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Estimating Cost and Schedule of Reliability
Improvement

DAVID A. LEE and E. ANDREW LONG

Logistics Management Institute, McLean, Virginia

We extend a well-established model of reliability growth in a reliability improvement program,
the Army Materiel Systems Analysis Activity Maturity Projection Model (AMPM), to include a
model of the program’s cost. We show how the extended model may be used to plan cost-optimal
or schedule-optimal integrated programs of reliability improvement and testing, from early design
through developmental and operational testing, and illustrate the process with an example from an
actual program.

Introduction

Reliability, typically measured by mean time between failures (MTBF), has been shown
by numerous studies over many years to be a key factor in determining equipments’ oper-
ating and support costs, which often constitute the greater part of life cycle cost. Failures
that cause unscheduled maintenance may bring significant penalties apart from the costs of
replacing failed equipment. Consequently, reliability improvement (RI) may offer substan-
tial returns on investment. But until quite recently, cost-estimating relationships (CERs) for
calculating the investment required to obtain a specified gain in reliability have been lack-
ing. In fact, it appears that the first usable CER was one by Long and others in 2007.
Figure 1 displays this relationship and identifies the military systems on which it was
calibrated.

While useful (it is certainly an improvement on the complete absence of quantitative
guidance!), this estimating relationship has the limitations of its class, traditional power-law
models. There is a good deal of scatter, and only the dispersion relations of its regression
indicate where it may be successfully applied.

CERs more helpful than traditional power-law relationships may often be produced by
developing models of the processes involved as in Lee (1997). Here we apply this approach
to develop a model of the variation of failure rate, which is the reciprocal of MTBF, with
investment in RI.

The model takes the form of two parametric equations, in which a certain non-
dimensional time is the parameter. One equation gives the variation of failure intensity,
the other gives the variation of cost. Taken with well-known equations of reliability testing,
the model gives the possibility of planning cost-optimal or schedule-optimal programs of
integrated RI and demonstration testing. This application of the model with an example for
an actual program is illustrated.
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FIGURE 1 Cost-estimating relationship (color figure available online).

Modeling the Variation of Failure Intensity with Investment in RI

Robust RI programs involve a continuous process of identifying modes of failure, with a
discrete process of ameliorating the modes that are found, as in Broemm et al. (2000). A RI
program usually carries out these processes in two identifiable phases. The first phase deals
with the equipment’s design. In this phase, the continuous process expends chiefly engi-
neering labor to proactively identify potential failure modes in the design, and the discrete
process expends further engineering labor, possibly with some fabrication and testing, to
ameliorate or “fix” identified modes. The second phase of a RI project usually follows the
design phase with a “test-analyze-and-fix” (TAAF) phase. Here the continuous process is
to operate equipments fabricated with the new design in a test environment, observing any
failures. The discrete process is to analyze the failure modes and fix them with further
engineering and fabricating effort.

In the TAAF phase, certain identified failure modes may be intentionally excluded
from fixing, because amelioration may be too expensive or too time consuming. These
modes are called “A-modes.” The modes that are eventually fixed are known as “B-modes.”
Clearly, the failure intensity of A-modes must be small compared to the overall failure
intensity, because system reliability can be no better than the allowable failure intensity.

Broemm et al. (2000) developed a model of the TAAF process, known as the Army
Materiel Systems Analysis Activity (AMSAA) Maturity Projection Model (AMPM). Well-
established and useful, AMPM gives a good basis for a process-based CER. As in many
discussions of equipment reliability, AMPM assumes that times between failures are expo-
nentially distributed. Among the bases for the exponential distribution of times between
failures are the assumptions that the probability of a failure in any “small” time interval
δt is equal to λδt + O((δt)2) for some constant λ. More precisely, the probability of fail-
ure in any small time interval is approximately proportional to the length of the interval,
in the specific sense just described where the quantity represented as O((δt)2) is bounded
between two constant multiples of (δt)2 and, therefore, is dwarfed by λδt when δt is less
than 1. It is also assumed that the probability of two or more simultaneous failures (i.e.,
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occurring within the same small time interval) is negligibly small. The mean time between
failures is 1/λ and the parameter λ is known as the failure rate.

