
Journal of Cost Analysis and Parametrics, 4:63–90, 2011
Copyright © SCEA & ISPA
ISSN: 1941-658X print
DOI: 10.1080/1941658X.2011.585333

Statistical Foundations of Adaptive Cost-Estimating
Relationships

STEPHEN A. BOOK1, MELVIN A. BRODER2,
and DANIEL I. FELDMAN1

1MCR, LLC, El Segundo, California
2The Aerospace Corporation, El Segundo, California

Traditional development of cost-estimating relationships (CERs) has been based on “full” data sets
consisting of all available cost and technical data associated with a particular class of products
of interest, e.g., components, subsystems or entire systems of satellites, ground systems, etc. In this
article, we review an extension of the concept of “analogy estimating” to parametric estimating,
namely the concept of “adaptive” CERs—CERs that are based on specific knowledge of individual
data points that may be more relevant to a particular estimating problem than would the full data set.
The goal of adaptive CER development is to be able to apply CERs that have smaller estimating error
and narrower prediction bounds. Several examples of adaptive CERs were provided in a presentation
(Book & Broder, 2008) by the first two authors to the May 2008 SSCAG Meeting in Noordwijk,
Holland, and the June 2008 SCEA/ISPA Conference in Industry Hills, CA. This article focuses on
statistical foundations of the derivation of adaptive CERs, namely, the method of weighted least-
squares regression. Ordinary least-squares regression has been traditionally applied to historical-
cost data in order to derive additive-error CERs valid over an entire data range, subject to the
requirement that all data points be weighted equally and have residuals that are distributed according
to a common normal distribution. The idea behind adaptive CERs, however, is that data points should
be “deweighted” based on some function of their distance from the point at which an estimate is to
be made. This means that each historical data point should be assigned a “weight” that reflects its
importance to the particular estimation that is to be made using the derived CER. This presentation
describes technical details of the weighted least-squares derivation process, resulting quality metrics,
and the roles it plays in adaptive-CER development.

Introduction

Weighted least-squares (WLS) regression is the statistical technique applied in Book (1990)
to develop cost estimating relationships (CERs). WLS regression is a straightforward
extension of classical ordinary least-squares (OLS) regression, which is the 18th century
curve-fitting technique commonly taught in elementary statistics courses.

OLS regression “best” fits a straight line y = a + bx to a set of ordered pairs (xk, yk),
1 ≤ k ≤ n, of data points in two-dimensional Euclidean space. We will get to the OLS
definition of “best” momentarily. Procedures based on OLS philosophy and mathematical
principles can extend OLS regression to the case of curved lines, primarily logarithmic, as
well as a multidimensional context. However, for our purposes of deriving adaptive CERs,
the linear two-dimensional context suffices.

Suppose we have n data points such as those in Table 1, labeled (x1, y1), (x2, y2), . . . ,
(xn, yn), where, for 1 ≤ k ≤ n, yk is the actual cost associated with a program whose cost
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TABLE 1 Example of historical cost data (19 data points)

Program Cost-Driver Value x Unit Cost y

A 156.12 51,367.22
B 179.40 5,885.00
C 180.30 7,060.00
D 217.50 139,483.12
E 419.14 3,386.00
F 437.09 6,738.00
G 440.93 6,812.00
H 494.45 3,291.34
I 789.90 5,723.14
J 826.10 10,992.00
K 864.30 11,590.00
L 869.30 15,973.00
M 976.50 7,970.67
N 1,355.80 9,524.10
O 1,360.90 35,927.22
P 1,463.21 11,238.73
Q 2,332.10 92,059.97
R 3,017.73 74,649.00
S 3,253.00 42,915.23

driver (perhaps weight, power, etc.) is xk. Were we to use the OLS regression line y = a + bx
to predict the cost of the program in question, our cost estimate would have been a + bxk,
rather than the actual cost yk. The equation y = a + bx is, therefore, called a “cost-estimating
relationship” (CER).

The error in our estimate of the cost of any program is the difference dk = yk –
(a + bxk) = yk – a – bxk between the actual cost yk and the CER-estimated cost a + bxk.
The principle of least squares asserts that, in order to calculate the “best”-fitting straight
line, we ought to choose the coefficients a and b, which determine the CER, so that the sum
of squared differences (i.e., estimating errors),

f (a, b) =
n∑

k=1

d2
k =

n∑
k=1

(yk − a − bxk)2,

is as small as possible. By considering this problem as a two-dimensional minimization
problem, we can take the partial derivatives of f (a, b) with respect to a and b, respectively,
set both partial derivatives equal to 0, and solve the resulting simultaneous equations for
the two unknowns a and b. This process results in the following OLS explicit expressions
for the slope b and the intercept a of the linear CER y = a + bx:

b =
n

n∑
k=1

xkyk −
(

n∑
k=1

xk

)(
n∑

k=1
yk

)

n
n∑

k=1
x2

k −
(

n∑
k=1

xk

)2 ,
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a =

n∑
k=1

yk

n
− b

n∑
k=1

xk

n
.

The above discussion summarizes what can be referred to as “naïve” regression. It
is naïve, because a number of unstated assumptions that critically affect the nature of the
CER and how it can be correctly applied are being made, often without the knowledge or
concurrence of the cost analyst. The most important of these assumptions is that all n data
points are and ought to be treated equally by the mathematical computations. An immediate
unfortunate corollary is that extreme outlying data points, those far away from the bulk of
the data and/or the cost-driver value at which the analyst wants to make an estimate, exert
excessive influence on the location of the regression line and all estimates made using it.

What is it about OLS that requires us to consider each data point of equal merit? The
answer to this question goes back to the early part of the 18th century when it was mathe-
matically derived from reasonable assumptions that estimation errors are well-modeled by
the normal distribution. [It is folklore among statisticians that Karl Pearson (1857–1936),
a British scientist who was one of the founders of modern statistical theory later regretted
his and others’ use of the word “normal,” coming to believe that its common usage biased
less knowledgeable analysts against other statistical distributions, which they assumed to
be “abnormal” in some sense.] The theory of regression assumes that the regression line is
the truth and any departures from it, e.g., those in Figure 1 below, are errors. This means
that the actual y values corresponding to any particular x value are normally distributed with
mean equal to the number a + bx. Another way of looking at the OLS regression model is
as yk = a + bxk + εk, where εk is a normally distributed random variable with mean 0 and
standard deviation σ .

So far so good. The problem, as far as CERs are concerned, is the OLS requirement
that all normal distributed errors of the y values (i.e., the εk values), one for each x value,
have the same standard deviation σ . It is this requirement that forces OLS to consider all
data points to be of equal merit. The requirement of equal σ values as a general rule, though,
is highly questionable in the case of CERs, especially when the wide range of parameters
on which CERs may be based is considered. It seems clear from Figure 1 that, for some
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FIGURE 1 The data points of Table 1 and their OLS regression line (color figure available
online).
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technical reason as yet uninvestigated, cost is much more variable for cost-driver values
near 300 than for other cost-driver levels. Why this happens should be studied in detail
from the engineering point of view, but nevertheless we have to take account of it when
estimating costs.

Figure 1 contains the data points in Table 1, along with the OLS regression line that
best fits the points in the least-squares sense, calculated by standard least-squares regression
methods. The dashed vertical lines in Figure 1 represent the distances dk whose sum of
squared values is to be minimized.

