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ABSTRACT 

Learning Curves are a vital tool for cost estimators when predicting the number of direct labor hours 

required for a production run. One challenge of utilizing learning curves is predicting when no additional 

improvement can be expected, otherwise known as the steady state of the production run. This paper 

will address the formal definition of a learning curve, the different types of learning that impact 

production systems and why the steady state plays such a critical role in cost estimates. The steady state 

concept, as well as its importance and impact will be explored. Interpretation of data and causes of the 

steady state, both genuine and artificial, will also be addressed. A sample estimate will be developed 

that utilizes historical data to identify an anticipated steady state and predict direct labor requirements 

for a new system. Lastly, the unique nature of Department of Defense (DoD) acquisition and its impact 

on production environments will help us determine whether the steady state truly exists or not.
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INTRODUCTION 

One of the most common cost estimating and analysis techniques is learning curve theory. It is 

critical to estimating direct labor requirements and can have substantial impacts on costs that 

are derivatives of direct labor requirements, including facility/space requirements and support 

labor staffing. 

As long as learning curve theory has been used in cost estimating, a key question asked is: 

“Even though the mathematical model indicates that learning will continue indefinitely, is that 

really the case?” 

The state of the process when learning ceases, or is mathematically negligible from unit-to-unit, 

is called the steady state. Understanding how to analyze historical production data to 

determine when a system enters the steady state and utilizing that determination for 

estimating future system requirements is critical. Not accounting for a steady state could result 

in underestimating direct labor requirements. Alternatively, predicting a steady state will occur 

too early could result in an overestimation of direct labor requirements. Before addressing 

these scenarios and answering the question as to whether the steady state even exists, a brief 

recap of learning curve theory is warranted. 

LEARNING CURVE THEORY RECAP 

The universally agreed upon definition of learning curve theory is that it is a measure of 

progress or improvement observed in a constant system as the number of repetitions to 

complete a task or units produced increase over time. A critical component of this definition, 

and ultimately our search for the existence of a steady state is the phrase “constant system”. In 

a production environment, a learning curve analysis in its truest form would mean that we are 

tracking the rate of reduction with regards to resources required (e.g. labor hours) over a 

period of time for the production of multiple units with the following variables remaining the 

same throughout: 

- Production rate or throughput 

- The employees performing the work 

- The facility, tools and equipment used 

- The scope of work being performed (including the materials and sub-assemblies used) 

- Quality requirements 

- Safety Requirements 

- Labor Laws 

Albeit with slightly different techniques, Wright and Crawford both sought to capture this 

improvement mathematically by theorizing that as the quantity of items produced or tasks 

completed double there will be constant rate of reduction in terms of resources required. Their 

techniques reflect the mathematical representations presented below. 
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Crawford’s Unit Improvement Curve Theory 

Y = aXb, where: 

Y = Cost of the Xth unit 
a = Theoretical cost (T1) of the first unit in the production run 
X = Sequential unit number of unit being calculated 
b = log2(LCS), a constant reflecting the rate of cost decrease from unit to unit 
LCS = Learning Curve Slope  
 
Wright’s Cumulative Average Curve Theory 

Y = aXb, where: 

Y = Cumulative average cost of X units 
a = Theoretical cost (T1) of the first unit in the production run 
X = Sequential unit number of unit being calculated 
b = log2(LCS), a constant reflecting the rate of cost decrease from unit to unit 
LCS = Learning Curve Slope 
 

Both theories address “learning” in terms of the reduction of resources required. However, 

Konz1 points out that in production environments, there are actually two distinctly different 

types of learning that take place. This concept can have a substantial impact on how we utilize 

learning curve theory in the search of the steady state, so we address each learning type below. 

 

INDIVIDUAL LEARNING VS ORGANIZATIONAL LEARNING 

Konz defines individual learning as the improvement demonstrated by an individual worker or 

entire workforce while utilizing a “constant product design and constant tools and equipment”. 

In contrast, Konz defines organizational learning as the learning attributed to modifying the 

product design, tools and equipment. Individual learning clearly echoes our definition of 

learning in the previous section. However, and as discussed later in this paper, organizational 

learning must be considered in determining the existence and timing of the steady state in a 

specific production environment. 