If a system is made up of any finite number of independent components, and the
failures of the ith component satisfy the above assumptions with failure rate λi, then the sys-
tem’s times-between-failures will be exponentially distributed, and its constant failure rate
will be the sum of all λi. If an equipment comprises a large number of components whose
times-between-failure are independent, and it is also assumed that failed items are immedi-
ately replaced with identical units, then Drenick (1960) has shown, under mild assumptions
on the not-necessarily-exponential distributions of times-between-failures of the individual
components, that for long times of operation the equipment’s failure rate tends to a constant
value, which in turn forces the distribution of the component’s times-between-failures to
tend to an exponential distribution.

Following the AMPM discussion, we here assume that interfailure times are exponen-
tially distributed. (In other cases not discussed here, such as cumulative damage failure
modes, other failure time statistical models may be appropriate.)

The AMPM discussion starts with a set λ = (λ1, λ 2, . . . , λ K) of failure rate param-
eters. The λi are assumed to be realizations of independent, identically distributed Gamma
random variables with parameters α and β. That is, each λi is assumed to be a realization
of a random variable with the probability density function p(λ), where

p(λ) = λαe−λ/β

α! β1+α
, (1)

for λ ≥ 0 and p(λ) = 0 otherwise. Furthermore, α and β must be positive numbers. The
initial B-mode failure rate is the sum of the λi.

Then r(t; λ), the system failure intensity after fixes have been made to all B-modes that
have surfaced by time t, is

r(t; λ) = λA +
K∑

i=1

{1 − diIi(t)}λi, (2)

where Ii(t) = 1 if mode i has occurred by time t, and Ii(t) = 0 if it hasn’t. Ii(t) is called the
indicator function of mode i. The symbol di denotes the factor by which mode i’s failure
rate is reduced by fixing, and λA is the rate parameter for A-mode failures.

We can introduce cost c at this point, with the modeling assumption that

c(t; λ) = gt +
K∑
1

bi Ii(t). (3)

That is, cost is given by a term proportional to test time t, with constant of proportionality
g, plus an increment bi incurred for the ith fix operation. Because failure and fix times,
as well as other quantities in Equations (2) and (3) are random variables, both r(t, λ) and
c(t, λ) are themselves random variables.

Authors of the AMPM development (Broemm et al., 2000) proceed to develop an
expression for the failure rate λ(t) by calculating the expectation (the “mean” or “expected
value”) of the random variable r(t, λ), first with respect to time of first occurrence of
B-mode i, then with respect to the ensemble of λ, and finally with respect to the rela-
tive improvement factors. Using the facts that the expectation of Ii(t) with respect to the
first occurrence of failure mode i is 1 − e−λi t and that a generating function for the gamma
distribution Equation (1) is (1 – βx)α+1. They arrive at
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λ(τ ) = λA + (1 − μd)λB,K + μdλB,K

(1 + τ )α+2
, (4)

where the non-dimensioned time variable τ ≡ βt and where λB,K is given by

λB,K ≡ Kβ(α + 1), (5)

that is the expected value of the sum of the λi, which will be the expected value of the initial
failure rate of B-modes. The parameter µd is the mean of the di.

Carrying out the same sequence of expectations on Equation (3), we obtain the
expected cost γ (t), given by

γ (t) = gt + μb K

(
1 − 1

(1 + βt)α+1

)
. (6)

In Equation (6), µb is the mean of the bi.
Given our modeling assumption, the result shown in Equation (6) is quite intuitive: the

cost at time t is equal to the cost of operating the test-fix-test program for a length of time
t, represented by the first term on the right side of Equation (6), plus the average cost of
fixing the expected number of B-modes that have surfaced on the interval (0, t), represented
by the second term on the right side of Equation (6).

Now

K

(
1 − 1

(1 + τ )α+1

)
= λB,K

β

1

α + 1

(
1 − 1

(1 + τ )α+1

)
, (7)

in view of Equation (5), so we may write

γ (t) = gt + λB,Kμb

β
μ(βt; α), (8)

where

μ(βt; α) ≡ 1

(α + 1)

(
1 − 1

(1 + βt)α+1

)
= τ 2F1(α + 2, 1; 2, −βt). (9)

The hypergeometric function 2F1(α + 2, 1; 2; −βt) in Equation (9) arises because

(1 + τ )−(α+1) = 1 − (α + 1)τ + (α + 1)(α + 2)
τ 2

2! + . . . , (10)

so that

μ(τ ; α) = τ [1 − (α + 2)
τ

2! + (α + 2)(α + 3)
τ 2

3! − · · · + · · ·

= τ

∞∑
0

(α + 2)k(1)k

(2)k

(−τ )k

k! = τ 2F1(α + 2, 1; 2; −τ ). (11)
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The limit of a large number of B-modes, that is, the large-K limit, has been found useful
(Broemm et al., 2000). In that limit, in view of a standard identity for the limiting form of
the hypergeometric function (Oberhettinger, 1972), Equations (4) and (8) may be written as