Consider the data point in Table 1 associated with Program D. From Figure 1, we
see that this data point’s dk value will contribute the largest amount to the sum of squared
estimating errors. In its attempt to minimize the sum of squared errors, the mathematics
of OLS will take special pains to pull the regression line toward the Program D data point
and thereby reduce the size of Program D’s contribution to the total squared error. It is
its very extremeness that gives the Program D data point its undue influence on the OLS
regression line.

OLS CER Quality Metrics

Three quality metrics allow the cost analyst to assess the applicability of the CER to
estimating problems involving the kinds of subsystems and/or components of which the
supporting data base is comprised and the validity of estimates made using it. These three
quality metrics are the following: (1) standard error of the estimate SEE; (2) bias B; and (3)
R2. We will discuss each of these in turn.

The standard error of the estimate SEE is an estimate of the σ value, which is the
standard deviation of the normal distribution of εk = yk − a − bxk. Its expression is

SEE =

√√√√√
n∑

k=1
(yk − a − bxk)2

n − 2
=

√√√√√
n∑

k=1
y2

k − a
n∑

k=1
yk − b

n∑
k=1

xkyk

n − 2
.

In the OLS context, SEE is expressed in the same units as the costs and cost estimates,
usually dollars. Because the coefficients of the OLS CER are calculated by minimizing the
numerator under the square-root sign, the smaller the SEE turns out to be, the “better” the
CER is. Choosing the denominator above as n − 2 makes SEE an “unbiased” estimator of
σ . If the denominator were simply n, SEE would be the “maximum-likelihood” estimator of
σ , but not unbiased. “Unbiased” and “maximum likelihood” have precise statistical mean-
ings that are explained in any advanced statistics textbook. For the OLS CER in Figure 1,
SEE = 34,336.83.

The bias B of a CER is the average (sample mean) of the “residuals,” namely the
differences between the cost estimates and their respective actual costs, corresponding to
all points in the supporting data base. In the OLS context, the bias always turns out to be
zero, viz.,

B = 1

n

n∑
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(a + bxk − yk) = 1

n

n∑
k=1

a + 1

n
b

n∑
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n
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= a − a = 0.
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Finally, R2, often called the coefficient of determination, the square of the Pearson
correlation between the cost estimates and their respective actual costs, corresponding to all
points in the supporting data base, measures the extent of linearity of the CER. R2 indicates
the proportion of variation in the costs that is attributable to the OLS linear relationship
between costs and cost drivers. It is usually expressed as a percentage between 0% and
100%. An R2 of 80%, for example, means that 80% of the variation in the cost values
seen in the data base is attributable to variations in the corresponding cost-driver values,
while the remaining 20% of the variation is attributable to other factors not taken account
of in the linear regression model, typically unidentified cost drivers. For the OLS CER in
Figure 1, R2 = 9.68%, which is consistent with Figure 1 that shows the data to be not very
linear at all.

Weighted Least Squares

Weighted least-squares (WLS) regression allows the cost analyst to take into account, not
only the historical-cost data themselves, but also the data-collection or estimating context
within which the data were gathered and the use to which any resulting CER will be put.
Sometimes, the analyst will know that certain data points are less reliably known than
others, so he or she can “deweight” the less reliable ones. Sometimes, the analyst will
need a CER that estimates cost only within a certain cost-driver range, and then he or
she can deweight data points outside that range. Once WLS theory is understood, further
application contexts will almost certainly present themselves.

In addition to the actual values of cost driver and cost, each data point is assigned a
weight, based on considerations discussed above, so that the set of data consists of triples
(xk, yk, wk), where the weight wk represents the influence that the data point (xk, yk) is to
have on the CER derived from the data set. In WLS regression, we weight each squared
difference d2

k = (yk – (a + bxk))2 = (yk – a – bxk)2 by its weight wk. We may express the
principle of weighted least squares as choosing the numerical values of the coefficients a
and b by minimizing the weighted sum of squared errors:

g(a, b) =
n∑

k=1

wkd2
k =

n∑
k=1

wk(yk − a − bxk)2.

What effect on the numerical values of a and b does the weighting procedure have?
Well, suppose a particular value wk is “small,” indicating that we do not want the data point
(xk, yk) to exert a major influence on the CER. Then, regardless of the choice of a and b, the
term wk(yk − a − bxk)2 is not going to contribute too much to the sum of squared errors.
Therefore, the mathematics does not have to move the regression line too close to the data
point (xk, yk) in order to minimize the sum, because not much will be gained by making an
already small summand a little smaller. On the other hand, suppose wk is “large,” indicating
that we do want the corresponding data point (xk, yk) to exert a major influence on the CER.
In this case, the term wk(yk − a − bxk)2 will be a major contributor to the sum of squared
errors. In order to make the sum of squared errors as small as possible, a and b will have to
be selected to push the resulting CER very close to the point (xk, yk).

Normalizing the Weights

Given an initial set of weights {w∗
1, w∗

2, . . . , w∗
n}, we can define a new set of weights {w1, w2,

. . . , wn} that is equivalent to the initial set in the sense that the relative weights of all data



68 S. A. Book, M. A. Broder, and D. I. Feldman

points are the same as they were, but such that
n∑

k=1
wk = n. The new weights are defined,

for each j = 1, 2, . . . , n, as wj = nw∗
j

n∑
k=1

w∗
j

. Notice that, for all i and j values, the ratio wi
wj

is the

same as the ratio w∗
i

w∗
j
, i.e., the relative values of the new weights with respect to each are the

same as the relative values of the original weights with respect to each other. In the sequel,
we shall, therefore, consider all sets {w1, w2, . . . , wn} of weights to be “normalized” in

the sense that
n∑

k=1
wk = n. Normalization plays a role in simplifying the expressions for the

regression coefficients a and b, as is shown in the next section.

Derivation of WLS Regression Coefficients

To obtain the mathematical expression for a and b in the WLS context, we apply calculus
to minimize the weighted sum of squared errors g(a, b) by first taking the partial derivatives
with respect to a and b:

∂g

∂a
=

n∑
k=1

2wk (yk − a − bxk)(−1) = −2

(
n∑

k=1

wkyk − a
n∑

k=1

wk − b
n∑

k=1

wkxk

)
,

and

∂g

∂b
=

n∑
k=1

2wk (yk − a − bxk)(−xk) = −2

(
n∑

k=1

wkxkyk − a
n∑

k=1

wkxk − b
n∑

k=1

wkx2
k

)
.

According to calculus, if we set the two partial derivatives equal to 0, we will be able
to calculate the values of a and b that make the sum of squared errors as small as possible.
Doing so, we obtain the following two simultaneous equations in the unknowns a and b
that we can solve by algebraic methods:

a
n∑

k=1

wk + b
n∑

k=1

wkxk =
n∑

k=1

wkyk,

a
n∑

k=1

wkxk + b
n∑

k=1

wkx2
k =

n∑
k=1

wkxkyk.

The solution to these equations is

b =

(
n∑

k=1
wk

)(
n∑

k=1
wkxkyk

)
−
(

n∑
k=1

wkxk

)(
n∑

k=1
wkyk

)
(

n∑
k=1

wk

)(
n∑

k=1
wkx2

k

)
−
(

n∑
k=1

wkxk

)2 ,

a =

(
n∑

k=1
wkyk

)
(

n∑
k=1

wk

) − b

(
n∑

k=1
wkxk

)
(

n∑
k=1

wk

) .
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We list the expression for b first, because we need to know b before we can calculate a. As
the weights are normalized, the expressions for b and a can be reduced to, respectively,

b =
n

(
n∑

k=1
wkxkyk

)
−
(

n∑
k=1

wkxk

)(
n∑

k=1
wkyk

)

n

(
n∑

k=1
wkx2

k

)
−
(

n∑
k=1

wkxk

)2 ,

a =

(
n∑

k=1
wkyk

)
n

− b

(
n∑

k=1
wkxk

)
n

.

