABLE 1 Number of contracts by military handbook type

Military handbook type Number of contracts

Aircraft 8
Electronic/Automated software 13
Missile 3
Ship 1
Space 3
Surface vehicles 2
System of systems 1
Total 31

TABLE 2 Number of contracts by military service

Military service Number of contracts

Air Force 11
Army 7
Navy 12
Department of Defense 1
Total 31

TABLE 3 Number of contracts by contract start date

Contract start date Number of contracts

1 Jan 1995–31 Dec 1999 1
1 Jan 2000–31 Dec 2004 11
1 Jan 2005–31 Dec 2009 19
Total 31
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TABLE 4 Descriptive statistics for the percent data
coverage for all 31 contracts in the earned value modeling
database (Rosado, 2011)

Minimum contract percent coverage 12%
Maximum contract percent coverage 100%
Median contract percent coverage 48%
Mean contract percent coverage 51%
Standard deviation 25%

obstacles are four-fold. First, a contract history file is effectively a concatenation of sequen-
tial monthly CPRs. Often monthly CPRs contain inaccuracies, which program offices work
with the contractor to correct. CPR re-submissions to DCARC are evidence of this issue.
However, in some instances systematic errors persist in the contract history files we col-
lect. We attempt to resolve these data issues with the appropriate monthly CPRs or the
applicable CPR resubmissions.

Second, a contract history file does not always contain the full time series. One reason
for partial time series is that many program offices update their contract history files on an
annual basis. Thus, a researcher who collects history files between updates may not acquire
the additions to the time series since the last release. In Table 4, we list the descriptive
statistics of the percent data coverage for all 31 contracts in the modeling database. We cal-
culate percent coverage by comparing the contract start date and contract end date to the
available months of data in the contract history files. Generally, the length of the time series
in a contract history is shorter than the time from contract start date to present. Thus, some
of the contract history files we use have fewer months than the contract’s actual number of
months to-date.

Third, the flexibility in electronic submission formats permitted by the CPR-governing
data item description creates data accessibility issues for cross-program analysis that indi-
vidual program offices may not face (OUSD(AT&L)ARA/AM(SO), 2005). Specifically,
our data processing and management resources cannot process all file types that contractors
submit. Individual program offices likely do not have this issue because they have a direct
relationship with the contractor and can specify an electronic format both can handle easily.

A final limitation on our research database is the restriction on the file size program
offices can upload to DCARC. That is, file sizes that are too large to submit are unavailable
in DCARC and, thus, impact the number of contract history files we collect. As a result,
DCARC inadvertently filters available contract history files.

Methodology

We construct our research database with entries for ACWP, BCWP, and BCWS with respect
to report date for each contract history file. We sort these using the Work Breakdown
Structure (WBS) level as the criterion. For the WBS level criterion, we sort the data by
level 1 and sum the values within the level. These sums are cumulative values for ACWP,
BCWP, and BCWS. We limit the sort criteria to WBS level 1, but conceivably can use levels
2 and 3 also. Data for WBS levels greater than 3 are problematic because fewer contracts
report at each lower level and, thus, reduce the sample size increasingly. Different sample
sizes create data comparison issues between acquisition contracts.

We compute monthly ACWP, BCWP, and BCWS values and monthly and cumulative
analytic earned value measures for the level 1 data. We calculate the analytic EV measures
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of monthly and cumulative CPI and the monthly and cumulative SPI. Because differ-
ences in the size (e.g., budget at complete), contract length, and inflation can complicate
comparisons among contracts, we need to address how we deal with these issues.

First, the importance of a change in ACWP, BCWP, or BCWS is relative to the size of
the particular contract. Although a change may be large in amount, the relative change may
be small compared to the size of the overall contract. However, calculations for CPI and
SPI control for contract size because changes in ACWP, BCWP, and BCWS are relative to
one another. Therefore, this ratio for each program is already normalized.

Next, the length of a contract may influence how abruptly a change appears over an
entire contract. Traditionally, EV analysts use a percent complete calculation to manage
this concern. In this analysis, we focus on monthly changes, not changes throughout entire
contracts. Therefore, contract length does not affect our analysis.