λ(τ ) = λA + (1 − μd)λB
0 + μdλ

B
0

1 + τ
(12)

and

γ (τ ) = λB
0

β

[
g

λB
0

τ + μb ln(1 + τ )

]
. (13)

Now, calculation shows that the ratio λB
0/β is the reciprocal of the square of the coefficient

of variation of the sum of gamma-distributed rates that defines the initial total failure rates
of the B-modes. Accordingly, we write

γ (τ ) = 1

cv2

[
g

λB
0

τ + μb ln(1 + τ )

]
. (14)

Equations (12) and (14) give the relation between RI, measured by the decrease in λ(τ ),
and the cost γ (τ ) incurred to produce it.

We regard the parameter 1/(cv2) as a measure of the “goodness” of the reliability
engineering that preceded the RI under consideration. Two arguments support this. First,
in a program with well-managed reliability engineering, subsystem managers will be given
reliability targets. Powerfully incentivized to meet their targets, the subsystem managers
are dis-incentivized to exceed them—that would increase their costs. Consequently, there
will be little scatter in the failure rates of systems in a class of well-managed programs, cv2

will be small, and 1/(cv2) will be large.
This is consistent with a simpler interpretation of 1/(cv2): a well-managed program

leaves relatively little “low-hanging fruit” for subsequent RI, so that any given improvement
will cost relatively more to make.

The remaining parameters of the model’s Equations (12) and (14) have straightforward
physical significance: µd is mean reduction of failure rates achieved by amelioration; g is
the burn rate of process and g/λB

0 is the cost of operating the continuous process of the
improvement program for a time equal to the mean time between B-mode failures at the
start of the program; and µb is mean cost of a “fix.”

Equations (12) and (14) constitute two parametric equations with parameter τ , giving
achieved RI as a function of cost. Figure 2 graphs an example of this relationship, show-
ing improvement ratio, (MTBFfinal − MTBForiginal)/MTBForiginal as a function of required
investment.

The new model offers considerably more, however. The complete model provides
schedule information from Equation (12) as well as cost information from Equation (14),
as shown in Figure 3.

To use the new model as a CER, µd is treated as a parameter specific to each phase
of a RI program. g and µb are modeled as functions of average program acquisition unit
cost; presently lacking more rational grounds for those functions, they have been treated as
power laws.

1/(cv2) has been treated as a function of the reliability assessment score from an
AMSAA procedure (U.S. Army Materiel Systems Analysis Activity, 2009) for evaluating
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FIGURE 2 Relative improvement in MTBF vs. Investment.
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FIGURE 3 Schedule and cost information.

programs’ reliability engineering, and, again lacking better grounds, used a power law
function.

Figure 4 depicts an example of the calibration results on a set of several military
systems.

We employed the bootstrap method (Press, Tuelkolsky, Vetterling, & Flannery,
1996) to analyze goodness-of-fit, and to give indications of the scatter in the model’s
predictions. Figure 5 shows an example of goodness-of-fit results. The vertical bars
extend two bootstrap standard deviations above and below the mean of the bootstrap
predictions.

Some features of the calibration are interesting. For one, calibration of the µd param-
eter on TAAF-phase data gave µd = 0.70, a value consistent with AMSAA experience.
Calibration on design-phase data gave µd = 0.99, consistent with comments from reli-
ability engineers that failure modes identified in design reviews would be essentially
eliminated.

We packaged bootstrap results into an estimating tool. User inputs are the item’s
Acquisition Program Unit Cost (APUC), the failure rate of A-modes, starting and end-
ing system failure rates or MTBFs, and a completed AMSAA scorecard worksheet. The
estimating tool has a number of outputs:
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● Predicted total RI costs in the phase;
● Standard deviation of prediction;
● Coefficient of variation of prediction;
● Predictions of operating costs (identifying B-modes, management time, overhead,

etc.) and of corrective-action costs;
● A sample cumulative distribution function (CDF) of the predicted costs, in scatter-

plot format.

Figure 6 shows an example of an application of the estimating tool.