It is should be noted that when all wk values are equal (i.e., all equal to 1 assuming normal-
ization), the WLS expressions for a and b reduce to the OLS expressions. In addition, we
refer to the expressions:

xw =

(
n∑

k=1
wkxk

)
n

and yw =

(
n∑

k=1
wkxk

)
n

,

as the “weighted means” of the x and y values, respectively. Note that the expression for
a guarantees that the point (xw, yw) falls exactly on the WLS regression line. Again, when
each wk = 1 or, more specifically, when all wk values are equal, the expressions for the
weighted means reduce to the expressions for the ordinary means (i.e., the averages) of x
and y.

WLS CER Quality Metrics

The same three quality metrics used for OLS allow the cost analyst to assess the applica-
bility of the WLS CER to estimating problems involving the kinds of subsystems and/or
components of which the supporting data base is comprised and the validity of estimates
made using it. These three quality metrics are again the following: (1) standard error of
the estimate SEEw; (2) weighted bias Bw; and (3) R2

w. However, as one would expect, the
formulas for them are slightly different in the WLS situation.

Because there is nothing in the WLS setup that plays the OLS role of σ , we consider
the standard error of the estimate SEEw to measure the closeness of the estimated costs
a + bxk to the actual costs yk in the data base. Its expression is

SEEw =

√√√√√√√
n∑

k=1
wk(yk − a − bxk)2

n∑
k=1

wk − 2
=

√√√√√
n∑

k=1
wky2

k − a
n∑

k=1
wkyk − b

n∑
k=1

wkxkyk

n − 2
.

In the WLS context, SEEw is expressed in the same units as the costs and cost estimates,
usually dollars. Because the coefficients of the WLS CER are calculated by minimizing
the numerator under the square-root sign, the smaller SEEw turns out to be, the “better” the
CER. Because the weights are normalized, the denominator reduces to n − 2. If all weights
are equal, SEEw reduces to the unbiased form of the OLS SEE.

The weighted bias Bw of a CER is the mean of the weighted “residuals,” which are the
differences between the cost estimates and their respective actual costs, corresponding to
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all points in the supporting data base. As noted earlier, in the OLS context, the bias always
turns out to be zero, and this is also true of the weighted bias in the WLS context:

Bw =
n∑

k=1

wk(yk − a − bxk) =
n∑

k=1

wkyk − a
n∑

k=1

wk − b
n∑

k=1

wkxk

=
n∑

k=1

wkyk −
(

n∑
k=1

wkyk − b
n∑

k=1

wkxk

)
− b

n∑
k=1

wkxk = 0.

Finally, R2, just as in the OLS situation, measures the worth of the linear-regression
equation as a model of the relationship underlying the data base. To derive the formula for
R2 in the WLS situation, let’s start with some reasoning that applies in the OLS situation.
Referring to the data points (x1, y1), (x2, y2), . . . , (xn, yn), we ask why the y values vary, i.e.,
why are they not all the same. There are two basic reasons that the y values vary: (1) the x
values vary, and y is related to x through the hypothesized linear relationship, and (2) any
other reason you can think of that does not involve the hypothesized linear relationship,
e.g., nonlinearity, random errors in the data, additional cost drivers, that affects y. What R2

does is to allocate the variation in y between these two sources. In particular R2, usually
expressed as a percentage, indicates the proportion of variation in y that is attributable to
the linear relationship between x and y.

If the y values did not vary at all from the WLS regression line, they all would be equal

to their weighted mean yw =
(

n∑
k=1

wkyk

)
/n. If, on the other hand, we had no knowledge at

all about the relationship between x and y, the best we could do to predict the value y at any
given x would be to predict y = yw. This is equivalent to using the horizontal line y = yw in
place of the regression line y = a + bx. The sum of squared errors from the horizontal line

y = yw is called the “total variation” of y and is denoted TV =
n∑

k=1
wk(yk − yw)2.

Suppose now that the only variation in y were due to the influence of the regression
line y = a + bx. Then every yk would be equal to its corresponding a + bxk. The resulting
total variation would then be

n∑
k=1

wk(yk − yw)2 =
n∑

k=1

wk(a + bxk − yw)2,

since each yk and a + bxk would be one and the same. It would follow that the quantity

VR =
n∑

k=1
wk(a + bxk − yw)2, called the “variance due to regression” is the variation in y

that can be attributed to the impact of the regression relationship.
We then compare TV and VR with the weighted sum of squared (SS) errors, where

SS =
n∑

k=1
wk(yk − a − bxk)2. It can be proved by straight-forward, though tedious, calcula-

tions that TV = SS + VR. These calculations are provided in the appendix. Simple algebra
then ensures that SS

TV
+ VR

TV
= 1. From this equation, it is evident that VR/TV is the propor-

tion of the total variation in y that can be attributed to the impact of the linear-regression
relationship. The proportion of variation in y due to all other effects is equal to SS/TV . The
WLS coefficient of determination is then
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R2
w = VR

TV
=

n∑
k=1

wk(a + bxk − yw)2

n∑
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wk(yk − yw)2

=

n∑
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wk(y2
k
− 2ykyw + y2

w)

=
b2
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k
− 2yw
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w
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k
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w
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wky2

k
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w

=
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(
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k=1
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k
−
(
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)2
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)
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wky2
k
−
(
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wkyk
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/n

=

{
n

(
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wkxkyk

)
−
(
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wkxk

)(
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k=1
wkyk

)}2

{
n

(
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wkx2

k

)
−
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wky2
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n
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−
(
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n
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k
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(

n∑
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}

Adaptive CERs via Quadratic-Distance Weighting

An “adaptive” CER is an extension of the concept of analogy estimating to the CER con-
text. The standard first step in doing analogy estimating is to find one historical program
that has several characteristics in common with the subsystems or components of a program
that is being estimated. Among such characteristics could be, for example, the program’s
objective, hardware or software design proposed to carry it out, materials of which any
hardware is constructed, use of similar legacy components, and Government or contrac-
tor approach to program development or production. The idea behind an adaptive CER is
to build a data base consisting of as many programs as we can find that have subsystems
or components of the same basic kind as in the program being estimated. Normally, we
would use all the points of this data base to derive a CER that expresses the subsystem or
component cost in terms of an appropriate cost-driver.

However, in any particular estimating context, we are interested only in one particular
value of the cost driver or, at most, a relatively short interval of such values. We know
from classical OLS theory that, if the value at which we are interested in estimating is
relatively far away from the cost-driver values in the data base, the precision of our estimate
is substantially reduced. Adaptive CERs look at this situation from the opposite vantage
point: If a cost-driver value of a data point is relatively far away from the value at which we
want to do our estimate, maybe we don’t want to use that data point to calculate our CER
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or, at least, maybe we don’t want to consider it of equal weight with data points whose
cost-driver values are closer to where we want to estimate.