Lastly, the effect of inflation creates disparities in the value of money across time.
We use 2010 as a base year (BY10$) to standardize costs in time. We gather the conversion
rates from the 2010 release of Deputy Assistant Secretary of the Air Force for Cost and
Economics (SAF/FMC) inflation tables (SAF/FMC, 2010).

With the dataset established, we turn to time series to analyze our data. As mentioned
in the previous section, ARIMA forecasting offers a logical approach to online change
detection in earned value data. We theorize that patterns in cumulative ACWP, cumulative
BCWP, and cumulative BCWS time series are distinguishable from data noise. We model
these patterns to determine how we can best show real-time changes in the CPI and the SPI.
Although we lack a large amount of data for any single program, our database has enough
observations to confirm trends for several programs. Lastly, we expect historical cost and
schedule performances to continue in the future.

We analyze our time series in JMP® version 9 (JMP®, 2010). The time series capability
in JMP® includes ARIMA models, which we use to forecast EV data. The parameter test
statistics and rank criteria we obtain from JMP® help us appraise each acquisition contract
model in our research database. We record consistent time series characteristics to consider
during model selection. Largely, we conduct our analysis using the Box-Jenkins approach
(Box, Jenkins, & Reinsel, 1994) using autocorrelation functions (ACF), partial autocorre-
lation functions (PACF), and differencing functions. We plot each time series to examine if
the means and variances are stationary for the ACWP, BCWP, and BCWS time series and
employ the Augmented Dickey-Fuller test (ADF) to statistically test this at the 0.05 level
of significance.

The ACF and PACF plots reveal potential autoregressive models, moving average mod-
els, or integrated models (differencing). We do not observe any statistical seasonal patterns.
Therefore, we confine our model selection to non-seasonal ARIMA models that account
for these characteristics. We use the ARIMA(p, d, q) model group function in JMP® to test
models that meet the inclusive range of specifications for p, d, and q, where these parame-
ters can either equal 0 or 1. These 23 combinations identify the eight potential time series
models for modeling consideration.

The ARIMA model group function ranks models by the Akaike Information Criterion
(AIC) and Schwarz Bayesian Criterion (SBC). The smaller the AIC and SBC values, the
better rank the model earns (Akaike, 1974; Schwarz, 1978). The rank structure provided
by the ARIMA model group function was consistent between AIC and SBC measures.
These metrics for potential models distinguish ARIMA models ARI(1,1), IMA(1,1), I(1),
and ARIMA(1,1,1) from AR(1), MA(1), ARIMA(0,0,0), and ARMA(1,1). Table 5 lists the
number of contracts in which each model occurred in the top four ranks according to the
AIC and SBC measures. Because the first four models listed appear in the top four model
ranks for nearly every program, we choose to examine these models further.
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TABLE 5 Top four ARIMA model occurrences as determined
by the Akaike Information Criterion and Schwarz Bayesian
Criterion

Contracts

ARIMA model ACWP BCWP BCWS

ARI(1,1) 31 31 31
IMA(1,1) 30 30 30
I(1) 30 30 30
ARIMA(1,1,1) 30 30 30
ARIMA(0,0,0) 2 2 2
AR(1) 1 1 1
MA(1) 0 0 0
ARMA(1,1) 0 0 0

We validate the appropriateness of the high-occurrence model group [ARI(1,1),
IMA(1,1), I(1), and ARIMA(1,1,1)] with tests of statistical significance for the terms in
each model. Table 6 lists the number of contracts in which all parameters for a given model
are statistically significant (for α = 0.05). We find that three out of four models in the
high-occurrence group have one or more variables that are not statistically significant for
approximately half of the contracts in the research database. From the results, it is very clear
that the I(1) model performs well against the model rank criteria and passes the tests of sta-
tistical significance for nearly all contracts. For this reason, we discard the other time series
models and adopt the I(1) model only for our change detection algorithm. Mathematically,
the I(1) is expressed as Yt = Yt−1 + ε, where Yt is the current month’s cumulative AWCP,
BCWP, or BCWS and Yt−1 is the previous month’s cumulative AWCP, BCWP, or BCWS.
The random error term, ε, represents the stochastic variability in the model.