Individual Learning 

Individual learning can be represented by two distinctly different scenarios: 

Suppose a manufacturer wins a U.S. Army contract that will require the company to build 1,000 

units of a particular ground vehicle system. The manufacturer typically builds commercial items, 

so it is starting up a separate assembly line specifically for this weapon system that will have ten 

dedicated workstations. The manufacturer does not want to disrupt its commercial business, so 

it hires brand new staff and purchases all new tooling, machines and fixtures in order to deliver 

the Army vehicles. The Army has indicated that the delivery schedule is somewhat flexible, so 



4 
 

the manufacturer decides that it will hire 100 workers who will start on the first day of the 

project and work in one, 8 hour shift per day to accomplish the work. As time passes and the 

workers become more experienced, improvement will be achieved in the number of hours 

required to assemble and deliver each unit. As the delivery schedule will not be firm, 

improvement will also be achieved in the number of vehicles completed in a single day (i.e. the 

production rate will be variable as a function of individual learning). 

Konz provides another example that only involves a single person to help further demonstrate 

individual learning. Suppose a novice golfer decides to learn by playing one hundred rounds this 

year using only a driver, 5-iron and putter. The golfer will play the exact same course at noon 

each day and use the exact same type of golf balls for each round. For the first round, the golfer 

takes 135 strokes to complete the round. The second round, he takes 127 strokes. Over the 

course of the year he sees his stroke total starting to level out around 100, plus or minus a few 

strokes each round. 

In both cases, the environment and resources available to those performing the work remain 

constant. 

Organizational Learning 

Konz introduces the idea of organizational learning by defining it as improvement that results 

from “changing product design, changing tools and equipment, and changing work methods”. 

We again use the two scenarios from above to demonstrate organizational learning. 

Returning again to the new contract for 1,000 Army vehicles, suppose that instead of hiring all 

100 workers on the first day, the workforce increases ten employees at a time over the first 

several weeks. Also, assume that after completing the first 100 units, the tooling and 

equipment purchased to complete this effort is not optimal. Then new equipment to increase 

efficiency is purchased. In addition, after 500 units are completed and delivered, the Army 

notifies the manufacturer of some design changes that will be incorporated into the assembly 

in order to improve survivability.  

Konz introduces organizational learning in the golfer example by proposing that during the 

year, the golfer decides to add additional clubs to his bag (e.g. a 7 iron and sand wedge). The 

golfer may also decide to switch the brand of balls he is using and also move his tee time to 

8:00 AM because he found it to be too hot playing at noon and he would become fatigued. 

In both scenarios, substantial changes were made to the “systems” while they were active 

which more than likely altered the performance of the system and, subsequently, the 

measurable output or results. This is a very important concept as you will recall that one of the 

major tenets of learning curve theory is that the system, and the parameters that define the 

system, remain constant.  
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THE STEADY STATE DEFINED 

Now that we have revisited learning curve theory and explored the two different types of 

learning, we will focus on what the steady state should look like and how we can test whether 

the system has truly reached that state. Gagniuc2 provides a general definition of a steady state 

by stating that if the variables which define the behavior of the system are unchanging over 

time, the system has reached a steady state. In continuous time, this means that for those 

properties p of the system, the partial derivative with respect to time (t) is zero and remains so:  

 𝑝
𝑡

 = 0, 
for all present and future t. 

In discrete time, it means that the first difference of each property is zero and remains so:  

pt − pt−1 = 0, 

for all present and future t.  

The term steady state is used in several fields and can mean many different things to many 

different individuals, organizations and environments. We will attempt to define what a steady 

state means in a DoD production environment. First, we consider a couple of causes for 

individual learning slowing down and eventually stopping in a DoD production environment. 

Production Steady State Causes 

While there are several variables and influences within production systems that could cause 

individual learning to level off, we consider three of the most common:  

1. Time/Repetition 

This is the most easily understood cause of the production steady state because we all 

experience this phenomenon in various aspects of our lives.  For example, consider commuting 

to work. Given constant system parameters, we all eventually reach a best case commute time. 