The mechanics of calculating adaptive CERs is therefore based on measurements of the
distance between cost-driver values in the data base and the cost-driver value at which we
want to conduct our estimate. Data points are treated differently, according to their distance
from the estimating point. To carry out the process, we assign each point in the data base
a “weight” that indicates how important that data point is to our estimating problem. Then
we apply “weighted least-squares” (WLS) regression to derive the CER.

For purposes of illustration in this article, we shall consider quadratic-distance (“Q-
distance”) weighting. This weighting method calls for weighting points according to the
squared distance of its cost-driver value along the x-axis from a cost-driver value of interest.
If x0 is the cost-driver value of interest and xk is the cost-driver value of the kth data point,
then QDk = (x0 − xk)2 is the squared distance between the two cost-driver values. Because
the greater that distance is, the less we want its weight to be, we define the weight of the
data point (xk, yk) to be the reciprocal of QDk, namely wk = (x0 − xk)−2.

Why choose Q-distance weighting from among the infinite number of ways to define
the weighting in terms of a cost driver’s distance from x0? We prefer the squared (i.e.,
quadratic) distance, because OLS calculations use the squares of residuals for best fit—
this process forces the CER to pass through the point (x, y), where x is the mean of the
cost-driver values and y is the mean of the cost values in the data base. In the WLS case,
the regression line based on minimizing the squares of residuals passes through the point

(xw, yw), where xw =
(

k∑
k=1

wkxk

)
÷
(

k∑
k=1

wk

)
is the weighted mean of the cost-driver values

and yw =
(

k∑
k=1

wkyk

)
÷
(

k∑
k=1

wk

)
is the weighted mean of the cost values. However, other

weighting schemes can be used if there is a compelling reason to do so.
Suppose, starting with the historical-cost data in Table 1, we want to estimate the cost

of a similar subsystem or component of interest whose cost-driver value is 800. We then
weight each of the data points according to the Q-distance of its cost-driver value from 800.
The results are listed in Table 2. Note that the normalized weights sum to 19, which is the
number of data points.

The next step is to calculate the adaptive CER, i.e., the CER adapted to estimating at
a cost-driver value of 800. We apply WLS methods to derive this CER, i.e., using the for-
mulas for a and b derived earlier. An illustration of the required preliminary computations
appears in Table 3.

Figure 2 compares the full-data-set CER with the CER adapted, via quadratic-distance
weighting, to a cost-driver value of 300. It should be recalled that the standard error of the
full-data-set CER is 34,336.83, while the standard error of the adaptive CER with points far
from 300 deweighted considerably is 54,556.56, a substantial increase in magnitude. This
large standard error undoubtedly occurs because the actual data points vary quite a bit near
the 300 cost-driver value.

For additional illustration, we compare in Figure 3 the full-data-set CER with the CER
adapted, via Q-distance weighting, to a cost-driver value of 800. It is still true, of course,
that the standard error of the full-data-set CER is 34,336.83, but the standard error of the
adaptive CER with points far from 800 deweighted considerably and those near 800 more
heavily weighted is now 3,147.82, a decrease of more than 90%. As Figure 3 illustrates, the
Q-distance CER is much closer to the heavily weighted data points than is the OLS linear
CER, and this account for the much smaller standard error.

In Figure 4, we display the full-data-set CER along with Q-adaptive CER attuned to a
cost-driver value of 1,500. Note that the adaptive CER, selected to avoid points away from
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TABLE 2 Historical-cost data weighted according to their Q-distances from 800

Program
Cost-Driver

Value x
Unit Cost

y
Initial

Weight w
Normalized
Weight w

A 156.12 51, 367.22 0.00000241 0.00388183
B 179.40 5, 885.00 0.00000260 0.00417852
C 180.30 7, 060.00 0.00000260 0.00419067
D 217.50 139, 483.12 0.00000295 0.00474301
E 419.14 3, 386.00 0.00000689 0.01109470
F 437.09 6, 738.00 0.00000759 0.01221935
G 440.93 6, 812.00 0.00000776 0.01248211
H 494.45 3, 291.34 0.00001071 0.01723779
I 789.90 5, 723.14 0.00980296 15.77623429
J 826.10 10, 992.00 0.00146798 2.36246335
K 864.30 11, 590.00 0.00024187 0.38924599
L 869.30 15, 973.00 0.00020823 0.33510401
M 976.50 7, 970.67 0.00003210 0.05166027
N 1, 355.80 9, 524.10 0.00000324 0.00520966
O 1, 360.90 35, 927.22 0.00000318 0.00511535
P 1, 463.21 11, 238.73 0.00000227 0.00365884
Q 2, 332.10 92, 059.97 0.00000043 0.00068560
R 3, 017.73 74, 649.00 0.00000020 0.00032721
S 3, 253.00 42, 915.23 0.00000017 0.00026746
Sums= 19, 633.77 542, 585.74 0.01180613 19.00000000

the cost-driver value 1,500, nevertheless passes through the most intense concentration
of data points at the lower left-hand corner of the graphs. That accounts for its SEE of
7,781.69, far below standard error of the full-data-set CER, namely 34,336.83.

In Figures 5–7, we will display the Q-distance CERs adapted to cost-driver values
3,000, 3,500, and 4,000, and after we do that, we’ll display in Table 4, the standard errors
of several representative Q-adaptive CERs, along with that of the OLS linear full-data-
set CER.

Figure 5 illustrates the Q-distance CER adapted to cost-driver value 3,000, and its
graph should make clear why the standard error of that adaptive CER is only 2,838.37,
about 8% of the standard error of the unweighted OLS CER. The adaptive CER comes
close to the heavily weighted points, but is not particularly far away from most of the
lightly weighted ones anyway.

Figure 6 displays the Q-distance CER adapted to cost-driver value 3,500. Its standard
error is 18,147.68, less than half that of the unweighted OLS CER, but it offers an even
more important lesson. Notice that it is not very different from the OLS CER, just tilted
slightly toward the data point closest to the 3,500 vertical line. The other points just don’t
seem to matter that much, all of them being considerably deweighted.

Finally, that effect is more pronounced in the Q-adaptive CER focused on a cost-
driver value of 4,000. As Figure 7 shows, the adaptive CER is essentially the same as
the unweighted CER, implying that all data points are weighted about the same, namely
very low. With no actual data points having a cost-driver value particular close to 4,000,
there is no incentive for the adaptive CER to differ much from the unweighted OLS CER.
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FIGURE 2 OLS full-data-set CER compared with Q-distance adaptive CER at a cost-
driver value of 300 (color figure available online).
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FIGURE 3 OLS full-data-set CER compared with adaptive CER at a cost-driver value of
800 (color figure available online).

The “Universal Adaptive CER”

The “universal adaptive CER” is formed by combining the various individual adaptive
CERs, of the sort derived above, over the range of cost drivers into one CER that applies
over the entire range. This universal adaptive CER is, as P. Foussier (2007, Chart 5) pre-
sciently noted, “highly nonlinear.” For the data set we have been working with, we can
consider the cost-driver range to go from 50 to 3,500, and we calculate a quadratic-distance-
weighted CER and an estimated cost at each increment of 50 for each of those cost-driver
values. Then we string all these estimates together and interpolate between successive ones
to form the universal adaptive CER.
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FIGURE 4 OLS full-data-set CER compared with adaptive CER at a cost-driver value of
1,500 (color figure available online).
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FIGURE 5 OLS full-data-set CER compared with adaptive CER at a cost-driver value of
3,000 (color figure available online).