Cost-Optimal and Schedule-Optimal Programs of RI and Testing

The form of the process-based model in Equations (12) and (14) also offers some poten-
tial for applications beyond cost estimating. It is possible to integrate schedule information
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FIGURE 6 Example of estimating tool application (color figure available online).

from Equation (12) with expressions for the time required for certain standard reliability
demonstration tests. With the cost equation, Equation (14), one can then develop guidance
for optimized integrated programs of reliability growth and demonstration that have min-
imum time, minimum cost, or, perhaps more realistically for actual programs, minimum
cost subject to a maximum-time constraint.

A widely-used reliability demonstration test accepts an article if it exhibits no more
than n failures in a specified time Tn. Such a test is designed by specifying a goal
MTBF, MG, a consumer’s risk RC (the risk that an unsatisfactory article is accepted), and
producer’s risk RP (the risk that a satisfactory article is rejected). These specifications deter-
mine a family of tests, indexed by the number n of allowable failures in the duration of the
test. Equations for the test design give test duration Tn(RC) as

Tn(RC) = MG

2
χ2

2(n+1),RC
(15)

and minimum achieved reliability Mn(RC, RP) as

M∗
n (RC, RP) = MG

χ2
2(n+1),RC

χ2
2(n+1),1−RP

. (16)

Equations (15) and (16) or their equivalents are available in many references; a derivation
can be found in Long et al. (2010). They imply that for, fixed values of RC and RP as the
number n of allowable failures increases, the test time Tn increases monotonically and the
required minimum MTBF, M∗

n , decreases monotonically. Figure 7 shows an example.
Now let us see how Equations (12), (14), (15), and (16) allow program managers

to make schedule-optimal or cost-optimal plans for integrated TAAF and demonstration
testing. Turning first to schedule-optimal plans, note that for each value of n, Equation (15)
gives the corresponding test length Tn(RC), and Equation (16) gives the required mini-
mum value of achieved reliability M∗

n (RC, RP), which determines a maximum failure rate
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λ∗
n = 1/M∗

n . Then Equation (12) may be solved for the value of τ required to achieve failure
rate λ∗

n; dividing this value of τ by the parameter β gives the required time of TAAF, TTAAF.
The result is

TTAAF = 1

β

λB
0 + λA − λ∗

n

λ∗
n − λA − λB

0 (1 − μd)
. (17)

Note that the denominator of Equation (17) becomes zero when λ∗
n falls to the value λ∗

n min
given by

λ∗
n min = λA + λB

0 (1 − μd). (18)

Note that the TAAF process cannot achieve a failure rate less than or equal to λ∗
n min, nor an

MTBF greater than or equal to Mmax = 1/λ∗
n min.

The total time of reliability growth and test is the sum of Tn and TTAAF. As n increases,
test time Tn increases, and M∗

n (RC, RP) decreases; consequently λ∗
n = 1/M∗

n increases,
which increases the denominator and reduces the numerator of Equation (17), thereby
decreasing the value of TTAAF. Thus, the total time typically exhibits a minimum for
some value of n, giving the schedule-optimal plan for coordinated reliability growth and
testing.

Now turning to cost-optimal plans, we may introduce cost by considering
Equation (14) and a model for test cost Ctest. Such a model might, for example, be sim-
ply the “burn rate” part of Equation (14), since testing doesn’t involve fixes. Testing may
include significant set-up costs, but since these are always incurred and may not be affected
by test length, set-up costs presumably wouldn’t be considered in cost-optimal designs.
A realistic model of costs in the TAAF-test phases might also need to include costs of
program operations apart from TAAF and testing themselves.

For illustration, we’ll assume that test costs are simply proportional to test time, with
factor Gtest. Then the total cost Ctot of an integrated TAAF-test process will be

Ctot = 1

cv2

[
g

λB
0

βTTAAF + μb ln(1 + βTTAAF)

]
+ GtestTn(RC), (19)
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where TTAAF is given by Equation (17).
As noted in the discussion of schedule considerations, increasing n increases Tn

and decreases TTAAF. Thus, increasing n decreases the first term on the right side in
Equation (19), and increases the second. Again, there may be a cost-minimizing value of
n, giving the cost-optimal test plan. The cost-optimal and schedule-optimal values of n are
not necessarily the same.

Let us illustrate development of schedule-optimal and cost-optimal plans with data
from an actual, but unidentified, program. Figure 8 shows a reliability growth planning
curve for a certain Army system preparing to meet the Army threshold requirement.