Assuming we travel to work by car, our system parameters would be as follows: 

 

 Home and workplace location 

 Car functionality 

 Speed limits  

 Lack of construction 

 Stop signs/Traffic lights 

 Traffic patterns 

 Time of day 

 

https://en.wikipedia.org/wiki/Continuous_time
https://en.wikipedia.org/wiki/Partial_derivative
https://en.wikipedia.org/wiki/Discrete_time
https://en.wikipedia.org/wiki/First_difference
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Assuming these parameters are held constant, the learning we experience would come in the 
form of identifying the fastest route to take and the improvement is measured in the time it 
takes us to commute to work form day-to-day. Over time, the best route will be identified and 
the improvement will eventually cease.  
 

2. Achievement of Quality Thresholds 

Another steady state forcing function within production systems is the influence of quality 

control on the behavior of the system. Up to this point, our discussion has focused solely on the 

measurement and reduction of direct labor hours from unit-to-unit relative to a defined 

delivery schedule. However, the majority of projects are also concerned with the quality of the 

end-items being produced. Quality thresholds and standards can be a major forcing function. 

When they are not met, cost can increase and schedule can be delayed. Because of this, quality 

receives quite a bit of attention (and deservedly so). 

 

When production quality standards are not being met, the end-item is often “re-worked”. This 

additional work can either occur at the station where the work content being corrected initially 

occurred, or, there can be a station at the end of the assembly line where all rework is 

performed. Either way, additional hours are incurred and recorded for each unit that required 

rework. As learning and quality increase, the amount of rework decreases and hours required 

per unit tend to level off. If management sees that the quality standards are being met, less 

emphasis may be placed on the need to improve efficiency. 

 

3.   Physical Space Limitations 

The third forcing function for reaching the steady state in a production environment is the 

limitation of physical space to complete the work. A production manager may decide that if 

each employee is responsible for completing less work content for each unit, they are likely to 

increase their rate of individual learning and cost savings will be realized earlier in the 

production run. In addition, if there are more employees completing less work content per unit, 

throughput can be increased.  

 

However, there is certainly an upper bound to this strategy. For instance, management might 

consider analyzing a station on an assembly line that requires 20 hours of work content per unit 

that is currently being performed by 5 workers over an 8 hour work day and has a throughput 

of 2 units per day. The manager might then say, if my 5 workers are each performing 4.0 hours 

of work content apiece per unit and I doubled my staff to 10, then I could have them each do 

2.0 hours of work content per unit and double my throughput for the 8.0 hour shift. This 

thought process could continue by adding staff and even having multiple shifts. However, the 

station might eventually get to a point where there is physically not enough room for workers 
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to effectively maneuver and complete their processes without getting in each other’s way, 

effectively slowing the process back down. 

 

The Production Steady State Defined 

Hopp and Spearman3 address the concept of steady state in manufacturing, production or 

assembly environments using intriguing terminology. First and foremost, they define the steady 

state as just that – a concept. Secondly, they use the following, two part statement to define 

steady state that will be impactful to us as cost estimators: 

“For a system to be in steady state, the parameters of the system must never change and the 

system must have been operating long enough that the initial conditions no longer matter.” 

A strict translation of this definition for the purpose of applying them to a production 

environment is production steady state is the point during a production run when the 

difference between the labor hours required from unit-to-unit is zero and remains unchanged 

until the end of the production run. It also means that at a certain point the starting parameters 

of the system no longer matter. Given the mathematical construct of Wright’s Cumulative 

Average theory and its reliance on all data points on the curve until it ends (1 through n), a 

steady state could never truly commence as the cumulative average would always rely on the 

behavior of the system when it began. Because of this, we will utilize the Crawford’s unit curve 

theory throughout the remainder of this paper. 

Now, anyone who has spent a substantial amount of time in production facilities with a low-to-

moderate production rate (a typical situation for DoD weapon systems) knows that finding a 

point where labor hour requirements remain exactly constant until the end of production is 

next to impossible. This impossibility exists not so much from individual learning ceasing and 

then starting again, but from the seemingly endless number of variables that can impact low-to-

moderate rate environments. Below we identify just a fraction of the issues that can occur at 

any point of a production run: 

- Facility/Equipment/Tooling Issues 

- Staffing Irregularities (sick, vacation, etc.) 

- Supplier Quality Defects 

Instead, we will modify the definition of production steady state to account for the unique 

nature of the defense production environment: 

“In weapon system production environments, the steady state commences at unit n when the 

probability of unit n+1’s hours being higher than those required for unit n are equal to the 

probability of unit n+1’s hours being lower than those required for unit n”. For this to be true, 

both of these probabilities would be 50%.  