To complete the picture of estimating at each point along the cost-driver axis, we
record and graph the standard error at each point as well. Table 5 contains the estimates
and standard errors at 50 units apart along the cost-driver axis. The numbers in Table 5
form the basis for the graphs of the universal adaptive CER and the corresponding standard
errors in Figure 8. For comparison purposes, the standard error of the OLS CER is a con-
stant 34,336.83 across the data base. Notice how the standard error of the universal adaptive
CER varies with the distance of the cost-driver value (x axis) from the nearest point in the
data base. The numbers in italics (between the 50-unit points) in Table 5 identify the actual
data points underlying the analysis.
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FIGURE 6 OLS full-data-set CER compared with adaptive CER at a cost-driver value of
3,500 (color figure available online).
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FIGURE 7 OLS full-data-set CER compared with adaptive CER at a cost-driver value of
4,000 (color figure available online).

Prediction Bounds

Estimating the cost of developing or producing a new subsystem or component is essen-
tially trying to predict the future, which means that any such estimate contains uncertainty.
A portion of this uncertainty is described by the “standard error of the estimate” of a cost-
estimating relationship (CER), which is basically the standard deviation of errors made (the
“residuals”) in using that CER to estimate the (known) costs of the subsystems or compo-
nents comprising the supporting historical data base. The standard error of the estimate
depends primarily on the extent to which those (known) costs fit the CER that purports
to model them. However, additional uncertainty arises from the location of the particular
cost-driver value (x) within or outside of the range of cost-driver values for programs com-
prising the historical cost data base. For example, if x were located near the center of the
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TABLE 4 Standard errors of adaptive and unweighted OLS CERs

Cost-Driver Value of Interest Q-Adaptive CER Standard Error

300 54,555.56
800 3,147.82

1500 7,781.69
2000 27,387.99
2500 21,970.69
3000 2,838.37
3500 18,147.68
4000 25,552.56

Unweighted OLS 34,336.83

range of its historical values, the CER would provide a more precise measure of the ele-
ment’s cost than if x were located far from the center of the range. The total uncertainty in
the estimate can then be expressed in terms of prediction bounds that involve both sources
of uncertainty.

The first kind of uncertainty, represented by only one number characteristic of the
CER, is fairly easy to measure for any CER shape or error model. The second kind,
which involves both the CER itself and the value of the cost-driving parameter, however,
is more complicated, and the way to calculate it is completely understood only in the case
of classical OLS linear regression. As a result, an explicit formula exists for “prediction
intervals” that bound cost estimates based on CERs that have been derived by applying
OLS to historical cost data. In fact, the formula for the (1 − α)th percent upper and lower
prediction bounds on the true cost y, based on the estimate ESTy from the CER is the
following:

ESTy ± tα/2,n−2 ∗ SEE

√√√√√1 + 1

n
+ (x − x)2

n∑
i=1

(xi − x)2

where tα/2,n−2 is the (1 − α)th percentage point of the t distribution, x is the mean of the
cost-driver values in the data base, x is the cost-driver value at which the estimate is being
made, and SEE is the standard error of the estimate. Table 6 displays the sequence of 80%
upper and lower prediction bounds for the OLS CER based on our data set. Figure 9 graphs
the prediction bounds, along with the actual data points and the OLS CER.

When the weights are normalized, the expressions for the (1 − α)th percent upper and
lower prediction bounds on the true cost y at the cost-driver value xp, based on estimates
ESTy from WLS-based adaptive CERs are the following:

ESTy ± tα/2,n−2 ∗ SEEw

√√√√√√
1

wp
+ 1

n
+ n(xp − x)2

n

(
n∑

k=1
wkx2

k

)
−
(

k∑
k=1

wkxk

)2 .

One way to obtain a usable value, if needed, for wp when xp is not in the data base from
which the adaptive CERs are derived is to interpolate between the weights of the nearest
data-base points. That is what is effectively done in the graphs based on Tables 6–8.
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TABLE 5 Universal adaptive-CER-based estimates and standard errors at 50-unit
increments along the cost-driver axis

Driver EST Cost Std Error Driver EST Cost Std Error

50.00 42,739.31 46,098.71 1,500.00 12,825.54 8,226.72
100.00 40,817.29 41,490.92 1,550.00 16,621.72 13,974.93
150.00 49,546.82 15,013.91 1,600.00 20,492.26 17,569.25
156.12 50,880.53 20,862.57 1,650.00 24,526.56 20,350.34
179.40 55,953.88 43,110.41 1,700.00 28,831.03 22,668.31
180.30 56,150.02 43,970.50 1,750.00 33,415.50 24,632.61
200.00 60,443.18 62,797.07 1,800.00 38,247.16 26,275.33
217.50 69,749.17 63,712.78 1,850.00 43,285.50 27,589.48
250.00 87,031.73 65,413.39 1,900.00 48,497.85 28,534.71
300.00 46,425.71 57,676.55 1,950.00 53,862.57 29,032.00
350.00 22,733.56 36,873.63 2,000.00 59,364.10 28,954.26
400.00 7,006.95 11,986.04 2,050.00 64,981.01 28,118.23
419.14 6,760.42 9,109.80 2,100.00 70,666.52 26,286.86
437.09 6,529.22 6,412.39 2,150.00 76,319.27 23,197.58
440.93 6,479.76 5,835.34 2,200.00 81,744.09 18,634.07
450.00 6,362.94 4,472.36 2,250.00 86,609.89 12,543.91
494.45 3,589.46 3,084.58 2,300.00 90,430.47 5,163.31
500.00 3,243.16 2,911.31 2,332.10 91,836.14 3,730.10
550.00 6,829.12 17,776.83 2,350.00 92,619.98 2,930.89
600.00 9,959.40 22,010.11 2,400.00 92,676.25 10,907.76
650.00 11,310.17 21,033.96 2,450.00 90,463.37 17,895.26
700.00 10,929.01 16,492.92 2,500.00 86,410.39 23,227.16
750.00 8,652.67 9,456.12 2,550.00 81,412.53 26,603.62
789.90 7,175.24 4,565.75 2,600.00 76,466.46 28,091.64
800.00 6,801.25 3,327.84 2,650.00 72,322.92 27,995.50
826.10 9,756.59 3,386.63 2,700.00 69,366.76 26,697.11
850.00 12,462.82 3,440.47 2,750.00 66,431.86 24,540.98
864.30 12,666.50 4,059.71 2,800.00 67,242.40 21,772.29
869.30 12,737.72 4,276.23 2,850.00 67,904.22 18,495.58
900.00 13,174.99 5,605.64 2,900.00 69,545.45 14,613.82
950.00 9,208.15 5,651.88 2,950.00 71,913.26 9,720.21
976.50 8,832.68 5,342.38 3,000.00 74,219.40 3,000.69

1,000.00 8,499.71 5,067.91 3,017.73 74,164.83 4,164.89
1,050.00 11,462.16 11,841.54 3,050.00 74,065.53 6,283.82
1,100.00 14,296.49 15,323.02 3,100.00 67,141.02 15,848.64
1,150.00 16,537.15 16,912.27 3,150.00 54,415.99 17,689.83
1,200.00 18,230.99 17,020.52 3,200.00 45,424.15 9,943.35
1,250.00 19,495.31 16,029.95 3,250.00 42,927.10 501.90
1,300.00 20,310.23 14,631.94 3,253.00 42,978.65 868.74
1,350.00 14,974.31 11,522.07 3,300.00 43,786.36 6,615.99
1,355.80 15,774.27 11,821.74 3,350.00 45,762.39 11,482.72
1,360.90 16,477.67 12,085.24 3,400.00 47,971.96 14,864.14
1,400.00 21,870.45 14,105.41 3,450.00 50,126.95 17,319.87
1,450.00 11,840.86 4,214.92 3,500.00 52,149.51 19,185.52
1,463.21 12,101.01 5,274.84
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FIGURE 8 Universal adaptive-CER-based estimates and standard errors graphed at
50-unit increments along the cost-driver axis (color figure available online).