The system is required to demonstrate with at least 50% confidence that MTBF is not
less than MG = 104 hours. This example assumes that management wishes to have at least
an 80% probability of passing the test. That is, the test is to have consumer’s risk RC of
50% and producer’s risk RP of 20%. Using Equations (15) and (16) and the given values of
MG, RC, and RP, we readily generated the first three columns of Table 1.

Now let us introduce schedule information. Assuming a mean fix effectiveness factor
µd of 0.75, the planning curve of Figure 8 is equivalent to a curve of the form Equation (12),
with β = 0.00155 (hr)−1, λA = 0, and λB

0 = 0.0125. With this information, we used
Equation (17) to enter values of TTAAF in. The value of M∗

0 , 322 hours, is just greater than
the value of Mmax, which is 320 hours. Since M∗

0 cannot be achieved, TTAAF is not recorded
for n = 0. Adding Ttest and TTAAF gave the total times displayed in the far-right column of
Table 1.

Table 1 shows that the minimum total time for reliability growth and test is found for
n = 5. Accordingly, the schedule-optimal plan for integrated reliability growth and testing,
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TABLE 1 Test times, maximum failures, and achieved reliability to
demonstrate MG = 103.6 hours with RC = 50% and RP = 20%

Maximum
failures, n

Tn = Ttest,
hours M∗

n TTAAF

Total
time

0 72 322
1 174 211 3,097 3,271
2 277 180 1,858 2,135
3 380 166 1,432 1,812
4 484 157 1,210 1,694
5 587 150 1,073 1,660
6 691 146 978 1,669
7 795 142 908 1,703

for the prescribed goal of 103.6 hours’ MTBF and a test with 50% consumer’s risk and
20% producer’s risk, has a TAAF time of 1,073 hours and a test time of 587 hours; no
more than five failures may occur during the test.

Cost-optimal plans can be obtained with Equation (14) and a model for Ctest. Solely
for this illustrative example, we obtained values of g/(cv2) and µb/(cv2) from a calibrated
TAAF model, to give

Reliability Investment

APUC
= 0.0673 βTTAAF + 6.45 ln(1 + βTTAAF). (20)

Also assuming for this example that Ctest is the same as the “burn rate” part of TAAF cost
CTAAF, modeled by the first term on the right side of Equation (20), we calculated the cost
values in Table 2.

Data in indicate, perhaps counterintuitively, that total cost decreases steadily with
increasing test time. This happens because CTAAF/APUC decreases faster than Ctest/APUC
increases for cases of Table 2. CTAAF will continue to decrease as test time increases,
but Ctest increases steadily. Eventually, total cost will reach a minimum; however, for the
calibration we are using this will happen at a very large total time, and clearly other costs,
such as operating the program office and contractor staff, would need to be considered in
the experimental design for a pragmatic discussion of a minimum cost plan.

Thus, the cost and schedule estimates of Equations (12) and (14), with the test design
information of Equations (15) and (16), would lead a manager to operate the TAAF program
for 1,073 hours and test for 587 hours, allowing no more than five failures, and to expect a
total cost of RI and testing to be roughly 6.6 times the system’s APUC.

TABLE 2 Cost and schedule implications of test options

Maximum
failures

Test
times

TAAF
time

Total
time

TAAF
cost/APUC

Test cost/
APUC

Total cost/
APUC

1 174 3,097 3,271 11.7 0.02 11.7
3 380 1,432 1,812 7.8 0.04 7.8
5 587 1,073 1,660 6.5 0.06 6.6
6 691 978 1,669 6.1 0.07 6.2
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We think it likely that, as in the present example, programs would often wish to
consider minimum-cost programs subject to a maximum-time constraint. It is of course
entirely possible that program managers and engineers within the context of robust exper-
imental design could calibrate Equations (12) and (14) for their individual program. They
could include relevant costs outside the RI and test processes. With that information they
could use Equations (12), (14), (15), and (16) to design cost- or schedule-optimal combined
reliability growth and qualification test plans, for assigned values of consumer’s risk and
producer’s risk.

Thus, we have seen how considering models of the processes involved in RI programs
leads to a cost- and schedule- estimating method that offers advantages over the traditional
power-law model. In particular, it facilitates guidance to program managers for designing
optimized, integrated programs of RI and demonstration testing.

Acronyms

AMPM AMSAA Maturity Projection Model
AMSAA Army Material Systems Analysis Activity

APUC Acquisition Program Unit Cost
CER Cost-Estimating Relationship

MTBF Mean Time between Failures
RI Reliability Improvement

TAAF Test, Analyze, and Fix
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