We define these as follows: 
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Pn+1,h = Pn+1,l = 0.5, for: 

Pn+1,h = Probability of Unit n+1 requiring the same amount or more direct labor hours than unit n 

Pn+1,l = Probability of Unit n+1 requiring same amount or less direct labor hours than unit n 

This definition is critical to us as estimators when attempting to identify and confirm the steady 

state. Below we look at a plot of direct labor hour requirements for a commercial ground 

vehicle program (Figure 1) to get a better idea of what a steady state typically looks like: 

 

    Figure 1 

Note how the curve begins to level off at unit 200, albeit with a reasonable amount of variation 

still occurring from unit-to-unit until we get out past unit 500. Figure 2 is presented to help us 

explain what is occurring between unit 200 and the point around unit 550 (it is actually unit 

539) where the curve spikes back up.  

 

      Figure 2 
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The plot seems to indicate that we are in steady state for these 338 data points. However, it is 

important to perform statistical analysis and testing to help confirm that observation.  

Statistical Analysis and Stationarity Testing 

Descriptive statistics for the data (Table 1) tell us that the mean of the 338 data points is 364.16 

hours per unit. However, we still see some variance within the data (albeit not much since the 

coefficient of variation is only 0.039), so we remain uncertain about this being the steady state. 

Descriptive Statistics for Units 201-538 
Mean 364.16 

Standard Error 0.77 

Median 365.82 

Mode 364.57 

Standard Deviation 14.22 

Sample Variance 202.28 

Kurtosis -1.19 

Skewness -0.07 

Minimum 338.08 

Maximum 388.51 

Sum 123085.43 

Count 338.00 

Confidence Level (95.0%) 1.52 

 
Table 1 

 

Figure 3 gives us a much better graphical representation of how the data is behaving for these 

338 units, in revealing that the system appears to be behaving as a stationary process. A 

stationary process, or system, consists of time-series data that does not have any upward or 

downward trend or seasonal effects, if applicable. Consequently, the statistical properties of 

the system, such as mean and variance, also do not change over time.  

 

Figure 3 
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Before getting to a formal statistical test, we can also perform a quick sanity check of the data 

to see if it meets the definition of a stationary process as defined above. We can quickly check 

to see if metrics such as the mean and variance stay relatively constant by dividing the dataset 

into bins. In Table 2 we break the data up into ten (almost) equal sized bins and calculate the 

mean and variance for each sub-set of data: 

 

Table 2 

While the mean stays relatively constant, we do still notice a fair amount of change in the 

variance across the bins. So we turn to statistical testing to further support our observation that 

the system is stationary. One statistical test that can help us determine whether or not the 

system is stationary, and subsequently whether our production system is in steady state, is the 

Dickey-Fuller test. The Dickey-Fuller test considers a stochastic process (yn): 

yn = yn-1 + n, 

where || ≤ 1 and n is white noise. If || = 1, we have what is called a unit root. In particular, if 

 = 1, we have a random walk (without drift), which is not stationary. In fact, if || = 1, the 

process is not stationary, while if || < 1, the process is stationary. We will not consider the 

case where || > 1 further since in this case the process is called explosive and increases over 

time. The null hypothesis for the Dickey-Fuller test is that a unit root is present in a time series 

sample. The more negative the Dickey-Fuller statistic is, the stronger the rejection of the 

hypothesis that there is a unit root and the system is stationary: 

Null Hypothesis (H0): If accepted, it suggests the time series has a unit root, meaning it is non-

stationary and has some time dependent structure. 

Alternative Hypothesis (H1): The null hypothesis is rejected; it suggests the time series does not 

have a unit root, meaning it is stationary. 

The first step in applying the Dickey-Fuller test is calculating the difference for consecutive data 

points (y = yn - yn-1). 

We can use the usual linear regression approach to calculate our Dickey Fuller statistic, except 

that when the null hypothesis holds, the t coefficient doesn’t follow a normal distribution and 

so we can’t use the usual t test, and subsequently, the t tables. Instead, this coefficient follows 

a tau distribution. Therefore, we are testing to determine whether the tau statistic τ (which is 

equivalent to the usual t statistic) is less than τcrit based on a table of critical tau statistics values 

shown in the Dickey-Fuller Table (Table 3). 
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If the calculated tau value is less than the critical value in the table of critical values, then we 

have a significant result. Otherwise we accept the null hypothesis that there is a unit root and 

the time series is not stationary. 