The choice of the ARIMA I(1) model implies that better statistical time series models
for cumulative AWCP, BCWP, and BCWS require differencing the current cumulative
values with the previous month’s cumulative values. This differencing simplifies quite
nicely to now just modeling the current monthly AWCP, BCWP, and BCWS. Therefore,
our change detection algorithm uses statistical differences to monitor real-time changes in
the monthly CPI and SPI observations. We theorize changes in the CPI, and the SPI may
indicate contract problems because these measures are the slopes of the percent complete
vs. percent spent and percent complete vs. percent scheduled plots, respectively. We define

TABLE 6 Number of contracts out of 31 in the modeling
database that possess statistically significant parameters
(α = 0.05) for the various ARIMA Time Series Models

Contracts

ARIMA model ACWP BCWP BCWS

I(1) 28 27 27
IMA(1,1) 16 11 9
ARI(1) 13 11 11
ARIMA(1,1,1) 10 9 10
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a difference as a CPI or a SPI value statistically different from 1 (i.e., on time and on
schedule).

We use Chebychev’s Theorem (Newbold, Carlson, & Thorne, 2010) to establish a
region whereby the algorithm flags any monthly CPI or SPI value outside this boundary.
Given our small sample size, we chose to adopt a conservative statistical approach. Since
Chebychev’s Theorem requires no such assumptions as normality and/or constant variance
to generate a region, we felt confident in this method. The specific boundary established
for our change detection algorithm is x ± ks. Since ideally the CPI and SPI should be 1, we
set x̄ = 1. We test the sensitivity of the algorithm for a series of standard deviations to trade
off false detections (Type I errors) with missed detections (Type II errors); specifically,
we vary k from 0.5 to 3. For an accurate estimate of the standard deviation (s), we do not
begin change detection until the fourth monthly observation of the CPI and SPI. That is, the
first observation for which we attempt to detect a change in each time series is the fourth
month’s observation.

When the algorithm detects a change of a contract’s monthly CPI or SPI outside this
established interval, we also look for major changes in the contractor’s estimate at complete
(EAC). We theorize months that indicate a detectable change in the monthly CPI or SPI
will lead or correspond to major changes in the contractor EAC. A change in the contractor
EAC is a significant event. Formally, the company under contract acknowledges that it
likely cannot complete the work required at or within the dollar value of the current EAC.
We define %�EAC as:

(
EACCurrent − EACPrevious

EACPrevious

)
∗ 100%,

where current EAC refers to the most recent EAC, while previous EAC is the
previous month’s EAC. Lastly, we categorize %�EAC into: %�EAC ≤ −10%,
−10% < %�EAC ≤ −5%, 5% ≤ %�EAC < 10%, and 10% ≤ %�EAC. We choose these
categories to characterize major EAC changes because changes within +/−5% occur fre-
quently and, therefore, likely represent normal data noise. Changes of at least 5% appear
much less frequently and, thus, we theorize are indicative of major performance changes.

Results and Discussion

After determining that the I(1) ARIMA model best modeled the contracts in our database
with respect to cumulative ACWP, BCWP, and BCWS, we tested the algorithm. Overall,
we found 99 months had major percentage changes in the EAC out of 1,094 potential
months for all 31 contracts. Logically, the number of changes detected in the CPI and SPI
increased with greater algorithm sensitivity, i.e., as we decreased the difference between
the lower control limit (LCL) and upper control limit (UCL). [Note: The lower and upper
part of the interval was formed from 1 ± ks.]

For perspective, the most sensitive algorithm we tested (k = 0.5) identified 550 and
549 changes in the CPI and SPI, respectively. This algorithm sensitivity detected changes in
approximately half of the 1,094 observations in the research database and about five times
the number of major EAC changes that occurred during the same month as the detections.
The least sensitive algorithm (k = 3.0) detected statistical changes in the CPI and SPI
for 89 and 75 observations, respectively. Therefore, the least sensitive algorithm we tested
detected changes in less than 10% of observations and less than 80% of the number of
major EAC changes that occurred during the same month as the detections.

For both CPI and SPI across the different standard deviations, observations exceeded
the LCL more frequently than the UCL: 83% and 84%, respectively. The higher percentage
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of LCL detections does not imply that the algorithm is more sensitive to worsening cost
and schedule performances. Rather, the algorithm detected a higher ratio of worsening than
improving cost and schedule performances for the 31 contracts in our database. We interpret
this as an indication that the I(1) model does a very good job of detecting degrading monthly
CPI or SPI metrics. These detections alert analysts that further investigation is required.