TABLE 6 Eighty-percent upper and lower OLS prediction bounds

Program
Cost-Driver

Value x
Unit Cost

y
80% Upper

Bound
OLS

EST y
80% Lower

Bound

A 156.12 51,367.22 65,673.53 17,596.30 −30,480.93
B 179.40 5,885.00 65,907.23 17,887.18 −30,132.88
C 180.30 7,060.00 65,916.29 17,898.42 −30,119.45
D 217.50 139,483.12 66,292.88 18,363.23 −29,566.43
E 419.14 3,386.00 68,400.42 20,882.67 −26,635.08
F 437.09 6,738.00 68,593.51 21,106.95 −26,379.62
G 440.93 6,812.00 68,634.94 21,154.93 −26,325.09
H 494.45 3,291.34 69,216.65 21,823.65 −25,569.35
I 789.90 5,723.14 72,574.56 25,515.22 −21,544.12
J 826.10 10,992.00 73,003.23 25,967.53 −21,068.17
K 864.30 11,590.00 73,459.69 26,444.83 −20,570.03
L 869.30 15,973.00 73,519.75 26,507.30 −20,505.14
M 976.50 7,970.67 74,824.83 27,846.74 −19,131.35
N 1,355.80 9,524.10 79,710.04 32,586.00 −14,538.05
O 1,360.90 35,927.22 79,778.56 32,649.72 −14,479.12
P 1,463.21 11,238.73 81,168.85 33,928.06 −13,312.74
Q 2,332.10 92,059.97 94,145.23 44,784.62 −4,576.00
R 3,017.73 74,649.00 105,728.61 53,351.39 974.17
S 3,253.00 42,915.23 109,940.12 56,291.03 2,641.94

In Tables 7–9, we compile the 80% upper and lower prediction bounds on adaptive
CERs at the cost-driver values, respectively, of 300, 800, and 3,000. Figures 10–15 display
the graphs of the respective prediction bounds, first over the entire data range and then in
the smaller area of interest. Notice how the prediction bounds narrow in the region very
near the cost-driver value of interest.
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FIGURE 9 Eighty-percent OLS prediction bounds with actual data points and OLS CER
(color figure available online).

TABLE 7 Eighty-percent upper and lower prediction bounds for adaptive-CER-based
estimates at cost-driver value 300

Program
Cost-Driver

Value x
Unit Cost

y 80% Upper Bound
WLS
EST y

80% Lower
Bound

A 156.12 51,367.22 65,389.279544 61,698.97 58,008.663971
B 179.40 5,885.00 62,372.227016 59,227.74 56,083.244080
C 180.30 7,060.00 62,255.776784 59,132.20 56,008.619347
D 217.50 139,483.12 57,462.441876 55,183.32 52,904.189048
E 419.14 3,386.00 36,867.788626 33,778.67 30,689.557986
F 437.09 6,738.00 35,381.736102 31,873.23 28,364.726492
G 440.93 6,812.00 35,064.501531 31,465.60 27,866.707881
H 494.45 3,291.34 30,658.711130 25,784.31 20,909.907048
I 789.90 5,723.14 6,491.040727 −5,578.52 −17,648.087346
J 826.10 10,992.00 3,534.857637 −9,421.25 −22,377.363947
K 864.30 11,590.00 415.759782 −13,476.29 −27,368.336816
L 869.30 15,973.00 7.527753 −14,007.05 −28,021.632368
M 976.50 7,970.67 −8,743.802865 −25,386.63 −42,029.453100
N 1,355.80 9,524.10 −39,698.603983 −65,650.37 −91,602.134324
O 1,360.90 35,927.22 −40,114.762116 −66,191.75 −92,268.734323
P 1,463.21 11,238.73 −48,463.042557 −77,052.24 −105,641.431258
Q 2,332.10 92,059.97 −119,355.526647 −169,287.31 −219,219.087245
R 3,017.73 74,649.00 −175,292.373781 −242,068.82 −308,845.271266
S 3,253.00 42,915.23 −194,486.501042 −267,043.38 −339,600.262830

The key characteristic about the prediction bounds whose graphs appear in Figures 10,
12, and 14 is their excessive widening as the cost-driver value moves away from its base
value (300 in Figure 10, 800 in Figure 12, and 3,000 in Figure 14. The point to remember
about adaptive CERs is that it is our intention to apply them only in the vicinity of the
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TABLE 8 Eighty-percent upper and lower prediction bounds for adaptive-CER-based
estimates at cost-driver value 800

Program
Cost-Driver

Value x
Unit Cost

y
80% Upper

Bound
WLS
EST y

80% Lower
Bound

A 156.12 51,367.22 67,335.731428 −5,734.14 −78,804.008697
B 179.40 5,885.00 65,146.948025 −5,280.91 −75,708.771200
C 180.30 7,060.00 65,062.330513 −5,263.39 −75,589.110360
D 217.50 139,483.12 61,564.835765 −4,539.16 −70,643.158038
E 419.14 3,386.00 42,608.518817 −613.53 −43,835.578046
F 437.09 6,738.00 40,921.251654 −264.07 −41,449.391167
G 440.93 6,812.00 40,560.306422 −189.31 −40,938.927733
H 494.45 3,291.34 35,529.986321 852.64 −33,824.697703
I 789.90 5,723.14 8,126.533982 6,604.62 5,082.700610
J 826.10 10,992.00 10,459.318778 7,309.38 4,159.436356
K 864.30 11,590.00 15,439.587849 8,053.07 666.561891
L 869.30 15,973.00 16,099.371097 8,150.42 201.463800
M 976.50 7,970.67 30,313.734118 10,237.44 −9,838.849438
N 1,355.80 9,524.10 80,730.945765 17,621.85 −45,487.245014
O 1,360.90 35,927.22 81,409.009710 17,721.14 −45,966.730098
P 1,463.21 11,238.73 95,011.748000 19,712.96 −55,585.820690
Q 2,332.10 92,059.97 210,542.762967 36,628.96 −137,284.838305
R 3,017.73 74,649.00 301,708.981386 49,977.16 −201,754.659776
S 3,253.00 42,915.23 332,992.265384 54,557.52 −223,877.228359
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FIGURE 10 Eighty-percent prediction bounds for adaptive-CER-based estimates at cost-
driver value 300 with actual data points and adaptive CER (color figure available online).

base cost-driver value, where the prediction bounds are at their narrowest. Therefore, their
width in other estimating regions is essentially irrelevant. By the way, the upper and lower
prediction bounds do not touch, as Figures 11, 13, and 15 show. In addition, because these
are prediction bounds on cost estimates, which as a practical matter cannot be negative, the
region of applicability is further constrained beyond cost-driver values at which the lower
prediction bounds go negative.
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TABLE 9 Eighty-percent upper and lower prediction bounds for adaptive-CER-based
estimates at cost-driver value 3,000