 

Table 3 
We perform regression analysis on the following data set in Excel (Table 4) to determine the t 

statistic for our test: 

y = yn - yn-1, for n = 202-538 

 

Table 4 

From Table 4, we see that the t statistic for the coefficient is -18.1263. Comparing this with the 

tau critical values in Table 3, we can reject the null hypothesis and safely conclude with a high 

degree of confidence that the system is stationary and in steady state, beginning with unit 201. 

Before moving on, we end with a couple of notes: 
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1. One parameter of the analogous system that was not explored was the production 

schedule and the rate that was needed to fulfill delivery requirements. For simplicity 

purposes, we assume that the analogous system had a comparable delivery schedule 

and rate. However, if the rate for the analogous system was substantially different than 

the future system, it may impact the suitability of utilizing the conclusion that the steady 

state starts at the 201st unit for future, similar systems. 

2. The high level of variance occurring within the system could be driven by something 

occurring on the assembly line that is driving the peaks and valleys. For instance, there 

could be one or multiple bottlenecks in the system that are causing disruptions and/or 

reassignment of resources to keep the line moving. Below we address how finding the 

steady state can help us in addressing issues such as this. 

Why Should We Care About the Production Steady State? 

In order to stress the importance of predicting when the steady state will occur on an estimate, 

we return to our example involving 1,000 Army vehicles. Based on analysis of production data 

for five commercial vehicles, we determine that the typical learning rate is approximately 85% 

and assume this slope for the new vehicle. The data for some of these vehicles indicates the 

steady state starts around 50 for some and 1000 for others. We decide to analyze how 

impactful the prediction of our steady state could be in increments between the units of 50 and 

1,000. For the purposes of exhibiting the significance, we assume a theoretical first unit value 

(T1) of 1,000 hours.  

We begin by plotting this curve for all 1,000 units with no steady state being reached (Figure 4): 

 

Figure 4 
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The resulting total hours required for all 1,000 units would be 215,978. We then decide to look 

at the other extreme – what if our system were to reach a steady state at the 50th unit as is true 

for at least one of our commercial items? We compare this curve with our curve from Figure 4 

below in Figure 5: 

 

Figure 5 

If we assume steady state begins at the 50th unit, our total hours required would increase to 

405,155. The gray shaded area in Figure 5 depicts this 57.1% increase. Table 5 provides the 

sensitivity of total hours to changes in the steady state starting unit: 

 

Table 3 

Clearly, when the steady state is estimated to begin can have a big impact on the direct labor 

estimate as a whole. If the learning curve slope is estimated to be lower (i.e. our curve is 

steeper), this statement is even truer. 

In addition to impacting the amount of direct hours that are estimated, identifying when the 

learning curve will happen and at what the direct labor hours will be at that point can provide 

substantial benefits with regards to how we predict the system will behave. As Hopp and 

Spearman point out, analyzing a system in steady state, or one that we will assume to be in 

steady state, can help us in analyzing other key metrics of the system including cycle time, work 

in process (WIP), bottleneck rates and also help in optimizing the design and layout of the 

system. 

Steady State Starting Unit 1,000 750 500 250 100 50

Total Hours Required 257,918 259,754 267,905 294,340 349,466 405,155

Difference in Hours Required N/A 1,836 9,987 36,422 91,548 147,237

% Increase in Hours N/A 0.7% 3.9% 14.1% 35.5% 57.1%
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In addition, McCarthy4 introduced the concept of utilizing the steady state to enhance the 

analysis and increase the quality of estimates in integrated production environments (i.e. 

environments where two or more products with at least some common work content are being 

produced concurrently with the same resources). The concepts presented in that research 

utilized the identification of the point where the steady state commences to recognize 

commonality across all end items or any subsets of end items being produced in the integrated 

environment. The commonality identification and subsequent extraction of common work 

content enabled inter-product learning curves to be developed and more accurately depict how 

learning would occur in the environment. By analyzing work content from a static perspective, 

which is what the steady state provides, the direct labor requirements that were deemed to be 

duplicative for two or more end items could be extracted and analyzed for anticipated rates of 

learning separate from end-item unique work content.   

