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Part I – Distribution Fitting of Univariate Data
Fri, Jun 19th, 10am EDT

Part II – Revisiting the Triangular and PERT "Three Point" 
Distributions
Fri, Jul 17th, 10am EDT

Part III – Turning Expert Opinion into Defensible Distributions
Fri, Aug 14th, 10am EDT
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Part I Objectives
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• Provide @RISK users with:
– guidance on settings to use in the @RISK Fit Distributions to 

Data dialog box
– insight necessary for narrowing down the often-overwhelming 

candidate list of probability distributions available in @RISK for 
modeling inputs

• six goodness of fit tests performed when fitting univariate data
• some judgmental aspects of distribution selection that involve both art 

and science
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Input Distribution Selection
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• Every risk analyst should expect questions from their peers, senior technical 
folks, and occasionally even management like, Why did you use a {distribution} 
to model {area of uncertainty/risk}?

• Some answers I’ve heard (and probably even used) … Because:
– that’s what the analyst before me was using
– that’s the distribution our industry/profession always uses to model {area of 

uncertainty/risk}
– {distribution} is the easiest to explain to management
– I plotted the data and it sort of looked like a {distribution}
– that’s what the computer/software told me to use
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A Better Answer
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• Because after doing exploratory data analysis and ensuring the data was stable 
and had no frivolous outliers, I used @RISK to fit distributions to the data, and 
after factoring in:

– results from all six goodness-of-fit “tests”
– “traditional” distribution(s) used to model {area of uncertainty/risk}
– characteristics of the data compared to the candidate distributions
– making appropriate modifications such as truncation

• I selected {distribution}
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Distribution Fitting in @RISK 8.0
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Distribution Fitting in @RISK 8.0 (cont.)
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computationally intensive for large 
datasets, especially when done for 

lots of distributions
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Goodness-of-Fit Tests
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• Chi-square
– formal comparison of histogram of data with density or mass function of

hypothesized distribution
– sensitive to grouping of data (bin/class/histogram intervals)
– rules of thumb for number of bins:

• Kolmogorov-Smirnov
– compares an empirical distribution function with the distribution function of the

hypothesized distribution
– does not require grouping of data like chi-square test

• Anderson-Darling
– similar to K-S test but places more weight on comparison in tail(s)
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Goodness-of-Fit Tests (cont.)
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• Bayesian Information Criteria (BIC) 
– calculated from the log-likelihood function
– takes into account the number of free parameters of the fitted distribution
– provides only a relative measure of the goodness of a particular fit

• Akaike Information Criteria (AIC)
– similar to BIC except tends to penalize the number of parameters less strongly

• Average Log-Likelihood
– also uses the log-likelihood function, but uses the average across the number of 

samples
– largest relative measure indicates best fit
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Recommended Approach
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• Fit univariate continuous sample data using choices identified on earlier slides, 
i.e., no filtering, unsure lower and upper limits, select recommended 
distributions, no parametric bootstrapping, and equi-probable chi-square bins

• Look for distribution fit ranked generally highest by all six test statistics.  If no 
clear winner give preference to AIC result

• Rerun fit for chosen distribution only, with parametric bootstrapping run to 
obtain p values and parameter confidence intervals
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Live Demo
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Initial thoughts:

• “Time” so continuous and nonnegative values

• Univariate unless other “paired” variable(s) recorded

• “Time to failure” so wouldn’t be surprised if exponential or Weibull

• Outliers anticipated, and relevant … some things just last forever

Time to failure in days for 50 randomly sampled electronic 
chips tested at 1.5 times their nominal voltage
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Questions?

https://www.palisade.com/trials.asp

sales@palisade.com
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Input Distribution Selection with @RISK
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• Part II – Revisiting the Triangular and PERT "Three Point" Distributions
Fri, Jul 17th, 10am EDT

• Part III – Turning Expert Opinion into Defensible Distributions
Fri, Aug 14th, 10am EDT
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Back Up Slides
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Chi-Square Test
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Ho: the random variable, X, conforms to the distributional assumption with the 
parameter(s) given by the parameter estimate(s)

H1: the random variable X does not conform

Oi is the observed frequency in the i th class interval

Ei is the expected frequency in the i th class interval, computed as Ei = npi

pi is the theoretical, hypothesized probability associated with the i th class interval

Reject Ho if χ2
0 > χ2

α,k-s-1 {for χ2
α,k-s-1 use Excel fx CHIINV(probability,deg_freedom)}

s represents the number of parameters of the hypothesized distribution estimated by 
sample statistics
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Chi-Square Test
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note that bins are equi-probable, not equal interval width
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Kolmogorov-Smirnov Test
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The statistic D measures the largest vertical distance between the hypothesized 
cumulative distribution function Fx(x) and the empirical (observed) cumulative 
distribution function Fx(x) developed from the sample data.

For continuous distributions with all parameters known (not estimated from data), 
reject the claim that the observed values come from the hypothesized distribution 
Fx(x) if ; otherwise fail to reject.
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Kolmogorov-Smirnov Test
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i xi Fxi D+ D-
1 13.7 0.045 0.205 0.045
2 28.6 0.633 -0.133 0.383
3 33.9 0.818 -0.068 0.318
4 46.2 0.997 0.003 0.247

^

H0: Beta (2, 3, 10, 50)
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Anderson-Darling Test
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0.025 0.975 3.070
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0.100 0.900 1.933

For continuous distributions with all parameters known (not estimated from data) and 
n > 5, reject the claim that the observed values come from the hypothesized 
distribution Fx(x) if ; otherwise fail to reject.^
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Information Criteria
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AIC = 2k – 2 ln L
BIC = k ln n – 2 ln L

where:
L is the likelihood function
k is the number of parameters estimated
n is the number of sampled points

L(θ) = pθ(X1)pθ(X2) … pθ(Xn)
for a discrete distribution with single unknown parameter θ
L(θ) = fθ(X1)fθ(X2) … fθ(Xn)
for a continuous distribution with single unknown parameter θ
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