We also investigated if a significant change in either the monthly CPI or SPI preceded
a major change in the EAC. We determined that the algorithm did identify informational
early detection relationships between CPI or SPI change and for all groups of major EAC
changes. Changes in the CPI and SPI corresponded to major changes in the EAC as early as
12 months before the EAC change, with on average 4–5 months being the trigger point for
likely detection. The percentage of detections grew as the time difference between the CPI
or SPI detection decreased from the EAC change. Conversely, the number of non-detections
decreased as time between detection and EAC change decreased. We display and illustrate
these findings in Tables 7 and 8 and Figures 1 and 2. Although the appropriate upward
and downward trends are evident in these figures, there are slight deviations from these

TABLE 7 Detection and non-detection percentages of varying EAC changes using
significant change in CPI from 1 month to 12 months prior to the actual change in EAC for
σ = 0.5

Months before EAC change

12 11 10 9 8 7 6 5 4 3 2 1
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Detect 10 ≤ %�EAC 28 32 36 33 37 39 37 43 47 51 47 51
5 ≤ %�EAC < 10 41 38 32 38 38 44 44 47 56 62 59 59
−10 < %�EAC ≤ −5 25 33 25 33 42 33 33 33 50 33 58 42
%�EAC ≤ −10 38 46 46 54 54 54 54 54 62 62 69 69

Does not 10 ≤ %�EAC 72 68 64 67 63 61 63 57 53 49 53 49
detect 5 ≤ %�EAC < 10 59 62 68 62 62 56 56 53 44 38 41 41

−10 < %�EAC ≤ −5 75 67 75 67 58 67 67 67 50 67 42 58
%�EAC ≤ −10 62 54 54 46 46 46 46 46 38 38 31 31

TABLE 8 Detection and non-detection percentages of varying EAC changes using
significant change in SPI from 1 month to 12 months prior to the actual change in EAC for
σ = 0.5

Months before EAC change

12 11 10 9 8 7 6 5 4 3 2 1
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Detect 10 ≤ %�EAC 30 34 34 33 37 45 43 43 41 49 57 47
5 ≤ %�EAC < 10 38 29 35 47 44 44 47 56 59 59 65 65
−10 < %�EAC ≤ −5 25 33 25 42 33 42 42 50 50 50 67 75
%�EAC ≤ −10 38 46 54 38 38 31 38 46 62 62 46 62

Does not 10 ≤ %�EAC 70 66 66 67 63 55 57 57 59 51 43 53
detect 5 ≤ %�EAC < 10 62 71 65 53 56 56 53 44 41 41 35 35

−10 < %�EAC ≤ −5 75 67 75 58 67 58 58 50 50 50 33 25
%�EAC ≤ −10 62 54 46 62 62 69 62 54 38 38 54 38
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FIGURE 1 Graph of the detect/don’t detect percentages as shown in Table 7. Horizontal
axis represents the number of months prior to an EAC change (× in legend).
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FIGURE 2 Graph of the detect/don’t detect percentages as shown in Table 8. Horizontal
axis represents the number of months prior to an EAC change (× in legend).

overall trends. We expected this given our small sample size of 31 contracts and it does
not detract from the overall conclusion that the I(1) proof of concept appears capable of
detecting future major EAC changes.

Next, we investigated whether or not simultaneous CPI and SPI changes resulted in
a major change in the EAC for the same month; the algorithm identified 185 occurrences
of simultaneous CPI and SPI changes. Of the 185 occurrences, 13 corresponded to major
changes (as described earlier and denoted in Table 9) in the EAC. The algorithm detected all
these major changes in the EAC (0% missed detection rate). Table 9 lists the numbers and
percentages of detections by group of major EAC change. When there were simultaneous
detections of the CPI and SPI change, over half (54%) of the contracts experienced at least
a 10% increase in EACs.