A SAMPLE ESTIMATE WITH THE STEADY STATE 

Now that we have established the importance of identifying the steady state, we return to the 

1,000 Army vehicles described in the sections above on individual and organizational learning. 

When defining individual learning, we held the number of employees constant and let their rate 

of learning dictate the delivery schedule. As this is almost never the case, we introduce the 

following monthly delivery schedule requested by the Army (Table 6): 

 
Month Units  Month Units 

1 3  13 50 

2 5  14 50 

3 10  15 50 

4 25  16 50 

5 35  17 50 

6 45  18 50 

7 50  19 50 

8 50  20 50 

9 50  21 50 

10 50  22 50 

11 50  23 45 

12 50   24 32 

Table 6 

The delivery schedule indicates production ramps up to 50 units per month and stays there 

from months 7-22. As mentioned above, we will assume that the commercial item used to 

identify a steady state point of the 201st unit had a comparable schedule and rate. Before 

estimating direct labor hour requirements we must identify some more characteristics about 

our system, including: 
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- Learning Curve Slope 

- Budgeted Work Standards 

 
Learning Curve Slope 

The learning curve slope for a production environment can easily be estimated by looking at 

actual data for an analogous system produced the same environment with more or less the 

same parameters (e.g. workforce, material, and tooling). We again return to the commercial 

system and, as shown in Figure 6, use the first 200 units of our system (i.e., where it was clear 

learning was taking place) to identify a representative rate of learning: 

 

Figure 6 

Fitting a power model trend line to the data results in an R2 value of 0.9276 and model equation 

of 125.6x-0.235. For the purposes of predicting the rate at which we can expect future systems 

with comparable parameters to learn, we now know that our learning curve slope is 2-0.235, or, 

85.0%. 

Budgeted Work Standards 

Developing budgeted work standards can be a very beneficial tool in managing a facility and 

help cost estimators predict future costs. The true definition of what a standard hour means 

varies by industry. Some industries set the standard to be “the lower bound” amount of time 

that an operation should take to complete. Others define the standard as the time an operation 

should take to complete, but operator’s performing at greater than 100% efficiency can 

perform it in less time. Either definition is acceptable, but must be consistently applied. Labor 

and time standards can be developed using a variety of methods: 

- Time and motion studies can be used to develop work standards by measuring how long 

it takes an operator to complete a specified task or series of tasks. The person 
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performing the time study can then “rate” the operator in terms of the level of 

efficiency achieved. Multiplying these values and then normalizing for established 

personal fatigue and delay allowances provides us with the standard.  

- Industry established, pre-determined time measurements, such as Methods Time 

Measurement (MTM) or Maynard Operation Sequence Technique (MOST), break down 

work content into very specific, measurable motions that have specific times associated 

with them that are then adjusted for other parameters (e.g. weight lifted, degrees the 

body will turn during a movement). 

Regardless of how budgeted work standards are developed, they can often be re-used from 

system-to-system based on commonality. However, it is critical that the standards be updated 

as production proceeds for the new system. For our commercial item in the section above, if 

our BWS for that system was 330.0 hours per unit and the mean hour requirement in steady 

state was 364.16, we can infer that our steady state efficiency was 90.6%. For our new system, 

we have established a BWS of 258.75 total hours per unit for assembly, paint, test and delivery 

of the new system. Assuming the same steady state efficiency for the DoD environment means 

we will require 285.6 hours per unit. 

Developing the Estimate 

Based on the information we have gained from our commercial item data, we can now estimate 

our direct labor requirements for a system that we expect to reach steady state at the 201st  

unit and have a direct labor requirement of 285.6 hours per unit from units 201-1,000. For units 

1-200, we assume learning will take place at a rate of 85.0%, culminating in the 201st unit 

requiring 285.6 hours. We compute for our theoretical first unit hours as follows: 

285.6 = T1*201(ln(0.85)/ln(2)), 

T1 = 990.3 hours 

The resulting learning curve for predicting total direct labor hour requirements (302,543 total 

hours for 1,000 units) is shown in Figure 7. 
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Figure 7 