Program
Cost-Drive r

Value x
Unit Cost

y
80% Upper

Bound
WLS
EST y

80% Lower
Bound

A 156.12 51,367.22 202,434.005312 34,104.71 −134,224.591913
B 179.40 5,885.00 201,384.901034 34,433.09 −132,518.729992
C 180.30 7,060.00 201,344.342887 34,445.78 −132,452.781730
D 217.50 139,483.12 199,667.940092 34,970.51 −129,726.920845
E 419.14 3,386.00 190,581.137616 37,814.77 −114,951.604146
F 437.09 6,738.00 189,772.232090 38,067.96 −113,636.306880
G 440.93 6,812.00 189,599.184936 38,122.13 −113,354.928569
H 494.45 3,291.34 187,187.341936 38,877.06 −109,433.220060
I 789.90 5,723.14 173,873.151720 43,044.57 −87,784.019292
J 826.10 10,992.00 172,241.840172 43,555.19 −85,131.460894
K 864.30 11,590.00 170,520.403443 44,094.02 −82,332.354836
L 869.30 15,973.00 170,295.084698 44,164.55 −81,965.979897
M 976.50 7,970.67 165,464.262738 45,676.67 −74,110.913120
N 1,355.80 9,524.10 148,371.862469 51,026.94 −46,317.989913
O 1,360.90 35,927.22 148,142.044389 51,098.87 −45,944.294515
P 1,463.21 11,238.73 143,531.737673 52,542.02 −38,447.695941
Q 2,332.10 92,059.97 104,382.272484 64,798.25 25,214.232669
R 3,017.73 74,649.00 75,911.693364 74,469.49 73,027.283557
S 3,253.00 42,915.23 92,744.870060 77,788.12 62,831.365052
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FIGURE 11 Gap between upper and lower prediction bounds in the vicinity of the cost-
driver value 300 (color figure available online).

Prediction Bounds for the Universal Adaptive CER

The universal adaptive CER described in Table 5 and Figure 8 is formed by combining
the various individual adaptive CERs, over the range of cost drivers into one CER that
applies over the entire range. In the example we have been working with, adaptive CERs
corresponding to 50-unit cost-driver increments are merged to form one continuous CER
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FIGURE 12 Eighty-percent prediction bounds for adaptive-CER-based estimates at cost-
driver value 800 with actual data points and adaptive CER (color figure available online).
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FIGURE 13 Gap between upper and lower prediction bounds in the vicinity of the cost-
driver value 800 (color figure available online).

across the entire cost-driver range. The resulting universal adaptive CER is illustrated in
Figure 8. Insofar as prediction bounds are concerned, we want to make use of the fact that
prediction bounds on each individual adaptive CER are very narrow in the vicinity of the
cost-driver value on which the adaptive CER is based, but they widen considerably as the
cost-driver value moves away from that point. This effect can be seen very clearly in Figures
10, 12, and 14. The universal adaptive CER takes advantage of this situation by providing
estimates that have the narrowest possible prediction bounds for all cost-driver values.

Table 10 contains the numerical data on 80% upper and lower prediction bounds on
estimates made using the universal adaptive CER. The prediction bounds themselves, along
with the data points and the CER, appear in Figure 16. Note that the prediction bounds
are much narrower in the adaptive context than in the standard least-squares-fit context,
illustrated in Figure 9. In Table 10, the actual data points are denoted in italics. This is
characteristic of adaptive CERs, the narrowing due to the fact that the estimating process
when applying an adaptive CER near a cost-driver value is carried out using only data points
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FIGURE 14 Eighty-percent prediction bounds for adaptive-CER-based estimates at cost-
driver value 3,000 with actual data points and adaptive CER (color figure available online).
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FIGURE 15 Gap between upper and lower prediction bounds in the vicinity of the cost-
driver value 3,000 (color figure available online).

near that cost-driver value. However, when there is significant variation in data points near
a cost-driver value, the prediction bounds widen in that region. For an example, see what
happens in the cost-driver region of 200–300 in Figure 16. The prediction bounds for OLS
CERs, on the other hand, must be wide enough to provide the desired amount of confidence,
e.g., 80%, throughout the entire cost-driver range.

Summary

Estimating using adaptive CERs offers the cost analyst a middle-ground option between
analogy estimating, which is usually based on one data point (“the analogy”) and the
traditional CER, which is based on a full data set consisting of all available cost and techni-
cal data associated with a particular class of products of interest. Adaptive CERs, however,
are based on specific knowledge of individual data points that may be more relevant to a par-
ticular estimating problem than would the full data set. The examples here have focused on
the data points from the historical data base whose cost-driver values are in the vicinity of
the cost-driver value of the item we are estimating, but other relevancy criteria can be used if
appropriate. The data points are weighted according to how well they match those criteria.
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TABLE 10 Universal adaptive-CER-based estimates and 80% prediction bounds at
50-unit increments along the cost-driver axis

Driver Cost 80% Upper Bound EST Cost 80% Lower Bound

50.00 62,922.60536 42,739.31 22,556.01954
100.00 58,907.24807 40,817.29 22,727.33210
150.00 56,054.74733 49,546.82 43,038.89123
156.12 51,367.22 59,905.78998 50,880.53 41,855.27867
179.40 5,885.00 74,603.67051 55,953.88 37,304.09301
180.30 7,060.00 75,171.88754 56,150.02 37,128.14511
200.00 87,612.53844 60,443.18 33,273.82964
217.50 139,483.12 97,311.65891 69,749.17 42,186.69003
250.00 115,347.90219 87,031.73 58,715.55405
300.00 71,377.71021 46,425.71 21,473.71561
350.00 38,704.87919 22,733.56 6,762.24433
400.00 12,204.28249 7,006.95 1,809.62688
419.14 3,386.00 10,701.37240 6,760.42 2,819.47622
437.09 6,738.00 9,303.25537 6,529.22 3,755.18780
440.93 6,812.00 9,004.15958 6,479.76 3,955.36231
450.00 8,300.59270 6,362.94 4,425.27919
494.45 3,291.34 4,923.86478 3,589.46 2,255.05196
500.00 4,503.97498 3,243.16 1,982.35231
550.00 14,529.66385 6,829.12 −871.42873
600.00 19,484.26578 9,959.40 434.52824
650.00 20,409.64947 11,310.17 2,210.70010
700.00 18,067.87906 10,929.01 3,790.13759
750.00 12,749.77204 8,652.67 4,555.56975
789.90 5,723.14 9,150.40455 7,175.24 5,200.06839
800.00 8,241.00254 6,801.25 5,361.49607
826.10 10,992.00 11,221.66628 9,756.59 8,291.51518
850.00 13,951.60979 12,462.82 10,974.03604
864.30 11,590.00 14,422.75320 12,666.50 10,910.25030
869.30 15,973.00 14,587.63569 12,737.72 10,887.80057
900.00 15,604.93947 13,174.99 10,745.03389
950.00 11,653.20568 9,208.15 6,763.08930
976.50 7,970.67 11,143.81693 8,832.68 6,521.53760

1,000.00 10,696.45067 8,499.71 6,302.97553
1,050.00 16,599.85083 11,462.16 6,324.47866
1,100.00 20,939.42063 14,296.49 7,653.56932
1,150.00 23,860.71099 16,537.15 9,213.58728
1, 200.00 25,595.54200 18,230.99 10,866.44026
1,250.00 26,430.13239 19,495.31 12,560.49388
1,300.00 26,643.54266 20,310.23 13,976.92318
1,350.00 19,965.36192 14,974.31 9,983.26614
1,355.80 9,524.10 20,888.41315 15,774.27 10,660.11771
1,360.90 35,927.22 21,705.81036 16,477.67 11,249.53159
1,400.00 27,979.59574 21,870.45 15,761.29785

