NATIONAL RECONNAISSANCE OFFICE

Programmatic Estimating Tool (PET): Conditional Estimates of Cost, Schedule & Phasing

William Laing, Erik Burgess Dr. Stephen Parker NRO Cost and Acquisition Assessment Group

ICEAA International Conference and Symposium

SUPRA ET ULTRA

ICEAA Professional Development & Training Workshop - www.iceaaonline.com

Agenda

- NRO CAAG Overview
- PET and the ACP Process
- PET Methodology
- PET Example
- Conclusion
- Contact Information

The NRO CAAG

NRO: National Reconnaissance Office

 Joint Department of Defense/Intelligence Community organization responsible for developing, launching, and operating America's intelligence satellites to meet the national security needs of our nation.

CAAG: Cost and Acquisition Assessment Group

- Independent Cost Estimates / Agency Cost Positions (ACPs)
 ... "How much will it cost?"
- EVM Center of Excellence

..."Is the baseline executable?"

PET & THE ACP PROCESS

PET Overview

- The Programmatic Estimating Tool (PET)
 - Integrates program cost, schedule, and budget phasing into a single tool in support of the CAAG ACP process for estimating Space Systems
 - Originally developed for NASA*
 - Significant modifications made to the inputs and outputs to align with NRO CAAG approach to program estimates
 - Underlying methodology remains unchanged
- Uses historical correlation between cost, schedule, and phasing estimate residuals to generate a tri-variate conditional distribution to estimate the impact of:
 - Schedule and/or phasing deviations (from CAAG models) on the cost estimate
 - Cost and/or phasing deviations (from CAAG models) on the schedule estimate
- Primary use:
 - Estimate the cost and/or schedule impact of a constrained budget profile

* Burgess, E., Elliott, D., and Hunt, C., "Programmatic Estimating Tool: Parametric-Based Cost, Schedule & Phasing Health Check," 2015 NASA Cost Symposium, Ames Research Center, Moffet Field, CA. 26 August 2015.

PET is 8 Linked Worksheets

6

NRO CAAG ACP Process

Example: ACP with Funding Constraint

PET METHODOLOGY

PET Methodology

- PET forms a trivariate probability distribution
 - Axis 1: Residual errors from CAAG cost model (CERs)
 - Axis 2: Residual errors from parametric schedule model (SER)
 - Axis 3: Residual errors from parametric phasing model (PER)
- Using matrix algebra (see next slide):
 - Compute *conditional mean* of any dimension (cost, schedule, phasing) given the other two
 - Compute *conditional confidence level* of any dimension (cost, schedule, phasing) given the other two
- Key takeaways of the approach
 - Quantifies and ensures the interrelationship of cost, schedule, and phasing is modeled in the final CAAG ACP
 - Not a causal model of the impact of schedule changes on cost; treated as correlated random variables

Trivariate Conditional Distribution

- $X = (X_1, X_2, X_3)$ is a 3-dimensional random vector (e.g., SER, PER, CER)
 - The expected vector of \boldsymbol{X} is $\boldsymbol{\mu}$
 - The variance-covariance matrix is $\Sigma = Cov(X_i, X_j)$, i, j = 1, ..., 3
- Partitioning:
 - Say X₁ is a subvector of X with dimension 1 (e.g., SER)
 - Then X₂ is the remainder of X with dimension 2 (e.g., PER, CER)

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix} \qquad \mathbf{\mu} = \begin{bmatrix} \mathbf{\mu}_1 \\ \mathbf{\mu}_2 \end{bmatrix} \qquad \mathbf{\Sigma} = \begin{bmatrix} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{bmatrix}$$

• The conditional distribution of \mathbf{X}_1 given \mathbf{X}_2 is distributed as

- Conditional mean and variance are known exactly: Excel (NORMDIST) gives probabilities
- Similar solutions worked out for one or more lognormal distributions

Correlation Summary

- PET requires a best estimate of pairwise correlations among models
- More overlap = more accurate estimate of correlation
 - CER, SER residuals can be computed easily
 - Cost dataset is smallest (n=29), establishes minimum overlap lacksquare

Maximized Sample Size

Counts	Cost	Phasing	SER
Cost	29		
Phasing	24	46	
SER	25	44	70

Resulting Correlations

PET EXAMPLE

Reminder: NRO CAAG ACP Process

Notional Program Example: ACP (Pre-PET)

Technical & Programmatic Parameters (Drive Schedule & Phasing)					
ATP Date	20 AUG 18				
Vehicle Quantity	1				
Design Life	24 Months				
# Mission Types	1				
Vehicle Weights	1,000 lbs				
Option on Prior Contract	0				
Primary PL is GFE	1				
Storage > 1 yr	0				
Competitive Award	0				

Estimate Results	CAAG Model	ACP Adjustment
Cost	\$100M	None
₋aunch Date	01 JAN 22	01 OCT 23

Step 1: Evaluating the ACP

Inputs used to run baseline models and establish the trivariate distribution

NOTE: APPLICA Project Inputs Program Name	ABLE ONLY TO Notional	SPACE SYSTE	MS	Yellow	inputs cell	S	Green	PET adjustn	nents
Technical Parameters	Design Life (Months) # Mission Types Vehicle Weight		Schedule Parameters4/1/2018ATP or SRR Date10/1/2023Planned Last Launch10/1/2023Planned First Launch				Programmatic Parameters1Vehicle Quantity0Option on Prior Contract1Primary PL is GFE0Storage > 1 yr0Competitive Award		
ACP By Year (\$M) for Sp Fiscal Year	bace Segment Scope 2018	2019	2020	2021	2022	2023	2024	2025	2026
Original ACP	\$7	\$29	\$25	\$19	\$16	\$9	\$2	\$ 0	\$ 0
2018 Base Year S100 Original ACP (BY18\$M) for Space Segment Expected cost, given the schedule and phasing \$100 Adjusted ACP (BY18\$M) for Space Segment Expected cost, given the schedule and phasing					the J				
Key Outputs						inputs, than th	nis \$8M ne ACP	higher	
Cost	ACP \$100	PET Conditional M \$108	Delta \$M \$8	Delta % 8.1%		Expected ost and	d scheo phasin	lule, giv g inputs	en the 5, is 3
Schedule	ACP 66	PET Conditional M 63	Delta Months -3	Delta % -4.2%		nonths s	shorter	than the	ACP

NRO CAAG

STEP 2: Adjusting the ACP

Result:

- Expected (mean) cost and schedule conditioned on constrained funding
- Other confidence levels can be output

Other Uses of the Trivariate Distribution

Conclusion

- Cost, schedule and phasing estimates are often developed independently, but the interaction between them can be modelled
 - NRO CAAG has adapted NASA's PET project to serve our needs in formulating Agency Cost Positions
 - PET provides a consistent method for evaluating the interactions between cost, schedule, and phasing based on historically derived correlation
- Version presented uses CAAG developed estimating relationships for space systems – but, the underlying methodology is not commodity (or agency) specific – can be easily updated with other estimating relationships

Contact Information

Dr. Stephen Parker, NRO CAAG – Cross Program Analysis parkerst@NRO.mil

William Laing, Technomics, Inc. wlaing@technomics.net

Erik Burgess, Burgess Consulting, Inc. erik@burgess-consulting.net

NATIONAL RECONNAISSANCE OFFICE

SUPRA ET ULTRA