BEWARE OF FALSE ALARMS: THE IMPACT OF ORGANIZATIONAL 

LEARNING ON THE STEADY STATE 

Recall from Figures 1 and 2 the large spike that occurred in labor requirements at unit 539 

before returning to what appears to be another steady state unit after unit 550. The lead 

manufacturing engineer for that system indicated that a new machine was integrated into the 

assembly line that enabled increased throughput at one of the highly staffed stations. The same 

engineer explained that it took the staff a few days to learn how to operate the machine (hence 

the spike in hours), but thereafter less staff were needed at the station due to the new 

machine’s capability. This explains why the system was able to return to a steady state so 

quickly and why less hours were required. This is a perfect example of production data alerting 

us to explore the root cause of the data’s behavior. A lot of times, this alert is not so evident. 

As cost analysts and estimators, we are trained to collect, normalize and analyze data in helping 

us make sound decisions or develop reliable estimates. However, analysis of direct labor data 

can pose a unique challenge.  Manufacturing and assembly facilities are complex, dynamic 

environments with many variables at play that can impact our data and potentially mislead or 

misinform us. These variables can lead us to believe that a production system or environment is 

behaving one way and that is truly not the case at all. Figure 8 depicts a system that appears to 

be in steady state. However, the individual learning that is still taking place is being offset by a 

series of changes impacting the system parameters, leaving the system in a unique state of 

equilibrium. 
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Figure 8 

Below we discuss several scenarios that can alter the parameters of our system and leave our 

system experiencing what amounts to a false alarm (i.e. believing that we are in steady state 

when we are not). The majority of the scenarios relate to what was defined as organizational 

learning earlier. Whether these scenarios occur by themselves or in conjunction with each 

other, they can have a substantial impact on what is occurring in a system and, more 

importantly, impact the data that is recorded for the system. 
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1.   Modifications to Scope 

Rarely, if ever, does the configuration of a particular weapon system remain the same during a 

production run, much less its lifecycle. As the needs of the user for the end item evolve, so too 

will the configuration of the end item and subsequently the scope and effort required to 

produce it. Depending on the modification, work content and the direct labor requirements can 

either increase or decrease. More often than not, the work content will increase due to 

something that has been learned about the performance, safety, reliability or maintainability of 

the system. 

2. Variable Production Rates 

The rate at which end items are built generally varies over a production run. Once a production 

contract is awarded, a manufacturer will typically start out with a Low Rate Initial Production 

(LRIP) phase to help the staff ease into the production process in order to track lessons learned 

and not overload the system with too much staff too early. As more staff become increasingly 

familiar with the work content they are responsible for, and as the production process becomes 

more defined, the amount of expected throughput will increase. In order to do this and meet 

delivery schedule requirements, the manufacturer will be required to add staff. So long as new 

staff is being added, there will be individual learning taking place. 

3. Business Base Additions/Subtractions 

As McCarthy4 addressed, when dealing with integrated production environments, parameter 

modifications to other systems could subsequently impact our system or end-item of interest. 

For example, it is not uncommon for a DoD system to be produced on the same line as other 

DoD systems or even commercial items that have common work content or operations. 

Variations in the delivery schedules, and subsequently rates, for other systems could then 

impact the performance of our system of interest by influencing the number of times an 

operator accomplishes a certain task where there is commonality. Additionally, if new 

systems/end-items are introduced to the assembly line or even the facility, the impact could be 

felt by management reassigning members of our staff to the new program, either for 

experience or capability purposes, leaving our system parameters modified.  

4. New Technology 

As production runs evolve, we often learn quite a bit about our system. We learn which 

workers are most efficient, we learn how to re-order operations in order to enable higher 

efficiency/maximize throughput and we also learn about alternative tools, equipment and 

technology that can improve our system’s performance. These upgrades could be the result of 

either new technology being developed during our run or perhaps the result of cost benefit 

analysis being performed during our run (i.e. an upgrade to a piece of machinery may initially 

require training and additional individual learning, but it will eventually double throughput 
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through efficiency gains experienced by the employees or the capability of the machinery 

itself). Regardless of what inspires management to invest in new technology, the performance 

and subsequent output of operations impacted by that technology could experience significant 

variance in data reported. 