(Continued)
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TABLE 10 (Continued)

Driver Cost 80% Upper Bound EST Cost 80% Lower Bound

1,450.00 13,664.60151 11,840.86 10,017.11120
1,463.21 11,238.73 14,382.93075 12,101.01 9,819.08646
1,500.00 16,394.47396 12,825.54 9,256.59722
1,550.00 22,698.80390 16,621.72 10,544.64424
1,600.00 28,144.34523 20,492.26 12,840.17489
1,650.00 33,397.70393 24,526.56 15,655.41028
1,700.00 38,715.42463 28,831.03 18,946.63797
1,750.00 44,154.10037 33,415.50 22,676.89870
1,800.00 49,694.94147 38,247.16 26,799.37082
1,850.00 55,295.14895 43,285.50 31,275.84370
1,900.00 60,905.74386 48,497.85 36,089.94751
1,950.00 66,472.33508 53,862.57 41,252.81236
2,000.00 71,925.95418 59,364.10 46,802.23932
2,050.00 77,167.60488 64,981.01 52,794.40890
2,100.00 82,049.60587 70,666.52 59,283.42427
2,150.00 86,358.35570 76,319.27 66,280.18315
2,200.00 89,805.61668 81,744.09 73,682.56956
2,250.00 92,036.69169 86,609.89 81,183.08854
2,300.00 92,664.98297 90,430.47 88,195.96100
2,332.10 92,059.97 93,449.79687 91,836.14 90,222.47807
2,350.00 93,889.12293 92,619.98 91,350.84125
2,400.00 97,402.84769 92,676.25 87,949.65291
2,450.00 98,222.52317 90,463.37 82,704.22441
2,500.00 96,484.73846 86,410.39 76,336.03984
2,550.00 92,951.10708 81,412.53 69,873.94518
2,600.00 88,646.33546 76,466.46 64,286.59020
2,650.00 84,454.68294 72,322.92 60,191.16611
2,700.00 80,929.09901 69,366.76 57,804.41474
2,750.00 77,054.82704 66,431.86 55,808.89003
2,800.00 76,663.27434 67,242.40 57,821.52197
2,850.00 75,905.67799 67,904.22 59,902.76737
2,900.00 75,867.66447 69,545.45 63,223.22554
2,950.00 76,119.31586 71,913.26 67,707.21079
3,000.00 75,518.29497 74,219.40 72,920.49668
3,017.73 74,649.00 75,966.58830 74,164.83 72,363.08019
3,050.00 76,786.35756 74,065.53 71,344.69813
3,100.00 74,002.10190 67,141.02 60,279.92945
3,150.00 62,069.86209 54,415.99 46,762.11593
3,200.00 49,725.94543 45,424.15 41,122.36282
3,250.00 43,144.36743 42,927.10 42,709.82647
3,253.00 42,915.23 43,354.47526 42,978.65 42,602.82964
3,300.00 46,653.41208 43,786.36 40,919.29842
3,350.00 50,744.79550 45,762.39 40,779.98882
3,400.00 54,430.68793 47,971.96 41,513.24151
3,450.00 57,664.17277 50,126.95 42,589.72220
3,500.00 60,512.13570 52,149.51 43,786.89143
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FIGURE 16 Universal adaptive-CER-based estimates and 80% prediction bounds graphed
at 50-unit increments along the cost-driver axis (color figure available online).

Finally, we have shown how to “glue” together a set of adaptive CERs, all derived from
the same historical data set, to obtain a universal adaptive CER that has smaller estimating
error and narrower prediction bounds than the traditional CER for that data set.
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Appendix

Algebraic Analysis of the Total Variation

TV =
n∑

k=1

wk(yk − yw)2 =
n∑

k=1

wk
[
(yk − a − bxk) + (a + bxk − yw)

]2

=
n∑

k=1

wk
[
(yk − a − bxk)2 + 2(yk − a − bxk)(a + bxk − yw) + (a + bxk − yw)2

]

=
n∑

k=1

wk(yk − a − bxk)2 +
n∑

k=1

wk(a + bxk − yw)2 + 2
n∑

k=1

wk(yk − a − bxk)(a + bxk − yw)

= SS + VB + 2
n∑

k=1

wk(yk − a − bxk)(a + bxk − yw).

We now show that the third summand in the above equation is always zero, no matter what
the data, so that TV = SS + VB for every set of data points. The expression for a that results
from solving for the WLS regression equation implies that
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a =

(
n∑

k=1
wkyk

)
(

n∑
k=1

wk

) − b

(
n∑

k=1
wkxk

)
(

n∑
k=1

wk

) = yw − bxw,

where yw and xw are the weighted means of the y and x values in the data set, respectively.
Therefore, a + bxk − yw = a + bxk − (a + bxw) = b(xk − xw), from which it follows that:

2
n∑

k=1

wk(yk − a − bxk)(a + bxk − yw) = 2
n∑

k=1

wk(yk − a − bxk)b(xk − xw)

= 2b
n∑

k=1

wk(xkyk − axk − bx2
k − xwyk + axw + bxwxk)

= 2b

[
n∑

k=1

wkxkyk − a
n∑

k=1

wkxk − b
n∑

k=1

wkx2
k − xw

n∑
k=1

wkyk + axw

n∑
k=1

wk + bxw

n∑
k=1

wkxk

]
.

In view of the fact that
n∑

k=1
wkxk = xw

n∑
k=1

wk, the two terms above that contain “a” can be

canceled out. What remains is, except for the “2b” factor:

n∑
k=1

wkxkyk − b
n∑

k=1

wkx2
k − xw

n∑
k=1

wkyk − bxw

n∑
k=1

wkxk

=
n∑

k=1

wkxkyk −

(
n∑

k=1
wkxk

)(
n∑

k=1
wkyk

)
n∑

k=1
wk

− b
n∑

k=1

wkx2
k − b

(
n∑

k=1
wkxk

)2

n∑
k=1

wk

=

n∑
k=1

wk

n∑
k=1

wkxkyk −
(

n∑
k=1

wkxk

)(
n∑

k=1
wkyk

)
n∑

k=1
wk

− b

⎡
⎢⎢⎢⎣

n∑
k=1

wk

n∑
k=1

wkx2
k −

(
n∑

k=1
wkxk

)2

n∑
k=1

wk

⎤
⎥⎥⎥⎦

=
b

[(
n∑

k=1
wk

)(
n∑

k=1
wkx2

k

)
−
(

n∑
k=1

wkxk

)2
]

n∑
k=1

wk

− b

⎡
⎢⎢⎢⎣

n∑
k=1

wk

n∑
k=1

wkx2
k −

(
n∑

k=1
wkxk

)2

n∑
k=1

wk

⎤
⎥⎥⎥⎦ = 0,

because

b =

(
n∑

k=1
wk

)(
n∑

k=1
wkxkyk

)
−
(

n∑
k=1

wkxk

)(
n∑

k=1
wkyk

)
(

n∑
k=1

wk

)(
n∑

k=1
wkx2

k

)
−
(

n∑
k=1

wkxk

)2 .