Continuing, we examined the relationship between sequential detections for the CPI
and SPI and a subsequent major change in the EAC. Specifically, we analyzed whether a
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TABLE 9 Simultaneous CPI and SPI detections during the
same month as major EAC change

Same month detections

% Change in EAC # Detections % Detections

10 ≤ EAC 7 54
5 ≤ EAC < 10 3 23
−10 < EAC ≤ −5 2 15
EAC ≤ −10 1 8
Total 13 100

detection in the CPI or the SPI was followed by a detection in the opposite index (CPI or
SPI) during the next 12 months. If a sequential detection was identified, we looked for a
major change in the EAC during the 12 months after the second detection; we found no
such occurrences.

Lastly, given this 100% detection of simultaneous CPI and SPI change along with a
major change in the EAC, we wanted to determine if this held true for contracts outside of
the modeling database. As mentioned previously, we electronically collected all the con-
tracts that we could from DCARC. For a modicum of validation to this detection rate, we
randomly pulled five more contracts but this time manually entered all the earned value
information. [Note: We found this to be very time consuming, and offer that standardizing
DCARC to have the data stored in either Microsoft Excel or Access format would greatly
aid analysts of this EV data.] We recognize that like 31, 5 is not a large number, however,
we did notice that only twice did we detect simultaneous CPI and SPI change along with a
major change in the EAC. And in both instances, the I(1) proof of concept model detected
these for again a 100% detection rate.

Conclusions

Our proof of concept analysis of earned value data reveals we can detect changes in
acquisition contract performance, namely the cumulative AWCP, BCWP, and BCWS.
We determined that the best statistical ARIMA model consisted of a first differencing
equation, resulting in using monthly CPI and SPI data. From this, we developed an algo-
rithm using updating lower and upper control limits to detect these changes. We found that
the change detection algorithm identifies worsening more often than improving cost and
schedule performances.

Additionally, we found that the detections led major changes in the EAC by as much
as 12 months, with 4–5 months appearing to be the trigger point. That is, this initial proof
of concept algorithm descriptively appears to be able to equally detect a problem a month
ahead at the same likelihood of success as 4 to 5 months. Future research is aimed at
building upon this proof of concept and stretching out this time window to 6 or 12 months
out. The percentage of detections for major EAC changes increases as the time between
detection and EAC decreases. Lastly, approximately 77% of simultaneous changes detected
for the CPI and SPI corresponded to large EAC increases. Sequential CPI-SPI detections
did not yield any major future EAC changes.

One noteworthy issue we encountered during this analysis was what actually consti-
tutes a problem in contract performance. We used EAC as a problem confirmation measure,
but EAC as a problem indicator presented difficulty. The difficulty was EACs may increase
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because contracts run over cost or because the contract took on a larger scope and require-
ments. We differentiated between overrun increases from scope increases by categorizing
EAC growth percentages given detection or no detection. If the algorithm did not detect a
change in the CPI or SPI and a large percentage increase in EAC occurred, we assumed the
increase in EAC was scope-related. We recognize that as a big assumption and again future
research is aimed at bettering this determination.

The ability to detect problems in acquisition contracts offers DoD leadership a method
to monitor cost and schedule performance in real-time. The benefit of real-time analy-
sis in defense acquisition is two-fold. First, the identification of contracts that transform
suddenly—and significantly—from good or normal performance to bad performance offers
a great capability to program managers and DoD leadership. With real-time problem infor-
mation, these leaders can identify, isolate, and potentially avoid major cost and schedule
overruns. In the future, major cost and schedule overruns may pose serious concerns for
acquisition contracts due to the likelihood of greater fiscal scrutiny.

Secondly, automated real-time analysis helps solve a principal concern of many acqui-
sition leaders. Specifically, automated analysis alleviates some of the strains caused by low
personnel levels in the acquisition workforce. To be clear, this does not remove the respon-
sibility of potential users to understand the limitations of this algorithm and method. The
algorithm and method provide a way to gain insight into an acquisition contract in addition
to or in absence of other information and acquisition professionals.

Despite our limited sample size of 31 contracts, we are pleased with the proof of
concept results achieved. We believe the ARIMA algorithm is both statistically sound,
overwhelming the model of choice as indicated by our data, and easy to use. The algo-
rithm only needs monthly CPI and SPI data. As with any other tool, the algorithm does not
replace the person monitoring a program. Instead, it adds another tool in the toolbox to use
when monitoring earned value data in real-time.
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