5. Attrition 

 Organizations rarely, if ever, experience a production run with the exact same staff from start 

to finish. Team members get promoted, retire, rotate and leave the organization constantly 

throughout a production run. Depending on the size of the organization and resource 

requirements needed for a particular end-item, the impact of staff churn may be negligible, but 

it may also be quite significant. Simply put, for every person that leaves an organization, so 

does their individual learning. It is possible that an equivalent amount of learning that has been 

lost via attrition must be gained by a replacement. 

Another phenomenon that occurs in production organizations is bumping, a process used by 

companies to retain high-valued or longer tenured staff members when downsizing. Typically, 

the employee being retained “bumps” another employee from their position. Ironically, despite 

the seniority of the retained employee and their experience within the organization at large, 

their new assignment may require substantial individual learning. In some cases, the employee 

doing the bumping may be getting moved to a new role with which they have no familiarity. 

Small scale bumping likely does not have a large impact. However, mass bumping prompted by 

a variety of factors (e.g. other programs ending, contracts not being won) would likely have a 

substantial impact on the performance of a particular production run. 

POTENTIAL REMEDIES 

As the last section demonstrated, organizational learning can (and will!) occur in DoD 

production environments. This begs the question - Is it reasonable to assume that individual 

learning will continue, unimpeded by various organizational learning impacts, long enough to 

reach a steady state? The short answer to this is yes, but not always. Delivery schedule and 

production rate is usually the best place to look for this answer. If a new system had a rate of 

1.0 unit per day, the chance of organizational learning impacting the system prior to the steady 

state being reached is much higher than for a rate of 20.0 units per day. To fully explore the 

reasonableness of a steady state being reached in a future system, analysis of how often and 

when various cases of organizational learning occurred in analogous systems should be 

performed. 

In order to accomplish this analysis, communication with key team members with direct 

experience in the analogous systems is critical. For instance, we could talk to the following 

organizations regarding the type of organizational learning listed: 
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1. Human Resources: Attrition statistics, including labor category/level of expertise and 

dates that people left, as well as any bumping due to down-sizing. 

2. Industrial Engineering/Production Management: Production rate data, including staffing 

levels and efficiency reports relative to the BWS at particular times. 

3. Manufacturing Engineering: New technology and modifications to scope. As 

manufacturing engineers typically develop and update work instructions, they represent 

the most reliable resources in terms of identifying when scope and/or technology took 

place. 

4. Program Management: Business base changes. Plant management will be aware of all 

programs occurring at a particular facility and to what extent resources were shared 

between systems. 

CONCLUSIONS & RECOMMENDATIONS 

Throughout this paper, we have explored several facets of the learning and improvement that 

occur in production environments. We have also identified the significance of the impact that 

comes from estimating when a system will enter into steady state as well as the criticality of 

predicting the steady state will occur too early or not at all. Unfortunately, the volatility that 

occurs within and around the system parameters for DoD production environments makes the 

likelihood of a system remaining in such a state for an extended period highly unlikely. 

Moreover, even though we know that parameters are going to change, it will still be next to 

impossible to predict when those parameters will change and what the subsequent impact on 

the system will be. 

Despite these challenges, all estimators are strongly advised to study the behavior of analogous 

systems and attempt to identify when a steady state will occur for a particular production 

environment. Simply assuming that organizational learning will continuously impact individual 

learning and negate the presence of a steady state can lead to direct labor hours being 

drastically underestimated. 

Our analysis of the commercial system in Figure 1 led us to a three step approach for identifying 

whether a system is in steady state: 

1. Analyze a visual display of the data 

2. Divide the data into bins and check for low variance in system parameters across bins 

3. Statistical Testing (i.e. Dickey-Fuller Test) 

In analyzing the analogous systems, we must stress the importance of not solely relying on 

production data to determine how future systems will perform. Only by performing root-cause 

analysis on key system parameters in conjunction with the data analysis will we be able to 

distinguish system improvement caused by individual learning from improvement driven by 

organizational learning. As discussed, a system operating under a constant set of parameters 

will eventually reach a steady state as a result of individual learning due to either 
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time/repetition, quality thresholds, facility constraints or any combination of these forcing 

functions. In order to identify when steady states have commenced in analogous systems, it is 

critical to account for modifications to system parameters whenever feasible. 
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